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ABSTRACT

Instruction in many STEM domains heavily relies on visual repre-
sentations, such as graphs, figures, and diagrams. However,
students who lack representational competencies do not benefit
from these visual representations. Therefore, students must learn
not only content knowledge but also representational competencies.
Further, as learning progresses, knowledge likely becomes more
abstract, so that content knowledge may no longer be tied to a spe-
cific representation. This raises the question of whether students
integrate representational competencies with content knowledge as
learning progresses. The present study addresses this question by
building knowledge-component models using log data collected
from two studies in an introductory electrical engineering course.
We compared knowledge-component models that separate repre-
sentational competencies from content knowledge to knowledge-
component models that integrate representational competencies
with content knowledge. Our results show that as learning pro-
gressed, integrated knowledge-component models had better model
fit. This finding indicates that over time, students’ representational
competencies become gradually integrated into content knowledge.
Further, this suggests that different knowledge-component models
might be needed at different times during a learning progression.

Keywords
Representational competencies, content knowledge, knowledge-
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1. INTRODUCTION

The success of adaptive educational technologies depends on anal-
yses of students’ knowledge growth during their interaction with
problem-solving activities. These analyses equip the educational
technology with information about the students’ current learning
progress to mastery of the targeted knowledge [32] and enables it
to provide adaptive feedback or to select appropriate interventions
[16] based on the individual student’s learning progress [7]. This
capability has contributed to the success of adaptive educational
technologies [30].

Therefore, much research has investigated how to analyze students’
knowledge growth based on log data generated by students’ prob-
lem-solving interactions in educational technologies. The first step
in analyzing knowledge growth is to capture students’ knowledge
in a way that can then be used to trace their knowledge acquisition
over time [4, 7]. Knowledge-component models are a common way
of capturing students’ knowledge [15]. The basic assumption of
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knowledge-component models is that knowledge consists of fine-
grained “atom-like” components [15]. Hence, knowledge-compo-
nent modeling seeks to identify all knowledge components required
for mastering the targeted knowledge [13].

Traditional knowledge-component models have focused on captur-
ing content knowledge. However, focusing on only content
knowledge may not adequately enable educational technologies to
support students’ learning, especially in STEM fields. Previous re-
search showed that, students often have difficulties understanding
visual representations, while most STEM instruction heavily relies
on multiple visual representations [2, 17]. Such struggles can im-
pede their content learning [24]. For example, electrical
engineering courses on signal processing frequently use visual rep-
resentations as shown in Fig. 1 to explain concepts related to
sinusoids. While visual representations are often thought to support
learning [1], they can impede learning for students who do not
know how to interpret the visual representations. For instance, if
the students are unfamiliar with time-domain graphs (Fig. 1a) or
phasor graphs (Fig. 1b), they may struggle to understand the con-
cept of the sinusoid. This example typifies that many instructional
scenarios expect students to have representational competencies.
Representational competencies are defined as the knowledge and
skills that enable students to understand and use visual representa-
tions to reason and solve tasks [9].

While most research on knowledge-component models has focused
on content knowledge, only a few studies show that capturing rep-
resentational competencies in addition to content knowledge
improves the fit of knowledge-component models [25]. A limita-
tion of these studies is that they have assumed a static structure of
knowledge-component models; that is, representational competen-
cies and content knowledge were captured as separate knowledge
components, and this did not change over time. However, as learn-
ing progresses, students’ content knowledge likely becomes more
abstract and their use of representational competencies becomes
more automated. Thus, the goal of this paper is to address this lim-
itation by comparing knowledge-component models that separate
or integrate representational competencies and content knowledge
in various ways.

2. LITERATURE REVIEW

In the following, we first review research on representational com-
petencies. Then, we briefly review the few prior studies that have
captured representational competencies in knowledge-component
models.

2.1 Representational Competencies

The educational psychology has identified several types of repre-
sentational competencies that enable students to learn content
knowledge from visual representations [24].

First, students need visual-understanding competencies: the ability
to map visual features to relevant to-be-learned content [28]. In the


https://doi.org/10.5281/zenodo.6853077

previously mentioned example of a student learning about sinus-
oids, visual-understanding competencies allow the student to map
avisual feature (e.g., the peak in the time-domain graph) to the con-
cept it depicts (e.g., the amplitude of a sinusoid).

Second, students need conceptual connection-making competen-
cies: the ability to conceptually understand similarities and
differences between multiple visual representations [1]. This allows
students to explain how domain-relevant concepts are depicted in
different visual representations [29]. For example, the red arrow in
Fig. 1 illustrates how a student should connect the amplitude in the
time-domain graph (Fig. 1a) to the phasor’s magnitude in the
phasor graph (Fig. 1b). Conceptual connection-making competen-
cies also involve identifying visual features that have surface
similarities among visual representations but are conceptually irrel-
evant [11]. For example, a student may notice that both the time-
domain graph (Fig. 1a) and the phasor graph (Fig. 1b) have two
axes. Yet, the axes represent different concepts: time and amplitude
in the time-domain graph, the imaginary and real parts of the phasor
in the phasor graph.

Third, students need perceptual connection-making competencies:
the ability to effortlessly and efficiently translate between multiple
visual representations [12]. Students with perceptual connection-
making competencies can intuitively translate between two visual
representations and quickly judge whether they depict the same
concept, without experiencing mental effort when executing this
task [12]. For example, a perceptually proficient student would see
"at a glance" the phasor graph in Fig. 1b represents the amplitude
of the sinusoid in Fig. 1a.
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Figure 1. Mapping time-domain graph amplitude (a) to phasor
graph magnitude (b).

2.2 Knowledge-Component Model

Adaptive educational technologies require information about the
students’ learning progress in order to provide individualized sup-
port. [30]. They must describe the knowledge students have already
learned and what knowledge they still have to learn [6]. Further-
more, adaptive educational technologies rely on algorithms that
predict which types of support (e.g., contextual feedback, choice of
problem-solving activities) would help the student acquire the
knowledge s/he has not yet learned [21].

Educational technologies rely on knowledge-component models to
trace students’ knowledge acquisition and to predict the growth of
students’ knowledge. Knowledge-component models represent
“acquired units of cognitive function that can be inferred from per-
formance on a set of related tasks” [15]. Here, knowledge
components refer to a unit of distinct skills or concepts, which to-
gether compose the knowledge students learn in problem-solving
activities. Therefore, the accuracy of a knowledge-component
model depends on identifying all relevant knowledge components
that describe the targeted knowledge [13, 16].

Cognitive Task Analysis (CTA) is one prominent method to de-
scribe the requisite knowledge components to perform a task [33].
However, since CTA relies on a thorough analysis of how experts
solve tasks, it is time consuming. To increase the efficiency of
knowledge-component modeling, educational data mining tech-
niques can be used to automate the process of building models,
including learning factors analysis (LFA) [4], Knowledge Spaces
[31], and matrix factorization [8]. Typically, multiple potential
models are compared using Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) scores [14]. However,
since this research has focused mostly on modeling content
knowledge, the interplay between representational competencies
and content-focused knowledge components remains unexamined.

One study compared knowledge-component models that captured
(1) only content knowledge and (2) content knowledge and repre-
sentational competencies. Capturing both content knowledge and
representational competencies resulted in better model fit [25]. A
follow-up study tested whether adapting instructional support to
students’ representational competencies in addition to content
knowledge resulted in higher learning outcomes than adapting only
to content knowledge [23]. Results showed that adapting to stu-
dents’ representational competencies in addition to content
knowledge enhanced students’ learning of content knowledge.

However, this prior research is limited in two ways. First, while
most prior research focuses on modeling content knowledge [18,
20], the few studies that have also modeled representational com-
petencies [23, 25] have focused on a particular domain; namely
chemistry. Therefore, we seek to replicate these findings in another
domain. A second limitation is that the prior studies assumed that
the structure of the knowledge-component model remains static
over time. Yet, according to expert-novice research, students grad-
ually acquire highly abstract schemas about the content knowledge
relevant to a given domain [5, 10]. This yields the hypothesis that
capturing representational competencies separately from content
knowledge is most important early in a learning progression
whereas later in a learning progression, representational competen-
cies likely become integrated with content knowledge.

3. HYPOTHESES

To address the limitations of prior research just described, we test:

Hypothesis 1: A knowledge-component model that captures repre-
sentational competencies and content knowledge is more accurate
than a knowledge-component model that captures only content
knowledge or a knowledge-component model that captures only
representational competencies.

Hypothesis 2. As students’ learning progresses, a knowledge-com-
ponent model that integrates content knowledge and
representational competencies is more accurate than a knowledge-
component model that captures content knowledge separately from
representational competencies.

4. DATASETS

To test these hypotheses, we use log data generated from students’
problem-solving interactions in Signals Tutor, an intelligent tutor-
ing system (ITS) for undergraduate electrical engineering. In the
following, we first describe the problem-solving activities in Sig-
nals Tutor, and then the log data we used to test our hypotheses.



Signals Tutor

A Here's an interactive graph of a
sinusoid.

B Here's an interactive phasor graph.

only-RC KC
‘Conceptual_time-phasor’ 4
Through all steps, students build
the conceptual connection
between a time-domain graph and
a phasor graph
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both-content-RC KC
L~ ‘Conceptual_stepl_equ-time’

only-content KC

‘Build time-domain graph’
Construct a time-domain graph
representing the given sinusoid

only-content KC C
‘Inference’

Make an inference about changing
a value of the given sinusoid’s
frequency into angular frequency
and vice versa

Let's translate between sinusoidal
and phasor representations!
the equaljon z(t) = 3 cos(t), the angular

frequel 18 3.4 | radians/second v , S0 the cycle
frequency is cyclesssecond W |, Plot x(t).

both-content-RC KC
‘Conceptual_step2_phaseshift’

both-content-RC KC

‘Conceptual_step3_time-phasor’

Se shift ¢ of z(t) (from question 1) is

o . Draw the phasor associated with z(t),
c= Ael®,

3 We may express this x(t) in complex exponential
notation as x(t) = Ref c e/t }
=Reg( : e ° )ef:'ty

only-content KC

‘Build phasor graph’

Construct a phasor graph
representing the given sinusoid’s
value of phase shift

Figure 2 Example of a problem in Signals Tutor and steps that labelled with different knowledge components for hypothesis 1

4.1 Signals Tutor

Signals Tutor supports learning through problem solving [22, 27,
30]. As is typical for ITSs, Signals Tutor provides step-by-step
guidance for complex problem-solving tasks [30], detects multiple
possible solution paths, provides personalized feedback that ad-
dresses diagnosed misconceptions, and on-demand hints for each
step. As illustrated in Fig. 2, students work with interactive visual
representations to visually depict concepts related to sinusoids.

Because Signals Tutor incorporates multiple visual representations,
it offers opportunities for students to practice representational com-
petencies. Specifically, students practice visual-understanding
competencies when they interact with one visual to make sense of
sinusoid concepts. Students practice conceptual connection-mak-
ing competencies when they have to integrate information from
multiple visual representations to understand sinusoid concepts.
They practice perceptual connection-making competencies when a
task requires translating quickly among multiple visual representa-
tions to extract relevant information about sinusoids.

4.2 Log Data

We collected log data from two studies that were conducted as part
of an introductory electrical engineering course on signal pro-
cessing at a university in the Midwestern U.S. Study 1 was
conducted in Fall 2020; Study 2 was conducted in Spring 2021. The
course was taught online during both semesters. Students used Sig-
nals Tutor as part of the course for a study described elsewhere [26].
The present paper focuses on log data generated from students’ in-
teractions with two wunits of Signals Tutor that provided
opportunities to practice the representational competencies de-
scribed above. Specifically, we extracted 84,960 transactions
generated by 136 students from Study 1 log data and 76,786 trans-
actions generated by 145 students from Study 2. These transactions
involved problem-solving steps where students constructed visual
representations and equations and answered conceptual questions
by selecting answers from drop-down menus or via text input.

5. ANALYSIS

To test hypothesis 1, we created knowledge-component models
with and without representational competencies. To test hypothesis
2, we created several knowledge-component models that captures

the integration of content knowledge and representational compe-
tencies. We compared the fit of each model in the earlier vs. the
later unit of Signals Tutor.

5.1 Knowledge-Component Models with and

without Representational Competencies

To test hypothesis 1, we created three knowledge-component mod-
els: (1) the only-content-KC model captures only content
knowledge, (2) the only-RC-KC model captures only representa-
tional competencies, and (3) the both-content-and-RC-KC model
captures both content knowledge and representational competen-
cies. The knowledge components captured by each model were
derived from manual cognitive task analysis relying on expert con-
tent knowledge provided by an engineering professor who taught
the course for more than 30 years/decades.

First, the only-content-KC model contains 9 only-content
knowledge components that describe concepts and skills irrespec-
tive of the representational competencies, listed in Table 1. For
example, the knowledge component ‘Inference’ in Table 1 refers
students’ ability to make an inference about changing a value of the
given sinusoid’s frequency into the angular frequency.

Second, the only-RC-KC model captures only representational
competencies but not content knowledge. It contains 11 knowledge
components, listed in Table 1. As mentioned above, Signals Tutor
offers opportunities to practice three types of representational com-
petencies. The only-RC-KC model describes the competencies
students need to understand the visual representations used in the
problems; for example, conceptual connection-making competen-
cies (e.g., ‘Conceptual_time-phasor’) and perceptual connection-
making competencies (e.g., ‘Perceptual time-phasor’) related to
translating a time-domain graph to a phasor graph.

Finally, the both-content-and-RC-KC model captures both content
knowledge and representational competencies. It contains 42
knowledge components, listed in Table 1. To develop content
knowledge of translating a time-domain to a phasor graph, students
practice competencies for making both conceptual and perceptual
connections among visuals. For example, consider the following
steps that provided practice opportunities for conceptual connec-
tion-making competencies. Students first built a time-domain graph



Table 1 Examples of knowledge components in Signals Tutor (For the value in [ |, students type in their answer).

Knowledge Examples of N
Description Example
Components knowledge components
Make inferences about changing the frf (t) is has an angular frequency w of
Inference value of frequency to angular frequency 3 in radians/sec. The frequency in cy-
or vice versa. cles/sec is [.25].
only-content Planning Plz_m how to represent the sinusoid L}sing The comple{( amplitude can be repre-
KC different type of visual representation. sented visually by a [phasor].
Build phasor graph Construct a phas;fsirizph of a given si- Plot the phasor corresponds to x(t).
Build time-domain graph Construct a _tlme-(_iomal.n graph of a Plot this s1nus01q on the given time-
given sinusoid domain graph.
Make sense of how a time-domain vis- The given graph shows a sinusoid
Conceptual time-phasor ual correspond to a given phase-domain x(t). Plot the phasor corresponding
only-RC KC visual to x(t).
. Translate a phase-domain visual to a Here’s a phasor. Which cosine func-
Perceptual phasor-time . R .
time-domain visual tion represents that phasor?
Given a cosine function, build a time- .
. . . . For the equation x(t) = 3cos (mt),
Conceptual stepl equ_time domain graph representing the given
; . f plot x(t).
time-domain equation
. After building a time-domain graph in . .
Conceptual_step2 phaseshift step 1, identify its value of phase shift The phase shift ¢ of x(t) is [0].
_ Based on 1dent1.ﬁed 1nf0rrpat10n in step Draw the phasor associated with
Conceptual step3_time-phasor 2, translate a time-domain graph to a ;
x(t), c = Ael?.
both- phasor graph i
content-and- After building a phasor graph in step 3, | We may express x(t) in complex ex-
RCKC Conceptual _step4 phasor-exp write corresponding complex exponen- ponential notation as
tial notation. Re{[3]exp(j[0Dexp(j[3.14]t)}
. Translate a time-domain graph to a Here’s a sinusoid (cosine function).
Perceptual_time-phasor . . . .
. phasor graph (rotated in the clockwise Which phasor represents that sinus-
(clockwise) . .
direction) oid?
. Translate a time-domain graph to a Here’s a sinusoid (cosine function).
Perceptual_time-phasor . . .
phasor graph (rotated in the counter- Which phasor represents that sinus-
(counter-clock) S .
clockwise direction) o0id?

representing a given sinusoid represented in the equation form (e.g.,
‘Conceptual stepl _equ-time’ KC in Table 1). The next step is to
find the value of phase shift (e.g., ‘Conceptual step2 phaseshift’),
which is basis for building a corresponding phasor graph in the next
step. In the third step, students translate the time-domain graph to a
phasor graph (e.g., ‘Conceptual step3_time-phasor’).

Hypothesis 1 predicts that the both-content-and-RC-KC model has
better model fit than the other knowledge-component models.

5.2 Knowledge-Component Models with and
without abstracted Knowledge Compo-

nents
To test hypothesis 2, we created two knowledge-component mod-
els: (1) the separate-RC-KC model describes the knowledge
structure of students starting at the novice-level (2) the integrated-
RC-KC model describes the knowledge structure of students reach-
ing to the expert-level through working on Signals Tutor, detailed
in the following.

First, based on learning gains we observed between units [26], we
assumed that structural changes in knowledge components would
occur between units 1 and 2. Therefore, we chose to investigate
knowledge components that were common to units 1 and 2 and ex-
amined how these knowledge components changed after finishing
each unit. Thus, starting with the list of knowledge components in
the both-content-and-RC-KC model described in 5.1, we identified
33 knowledge components that unit 1 and unit 2 had in common.

This yielded the separate-RC-KC model. Given that this
knowledge-component model separately captures content
knowledge and representational competencies, we anticipate that
this might capture the knowledge structure of novice students in the
first unit.

Second, based on previous studies’ finding that sufficient training
makes students’ knowledge become abstracted [5, 10] or abstracted
away from the type of representational competencies [25], we as-
sumed that students’ knowledge components started to be
integrated into content knowledge after finishing unit 1. Thus, we
identified lists of knowledge components from the both-content-
and-RC-KC model that describe similar content knowledge. For ex-
ample, in Signals Tutor, students learn about concepts related to the
phase shift of sinusoids, which we classify as content knowledge.
Depending on how students interact with the visual representations
that depict these concepts, they practice different representational
competencies. The both-content-and-RC-KC model contains six
knowledge components related to phase shift, illustrated in Table
1: three knowledge components describe students’ ability to con-
ceptually connect a sinusoid’s shifted amount and direction shown
in a time-domain graph to a phasor’s rotational direction and
amount shown in a phasor graph (e.g., ‘Concep-
tual stepl _equ_time’, ‘Conceptual_step2 phaseshift’,
‘Conceptual_step3 time-phasor’), and two knowledge components
describe students’ ability to make perceptual connections between
a time-domain graph and a phasor graph by treating the representa-
tions  holistically  (e.g.,  ‘Perceptual time-phasor  (0)’,



‘Perceptual_time-phasor (clockwise)’, ‘Perceptual time-phasor
(counter-clock)’).

If these six representational competencies become more integrated
with content knowledge about phase shift after practice (hypothesis
2), separating these representational competencies from content
knowledge may no longer adequately describe students’ abstracted
knowledge structure. To capture this more abstracted understand-
ing, we built new knowledge-component models that contained
merged knowledge components. Starting with the knowledge com-
ponents from the separate-RC-KC model, we first merged
knowledge components that covered similar content knowledge.
For example, ‘Conceptual stepl _equ_time’, ‘Concep-
tual step2 phaseshift’,  ‘Conceptual step3 time-phasor’ and
‘Perceptual_time-phasor (clockwise)’ were merged into the ‘Build
phasor graph’ knowledge component, which is one of the
knowledge components from the only-content KC model. We then
tested whether merging these knowledge components improved
model fit using AIC and BIC scores. If it did, we kept the merged
knowledge component; if it did not, we kept the separated
knowledge components. We repeated these steps until there were
no more opportunities to merge knowledge components. We car-
ried out these steps separately for the data from Studies 1 and 2,
yielding integrated-RC-KC model-1 and integrated-RC-KC model-
2 as shown in shown in Table 2.

Hypothesis 2 predicts that the integrated-RC-KC model-1 and the
integrated-RC-KC model-2 have a better model fit compared to the
separate-RC-KC model in unit 2. Similarly, since students are nov-
ice at the beginning stage, hypothesis 2 predicts that the separate-
RC-KC model shows better model fit compared to the integrated-
RC-KC model-1 and the integrated-RC-KC model-2 in unit 1.

Table 2. Separate and integrated knowledge components.

Separate KCs in

unit 1 Integrated KCs in unit 2

Conceptual step3_time-phasor

Perceptual_time-phasor (0)

Build phasor graph
Perceptual _time-phasor (integrated-RC-KC
(clockwise) model-1)

Perceptual _time-phasor
(counter-clockwise)

Write complex
exponential notation
(integrated-RC-KC
model-1)

Perceptual _phasor-exp

Conceptual step4 phasor-exp

Perceptual phasor-cartesian

Individual phasor-cartesian Write cartesian form

(real part) (integrated-RC-KC
Individual phasor-cartesian model-2)
(imaginary part)
6. RESULTS

To test hypothesis 1, we compared the model fit of the only-con-
tent-KC model, only-RC-KC model, and both-content-and-RC-KC
model using data from Studies 1 and 2. Table 3 shows that the both-
content-and-RC-KC model has a better model fit than the only-con-
tent-KC model and the only-RC-KC model in Study 1 and Study 2.
For AIC scores, the lower AIC indicate a better-fit-model, and more
than -2 is considered significantly better than model it is being com-
pared [3]. Similarly, a decrement greater than 10 indicates very

strong evidence in terms of BIC [19]. Lower values of RMSE also
indicate better fit. These results support hypothesis 1.

To address hypothesis 2, we compared the model fit of the sepa-
rate-RC-KC model, the integrated-RC-KC model-1, and the
integrated-RC-KC model-2 as shown in Table 4. For Study 1, re-
sults show that in unit 1, the separate-RC-KC model shows the
better fit than the integrated-RC-KC models. By contrast, in unit 2,
the integrated-RC-KC model-1 shows better model fit than the sep-
arate-RC-KC model in terms of AIC and RMSE (but based on BIC
the integrated-RC-KC model-2 shows the best model fit). This sup-
ports hypothesis 2.

For Study 2, we found that in unit 1, the separate-RC-KC model
shows a better model fit than the integrated-RC-KC models in terms
of AIC as shown in Table 5. However, the BIC and RMSE scores
indicated that the integrated-RC-KC model-1 had the best model
fit. By contrast, in unit 2, the integrated-RC-KC model-2 shows the
best model fit. This result supports hypothesis 2 in terms of AIC
scores. For BIC and RMSE scores, the results partially support hy-
pothesis 2, because the integrated-RC-KC model-1 shows the better
model fit than the integrated-RC-KC model-2.

Table 3. Test of hypothesis 1: Model accuracy for study 1 and
study 2. Bold stands for the best fit.

Study KC Model ?I#(%f AIC BIC RMSE
both-content-

and-RC 42 | 22,123 | 24,221 0.4422

1 only-RC 34 | 22,736 | 24,709 | 0.4456

only-content 9 23,853 | 25,446 0.4537
both-content-

and-RC 42 | 18,559 | 20,358 | 0.4370

2 only-RC 34 | 19,120 | 20,796 | 0.4421

only-content 9 20,133 | 21,418 0.4544

Table 4. Test of hypothesis 2: Model fit by unit (Study1). Bold
stands for the best fit.

Unit | RCKCModel | 97| AlC | BIC | RusE
separate-RC- 1 33| 9,733 | 11,488 | 0.4367
: i”,?g’;ﬁ;i,ijff' 30 | 9,779 | 11,491 | 0.4368
pegrared-RC- 197 | 9,803 | 11.492 | 04374
Seggﬁiﬁf' 33| 10387 | 12,133 | 0.4414
y | fmegraedRC- |30 | 10,372 | 12,075 | 0.4387
megrared-RC= 1971 10,396 | 12,084 | 04399




Table 5. Test of hypothesis 2: Model fit by unit (Study 2). Bold
stands for the best fit.

Unit | RC-KC Model | #27| AlC | BIC | RMSE
Seg‘g%ﬁ? 33 | 8,134 | 9,587 | 0.4445

|| egraledRC- | 30 | 8156 | 9,567 | 04431
””,?g’;ﬁ;i,i;,’f T 27| 8201 | 9570 | 0.4461
separate-RC- 331 9,095 | 10,598 | 04278

y | egrated RC 150 | 9085 | 10,546 | 04263
i”,?é’i;‘,f;’;,’ff T 27 | 9,080 | 10,498 | 0.4264

7. DISCUSSION

Our results show that the knowledge-component model incorporat-
ing both representational competencies and content knowledge had
the best model fit (hypothesis 1). This result aligns with findings
from a previous study that investigated whether a knowledge-com-
ponent model should incorporate representational competencies
using chemistry students’ learning data. Our results replicate this
finding in the electrical engineering domain.

Further, we found that students’ representational competencies be-
come abstracted and integrated with content knowledge as students
practice representational competencies (hypothesis 2). This shows
that as students’ learning progress, their representational competen-
cies are gradually merged with content knowledge. We note that
the time at which each representational competency is integrated
into the content knowledge may not be uniform. For instance, while
students’ representational competency of translating a time-domain
graph to a phasor graph were merged with content knowledge in
unit 2, the representational competency of translating a phasor
graph to a time-domain graph remained separate from content
knowledge. It is possible that after more practice, the latter repre-
sentational competency would also merge with content knowledge.

Additionally, our results indirectly suggest that students’ timelines
may differ depending on their learning rates. Specifically, we found
differences between the Study 1 and Study 2 cohorts. The fact that
BIC, AIC, RMSE disagreed as to whether the integrated-RC-KC
model-1 or the separate-RC-KC model had a better model fit for
unit 1suggests that students in Study 2 started with somewhat more
integrated knowledge and ended with more integrated knowledge
compared to students in Study 1. We do not want to speculate what
might have caused these cohort effects because there are numerous
possible reasons, but it suggests that students may start and end at
different points on a separate-to-integrated knowledge trajectory.

Our study makes novel contributions to the field of educational data
mining because it is, to our knowledge, the first study capturing
dynamic development of students’ representational competencies
using knowledge-component models. Knowledge-component
modeling allowed us to identify dynamic, developmental patterns
of representational competencies and to show that they are not
static. Further, our finding that knowledge-component models
should incorporate representational competencies in addition to

content knowledge expands the search space for knowledge-com-
ponent models in future work.

Our findings also have important implications for the design of
adaptive educational technologies. First, technologies that use vis-
ual representations should trace students’ acquisition of
representational competencies in addition to content knowledge.
Doing so is particularly important at the beginning of a learning
sequence. When students first learn a new concept with visual ma-
terials, instructional supports should be designed with
consideration of students’ representational competencies and con-
tent knowledge. Second, as students’ representational
competencies change dynamically through practice, the educa-
tional technology may no longer need to monitor representational
competencies separately from content knowledge. This, however,
may need to be adapted to the rate at which students learn specific
representational competencies and content knowledge.

8. LIMITATIONS & FUTURE WORK

Our results should be interpreted considering the following limita-
tions. First, we collected log data from students working on Signals
Tutor in the context of online learning. Online learning differs from
in-person learning in multiple ways. Therefore, future studies
should replicate our results in the context of in-person learning.
Second, our experiment was constructed in a specific electrical en-
gineering course. Even though visual representations are
commonly used in many STEM instructions, representational com-
petencies are domain-specific and highly dependent on the
particular content knowledge covered. Thus, future research needs
to test whether our results generalize to other STEM domains and
topics. Finally, open questions remain about the suitable length of
a learning intervention to ensure that all representational competen-
cies become integrated with content knowledge. Although this
study found that the students’ representational competencies are
gradually integrated with content knowledge, it did not examine
when each representational competency becomes fully integrated
into the content knowledge. To address this limitation, a longer in-
tervention is needed. Such research could help establish the length
of learning trajectories that relate to representational competencies.

9. CONCLUSION

The present paper shows that the structure of students’ knowledge
changes over time. Consequently, different knowledge-component
models are best suited at different times during a learning trajec-
tory. While modeling representational competencies is important,
representational competencies become integrated with content
knowledge with practice. Thus, educational technologies should
employ dynamic knowledge-component models that capture repre-
sentational competencies separately from content knowledge at the
beginning of a learning trajectory while merging them with content
knowledge later in a learning sequence. The way in which these
knowledge components are merged may depend on the student’s
learning rate. Given that prior research shows that adapting instruc-
tional support to students’ representational competencies can
significantly enhance their learning of content knowledge and
given the prevalence of visual representations in STEM instruction,
our study may have considerable impact on the effectiveness of ed-
ucational technologies.
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