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Abstract—One effective way to estimate the impact of contin-
gencies is to utilize linear distribution sensitivity factors, such
as injection shift factor and line outage distribution factor.
Compared to other impact estimation approaches, estimating
the line flows with sensitivity factors is computationally less
demanding, as a linearized DC power flow model is utilized.
However, the accuracy of the power flow model is highly
dependent on the received system information. Hence, wrong or
missing system information can yield inaccurate results. Phasor
Measurement Units provide measurements that can be used to
estimate sensitivity factors such that the impact of wrong system
model information can be minimized. This paper introduces a
new methodology, based on the alternating direction method
of multipliers, to leverage PMU data for estimating sensitivity
factors. The developed methodology is particularly applicable to
near real-time conditions, where the speed of estimation is of
essence. The performance of the developed method is compared
with the traditional estimation methods for multiple testbeds.

Index Terms—Injection shift factor, optimization, phasor mea-
surement unit, power system reliability

NOMENCLATURE

ε PMU measurement error

A Edge-to-node incidence matrix

∂P line
i Active power flow change in line i

∂P bus
j Active power injection change at bus j

ρ Small load fluctuation

H , Hi ISF matrix and the ith row of the ISF matrix

M Number of PMU time duration data

P line
i (t) Active power flow in line i at time t

P bus
j (t) Active power injection at bus j at time t

I. INTRODUCTION

Maintaining reliable power system operation is more chal-

lenging with the ever-increasing grid uncertainties and the

threat of cascading failures. These uncertainties and threats are

partially introduced by the increasing penetration of renewable

energy resources, more complex load patterns, and more

severe weather patterns. To guarantee bulk power system reli-

ability, single or multiple component failures that are expected

to occur more often than before with more grid uncertainties

should be prevented. It is thus critical to perform contingency
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analysis in real-time to estimate the risk of potential contin-

gencies, and determine appropriate preventive actions to keep

power systems operating within secure limits [1]. A Real-time

Contingency Analysis (RTCA) utilizes the estimated system

states from the state estimator to identify potential contingen-

cies and evaluate their risks [2], [3]. Contingency analysis in

real-time involves two components: contingency selection and

contingency evaluation [3]. The contingency selection process

enables identifying potential credible N-k contingencies [4]–

[8], that are in turn screened to determine risky contingencies.

Conventional contingency evaluation methods use sensitivity

factors such as Injection Shift Factor (ISF) and Line Outage

Distribution Factor (LODF), which are calculated based on of-

fline studies, to evaluate the impacts (e.g. potential overloads)

of a selected set of contingencies [2]. The sensitivity factors,

however, could yield incorrect contingency analysis results

upon receiving the wrong system model information [9]. The

wrong information can occur due to incorrect measurements,

missing data, or a fake topology change due to a cyber-attack

on the state estimator topology processor. Therefore, it is

necessary to estimate the sensitivity factors without the system

information.

Synchronized Phasor Measurement Unit (PMU) measure-

ments provide an alternative to using system model informa-

tion to estimate the sensitivity factors. Hence, the credibility

issue of traditional model-based methods for calculating sen-

sitivity factors is addressed by using PMUs. A measurement-

based method for estimating ISF using PMUs was first devel-

oped in [10]. This method was applied to security constrained

economic dispatch (SCED) in [11] and was further improved

by a sparse representation algorithm that increases the number

of zeros in a modified ISF matrix in [12]. The approach

in [12] has a distinct advantage of requiring fewer PMU

measurements to estimate ISF. However, this sparse method

assumes that at most two lines are out of service, which limits

its application, particularly to cascading event analysis. To

overcome the limitation of the sparse representation method,

in this paper, a nonconvex optimization problem for estimating

ISF is formulated based on the past PMU measurements

that reflect the most recent system operating conditions. The

optimization problem is solved by decomposing the formu-

lated nonconvex problem into subproblems that can be solved

iteratively. Therefore, without the system model information,

the ISF can be estimated with the obtained past PMU mea-

surements and can be leveraged for other purposes, such
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as identifying critical contingencies and determining proper

mitigative actions.

The contributions of this work can be summarized as devel-

oping a new estimation approach to estimate linear sensitivity

distribution factors, only utilizing the past PMU measurement.

The developed method achieves a higher estimation accuracy

than the conventional ISF estimation method. This paper is

organized as follows: An overview of the conventional and

measurement-based ISF estimation methods is given in Section

II. The developed new ISF estimation approach is described in

Section III. In Section IV, the effectiveness of the introduced

approach is assessed on the IEEE 57-bus and Illinois 200-bus

systems. Conclusions are presented in Section V.

II. PRELIMINARIES

To analyze the impact of system contingencies and compo-

nent failures, and to perform SCED, line power flows need to

be estimated as the system conditions change. Conventionally,

sensitivity factors, i.e., ISF and LODF, are used to estimate the

changes in line power flows. ISF determines the redistribution

of the power flows for each transmission line upon system

generation or load changes [10]. Conventionally, ISF is cal-

culated based on the latest available system model, which is

obtained from the state estimation solution. However, using

a near-real-time system model brings about additional risks.

One of the notable risks is that undetected system topology

changes and inaccurate model parameters may lead to the

wrong estimation of line power flows [13]. To mitigate the

risks of a wrong model, the authors in [10] suggest using past

PMU measurements as an alternative to the system model.

Hence, leveraging the compressive sensing (CS) approach, a

significant improvement in the efficiency of the ISF estimation

is achieved in [12]. In this paper, the methods that utilize

system model and PMU measurements are referred to as

model-based and measurement-based methods, respectively.

A. Model-Based Method for Estimation of ISF

To calculate ISF based on the system model, the latest

available system model information, i.e., topology and trans-

mission line parameters, is required. Given a power system

with Nline transmission lines and Nbus buses and a predefined

edge direction, an edge to node incidence matrix A, with

a dimension of Nline × Nbus is defined from the topology

information, as:

Aij =

⎧⎪⎨
⎪⎩

1 If bus j is the from bus in line i

−1 If bus j is the to bus in line i

0 otherwise

(1)

Given the transmission line parameters, a diagonal susceptance

matrix B is constructed, where Bii = bi is the susceptance of

line i. Thus, with the susceptance matrix B, the incidence ma-

trix A, and a known slack bus, an ISF matrix H ∈ R
Nline×Nbus

is estimated as [11],

H =
[
0Nbus

BÃB̃′−1
]

(2)

whereB̃′ = ÃTBÃ, Ã is a reduced size incidence matrix of

A where the column corresponding to the slack bus is absent,

and 0Nbus
is an all zeros column vector to replace the slack

bus elements in the H matrix. The Hij element of the ISF

matrix represents the real power flow change in line i given a

unit increase at bus j and a unit decrease at the slack bus [14].

It can be observed in (2) that the accuracy of the model-based

method relies highly on the accuracy of the information from

the system model, such as the incidence matrix A and the line

susceptance matrix B.

B. Measurement-Based Method for Estimation of ISF

To overcome the drawbacks of the model-based methods,

measurement-based methods have been developed. Due to a

relatively high sampling frequency of PMUs (30 to 120 mes-

sages per second) and the fact that the measurements across the

system are highly synchronized, the obtained PMU measure-

ments that reflect the present system operating conditions have

been considered as a key enabling factor for measurement-

based estimation of ISF [10]. The measurement-based method

estimates the elements of the ISF matrix considering a linear

relationship between the active power flow of the lines and

the active power injection as,

Hij =
∂P line

i

∂P bus
j

≈ ΔP line
i (t)

ΔP bus
j (t)

(3)

For a small Δt > 0, ΔP line
i (t) = P line

i (t + Δt) − P line
i (t)

and ΔP bus
j (t) = P bus

j (t + Δt) − P bus
j (t). Hence, based on

the approximate linear relationship in (3), the total change in

the power flow of line i due to all bus injection changes at

time t is estimated as,

ΔP line
i ≈ ΔP bus

1 Hi1 + ...+ΔP bus
Nbus

HiNbus
(4)

Assume the power injection change of all buses is represented

as ΔP bus =
[
ΔP bus

1 , ...,ΔP bus
Nbus

]
. Then for M+1 available

past PMU time duration data, the active power injection

change at bus k is,

ΔP bus
k =

[
ΔP bus

k [1], ...,ΔP bus
k [M ]

]T
(5)

The active power injection change at bus k from time m to

time m + 1 is ΔP bus
k [m] = P bus

k [(m + 1)Δt] − P bus
k [mΔt].

In addition to the bus injection change, the active power flow

change of line i is defined as,

ΔP line
i =

[
ΔP line

i [1], ...,ΔP line
i [M ]

]T
, (6)

where ΔP line
i [m] = P line

i [(m + 1)Δt] − P line
i [mΔt] is the

active power flow change in line i from time m to time m+1.

The value of Δt is assumed to be small. Note that, PMUs are

required to be present at all buses, such that line power flows

and bus injections at each sampling time can be obtained. The

total active power change in line i is,

ΔP line
i = ΔP busHT

i (7)

where Hi is the ith row of the ISF matrix H. The dimension

of ΔP line
i is M and the dimension of ΔP bus is M×Nbus. If

the number of PMU time duration data M is larger than Nbus,

equation (7) is overdetermined and can be solved by the Least

Squares method as [10],

Hi = (Δ(P bus)TΔP bus)−1Δ(P bus)TΔP line
i (8)
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To estimate the ISF matrix from equation (8), the Least

Squares estimator requires at least (Nbus +1) past PMU time

duration data to solve equation (7), which is not desired for

real-time applications. Carefully examining the ISF matrix, it

is observed that many elements of ISF that correspond to a

single line are close in value. This is due to the fact that the

corresponding buses have similar effect on the active power

flow of that line. This property is the basis of the method-

ology introduced in [12], referred to as Chen’s difference

transformation method. The difference transformation method

sorts each row of the ISF matrix Hi in a descending order,

referred to as Hi,reorder, and calculates the difference between

each two consecutive elements. As a result, the ISF matrix is

transformed to a sparse matrix, denoted as C, and thus can be

estimated even when M < Nbus,

minimize
Ci

‖Ci‖0 ,
subject to ΔP line

i = ΔP busS−1Ci.

Ci = SHi,reorder

(9)

where Ci is the ith row of the sparsified ISF matrix through

difference transformation and ‖·‖0 denotes the l0 norm,

Hi,reorder is the ith row of the sorted ISF matrix based on

the value of each component in Hi. The matrix S, aiming

at calculating the difference between each two consecutive

elements in Hi,reorder, is an all-zeros M ×M matrix except

Sbd = 1 if b = d and Sbd = −1 if b = d + 1. Since the

optimization problem in (9) is nonconvex due to the zero norm,

the authors in [12] use a convex relaxation algorithm to obtain

the ISF matrix, which is referred to as the baseline estimation

method in this paper. The estimation accuracy of this method,

however, needs to be further improved, especially when more

than two lines are out of service. This required improvement

is addressed in this study.

III. ESTIMATION OF ISF VIA ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

To overcome the shortcomings of the previously described

methods, in this paper, a measurement-based approach is

developed for estimating ISF values, without making any lim-

iting assumptions about the system conditions. This flexibility

ensures that the developed method is more widely applicable to

practical systems. This is achieved by deploying the Alternat-

ing Direction Method of Multipliers (ADMM) to estimate ISF.

In addition to its ability to solve a nonconvex problem, ADMM

has an improved convergence rate and relies on little or no

assumption regarding the objective function when compared

to other methods such as gradient descent [15]–[17].

The developed ISF estimation method relies on the property

that some elements of the ISF matrix are zero or close to zero.

This can be explained by the fact that a change in the active

power injection at a bus, that is geographically or electrically

distant from a line, has little or no impact on the active

power flow change of that particular line. For example, for

the Illinois 200-bus system in Fig. 1, it can be observed that

more than half of the lines, i.e., rows in the ISF matrix, have

at least 100 elements in H that are smaller than 0.01. Based on

the observed sparsity in the ISF matrix, the under-determined

Fig. 1. The sorted number of elements in ISF that are smaller than 0.01
plotted for each line of the Illinois 200-bus (245-line) system.

equation (7) can be reformulated as an optimization problem,

minimize
Hi

∥∥ΔP line
i −ΔP busHT

i

∥∥2
2
+ λ ‖Z‖0 ,

subject to Hi − Z = O.
(10)

where ΔP line
i is the power flow change of line i, ΔP bus is

the power injection change at all buses, and ‖·‖2 represents

the l2 norm. The parameter λ is a positive scalar that penalizes

the sparsity of Hi. A large λ leads to a more sparse estimation

of Hi. Vector Z is an auxiliary vector that helps estimate Hi.

This optimization problem is nonconvex due to the zero norm

of Z. In this study, the ADMM method is used to solve this

nonconvex problem as it enables decomposing the nonconvex

problem into two subproblems. One of the sub-optimization

problems can then be solved through the gradient descent

method, while the other is solved analytically. The augmented

Lagrangian equation of (10) is given as [15],

Lρ(Hi, Z,Λ) =
∥∥ΔP line

i −ΔP busHT
i

∥∥2
2
+ λ ‖Z‖0

+tr
{
ΛT (Hi − Z)

}
+

ρ

2
‖Hi − Z‖22

(11)

where Λ is a matrix of the Lagrangian multipliers, tr{·}
denotes the trace, and ρ is a positive scalar. By using the scaled

dual variable U = Λ
ρ , the augmented Lagrangian equation (11)

is equivalent to [18],

Lρ(Hi, Z,Λ) =
∥∥ΔP line

i −ΔP busHT
i

∥∥2
2
+ λ ‖Z‖0

+
ρ

2
‖Hi − Z + U‖22 −

ρ

2
‖U‖22

(12)

After formulating the augmented Lagrangian equation (12)

with a dual variable U, the ADMM estimates the minimizer

of (10) by iteratively solving the following three steps outlined

in (13), (14) and (15). The iterations continue until the

constraints in (16) and (17) are satisfied [18],

Hk+1
i := arg min

Hi

Lρ(Hi, Z
k,Λk) (13)

Zk+1 := arg min
Z

Lρ(H
k+1
i , Z,Λk) (14)

Uk+1 := Uk +Hk+1
i − Zk+1 (15)∥∥Hk+1

i − Zk+1
∥∥2
2
≤ ε (16)∥∥Zk+1 − Zk

∥∥2
2
≤ ε (17)
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The parameter k denotes an ADMM iteration, and ε is a small

positive scalar that determines when to stop the iterations.

The initial value of the dual variable U0 is set as an all-

zeros vector, and the initial value of Z can be obtained from

an offline study of H to accelerate the convergence speed.

The initial value of Z0 is obtained from (2) with a full

topology to improve the convergence speed of the developed

ADMM-based estimation method. Although ISF changes with

a change in system topology, leveraging a model-based ISF

estimation to set Z0 leads to an acceptable accuracy and is

corroborated by the case studies presented in the later sections.

It is also assumed that the outaged lines would not dramatically

change the sparsity of the ISF matrix. If the change of ISF is

sufficiently large, it is necessary to assign a different initial

value to Z0 to guarantee the convergence of the ADMM-

based estimation method. However, the initial values of Z0

can be learned off-line for different system topologies, that

in turn can be used for online validation. To further increase

the speed of the validation process, parallel computing can be

utilized. Therefore, adjusting Z0 will not significantly impact

the performance of the developed method.
The two subproblems formulated in (13) and (14) have to

be solved during each iteration. In particular, subproblem (13)

can be solved through the gradient descent method, and Zk+1

of (14) can be obtained analytically. Hence, the optimization

problem in (13) and (14) can be formulated as,

Hk+1
i := arg min

Hi

∥∥ΔP line
i −ΔP busHT

i

∥∥2
2

+
ρ

2

∥∥Hi − Zk + Uk
∥∥2
2

(18)

Zk+1 := arg min
Z

λ ‖Z‖0 +
ρ

2

∥∥Hk+1
i − Z + Uk

∥∥2
2 (19)

It is observed that the sub-optimization problem in (19)

is nonconvex due to l0 norm. However, it can be solved

analytically after it is decomposed into subproblems that

include each component Zq ,

Zk+1
q =

{
(Hk+1

i + Uk)q λ ≤ ρ
2 (H

k+1
i + Uk)2q

0 λ > ρ
2 (H

k+1
i + Uk)2q

(20)

where Zk+1
q is the qth element of Zk+1 in iteration k + 1.

Hence, in this study, ADMM enables estimating Hi when

M < Nbus by solving (15), (18) and (20) iteratively until

the conditions in (16) and (17) are satisfied. The developed

ISF estimation algorithm is summarized in Algorithm 1. In

summary, with the support of the high sampling frequency

feature of PMUs, the active power flow change ΔP line
i of line

i and the active power injection change at all buses ΔP bus can

be obtained, and are utilized to estimate the ISF of line i, i.e.

Ĥi, through the developed ADMM formulations.

IV. CASE STUDIES

The developed measurement-based ISF estimation method

is studied on IEEE 57-bus [19] and Illinois 200-bus sys-

tems [20]. The performance of the ADMM-based method is

evaluated and compared with the baseline method formulated

in (9), with respect to the number of available PMU measure-

ments and different system models where several lines are

outaged.

Algorithm 1: Estimating Hi through ADMM method.

Input : Predefined threshold ε, scalar ρ and λ,

Z0 = Hoff−line
i , U0 = O, iteration k = 0

Output: Estimation of line i ISF, i.e., Ĥi

1 while (16) and (17) are not satisfied do
2 Update Hk+1

i via (18);

3 Update Zk+1 via (20);

4 Update Uk+1 via (15);

5 k ← k + 1;

6 end

0 10 20 30 40 50 60 70 80
Line ID

0

0.05

0.1

RM
SE

Baseline method
ADMM method

Fig. 2. Comparison of the ISF estimation accuracy in 57-bus system with
no line outage.

A. PMU data Simulation

MATPOWER [21] is used to simulate PMU voltage and

current time-series data. For a sample at time instant m, the

load fluctuation at a bus d ∈ {load buses} is simulated as,

Lbus
d [m] = (1 + ρ)Lbus

d,0 [m] + ε (21)

where Lbus
d [m] and Lbus

d,0 [m] are the load at bus d at time

m, and the nominal value of the load, respectively. Given the

load profile in (21), the bus voltages and the line currents

can be obtained with an AC power flow solution. Hence, the

line active power flows and bus injections are determined. In

this case study, it is assumed that ρ and ε follow a normal

distribution where the mean is zero and the standard deviation

is 0.1. The choice for ρ and ε distributions is inspired by [10],

[12]. However, other distributions can be utilized and are

expected to yield similar results. It is also assumed that bad

measurements have been removed by the existing bad data

detection mechanisms and the sampling frequency of PMUs

is 60 messages per second. The number of recorded PMU time

duration data for the IEEE 57-bus system and Illinois 200-bus

system are 30 and 120, i.e., 0.5-second and 2-second PMU

data, respectively.

B. IEEE 57-bus system

A total of 30 PMU measurements are used to estimate the

ISF vector of each transmission line with Algorithm 1 and

baseline estimation method in (9). The estimation error is

quantified by the root mean square error (RMSE) in Fig. 2. It

is observed that, for most lines, the ADMM-based estimation

method reaches better accuracy than the baseline estimation

method. To illustrate the impact of the different number of

measurements, the average RMSE of all lines is evaluated with
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25 30 35 40 45 50

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Number of measurements

R
M

S
E

no line out (ADMM-based)
line 23 out (ADMM-based)
line 67 and 72 out (ADMM-based)
no line out (Baseline method)
line 23 out (Baseline method)
line 67 and 72 out (Baseline method)

Fig. 3. Comparison of the average ISF estimation accuracy with different
number of measurements and line outages in IEEE 57-bus system.

0 10 20 30 40 50 60 70 80
Line ID

0

0.05

0.1

0.15

RM
SE

ADMM method
Baseline method

Fig. 4. Comparison of the ISF estimation accuracy for IEEE 57-bus system
with lines 23, 67, 72 outaged.

six different numbers of PMU measurements. Additionally,

the impact of errors in the system model, where one and two

outaged lines are undetected, is evaluated on the IEEE 57-bus

system. The case studies in Fig. 3 show that the estimation

accuracy of the ADMM-based estimation method is slightly

decreased with fewer measurements and more number of

undetected outaged lines. It is also observed that the ADMM-

based estimation method achieves a higher estimation accuracy

than the baseline method in Fig. 3.

For the baseline method in [12], at most two outaged lines

can remain undetected to guarantee an estimation accuracy.

To further demonstrate the benefits of the developed method,

a case where three outaged lines are undetected in the 57-

bus system is simulated, as shown in Fig. 4. It is observed

that the ADMM-based estimation method is more accurate

for most of the lines. For some lines, especially those with a

small sparsity, ADMM does not reach the same accuracy as

the baseline methods, while the accuracy difference between

these two methods is within an acceptable range.

C. Illinois 200-bus system

A larger system, i.e., the Illinois 200-bus system, is used to

validate the efficiency of the developed ADMM-based method.

With a different number of PMU measurements and different

model errors, the performance of the ADMM-based algorithm

and the baseline method is compared in Fig. 5. The ADMM-

based estimation accuracy is increased with more PMU time

duration data and fewer undetected outaged lines. Similar to

the 57-bus system, the ADMM-based method enables a better

estimation of the ISF matrix than the baseline method. To

further demonstrate the benefits achieved, the case where three

80 90 100 110 120 130 140 150 160 170 180 190
0

1

2

3

4

5

6

7
·10−2

Number of measurements

R
M

S
E

no line out (Baseline method)
line 34 out (Baseline method)
line 34 and 65 out (Baseline method)
no line out (ADMM-based)
line 34 out (ADMM-based)
line 34 and 65 out (ADMM-base)

Fig. 5. The Average ISF estimation accuracy for the 200-bus system, under
different number of measurements and line outages.

0 50 100 150 200 250
Line ID

0

0.02

0.04

0.06

0.08

RM
SE

ADMM method
Baseline method

Fig. 6. ISF estimation accuracy for the Illinois 200-bus system when lines
34, 65, 112 outaged.

lines are out of service is studied with the aforementioned

two ISF estimation methods. The results presented in Fig. 6

show that the developed method achieves a better estimation

accuracy than the baseline estimation method for most lines.

Although the RMSE of a few lines is higher than the baseline

method when using the ADMM-based method, the magnitude

of the RMSE is 0.06 in the worst case. Hence, the effectiveness

of the ADMM-based method is not significantly impacted.

TABLE I
COMPUTATION TIME FOR ESTIMATION OF ISF WITH MEASUREMENTS

IEEE 57-bus system Illinois 200-bus system

ADMM-based ISF

estimation
3.66 s 9.28 s

Baseline estimation

method
0.61 s 2.25 s

D. Efficiency analysis

The average ISF estimation time for a single line are pre-

sented in Table I for comparison. The ADMM-based method

takes 3.66 seconds and 9.29 seconds for IEEE 57-bus and

Illinois 200-bus systems, while the baseline approach requires

around 0.61 seconds and 2.25 seconds to estimate ISF. Due

to the iterative nature of Algorithm 1, the developed ADMM-

based approach takes a longer time to estimate the ISF matrix

but achieves higher accuracy, especially when three lines

are out of service. Hence, the longer computation time is

a trade-off for better accuracy, particularly when more lines

are out of service. Moreover, it should be noted that the

ISF values do not have to be updated unless the system

operating conditions change significantly. Hence, the execution
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time is still acceptable. The calculations are performed on

a computer with an i7-8700 processor and a 3.2GHz CPU.

The computation efficiency of the developed method can be

further improved with more advanced computers and parallel

computing techniques.

V. CONCLUSIONS

In this paper, a measurement-based estimation method

was developed to enable using PMU measurements for a

more accurate estimation of ISF. Specifically, an ADMM-

based approach estimates the ISF matrix and is found to be

more accurate than the state-of-the-art difference transforma-

tion method. By decomposing the nonconvex ISF estimation

problem into subproblems that can be solved iteratively, the

ADMM-based approach achieves higher accuracy. Without the

knowledge of the system model information, the developed

estimation method enables using PMU measurements to cor-

rectly estimate the power flows and is thus robust to undetected

topology changes or wrong model parameters. Case studies

performed on the IEEE 57-bus and Illinois 200-bus systems

have demonstrated the promising performance of the ADMM-

based estimation method. The developed estimation method

can be further extended to various power system analyses

such as identifying proper control actions and finding critical

contingencies.
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