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Abstract

Deep learning based image reconstruction methods outperform traditional methods. How-
ever, neural networks suffer from a performance drop when applied to images from a different
distribution than the training images. For example, a model trained for reconstructing knees in
accelerated magnetic resonance imaging (MRI) does not reconstruct brains well, even though the
same network trained on brains reconstructs brains perfectly well. Thus there is a distribution
shift performance gap for a given neural network, defined as the difference in performance when
training on a distribution P and training on another distribution @, and evaluating both models
on @. In this work, we propose a domain adaptation method for deep learning based compressive
sensing that relies on self-supervision during training paired with test-time training at inference.
We show that for four natural distribution shifts, this method essentially closes the distribution
shift performance gap for state-of-the-art architectures for accelerated MRI.

1 Introduction

Deep learning methods enable fast and accurate image reconstruction and outperform traditional
methods on a variety of imaging tasks | : : : : ; |.
Performance is typically measured as in-distribution performance: A dataset is split into test and
training sets, and a method trained on the training set is evaluated on the test set.

In practice, however, the train and test distributions are usually different: For example, we train
a network on data from one hospital, and apply the network to data from a different hospital. Or
we train on data acquired with one scanner type and acquisition mode, and apply it to a different
scanner type or acquisition mode.

Deep learning imaging methods perform significantly worse under such distribution shifts. For
accelerated MRI, a medical imaging technique, deep learning methods incur a significant accuracy
drop when shifting from one distribution to another, as shown for three natural distribution shifts
by Zalbagi Darestani et al. | | and for SNR changes by Knoll et al. | |.

The part of this accuracy drop that can be overcome in principle can be measured by the
distribution shift performance gap: Suppose P and @ denote the train and test distributions. We
define the distribution shift performance gap as the reconstruction accuracy (measured by a standard
metric, e.g., the SSIM score) of training on @ and testing on ) minus the reconstruction accuracy of
training on P and testing on @)..

In this paper, we propose a novel domain adaptation method for deep learning based compressive
sensing, and show that it overcomes the gap caused by four natural distribution shifts in accelerated
MRI. Our approach consists of two parts: (1) including self-supervision during the supervised training
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Figure 1: We study our domain adaptation method under four natural distribution shifts: anatomy,
dataset, modality, and acceleration shifts. P and @ are the train and test domains.
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stage of deep learning models, and (2) performing self-supervised test-time training for each new
test sample at inference.

We show that our method works with two well-known network architectures: the baseline U-
Net | | and the state-of-the-art end-to-end variational network | |. We evaluate robustness
under four natural distribution shifts, illustrated in Figure 1: (1) anatomy shift, (2) dataset shift
where the training set comes from a different hospital than the test set, (3) modality shift where the
acquisition mode changes, and (4) acceleration shift where the acceleration factor changes. For the
U-Net, our method closes the distribution shift performance gap by 98.6, 87.4, 96.3%, 97.4% (see
Table 1) which in each case yields a significant increase in image quality.

1.1 Prior work

A series of recent influential works in image classification has shown that image classifiers often
incur a significant performance drop under natural distribution shifts | ; ; ;

; |. For image reconstruction, Zalbagi Darestani et al. | | demonstrated that
reconstruction methods for accelerated MRI (even un-trained methods such as ¢;-minimization tuned
on the train distribution) also suffer a significant accuracy drop when shifting from one distribution
to another. | ; | also observed a performance drop under distribution shifts in MRI.
Consequently, several works, mainly in image classification, made efforts to overcome the distribution
shift performance gap:

Robust optimization. Distributionally-robust optimization learns a model by minimizing a loss
with a robustness notion | ; ; |. Robust optimization methods yield a robustness
gain on synthetic distribution shifts, and can yield a small gain on some natural shifts Koh et al.
[ |, but it is unclear whether they yield significant gains on natural shifts.

Data-driven interventions. Training on larger datasets | ; | and data augmen-
tations | : : : ; ; : | are popular data-driven



setup P: knee  P: fastMRI P: AXT2 P: 4x P: fastMRI
Q: brain  Q: Stanford Q: AXTIPRE P:2x Q: adv-filt fastMRI

train on Q test on Q 0.9187 0.7164 0.9026 0.9004 0.6865
train on P test on Q 0.8521 0.6830 0.8506 0.8385 0.6861
distribution shift performance gap | 0.0666 0.0334 0.0520 0.0619 0.0004
train on Q test on Q + TTT 0.9234 0.7268 0.9086 0.9192 0.6827
train on P test on Q + TTT 0.9225 0.7226 0.9067 0.9176 0.6806
distribution shift performance gap | 0.0009 0.0042 0.0019 0.0016 0.0021
fraction of gap closed by TTT 98.6% 87.4% 96.3% 97.4% -

Table 1: Using self-supervision with test-time training (TTT) closes 99%, 87%, 96%,
and 97% of the distribution shift performance gap for anatomy, dataset, modality, and
acceleration distribution shifts. The first three rows are SSIM scores for U-Net when trained in
a supervised manner. The second three rows are SSIM scores for U-Net when self-supervision is
included during training and then T'TT is applied at the inference. The adversarially-filtered shift is
an example where the distribution shift performance gap is close to zero (more than an order of
magnitude smaller than for the other shifts), and thus TTT is not having an impact here (and other
methods are also not expected to have an impact here).

robustness interventions. For classification, Taori et al. | | found training with more data to
marginally improve model robustness to natural distribution shifts. Fabian et al. | | found a
small improvement by using data augmentations, and Desai et al. | | recently also proposed a
data augmentation scheme that yields robustness gains for accelerated MRI.

Domain adaptation. Fine-tuning-based domain adaptation pre-trains classifiers on an auxiliary
distribution R, then fine-tunes on a train distribution P, and evaluates on a test distribution @
to measure the out-of-distribution (OOD) generalization performance | ; : ].
Zero-shot learning methods, pre-train classifiers on R and perform zero-shot inference on @ | |.
A third group of domain adaptation methods, most closely related to ours, train classifiers on P and
perform per-instance test-time training (TTT) at inference | ; ; |. However,
Miller et al. | | has shown that for several natural distribution shifts, zero-shot methods offer
only marginal robustness improvements and the other domain adaptation methods do not offer any
improvement.

Domain adaptation methods have also been proposed for improving robustness in imaging. For
image denoising, Mohan et al. | | proposed GainTuning, which performs TTT at inference
only on a few scaling factors of a neural network. We studied a version of this method tailored to
MRI, and found no improvement in robustness for our problems. For accelerated MRI reconstruction,

Liu et al. | | proposed a method that assumes access to examples from the target domain,
which we do not have here.
Finally, Yaman et al. | | proposed a zero-shot learning method (ZS-SSL) for accelerated

MRI and demonstrated that it can be used as a TTT method as well. Specifically, Yaman et al.
| | applied ZS-SSL to a pre-trained (on one anatomy in a fully supervised manner) model
and observed that it improves model robustness under anatomy shift. Our TTT approach differs
from ZS-SSL in that ZS-SSL relies on creating a synthesized dataset by repeatedly splitting the
given under-sampled measurement into training and validation measurements, whereas our approach
is to include a self-supervised loss in pre-training and then performing TTT with respect to that



self-supervised loss. See the supplement for further comparison.

2 Problem setup

We consider the problem of reconstructing an image from undersampled measurements. We focus
on accelerated multi-coil magnetic resonance imaging (MRI), but our method also applies to other
compressive sensing image reconstruction problems, for example to computed tomography. For such
imaging problems, deep learning methods perform best. In our setup, the network is trained on one
distribution (e.g., knees) and is tested on another distribution (e.g., brains).

2.1 Compressive sensing

Our goal is to reconstruct an image x* € CV from undersampled measurements
y = Ax* + noise € CM| (1)

where the number of measurements, M, is typically lower than the dimension of the image, N. We
are given the measurement matrix A. We focus on accelerated MRI, in which the measurements,
often called k-space measurements, are obtained as

yi = MFS;x* + noise € CMe,  i=1,... n,.

Here, n. denotes the number of radiofrequency coils, S; is a complex-valued position-dependent
coil sensitivity map, that is applied through element-wise multiplication to the image x*, F' is the
2D discrete Fourier transform, and M is a mask (a diagonal matrix with ones and zeros on its
diagonal) that implements under-sampling of k-space data. The measurements y; and matrices can
be organized so that the measurement model has the form (1).

The MRI datasets we work with (see Section 5) consist of pairs of measurements and corresponding
reference image {(x;,y;)}. The datasets are constructed from fully-sampled MRI data (i.e., taken
with an identity mask M = I). The reference images are obtained by reconstructing the coil images
from each full coil measurement as x; = F~'y; and then combining them via the root-sum-of-squares
(RSS) algorithm to a single image: x = /Y <, |x;|?. Here, |-| and /- denote element-wise absolute
value and squared root operations. The under-sampled k-space measurements (for acceleration) are
obtained by applying a standard 1D random mask (random vertical lines in the frequency domain),
which is the default in the fastMRI challenge. We consider 4x acceleration throughout the paper,
the acceleration factor considered in the fastMRI challenge | ; |.

2.2 Image reconstruction with neural networks

We study our domain adaptation method for two neural networks, a standard baseline method
(U-net) and the state-of-the-art reconstruction method (VarNet).

U-Net | | is a convolutional network which for MRI is trained end-to-end to map a least-
squares reconstruction obtained from a measurement y to a clean image x by minimizing the loss
L(y,x,0) = Hx - fg(Any)H1 over a training dataset {(x1,¥1),-.., (Xn,¥n)} | |. Here, fo is a
U-Net with parameters 6.

VarNet is a variational network that gives state-of-the-art performance | |. Similar to
U-Net, VarNet is trained to map an under-sampled measurement to a clean image, but contrary to
U-net, it contains data consistency blocks.



2.3 Problem statement: Overcoming the distribution shift performance gap

Neural networks for MRI are often trained on the fastMRI training set | | and evaluated on
the fastMRI test set. This measures in-distribution performance since the sets are constructed by
collecting data and splitting it in train and test sets.

This evaluation mode is not reflective of performance in practice, where we typically train on
data acquired in one setup (anatomy, scanner type, acquisition mode, etc.) and apply the network
in a different setup on data from another anatomy, scanner, or acquisition mode. All those changes
introduce distribution shifts.

Under anatomy shifts (training on knee and testing on brain) and dataset shifts (training on
NYU data | | and testing on Stanford data | ]), different methods lose a similar and
significant amount in image quality Zalbagi Darestani et al. | |. This loss comprises two
parts: one is due to variations in difficulty of the datasets; e.g., images with finer details are harder
to reconstruct and result in lower scores. This part cannot be overcome by better algorithms or even
by having access to the test distribution. The second part is due to a missfit of algorithm and test
distribution, this can in principle be overcome if we had access to the test distribution. We call this
second gap the distribution shift performance gap.

The goal of this work is to close the distribution shift performance gap without having access
to the test distribution. We assume that we can train a network on a training distribution P, but
at inference, we are only given a measurement y from a test distribution (), without any other
information about the test distribution.

3 The distribution shift performance gap for four natural distribu-
tion shifts

In this section, we introduce the four natural distribution shifts we consider and measure the
corresponding distribution shift performance gap. We also include a fifth distribution shift for which
the distribution shift performance gap is close to zero, even though we observe a performance drop.

We then show that the models we consider have the ability to close the performance gap, by
training a network on data from both distributions. This show that the networks we consider can
perform well on both distributions simultaneously. Of course, in practice we cannot train on the test
distribution, since we do not have access to examples from the test distribution.

3.1 Natural distribution shifts considered

We consider four natural distribution shifts illustrated in Figure 1, and one artificial distribution
shift.

Anatomy shift. We consider an anatomy shift from training on fastMRI knee images to testing
on fastMRI brain images.

Dataset shift. We consider a dataset shift from training on fastMRI knee images (collected at
NYU) to testing on Stanford knee images | |. The main differences are: (1) The Stanford data
is constructed via volumetric 3D recording (fastMRI scans are 2D), (2) The Stanford set contains



samples with a lower frequency resolution than fastMRI, and (3) the slice thickness is 5 times smaller
in the Stanford set.

Modality shift. A modality shift occurs when the acquisition mode of training images is different
than the one for test images. A modality shift is subtle, in that it occurs within an anatomy (say
brain) and only the contrast of the images changes. We consider a modality shift from AXT2 to
AXTI1PRE images (see Figure 1 for an example, and the supplement for the change in pixel intensity
distribution).

Acceleration shift. We consider an acceleration shift from training on 4x accelerated measure-
ments to testing on 2x accelerated measurements.

For each of these natural distribution shifts, we compute the distribution shift performance gap
for a given model as the gap in SSIM (an image comparison metric) when the training domain
changes. Table 1 shows the distribution shift performance gap for U-Net given each of the distribution
shifts explained above.

We note that there are distribution shifts for which the distribution shift performance gap is
essentially zero, and thus no robustness intervention can be helpful. An example is an adversarially-
filtered shift which occurs when the target distribution contains hard-to-reconstruct samples from
the original domain. Specifically, models trained on the fastMRI dataset achieve a significantly
lower score on fastMRI-A, which contains hard-to-reconstruct samples | |. However, models
achieve a low score on fastMRI-A simply because those samples contain finer details. This can be
seen in Table 1 where the best performance obtainable by models is 0.6865 and when models are
trained on fastMRI instead of fastMRI-A, they still achieve that performance on fastMRI-A. This
example shows that a performance degradation on the target domain does not necessarily translate
into a distribution shift performance gap as defined above.

3.2 Networks can close the distribution shift performance gap

Before describing our domain adaptation method, we investigate whether models are capable of
achieving close-to-zero performance gap. To this end, we assume access to data from distribution Q
and train a U-Net on the mixture distribution of P and @), for each distribution shift introduced in
the previous section, and evaluate the models on the two distributions. The results are shown in
Figure 2, which depicts performance as a function of the mixture coefficient, which indicates the
proportion of data from distribution Q).

The distribution shift performance gap is captured by the difference in the vertical direction
between points with mixture coefficient 1.0 and 0.0. For the natural distribution shifts we study,
there is a significant distribution shift performance gap, while for adversarially-filtered shift, the gap
is relatively small.

We observe an approximately vertical section intersected with an approximately horizontal
section at a relatively sharp angle. This shows that, when more data from the target distribution @)
is added to the training set, performance on @) increases while performance on P does not degrade.
As a consequence, the performance gap is roughly closed when the model is trained on the mixture
distribution with the mixture coefficient at the intersection point.
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Figure 2: Performance of U-Net trained on the mixture distributions of source and target domains:
Numbers are the mixture coefficients; for example 0.25 means that 25% of the training data comes
from distribution (). The performance gap is significant for the four natural distribution shifts, but
essentially non-existent for the adversarially-filtered shift. The model can perform well on both
distributions P and ) simultaneously irrespective of the distribution shifts. Error bars denote 95%
confidence intervals.

4 Method: Incorporating self-supervised training and then per-
forming test-time training at inference

In this section, we describe our domain adaptation method for compressive sensing which incorporates
a self-supervised loss into the training of a deep learning model, and performs test-time training
(TTT) during inference. Let fg be a neural network mapping a coarse reconstruction from a
measurement y to a clean image (e.g., a U-Net or VarNet). The training and inference stages are as
follows.

Training stage: Given a training set consisting of (ground-truth-image, measurement) pairs

{(x1,¥1),---,(Xn,¥n)}, we learn a model by minimizing the loss function
1 < x; — fo(Aly; yi — Afo(Aly;
pa Pl ],

Lsup Lself

Here, Lgup is the supervised part of the loss function which ensures that the output of the network
is close to the ground truth image. For our setup, the £1-norm works well as a loss but other choices,
such as the SSIM loss, also work.

The un-supervised loss we propose is simply enforcing data-consistency, and might seem like an
odd choice, given that existing TTT schemes from the classification literature typically choose an
auxiliary task, and not a fitting term as a self-supervised loss. We also experimented with auxiliary
reconstruction tasks, such as a self-supervised denoising task (see appendix), without success. We
further discuss the motivation for the un-supervised loss below.

Inference stage: At inference, we are given a (typically out-of-distribution) measurement y, and
we estimate an image as follows. We optimize the network parameters @ with respect to the loss
Lseif for the given under-sampled test measurement. We refer to this step as TTT. To prevent TTT
from overfitting to the measurement, we early-stop the optimization based on a self-validation loss
computed over a fraction of the under-sampled measurement. Specifically, let y be the under-sampled



test measurement with M frequency-domain measurements. We split y into a yirain and yya1, which
contains a random fraction ¢ = M /k of all measurements in y. We then perform TTT on yiyain and
monitor the error between yy, and the predicted frequencies by the network for self-validation to
stop TTT early when the self-validation error starts to rise.

Motivation for the self-supervised loss: Our self-supervised loss is low if the network generates
an image that is consistent with the measurement. This loss might seem an unusual choice, given
that TTT methods from the literature usually use a loss based on an auxiliary task. However, we
observe footprints of this loss in works on cycle consistency losses in image translation | |
and image classification | |. For image-to-image translation, Zhu et al. | | proposed
cycle consistency to learn a consistent mapping from one image domain X to another image domain
Y. Oh et al. | | used a cycle consistency loss to train a GAN for image reconstruction.

Our self-supervised loss uses the network as an image model to enforce consistency between
the output and the under-sampled measurement. Therefore, we expect such self-supervision to
work well for architectures that are good image models. Both U-Net and VarNet are Convolutional
Neural Networks (CNNs), and CNNs are good image priors even without any training Ulyanov
et al. | |. Un-trained CNNs are such good image priors so that they can perform image
reconstruction without any training |

Y ) ) ) ) ) ]'

5 Experiments

In this section, we show that self-supervised training with test-time training (TTT) closes the
distribution shift performance gap for the four natural distribution shifts considered.

For each experiment, we have an original distribution P and a target distribution (). Performance
is measured in terms of the structural similarity index measure (SSIM). The distribution shift
performance gap when training is fully supervised is defined as

gaDPhefore = SSIM(train on @ test on Q) — SSIM(train on P test on @),
and is defined as
gaP,grer = SSIM(train on @ test on @ + TTT) — SSIM(train on P test on @ + TTT)

when we include self-supervision during training and then apply TTT.

If the robustness intervention is successful, then gap,., is significantly smaller than gapyefore-

Throughout the experiments, we work with a U-Net with 8 layers and 64 channels as the width
factor and a VarNet with 12 cascades and 18 channels as the width factor. For training, we run the
Adam optimizer | | with learning rate set to le-5 for U-Net (and le-4 for VarNet).

The train and test datasets we used for each experiment are described below for each distribution
shift. We observed that a training set of 300-400 slices gives a good performance on the validation

set. For larger training sets, we observed no significant performance improvement (less than 0.5%
SSIM score).

Anatomy shift: Here, the distribution P are knee images, and () are brain images. The knee
training set consists of 376 PD knee slices of the fastMRI training dataset and the brain training set
consists of 310 AXT2 brain slices of the fastMRI training dataset. We train U-Net and VarNet on



anatomy shift dataset shift modality shift acceleration shift

P:knee Q:brain | P:fastMRI Q:Stanford | P:AXT2 Q:AXT1PRE P:4x  Q:2x
training scheme setup U-Net VarNet U-Net VarNet U-Net VarNet U-Net VarNet
SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM
self-supervision | train on P test on Q + TTT | 0.9225 0.9315 0.7226 0.7247 0.9067 0.9084 0.9176 0.9203
included train on Q test on Q + TTT | 0.9234 | 0.9322 | 0.7268 0.7295 0.9086 0.9110 0.9192 0.9207
train on Q test on Q 0.9187 | 0.9344 | 0.7164 0.7442 0.9026 0.9105 0.9004 | 0.9224
supervised train on P test on Q 0.8521 0.8717 0.6830 0.7062 0.8506 0.8744 0.8385 0.8744
train on P test on Q + TTT | 0.8648 0.8533 0.6130 0.6026 0.8695 0.8102 0.8090 0.8324
fraction of gap closed by TTT 98.6% 98.8% 87.4% 87.3% 96.3% 92.7% 97.4% 99.1%

Table 2: Including self-supervision while training deep learning models combined with
TTT improves model robustness to natural anatomy, dataset, modality, and accelera-
tion shifts. SSIM scores are averaged over 100 slices from the test set of Q). Note that TTT is only
effective when self-supervision is included during training, and as shown in the second to the last
row, it offers marginal improvement when applied to a model that is trained in a supervised fashion.

anatomy shift dataset shift modality shift acceleration shift
P:knee Q:brain P:fastMRI Q:Stanford | P:AXT2 Q:AXT1PRE P:4x Q:2x
U-Net VarNet U-Net VarNet U-Net VarNet U-Net VarNet
training scheme setup runtime runtime runtime runtime runtime runtime runtime runtime
(mins/slice) | (mins/slice) | (mins/slice) | (mins/slice) | (mins/slice) | (mins/slice) | (mins/slice) | (mins/slice)
self-supervision | train on P test on Q + TTT 10.1 12.9 1.2 1.5 1.6 6.5 3.6 5.2
included train on Q test on Q + TTT 3.3 4.2 0.4 0.7 0.7 2.6 2.6 5.1

Table 3: Reducing the robustness gap comes at a noticeable computational cost for TTT.
Runtimes are averaged over 100 slices from the test set of @ and are reported for a single GPU.

both training sets separately, and test them on a brain test set consisting of 100 AXT?2 brain slices
of the fastMRI validation dataset, this yields the numbers for supervised training in Table 2. Next,
we performed the same experiment, but this time we included self-supervision into the training, and
we applied test-time-training as described above.

Dataset shift: Here, the distribution P is a subset of the fastMRI dataset, and () is the Stanford
dataset. The version of the fastMRI training set consists of 366 PDFS knee slices, and the Stanford
training set consists of 308 PDFS knee slices. We then repeat the same experiment explained above
for anatomy shift.

Modality shift: Here, the P and @ distributions are the AXT2 and AXT1PRE slices of the
fastMRI brain dataset. The AXT2 training set consists of 310 slices, and the AXT1PRE consist of
320 slices. We then repeat the same experiment explained above.

Acceleration shift: Here, the distribution P are 4x accelerated knee measurements, and () are
2x accelerated knee measurements. The 4x training set consists of 376 PD knee slices of the fastMRI
training dataset and the 2x training set consists of the same 376 PD knee slices but accelerated 2
times instead of 4.

Table 2 and Table 3 contain the results of the experiments. Figure 3 contains example recon-
structions, more examples are in the appendix in Figures 11, 12, 13, and 14.
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Figure 3: Our domain adaptation method yields a high perceptual quality by closing the distribution
shift performance gap. All images are U-Net reconstructions from 4x under-sampled measurements
(except the last row which is for 2x acceleration).

5.1 Discussion on the results

We draw the following conclusions from the results.

TTT essentially closes the distribution shift performance gap. For the four considered
natural distribution shifts, our method closes the distribution shift performance gap by 87-99%.

Thus, our method closes the gap for practical purposes for those four distribution shifts. This is also
reflected in a significant increase in perceptual quality (see Figure 3 and the appendix).
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Figure 4: Test-time-training error, validation error, and error with respect to the original (unknown)
image x. The given measurement y is split into a part for test-time-training (yirain) and into a part
for validation (yya1), which in turn is used to determine the early-stopping time. Comparing the
validation error with the true accuracy shows that i) the validation error is a good proxy for the
true accuracy, and ii) early stopping is critical for the performance of test-time training.

TTT also slightly improves in-distribution performance, which is not surprising as it tunes
the parameters on each instance individually as opposed to finding the parameters that work best on
average on all slices. That is why we measure the performance gap with and without TTT included.

Increased computation cost. Our approach offers significant reduction in the distribution shift
performance gap. However, TTT comes at the cost of more computations at the inference as shown
in Table 3.

5.2 Ablation studies

Including self-supervision in training is critical for performance. TTT on a model trained
only on the supervised loss (without including the self-supervised loss during training) gives only
minimal (for anatomy shift) to no (for dataset shift) performance improvement.

Early-stopping TTT is critical for performance. TTT is performed on the under-sampled
test measurement and overfits to it without our early-stopping mechanism, which chooses the
early-stopping time based on a hold-out set obtained from the under-sampled measurement. Figure 4
illustrates that early stopping is critical for TTT to perform well. As depicted, the self-validation
error in the middle panel (which is computed using a fraction of under-sampled test measurement)
yields a good early-stopping time, in that the validation loss is inversely correlated with the true
accuracy, as expected.
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Variants of TTT. TTT in image classification is typically quite different than the version of
TTT proposed here, in that a network with two heads is trained, one part on a supervised loss and
one part at a self-supervised loss on an auxiliary task, such as predicting rotations of an image.
At inference, TTT is performed on the self-supervised loss | |. We experimented with the
analogous idea for image reconstruction: We took a U-Net with two decoders and a joint encoder,
and trained the network on a self-supervised denoising problem and the supervised compressive
sensing problem. At inference, we performed TTT on the denoising problem. This approach fails to
improve model robustness (see Figure 6 in the supplement).

We also experimented with another variant of TTT that also does not work well. We exploited
the idea behind the CycleGAN | | to build CycleU-Net. CylcleU-Net comprises two U-Nets in
tandem and is trained based on two forward passes: (1) a supervised pass mapping the ground-truth
image to itself, and (2) a self-supervised pass mapping the low-quality image to itself (by switching
the places of the two U-Nets). This type of training enables TTT w.r.t. the self-supervised pass at
inference. Table 5 in the supplement shows that only 29% of the gap is closed for anatomy shift
when this approach is employed.

6 Test-time training can provably adapt to a distribution shift

In this section, we discuss an example illustrating that test-time training with an appropriate loss
can optimally adapt to a particular distribution shift.

Consider the problem of denoising a signal that lies in a subspace. The training distribution
draws a signal from an unknown d-dimensional subspace and corrupts it by Gaussian noise with

noise variance o2:

P:y:X+Z,X:Uc,CNN(O,I),ZNN(O’IUQ).

The test distribution draws a signal from the same subspace, but corrupts it with noise that has a
different noise variance:

Q:y=x+12z,x=Uc,c~N(0,I),z ~N(0,I?).

Here, U € R™*“ is an orthonormal basis for the signal subspace. We consider a linear denoiser of
the form f(y) = aVVTy, where V € R"*? is an orthonormal basis and « € [0, 1] is a scalar. We
measure performance in terms of the population risk

Ro(, V) =Eq |[x - aVVTy[5].

1
1+¢2
for the unknown signal x is x = ﬁUUTy and it projects the observation onto the subspace and

then shrinks with a coefficient that is dependent on the noise variance, the larger the noise variance,
the more the estimator shrinks.
We train the method on the supervised loss

Lp(a, V) = Rp(a, V). (3)

The population risk is minimized by the estimator o = and V = U. So the optimal estimator

For simplicity, we choose as the supervised loss the population loss, because we are not interested
in finite-sample effects. This corresponds to a setup where we have abundant training data on the
distribution P.
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A minimizer of the loss is o = ﬁ, V = U, thus minimizing on the loss gives an estimator that

is optimal on the distribution P. However, the estimator is sub-optimal on the distribution Q.

We next obtain an observation y from the distribution @, and our goal is to estimate the
corresponding signal x. Towards this end, we first perform test-time-training on the distribution @,
i.e., we minimize the self-supervised loss

20d
Lss(a,U,y)= Hy—aUUTyH;JrﬁH(I—UUTM!;

over the scale parameter «. Note that we already obtained V = U from the training on the
distribution P. For d and n large, the self-supervised loss Lgg(a, U,y) concentrates around the
expectation, which can be shown to be (1 — a)2d + a?ds?. Minimizing this over a gives o = 1+1§2.
See proof in Appendix E. Thus, for this example, test-time-training actually yields the optimal
estimator for the signal x under the distribution Q!

This example demonstrates that in theory, test-time-training can yield an optimal estimator under
a distribution shift. It also illustrates that for TTT to work, the main task and the self-supervised
learning task have to be related, and the choice of the self-supervised loss has to take this relation into
account. Also note that this particular self-supervised loss will not work for a different distribution
shift, it is tailored to the anticipated shift in noise variance. This highlights that different distribution
shifts might require different self-supervised losses for test-time-training to work.

7 Conclusion

Distribution shifts are a key limiting factor in deep learning based imaging. In this paper, we
proposed a novel domain adaptation method based on self-supervised training and test-time training
(TTT) that reduces the distribution shift performance gap for four natural distribution shift by
87-99%, and thus gives significantly better image quality at inference.

It is perhaps surprising that TTT works so well for natural distribution shifts, in particular since
a variety of domain adaptation methods for classification only give a marginal improvement (if at
all) for natural distribution shifts Miller et al. | |. However, image reconstruction problems
are much more amenable for domain adaptation methods, since at test time, we are given an entire
measurement of an image, which contains lots of information about the image and a potential
distribution shift. We exploit this information through TTT and to perform early stopping during
TTT. Contrary, in an image classification setup, we are not given any information about the label
and thus it might be much harder to adapt at test time.

Many important questions remain: Due to the TTT, our method has significantly higher
computational cost at inference than using a plain neural network without TT'T. Reducing this
computational cost is desirable. Moreover, our method is specific to compressive sensing problems,
and thus developing TTT methods that are also applicable to inverse problems beyond compressive
sensing is an important future direction. Finally, it is important to gain a better theoretical
understanding of the mechanisms making TTT work.

Reproducibility

Our repository at https://github.com/MLI-lab/ttt for deep learning cs contains the code to
reproduce all results in this paper.
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A Intensity distribution changes under modality shift

One of the natural distribution shifts we study in our work is a modality shift, where the acquisition
mode of train and test domains differ. This difference results in a shift in intensity distributions that
is illustrated in Figure 5 for the shift from T2 to T1PRE brain images that we consider.

T2 intensity distribution T1PRE intensity distribution
1 T T T T T

0.5 : - :

0

Figure 5: Modality shifts occurs within an anatomy where the contrast changes via modality change,
and thus the intensity distribution of the images changes.

B Comparison to ZS-SSL

We mentioned in the introduction that an alternative test-time training (TTT) approach compared
to our work is to use the method ZS-SSL | |, which was originally introduced as a method for
performing reconstruction for a single instance. Given a single under-sampled measurement y of
an image x, ZS-SSL creates a dataset {(y1,¥],¥1),---, (Yx.¥%,¥%)} by randomly sampling pixels
from y. Each triplet is a random partition of the under-sampled k-space and the proportions are
determined by two hyper-parameters p and p’. In each triplet, y; is fed to the network as input, y/}
is used in the TTT loss based on the network output, and y! is used for self-validation to determine
when to stop training. Unlike our method that relies on no hyper-parameters, ZS-SSL has three
hyper-parameters to tune which are K, the number of splits for the synthesized dataset, and p and
p’ which determine how to split the under-sampled measurement to three partitions

Our TTT approach incorporates a consistency-based self-supervised loss during the supervised
pre-training stage, and then TTT is performed w.r.t. that self-supervised loss. Thus, the main
advantage of ZS-SSL over our method is that it does not impose any constraints on the pre-training
scheme. Performance-wise, Table 4 compares our method to ZS-SSL for anatomy shift. Both methods
are applied to unrolled networks (our approach is applied to VarNet and ZS-SSL is applied to a
similar unrolled network explained in | |). Table 4 shows that both achieve on-par performance
in terms of closing the distribution shift performance gap. However, our approach is computationally
cheaper than ZS-SSL which is expected since our method does not rely on dataset synthesis for
TTT.
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anatomy shift
P:knee Q:brain
Our approach 7S5-SSL
setup SSIM  TTT runtime SSIM  TTT runtime
(mins/slice) (mins/slice)

train on P test on Q + TTT 0.9358 12.9 0.9343 59.4
train on Q test on Q + TTT 0.9375 4.2 0.9365 33.5
train on Q test on Q 0.9396 - 0.9331 -
train on P test on Q 0.8802 - 0.9029 -
fraction of gap closed by TTT 97.1% 93.1%

Table 4: Both ZS-SSL and our test-time training (TTT) approach are highly effective
for overcoming natural anatomy shift. SSIM scores are averaged over 30 validation slices of
the fastMRI brain dataset. For both methods, TTT is applied with a similar learning rate as the
one used during pre-training.

C Variants of TTT

As mentioned in the main body, we also experimented with two variants of TT'T, which fail to
improve robustness. Those variants are discussed here.

Variant 1. The first variant is very similar to how TTT is typically performed in image classification.
Let Eg be the encoder of the U-Net and let Dy and Dy be two decoders. The encoder with the
first decoder is trained to solve the main task which is the supervised compressed sensing task,
and the encoder with the second decoder is trained to solve an auxiliary task which we take as a
self-supervised denoising task. Specifically, we train the method on the loss:

,cw,o,w:15”3(“Xi_EB(De(ATYi))“WHAT‘V’ e Hl) 0

1xilly ATyl
Esup ﬁself

i=1

where z ~ N (0, 02) is random Gaussian noise that we generated for the self-supervised loss, and Ay
is the input of the U-Net (i.e., the least-squares reconstruction from measurement y). Similar to our
domain adaptation method, at the inference, we optimize the self-supervised loss Lgeit(3, 9, y) with
respect to the weights 3,9 for a given undersampled measurement y. The stopping iteration was set
to 10 heuristically (as opposed to our domain adaptation method where we used a self-validation-based
automatic early stopping).

Figure 6 shows the results when training U-Net with loss function (4) in comparison to a U-Net
trained in a supervised manner. Because we observed no benefit from this type of TTT under
a natural anatomical shift (i.e., 0% of the gap is closed), in Figure 6, we illustrate the result for
artificial distribution shifts. We specifically evaluate this variant on the brain validation set of
fastMRI under (1) no transformation (regular), (2) horizontal flipping (fliph), (3) vertical flipping
(flipv), (4) 90-degree rotation (rot90), (5) Gaussian noise (noisy), (6) blur artifacts (blur), (7) elastic
transformation (elastic), (8) spike artifacts (spike), and (9) ghosting artifacts (ghost). Interestingly,
this variant of TTT is not even helpful with these artificial shifts according to SSIM scores reported
in Figure 6.

20



I 0 U-Net w/o TTT
0.8 BN U-Net w TTT

regular fliph flipv rot90 noise blur elastic spike ghost

artificial distribution shift type

Figure 6: A variant of test-time training (TTT) with a two-head U-Net inspired from
image classification does not improve model robustness. Including denoising as an auxiliary
task during supervised training of U-Net even impairs model robustness for some artificial distribution
shifts. Evaluation scores when each transformation on the x axis is applied to the brain validation
set.

Variant 2. The second variant is a method we propose based on CycleGAN [Zhu '+ 17], dubbed
CycleU-Net, and works as follows. Suppose we put two U-Nets fg and gg in tandem to form a
larger model. We then train the resulting model by making two forward passes for each input pair
(vi»x;) at each epoch: (1) a self-supervised pass as gg(fp(Aly;)), and (2) a supervised forward pass
as fg(ga(x;)). This is illustrated in Figure 7.

zero-filled zero-filled
self- ;
supervised fo 9B S—
forward pass
ground-truth ground-truth

supervised
forward pass °

gﬁ : R '

Figure 7: Forward passes in CycleU-Net. fy and gg are two U-Nets with the same number of
parameters. Training based on the two forward passes enables test-time training (TTT) w.r.t. the
self-supervised pass. Only fg is needed for inference after TTT.

By defining those two forward passes, we can build the training loss function as follows:

n

£p.0)= Y (uxi ~ folgpGe)ly + [ATy: — gatFa(aly))|

o ‘1)‘

=1

+ ‘ x; — fo(Aly;)

Tt HATYZ' —98(x;)
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setup P: knee

Q: brain
train on Q test on Q 0.9187
train on P test on Q 0.8521
distribution shift performance gap | 0.0666
train on Q test on Q + TTT 0.9212
train on P test on Q + TTT 0.8742
distribution shift performance gap | 0.0470
fraction of gap closed by TTT 29.4%

Table 5: A variant of test-time training (TTT) with a CycleU-Net inspired from Cy-
cleGAN improves model robustness only slightly. The first three rows are SSIM scores for
U-Net when trained in a supervised manner. The second three rows are SSIM scores for CycleU-Net
when TTT is applied at the inference. This variant closes the gap by 29.4% but is outperformed by
our original method which closes the gap by 98.6% which is discussed in the main body.

Here, the first two terms enforce input-output equality for each of the two forward passes. The third
term ensures that fg learns a mapping from the under-sampled to the ground-truth domain (likewise,
the fourth term ensures that gg learns a mapping from the ground-truth to the under-sampled
domain). Note that without the last two terms, there is no guarantee that fg reconstructs the
ground-truth image from the under-sampled measurement.

At inference, we perform TTT w.r.t HATyi - g,@(!)"g(ATyi)))H1 (both @ and (3 are optimized)
which is fully self-supervised, then detach fg from the architecture and use it for reconstruction as
fo(Aly).

Table 5 shows the performance of this approach for anatomy shift (the training and test data are
the same as Section 5). As shown, the fraction of gap closed by performing TTT on CycleU-Net is
29.4% which demonstrates that this approach is not effective in closing the gap.

D Relation to imaging with un-trained neural networks

Our domain adaptation method consists of training a network with supervised and self-supervised
loss and at inference, training again on the self-supervised loss with early stopping.

The inference step is very similar to how an un-trained neural network is used for image recovery.
To see this, reconstruction of a signal from an observation with an un-trained network works as
follows. Let fg be a convolutional network that is initialized randomly, and optimized on the loss

L(6) =ly — Afo(z)l;,

with gradient descent and early-stopping the iterates for regularization. Here, z is an input that is
typically random, and has observed to be relatively irrelevant. Ulyanov et al. | | demonstrated
that this method works well for denoising and super-resolution, and Heckel and Hand | |, Arora
et al. | |, and Zalbagi Darestani and Heckel | | have shown that un-trained convolutional
networks work well for denoising and accelerated MRI. Reconstruction with an un-trained network is
very similar to our T'TT step, with the difference that the un-trained networks start from a random
initialization of the weights (which in this case, for the DIP-based model introduced in | ],
they achieve 0.9046 SSIM on brain images for the anatomy shift setup we consider in Table 2).
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Figure 8: Test-time training (TTT) improves the reconstruction accuracy of a pre-trained model
when self-supervision is included during training (right column), but treats a pre-trained model as
an un-trained network when pre-training is fully supervised (left column). The first row shows the
self-validation error which is used to stop TTT early. The second row shows SSIM w.r.t. the ground
truth image during TTT.

We could also just initialize the weights of an un-trained network by pre-training the network
on a dataset, and we might expect that this improves performance. Viewed from that angle, our
method might look like an un-trained network in disguise.

In this section, we argue that our method is not an un-trained network in disguise by demonstrating
that TTT improves over the image prior learned by pre-training. We perform the following experiment.
We consider the anatomy shift and train a U-Net fq,, in a supervised manner and another U-net
fioint using our joint loss function (2) that incorporates self-supervision. We then perform TTT by
applying fsup and fioint to a brain test sample.

Figure 8 depicts the results. The first row shows the self-validation error whose increase determines
the early-stopping point. The second row depicts the SSIM with respect to the unknown ground
truth image during TTT. Observe that when TTT is applied to fjoint, SSIM improves during TTT.
Thus TTT improves over the learned prior from knees to achieve a good reconstruction accuracy on
the brain test sample.

Contrary, when TTT is applied to fsup, SSIM first decreases dramatically and then starts to rise
again. This suggests that TTT applied to a fully self-supervised loss ignores the learned prior and
uses the model as an un-trained network.

E Proof of claims in Section 6: Test-time training can provably
adapt to a distribution shift

Proposition E.1. The supervised loss
T 2
Rp(a, V) =Ep {Hx—avv sz]

is minimized by a = 1/(1 + ¢?%) and V = U.
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Proof. Let W = aVVT and consider the following related convex optimization problem
H‘l}%anp [HX - Wy”%] .

Note that here we optimizer over a larger space, as we do not constrain W to be symmetric. We
show that a solution to the optimization problem is W = 5 +102 UUT, therefore (o, U) is a minimizer
of Rp(a, V), which proves the claim.

The gradient of the objective function above is

VwEp [Ix = Wyl3| = Vwtr (Bp [xx"] — 2WTEp [xy"] + a*WTWEp [yy"])
=2WEp [ny} —2Ep [xyT} .

Setting the gradient to zero, the minimizer satisfied
W =Ep [xy"] Ep [yy"]) .
Since y = x + z and x = Uc, where ¢ ~ N(0,I) and z ~ N (0,I0?) are independent, it holds that
Ep [XyT] =Ep [XXT] = UUT,
and
Ep [ny} =Ep [XXT + ZZT} =UUT + L

Plugging in the two expressions into the expression for W we obtain

1
W = uu?,
1+ 02

as desired. O
Proposition E.2. For fized U, the expectation of the self-supervised loss

2ad
Eq [Lss(a,U,y)] = Eq [Hy - OCUUTY‘E + ﬁ“(l - UUT)YH;

is minimized by o = 1/(1 + ¢2).

Proof. Note that

tr (Eq [yy'] — 2aU"UEq [yy"] + o*U"UEq [yy"])
(I+(a® —20)UTU) Eq [yy])

I+ (a?—2a)UTU) (UUT + %))

I+ ((1 - @)? + (a® — 2a)s%)UUT)

=Zn+ (1—a)?d+ (o - 2a)s%d.

Eq |[ly - aUUy];]

tr (
tr(
tr (

T
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It follows that, for a =1,
Eq ||y - UUTy[;] = ¢*n - %

Hence,

2ced

Eq[Lss(a,U,y)] = ¢*n+ (1 — a)?d + (o® — 2a)s*d + p— d(§2n —¢2%d)

=¢*n+ (1 — a)’d + a’s%d,

whose minimum is achieved at a = 1/(1 + ¢2). To see this, take the derivative with respect to a, set
it to zero, and solve for a. O

F Test-time training for non-convolutional architectures

The two networks that we studied throughout are based on the U-Net, a convolutional neural network.
There are, however, other non-convolutions neural network architectures that perform well for image
reconstruction problems. In this section we explore how our test-time training (TTT) approach
performs with non-convolutional networks.

We consider the Vision Transformer (ViT) | | that works very well for signal reconstruction
problems. ViT has been tailored to accelerated MRI reconstruction as well | ; ;

; |, and has been shown to be computationally faster than U-Net and also slightly
more robust than U-Net against anatomy shift | |.

We repeated the same experiment we performed for U-Net under the anatomy shift. The results,
reported in Table 6 show that TTT for a ViT is effective, but not as effective as for the U-Net
(specifically, the fraction of the gap closed by TTT is only 84.5% for ViT, whereas the gap closed by
TTT is 98.6% for U-Net). This is also reflected in the visual quality of the images, as illustrated in
Figure 9. In Figure 9 we see that TTT for a ViT gives reconstruction artifacts.

The self-supervised loss function used in our T'T'T approach works better for U-Net compared
to ViT, and hence our TTT is more effective for U-Net. To see this, we perform the following
experiment. We train U-Net and ViT on the knee training set of fastMRI in a fully self-supervised
manner, i.e., we minimize the training loss

Z lyi — Afo(Alyi)|,
lyilly

Y

on a set of training measurements y1, ..., ¥y, for both U-net and ViT. During training, we monitor
true accuracy, by comparing the reconstructions generated by U-Net and ViT to the (unknown)
ground-truth images x1,...,X, associated with the measurements yi,...,y,. Figure 10 shows that
towards convergence, there is a constant gap between the true accuracy achieved by U-Net and ViT.
This demonstrates that our self-supervised loss works better with U-Net than ViT in terms of the
quality of the learned prior for the images.

G More reconstruction examples

The results of Table 2 demonstrate that our domain adaptation method closes the distribution shift
performance gap for anatomy, dataset, modality, and acceleration shifts by about 90%. Figure 3 in
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setup P: knee

Q: brain
train on Q test on Q 0.9041
train on P test on Q 0.8429
distribution shift performance gap | 0.0612
train on Q test on Q + TTT 0.8947
train on P test on Q + TTT 0.8859
distribution shift performance gap | 0.0095
fraction of gap closed by TTT 84.5%

Table 6: For ViT, using self-supervision with test-time training (TTT) closes 84% of the
distribution shift performance gap for anatomy shift. The first three rows are SSIM scores
for ViT when trained in a supervised manner. The second three rows are SSIM scores for ViT when
self-supervision is included during training and then TTT is applied at the inference.

trained on knee trained on knee + TTT trained on brain ground truth
(supervised) (self-supervision included) (supervised)
SSIM: 0.8480 SSIM: 0.8855 SSIM: 0.9040

Figure 9: Including self-supervision while training DL, models combined with TTT improves model
robustness to natural anatomy shifts. The sample belongs to the fastMRI brain validation dataset.

the main body shows example images reconstructed with U-Net to demonstrate that the perceptual
quality is improved after applying our domain adaptation method.

In this section, we provide more detailed illustrations for both U-Net and VarNet under each
distribution shift. Figure 11, Figure 12, Figure 13, and Figure 14 provide reconstruction examples
for anatomy, dataset, modality, and acceleration shifts before and after our domain adaptation
method. As shown in the figures, the perceptual quality of the reconstructions improve noticeably
with test-time training.
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Figure 10: The inductive bias of self-supervised training of U-Net results in a higher true accuracy
at convergence than ViT. True accuracy is monitored using the ground-truth data during the
self-supervised training.

trained on knee trained on knee + TTT trained on brain ground truth
(supervised) (self-supervision included) (supervised)
SSIM: 0.8562 SSIM: 0.9215 SSIM: 0.9185

U-Net

SSIM: 0.8782 SSIM: 0.9292 SSIM: 0.9316

VarNet

Figure 11: Including self-supervision while training DL models combined with TTT improves model
robustness to natural anatomy shifts. The sample belongs to the fastMRI brain validation dataset.
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trained on fastMRI  trained on fastMRI + TTT  trained on Stanford

ground truth
(supervised) (self-supervision included) (supervised)

SSIM: 0.6709 SSIM: 0.6902 SSIM: 0.6918

U-Net

SSIM: 0.6863 SSIM: 0.7050 SSIM: 0.7236

VarNet

Figure 12: Including self-supervision while training DL models combined with TTT improves model
robustness to natural dataset shifts. The sample belongs to the Stanford validation dataset and the
pointed region reveals how each setup shines or fails at reconstruction.

trained on AXT2 trained on AXT2 + TTT trained on AXT1PRE

ground truth
(supervised) (self-supervision included) (supervised)

SSIM: 0.8705 SSIM: 0.9317 SSIM: 0.9248

U-Net

SSIM: 0.9089 SSIM: 0.9299

VarNet

Figure 13: Including self-supervision while training DL models combined with TTT improves model
robustness to natural modality shifts. The AXT1PRE sample belongs to the fastMRI brain validation
dataset.
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trained on 4x trained on 4x + TTT trained on 2x ground truth
(supervised) (self-supervision included) (supervised)

SSIM: 0.8572 SSIM: 0.9107 SSIM: 0.9122

U-Net

SSIM: 0.8804 SSIM: 0.9038 SSIM: 0.9173

VarNet

Figure 14: Including self-supervision while training DL models combined with TTT improves model
robustness to natural acceleration shifts. The sample belongs to the fastMRI knee validation dataset
and the pointed region reveals how each setup shines or fails at reconstruction. VarNet, unlike U-Net,
does not include a region of artifact and the overall contrast of the image has changed under the
shift.
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