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Abstract—One effective way to estimate the impact of contin-
gencies is to utilize linear distribution sensitivity factors, such
as injection shift factor and line outage distribution factor.
Compared to other impact estimation approaches, estimating
the line flows with sensitivity factors is computationally less
demanding, as a linearized DC power flow model is utilized.
However, the accuracy of the power flow model is highly
dependent on the received system information. Hence, wrong or
missing system information can yield inaccurate results. Phasor
Measurement Units provide measurements that can be used to
estimate sensitivity factors such that the impact of wrong system
model information can be minimized. This paper introduces a
new methodology, based on the alternating direction method
of multipliers, to leverage PMU data for estimating sensitivity
factors. The developed methodology is particularly applicable to
near real-time conditions, where the speed of estimation is of
essence. The performance of the developed method is compared
with the traditional estimation methods for multiple testbeds.

Index Terms—Injection shift factor, optimization, phasor mea-
surement unit, power system reliability

NOMENCLATURE
€ PMU measurement error
A Edge-to-node incidence matrix
opline Active power flow change in line i
GPJI?"S Active power injection change at bus j
P Small load fluctuation
H, H; ISF matrix and the ith row of the ISF matrix
M Number of PMU time duration data
Pline(t) Active power flow in line / at time ¢
Pf“s (t) Active power injection at bus j at time ¢

I. INTRODUCTION

Maintaining reliable power system operation is more chal-
lenging with the ever-increasing grid uncertainties and the
threat of cascading failures. These uncertainties and threats are
partially introduced by the increasing penetration of renewable
energy resources, more complex load patterns, and more
severe weather patterns. To guarantee bulk power system reli-
ability, single or multiple component failures that are expected
to occur more often than before with more grid uncertainties
should be prevented. It is thus critical to perform contingency
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analysis in real-time to estimate the risk of potential contin-
gencies, and determine appropriate preventive actions to keep
power systems operating within secure limits [1]. A Real-time
Contingency Analysis (RTCA) utilizes the estimated system
states from the state estimator to identify potential contingen-
cies and evaluate their risks [2], [3]. Contingency analysis in
real-time involves two components: contingency selection and
contingency evaluation [3]. The contingency selection process
enables identifying potential credible N-k contingencies [4]-
[8], that are in turn screened to determine risky contingencies.
Conventional contingency evaluation methods use sensitivity
factors such as Injection Shift Factor (ISF) and Line Outage
Distribution Factor (LODF), which are calculated based on of-
fline studies, to evaluate the impacts (e.g. potential overloads)
of a selected set of contingencies [2]. The sensitivity factors,
however, could yield incorrect contingency analysis results
upon receiving the wrong system model information [9]. The
wrong information can occur due to incorrect measurements,
missing data, or a fake topology change due to a cyber-attack
on the state estimator topology processor. Therefore, it is
necessary to estimate the sensitivity factors without the system
information.

Synchronized Phasor Measurement Unit (PMU) measure-
ments provide an alternative to using system model informa-
tion to estimate the sensitivity factors. Hence, the credibility
issue of traditional model-based methods for calculating sen-
sitivity factors is addressed by using PMUs. A measurement-
based method for estimating ISF using PMUs was first devel-
oped in [10]. This method was applied to security constrained
economic dispatch (SCED) in [11] and was further improved
by a sparse representation algorithm that increases the number
of zeros in a modified ISF matrix in [12]. The approach
in [12] has a distinct advantage of requiring fewer PMU
measurements to estimate ISF. However, this sparse method
assumes that at most two lines are out of service, which limits
its application, particularly to cascading event analysis. To
overcome the limitation of the sparse representation method,
in this paper, a nonconvex optimization problem for estimating
ISF is formulated based on the past PMU measurements
that reflect the most recent system operating conditions. The
optimization problem is solved by decomposing the formu-
lated nonconvex problem into subproblems that can be solved
iteratively. Therefore, without the system model information,
the ISF can be estimated with the obtained past PMU mea-
surements and can be leveraged for other purposes, such
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as identifying critical contingencies and determining proper
mitigative actions.

The contributions of this work can be summarized as devel-
oping a new estimation approach to estimate linear sensitivity
distribution factors, only utilizing the past PMU measurement.
The developed method achieves a higher estimation accuracy
than the conventional ISF estimation method. This paper is
organized as follows: An overview of the conventional and
measurement-based ISF estimation methods is given in Section
II. The developed new ISF estimation approach is described in
Section III. In Section IV, the effectiveness of the introduced
approach is assessed on the IEEE 57-bus and Illinois 200-bus
systems. Conclusions are presented in Section V.

II. PRELIMINARIES

To analyze the impact of system contingencies and compo-
nent failures, and to perform SCED, line power flows need to
be estimated as the system conditions change. Conventionally,
sensitivity factors, i.e., ISF and LODF, are used to estimate the
changes in line power flows. ISF determines the redistribution
of the power flows for each transmission line upon system
generation or load changes [10]. Conventionally, ISF is cal-
culated based on the latest available system model, which is
obtained from the state estimation solution. However, using
a near-real-time system model brings about additional risks.
One of the notable risks is that undetected system topology
changes and inaccurate model parameters may lead to the
wrong estimation of line power flows [13]. To mitigate the
risks of a wrong model, the authors in [10] suggest using past
PMU measurements as an alternative to the system model.
Hence, leveraging the compressive sensing (CS) approach, a
significant improvement in the efficiency of the ISF estimation
is achieved in [12]. In this paper, the methods that utilize
system model and PMU measurements are referred to as
model-based and measurement-based methods, respectively.

A. Model-Based Method for Estimation of ISF

To calculate ISF based on the system model, the latest
available system model information, i.e., topology and trans-
mission line parameters, is required. Given a power system
with Ny, transmission lines and Ny, s buses and a predefined
edge direction, an edge to node incidence matrix A, with
a dimension of Njj,e X Npys 1S defined from the topology
information, as:

1 If bus j is the from bus in line i
Aij=<¢-1 If bus j is the to bus in line 4 (1)
0 otherwise

Given the transmission line parameters, a diagonal susceptance
matrix B is constructed, where B;; = b; is the susceptance of
line i. Thus, with the susceptance matrix B, the incidence ma-
trix A, and a known slack bus, an ISF matrix H € RNineXNous
is estimated as [11],

H= [ONM BAB™! 2)

where B’ = ATBA, A is a reduced size incidence matrix of
A where the column corresponding to the slack bus is absent,

and Oy, is an all zeros column vector to replace the slack
bus elements in the A matrix. The H;; element of the ISF
matrix represents the real power flow change in line i given a
unit increase at bus j and a unit decrease at the slack bus [14].
It can be observed in (2) that the accuracy of the model-based
method relies highly on the accuracy of the information from
the system model, such as the incidence matrix A and the line
susceptance matrix B.

B. Measurement-Based Method for Estimation of ISF

To overcome the drawbacks of the model-based methods,
measurement-based methods have been developed. Due to a
relatively high sampling frequency of PMUs (30 to 120 mes-
sages per second) and the fact that the measurements across the
system are highly synchronized, the obtained PMU measure-
ments that reflect the present system operating conditions have
been considered as a key enabling factor for measurement-
based estimation of ISF [10]. The measurement-based method
estimates the elements of the ISF matrix considering a linear
relationship between the active power flow of the lines and
the active power injection as,

apiline ~ AP}i”e(t)
bus bus
op; AP (t)
For a small At > 0, AP!"¢(t) = Plne(t + At) — Pline(t)
and AP"S(t) = PP"s(t + At) — PP"*(t). Hence, based on
the approximate linear relationship in (3), the total change in

the power flow of line i due to all bus injection changes at
time ¢ is estimated as,

APiline ~ Aplbus 71 + oo + AP}{;ZzSH'L—Nbus (4)

Hi; =

3)

Assume the power injection change of all buses is represented
as AP = [AP{’“S, ...,APK}:iJ. Then for M+1 available
past PMU time duration data, the active power injection
change at bus k is,

APPs = [APPS(1), ..., AP [M]] 5)
The active power injection change at bus k from time m to
time m + 1 is AP{“S[m] = P{US[(m + 1)At] — PPus[mAt].

In addition to the bus injection change, the active power flow
change of line i is defined as,

APl = [APM[U],., AP [M]]T,(©)

where AP!"¢[m] = Pl"¢[(m + 1)At] — Pl™¢[mAt¢] is the
active power flow change in line i from time m to time m+ 1.
The value of At is assumed to be small. Note that, PMUs are
required to be present at all buses, such that line power flows
and bus injections at each sampling time can be obtained. The
total active power change in line i is,

Apili’ne — APbusH;T (7)

}T

where H; is the ith row of the ISF matrix H. The dimension
of AP!"¢ is M and the dimension of AP is M x Ny, If
the number of PMU time duration data M is larger than Ny,
equation (7) is overdetermined and can be solved by the Least
Squares method as [10],

Hi _ (A(Pbus)TAPbus)—IA(Pbus)TAPiline (8)
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To estimate the ISF matrix from equation (8), the Least
Squares estimator requires at least (Ny,s + 1) past PMU time
duration data to solve equation (7), which is not desired for
real-time applications. Carefully examining the ISF matrix, it
is observed that many elements of ISF that correspond to a
single line are close in value. This is due to the fact that the
corresponding buses have similar effect on the active power
flow of that line. This property is the basis of the method-
ology introduced in [12], referred to as Chen’s difference
transformation method. The difference transformation method
sorts each row of the ISF matrix H; in a descending order,
referred to as H; yecorder, and calculates the difference between
each two consecutive elements. As a result, the ISF matrix is
transformed to a sparse matrix, denoted as C, and thus can be
estimated even when M < Npys,

1Cillg

minicmize
subject to  AP!"¢ = AP*S71(C;. ©)
Cl' = SHi,reorder

where C; is the ith row of the sparsified ISF matrix through
difference transformation and |-, denotes the Iy norm,
H; reorder 1 the ith Tow of the sorted ISF matrix based on
the value of each component in H;. The matrix §, aiming
at calculating the difference between each two consecutive
elements in H; ,.corder, 1 an all-zeros M x M matrix except
Spg = 1 if b = d and Spq = —1 if b = d + 1. Since the
optimization problem in (9) is nonconvex due to the zero norm,
the authors in [12] use a convex relaxation algorithm to obtain
the ISF matrix, which is referred to as the baseline estimation
method in this paper. The estimation accuracy of this method,
however, needs to be further improved, especially when more
than two lines are out of service. This required improvement
is addressed in this study.

III. ESTIMATION OF ISF VIA ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

To overcome the shortcomings of the previously described
methods, in this paper, a measurement-based approach is
developed for estimating ISF values, without making any lim-
iting assumptions about the system conditions. This flexibility
ensures that the developed method is more widely applicable to
practical systems. This is achieved by deploying the Alternat-
ing Direction Method of Multipliers (ADMM) to estimate ISF.
In addition to its ability to solve a nonconvex problem, ADMM
has an improved convergence rate and relies on little or no
assumption regarding the objective function when compared
to other methods such as gradient descent [15]-[17].

The developed ISF estimation method relies on the property
that some elements of the ISF matrix are zero or close to zero.
This can be explained by the fact that a change in the active
power injection at a bus, that is geographically or electrically
distant from a line, has little or no impact on the active
power flow change of that particular line. For example, for
the Illinois 200-bus system in Fig. 1, it can be observed that
more than half of the lines, i.e., rows in the ISF matrix, have
at least 100 elements in H that are smaller than 0.01. Based on
the observed sparsity in the ISF matrix, the under-determined

Number of elements < 0.01

0 50 100 150 200 250
Line ID

Fig. 1. The sorted number of elements in ISF that are smaller than 0.01
plotted for each line of the Illinois 200-bus (245-line) system.

equation (7) can be reformulated as an optimization problem,

e AP-line _ APbuSHT 2 A
mlnbrfnze || ¢ i H2 +A1Zllg (10)
subject to H; — Z = 0.

where AP is the power flow change of line i, AP""* is
the power injection change at all buses, and |||, represents
the [> norm. The parameter \ is a positive scalar that penalizes
the sparsity of H;. A large A leads to a more sparse estimation
of H,. Vector Z is an auxiliary vector that helps estimate H,.
This optimization problem is nonconvex due to the zero norm
of Z. In this study, the ADMM method is used to solve this
nonconvex problem as it enables decomposing the nonconvex
problem into two subproblems. One of the sub-optimization
problems can then be solved through the gradient descent
method, while the other is solved analytically. The augmented
Lagrangian equation of (10) is given as [15],

L,(Hi, Z,A) = | AP — APt HT | 4 7| 2],

(1)
+ir {AT(H, = 2)} + & || H; - 21
where A is a matrix of the Lagrangian multipliers, ¢r{-}
denotes the trace, and p is a positive scalar. By using the scaled
dual variable U = %, the augmented Lagrangian equation (11)
is equivalent to [18],

ine us 2
L,(H;, Z,A) = | AP/ — APP HE D+ X[ Z]],
P 2 P 2
+o - 2+ U - 2
After formulating the augmented Lagrangian equation (12)
with a dual variable U, the ADMM estimates the minimizer
of (10) by iteratively solving the following three steps outlined

in (13), (14) and (15). The iterations continue until the
constraints in (16) and (17) are satisfied [18],

HF = argmin L, (;, AN (13)
VARRRES arngir; L,(HF', Z, AF) (14)
Ukl . gk +Hik+1 _ gkt (15)
|- 22 < 16)
|zt -z < (17
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The parameter k denotes an ADMM iteration, and ¢ is a small
positive scalar that determines when to stop the iterations.
The initial value of the dual variable U° is set as an all-
zeros vector, and the initial value of Z can be obtained from
an offline study of H to accelerate the convergence speed.
The initial value of ZY is obtained from (2) with a full
topology to improve the convergence speed of the developed
ADMM-based estimation method. Although ISF changes with
a change in system topology, leveraging a model-based ISF
estimation to set Z° leads to an acceptable accuracy and is
corroborated by the case studies presented in the later sections.
It is also assumed that the outaged lines would not dramatically
change the sparsity of the ISF matrix. If the change of ISF is
sufficiently large, it is necessary to assign a different initial
value to Z° to guarantee the convergence of the ADMM-
based estimation method. However, the initial values of Z°
can be learned off-line for different system topologies, that
in turn can be used for online validation. To further increase
the speed of the validation process, parallel computing can be
utilized. Therefore, adjusting Z; will not significantly impact
the performance of the developed method.

The two subproblems formulated in (13) and (14) have to
be solved during each iteration. In particular, subproblem (13)
can be solved through the gradient descent method, and Z*+!
of (14) can be obtained analytically. Hence, the optimization
problem in (13) and (14) can be formulated as,

HE = argmyin | AP AP T

(13)
+g |H, — 2% + U

244 = argmin A | 2], + g |EE — 24+ UM (19)

It is observed that the sub-optimization problem in (19)
is nonconvex due to [y norm. However, it can be solved
analytically after it is decomposed into subproblems that
include each component Z,,

Zk-‘rl _ (Hik+1 + Uk)q
¢ 0

SHI UM
G+ UM

where Zé“*l is the gth element of Z**! in iteration %k + 1.
Hence, in this study, ADMM enables estimating H; when
M < Nypys by solving (15), (18) and (20) iteratively until
the conditions in (16) and (17) are satisfied. The developed
ISF estimation algorithm is summarized in Algorithm 1. In
summary, with the support of the high sampling frequency
feature of PMUs, the active power flow change A P! of line
i and the active power injection change at all buses AP"“* can
be obtained, and are utilized to estimate the ISF of line i, i.e.
H;, through the developed ADMM formulations.

As (20)
A >

IV. CASE STUDIES

The developed measurement-based ISF estimation method
is studied on IEEE 57-bus [19] and Illinois 200-bus sys-
tems [20]. The performance of the ADMM-based method is
evaluated and compared with the baseline method formulated
in (9), with respect to the number of available PMU measure-
ments and different system models where several lines are
outaged.

Algorithm 1: Estimating H; through ADMM method.
Input : Predefined threshold ¢, scalar p and A,
70 = Hfff*lme, UY = Q, iteration k = 0
Output: Estimation of line i ISF, i.e., I—L
1 while (16) and (17) are not satisfied do
2 | Update H*"' via (18);
3 | Update ZF*+1 via (20);
4 Update U**1 via (15);
5
6

k <+ k+1;
end

= Baseline method
* ADMM method

0.1 " 7

RMSE

0.05 | *am e .

0 10 20 30 40 50 60 70 80
Line ID

Fig. 2. Comparison of the ISF estimation accuracy in 57-bus system with
no line outage.

A. PMU data Simulation

MATPOWER [21] is used to simulate PMU voltage and
current time-series data. For a sample at time instant m, the
load fluctuation at a bus d € {load buses} is simulated as,

Ly [m] = (1+ p) LY [m] + e 1)

where L%“*[m] and L%%[m] are the load at bus d at time
m, and the nominal value of the load, respectively. Given the
load profile in (21), the bus voltages and the line currents
can be obtained with an AC power flow solution. Hence, the
line active power flows and bus injections are determined. In
this case study, it is assumed that p and e follow a normal
distribution where the mean is zero and the standard deviation
is 0.1. The choice for p and e distributions is inspired by [10],
[12]. However, other distributions can be utilized and are
expected to yield similar results. It is also assumed that bad
measurements have been removed by the existing bad data
detection mechanisms and the sampling frequency of PMUs
is 60 messages per second. The number of recorded PMU time
duration data for the IEEE 57-bus system and Illinois 200-bus
system are 30 and 120, i.e., 0.5-second and 2-second PMU
data, respectively.

B. IEEE 57-bus system

A total of 30 PMU measurements are used to estimate the
ISF vector of each transmission line with Algorithm 1 and
baseline estimation method in (9). The estimation error is
quantified by the root mean square error (RMSE) in Fig. 2. It
is observed that, for most lines, the ADMM-based estimation
method reaches better accuracy than the baseline estimation
method. To illustrate the impact of the different number of
measurements, the average RMSE of all lines is evaluated with
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Fig. 3. Comparison of the average ISF estimation accuracy with different

number of measurements and line outages in IEEE 57-bus system.
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Fig. 4. Comparison of the ISF estimation accuracy for IEEE 57-bus system
with lines 23, 67, 72 outaged.

six different numbers of PMU measurements. Additionally,
the impact of errors in the system model, where one and two
outaged lines are undetected, is evaluated on the IEEE 57-bus
system. The case studies in Fig. 3 show that the estimation
accuracy of the ADMM-based estimation method is slightly
decreased with fewer measurements and more number of
undetected outaged lines. It is also observed that the ADMM-
based estimation method achieves a higher estimation accuracy
than the baseline method in Fig. 3.

For the baseline method in [12], at most two outaged lines
can remain undetected to guarantee an estimation accuracy.
To further demonstrate the benefits of the developed method,
a case where three outaged lines are undetected in the 57-
bus system is simulated, as shown in Fig. 4. It is observed
that the ADMM-based estimation method is more accurate
for most of the lines. For some lines, especially those with a
small sparsity, ADMM does not reach the same accuracy as
the baseline methods, while the accuracy difference between
these two methods is within an acceptable range.

C. Illinois 200-bus system

A larger system, i.e., the Illinois 200-bus system, is used to
validate the efficiency of the developed ADMM-based method.
With a different number of PMU measurements and different
model errors, the performance of the ADMM-based algorithm
and the baseline method is compared in Fig. 5. The ADMM-
based estimation accuracy is increased with more PMU time
duration data and fewer undetected outaged lines. Similar to
the 57-bus system, the ADMM-based method enables a better
estimation of the ISF matrix than the baseline method. To
further demonstrate the benefits achieved, the case where three

=@ no line out (Baseline method)
= 4= line 34 out (Baseline method)
line 34 and 65 out (Baseline method)
-o— 1o line out (ADMM-based)
=4 line 34 out (ADMM-based)
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Fig. 5. The Average ISF estimation accuracy for the 200-bus system, under
different number of measurements and line outages.
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Fig. 6. ISF estimation accuracy for the Illinois 200-bus system when lines
34, 65, 112 outaged.

lines are out of service is studied with the aforementioned
two ISF estimation methods. The results presented in Fig. 6
show that the developed method achieves a better estimation
accuracy than the baseline estimation method for most lines.
Although the RMSE of a few lines is higher than the baseline
method when using the ADMM-based method, the magnitude
of the RMSE is 0.06 in the worst case. Hence, the effectiveness
of the ADMM-based method is not significantly impacted.

TABLE I
COMPUTATION TIME FOR ESTIMATION OF ISF WITH MEASUREMENTS

IEEE 57-bus system Illinois 200-bus system

ADMM-based ISF

Lo 3.66 s 9.28 s
estimation
Baseline estimation 061 s 295
method

D. Efficiency analysis

The average ISF estimation time for a single line are pre-
sented in Table I for comparison. The ADMM-based method
takes 3.66 seconds and 9.29 seconds for IEEE 57-bus and
Illinois 200-bus systems, while the baseline approach requires
around 0.61 seconds and 2.25 seconds to estimate ISF. Due
to the iterative nature of Algorithm 1, the developed ADMM-
based approach takes a longer time to estimate the ISF matrix
but achieves higher accuracy, especially when three lines
are out of service. Hence, the longer computation time is
a trade-off for better accuracy, particularly when more lines
are out of service. Moreover, it should be noted that the
ISF values do not have to be updated unless the system
operating conditions change significantly. Hence, the execution
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time is still acceptable. The calculations are performed on
a computer with an i7-8700 processor and a 3.2GHz CPU.
The computation efficiency of the developed method can be
further improved with more advanced computers and parallel
computing techniques.

V. CONCLUSIONS

In this paper, a measurement-based estimation method
was developed to enable using PMU measurements for a
more accurate estimation of ISF. Specifically, an ADMM-
based approach estimates the ISF matrix and is found to be
more accurate than the state-of-the-art difference transforma-
tion method. By decomposing the nonconvex ISF estimation
problem into subproblems that can be solved iteratively, the
ADMM-based approach achieves higher accuracy. Without the
knowledge of the system model information, the developed
estimation method enables using PMU measurements to cor-
rectly estimate the power flows and is thus robust to undetected
topology changes or wrong model parameters. Case studies
performed on the IEEE 57-bus and Illinois 200-bus systems
have demonstrated the promising performance of the ADMM-
based estimation method. The developed estimation method
can be further extended to various power system analyses
such as identifying proper control actions and finding critical
contingencies.
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