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ABSTRACT

Recommender systems are important tools for many commercial

applications such as online shopping websites. There are several

issues that make the recommendation task very challenging in

practice. The first is that an efficient and compact representation

is needed to represent users, items and relations. The second is-

sue is that the online markets are changing dynamically, it is thus

important that the recommendation algorithm is suitable for fast

updates and hardware acceleration. In this paper, we propose a new

hardware-friendly recommendation algorithm based on Hyperdi-

mensional Computing, called HyperRec. Unlike existing solutions

which leverages floating-point numbers for the data representation,

in HyperRec, users and items are modeled with binary vectors in a

high dimension. The binary representation enables to perform the

reasoning process of the proposed algorithm only using Boolean

operations, which is efficient on various computing platforms and

suitable for hardware acceleration. In this work, we show how to

utilize GPU and FPGA to accelerate the proposed HyperRec. When

compared with the state-of-the-art methods for rating prediction,

the CPU-based HyperRec implementation is 13.75× faster and con-

sumes 87% less memory, while decreasing the mean squared error

(MSE) for the prediction by as much as 31.84%. Our FPGA imple-

mentation is on average 67.0× faster and has 6.9× higher energy

efficient as compared to CPU. Our GPU implementation further

achieves on average 3.1× speedup as compared to FPGA, while

providing only 1.2× lower energy efficiency.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Re-

dundancy; Robotics; • Networks → Network reliability.
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1 INTRODUCTION

Many commercial applications such as online shopping websites

adopt recommender systems to present products that users will

potentially purchase. A fundamental challenge of the recommenda-

tion algorithms [1] is to understand and leverage users’ preferences

for accurate product recommendation by assimilating the large

volume of products. Traditional recommender systems [15, 16] typi-

cally leverage low-dimensional vectors with floating-point numbers

to represent users and items. There are several drawbacks of this

approach. First, the user and item information would not be fully ex-

ploited due to the low dimensionality of the encoding (embedding)

vectors, and it is unclear how to choose a suitable dimensional-

ity. In addition, since there is a significant growth in the number

of users and items, the traditional approaches consume a large

amount of memory to represent user and item vectors with the

full-precision numbers. This representation is thereby hard to scale

and also unsuitable for hardware acceleration. Thus, it is important

to rethink and develop an efficient representation for recommenda-

tion systems in order to achieve fast processing and low resource

consumption without compromising prediction quality.

In this paper, we develop the first recommendation solution,

called HyperRec, which only relies on binary representation and

Boolean operations. Although our representation for the users and

items is based on binary, i.e., lower precision than the existing meth-

ods, it can preserve required information in the encoding vectors

using a high dimensionality, e.g., 𝐷 = 10, 000. We design HyperRec

using the principle of Hyperdimensional (HD) Computing [12, 13]

which is a brain-inspired computingmodel. In HyperRec, we encode

users, items and ratings using hyperdimensional binary vectors,

called hypervectors. We represent the relation between users and

items via the binding and bundling operation in HD computing.

The recommendation phase is based on the the “nearest neighbor”

principle [4] via Hamming distance.

In summary, we show that our proposed HyperRec has the fol-

lowing advantages:

(1) Our evaluation on several large datasets, such as 𝐴𝑚𝑎𝑧𝑜𝑛’s

datasets, demonstrate that the proposed algorithm is able

to improve the recommedataion quality. For example, com-

pared with various previous work on recommender systems,

HyperRec decreases the mean squared error (MSE) by as

much as 31.84%.

(2) When implementing on CPU, HyperRec is 13.75× faster and

reduces thememory consumption by about 87%, as compared

with the best performed recommendation algorithm based

on SVD++.

(3) Our FPGA implementation is on average 67.0× faster and

6.9× higher energy efficient as compared to CPU. Our GPU
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implementation further achieves on average 3.1× speedup as

compared to FPGA, while providing only 1.2× lower energy

efficiency.

2 RELATEDWORK

Recommender systems have drawn much attention from a variety

of communities. The emergence of the e-commerce promotes the de-

velopment of recommendation algorithms. Various approaches have

been proposed to provide better product recommendations. Among

them, collaborative filtering [6] is a leading technique which recom-

mends the user with products by analyzing similar users’ records.

We can roughly classify the collaborative filtering algorithms into

two categories: neighbor-based methods and latent-factor methods.

Neighbor-based methods [1, 26] identify similar users and items for

recommendation. Latent-factor models [15, 16] use vector represen-

tation to encode users and items, and approximate the rating that a

user will give to an item by the inner product of the latent vectors.

To give the latent vectors probabilistic interpretations, Gaussian

matrix factorization models [21] were proposed to handle extremely

large datasets and to deal with cold-start users and items. Neural

networks-based recommender systems [2, 9] are proposed recently

as generalization of the traditional matrix factorization. Although

neural networks have achieved great success in many other ar-

eas, recent work [3] pointed out that it is not clear that the neural

networks-based recommendation algorithms can really advance

the field of recommender systems due to the model complexity. Al-

though such various algorithms have been proposed, to the best of

the authors’ knowledge, there are no recommendation algorithms

that are designed specifically for high efficiency to enable ease of

hardware acceleration. There are few research work to accelerate

existing algorithms, e.g., an FPGA design for a neighborhood-based

collaborative filtering [19]; given the massive amount of data, it

is critical to develop new recommender systems in a hardware

friendly manner.

3 PRELIMINARY

The proposed algorithm is based on the principle of Hyperdimen-

sional (HD) computing [13]. HD computing [14] is a brain-inspired

computing model in which entities are represented as hyperdi-

mensional binary vectors. Hyperdimensional computing has been

used in language recognition [10, 11, 22], prediction from multi-

modal sensor fusion [24, 25], hand gesture recognition [22] and

brain–computer interfaces [23]. HD computing is inspired by the

understanding that the human brain is more capable of recogniz-

ing patterns than calculating with numbers. This fact motivates

us to simulate the process of brain’s computing with points in

high-dimensional space [14]. These points can effectively model

the neural activity patterns of the brain’s circuits. This capability

makes hyperdimensional vectors very helpful in many real-world

tasks. The information that contained in hyperdimensional vectors

is spread uniformly among all its components in a holistic manner

so that no component is more responsible to store any piece of

information than another.

We can easily construct a new hypervector based on some old

ones using vector or Boolean operations. Such as binding that

forms a new hypervector which associates two base hypervectors,

and bundling that combines several hypervectors into a single

Figure 1: Overview of HyperRec.

composite hypervector. We introduce several arithmetic operations

that are designed for hypervectors.

• Component-wise 𝑋𝑂𝑅: we can bind two hypervectors 𝐴

and 𝐵 by component-wise 𝑋𝑂𝑅 and denote the operation

as 𝐴 ⊗ 𝐵. The result of this operation is a new hypervector

that is dissimilar to its constituents (i.e., 𝑑 (𝐴 ⊗ 𝐵;𝐴) ≈ 𝐷/2) ,

where 𝑑 () is the Hamming distance; hence 𝑋𝑂𝑅 can be used

to associate two hypervectors.

• Component-wise majority: bundling operation is done

via the component-wise majority function and is denoted

as [𝐴 + 𝐵 +𝐶]. The majority function is augmented with a

method for breaking ties if the number of component hyper-

vectors is even. The result of the majority function is similar

to its constituents, i.e., 𝑑 ( [𝐴 + 𝐵 +𝐶];𝐴) < 𝐷/2. This prop-

erty makes the majority function well suited for representing

sets.

4 HYPERREC

4.1 Overview

In this paper, we propose a new recommendation solution called

HyperRec. HyperRec is based on HD computing and leverages the

“nearest neighbor" principle for recommendation. Figure 1 shows

the overview of HyperRec. HyperRec has two stages to make the

recommendation: i) HD encoding stage which creates the database

from the dataset, and ii) Recommending product stage which pro-

vides the rating for the products.

In the HD encoding stage, we convert the raw data of users,

items and ratings with hyperdimensional binary vectors, in short,

hypervectors. This is very different from the traditional approaches

that represent users and items with low-dimensional full-precision

vectors. By representing users and items with hyperdimensional

binary vectors, we can save memory as well as enable fast hardware

acceleration. Next, we construct the characterization vectors to

represent the relation between users and items. Traditional matrix

factorization techniques often leverage the latent user and item

vectors to approximate the ratings with an iterative optimization

procedure [21]. However, it requires the global information of the

user-item relation. The proposed relation encoding module only

leverages the local information of each user and item which is

faster and more scalable. In the next recommending product stage,

we make recommendations with the encoded hypervectors based

on the “nearest neighbor" principle via Hamming distance. In this

section, we will introduce the details of the proposed algorithm.
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(a) (b)

Figure 2: (a): Generation of user characterization vector. (b): Generation of item characterization vector.

4.2 HD Encoding

The encoding strategy of the proposed HyperRec is based on HD

computing. We encode all users, items and ratings using hyper-

dimensional binary vectors. Our goal is to discover and preserve

users’ and items’ information based on their historical interactions

in an efficient manner. For each user𝑢 and item 𝑣 , we first randomly

generate a𝐷 dimensional binary vector, In HD computing,𝐷 can be

as large as ten thousands. Note that if the binary vector for each rat-

ing is generated randomly, the information that consecutive ratings

should be similar is lost. Instead, we first generate a hypervector

filled with ones for rating 1. To generate the hypervector for rating

𝑟 , we flip the bits between (𝑟 −2) 𝐷𝑅 and (𝑟 −1) 𝐷𝑅 of the hypervector

of rating 𝑟 − 1 and assign the resulting vector to rating 𝑟 . By this

means, consecutive ratings are close in terms of Hamming distance.

Particularly, the Hamming distance between rating 𝑟 and rating

𝑟 − 1 is 𝐷
𝑅 while the Hamming distance between rating 1 and rating

𝑅 is 𝐷 . Following the proposed procedure, we can generate the

hypervectors 𝐻𝑟 for each rating 𝑟 .

To encode the relation between users and items, we propose an

encoding strategy based on the binding and bundling operation in

HD computing. The intuition of the proposed encoding strategy is

that if two users given similar rating to the same item, their should

have a high similarity. The proposed encodings can be written

as: 𝐶𝑢 = [𝐻𝑟𝑢𝑣1
⊗ 𝐻𝑣1 + ... + 𝐻𝑟𝑢𝑣𝑛 ⊗ 𝐻𝑣𝑛 ]{𝑣1,...,𝑣𝑛 ∈𝐵𝑢 } and 𝐶𝑣 =

[𝐻𝑟𝑢1𝑣
⊗ 𝐻𝑢1 + ... +𝐻𝑟𝑢𝑛𝑣

⊗ 𝐻𝑢𝑛 ]{𝑢1,...,𝑢𝑛 ∈𝐵𝑣 } , where ⊗ is the 𝑋𝑂𝑅

operator and [𝐴 + ... + 𝐵] is the component-wise majority function.

𝑟𝑢𝑣 is the rating that user 𝑢 given to item 𝑣 . By this approach, we

can capture the difference between users’ consuming behaviors and

their rating patterns. For instance, if two users 𝑢 and 𝑢 ′ bought the

same item and rated it similarly, the Hamming distance between

their characterization hypervectors 𝐶𝑢 and 𝐶𝑢′ will be small. The

distance is proportional to the difference of the ratings. Note that

we keep the last 𝐷/𝑅 bits of all rating hypervectors the same, so

if two users rated the same item very differently, the Hamming

distance between their characterization vectors will still be closer

than the users who have no co-purchasing behaviors. The process

is shown in Fig. 2.

4.3 Recommending Products

Afterwe obtain the characterization hypervectors of users and items

in the form of encoded hypervectors, we use Hamming distance to

identify similarity. In order to compute the rating that user 𝑢 will

give to item 𝑣 , we first identify the 𝑘-nearest items of item 𝑣 based

the ratings they received, and denote this set as 𝑁𝑘 (𝑣). For each

of the k-nearest item 𝑣 ′ ∈ 𝑁𝑘 (𝑣), we also identify 𝑘 ′-nearest users

of user 𝑢 in the set 𝐵𝑣′ based on the ratings they give, and denote

this set as 𝑁𝑘′ (𝑢, 𝑣 ′). Then we compute the predicted rating of

user 𝑢 for item 𝑣 ′ as 𝑟𝑢𝑣′ = 𝜇𝑢 +

∑

𝑢′∈𝑁𝑘′ (𝑢,𝑣′)
(1−𝑑𝑖𝑠𝑡 (𝑢,𝑢′)) (𝑟𝑢′𝑣′−𝜇𝑢′ )

𝐶 ,

where 𝐶 is the normalization factor which is
∑
𝑢′ ∈𝑁𝑘′ (𝑢,𝑣′) (1 −

𝑑𝑖𝑠𝑡 (𝑢,𝑢 ′)). And 𝑑𝑖𝑠𝑡 (𝑢,𝑢 ′) is the normalized Hamming distance

between the characterization vectors of users 𝑢 and 𝑢 ′. Then, we

compute the predicted rating of user 𝑢 for item 𝑣 as 𝑟𝑢𝑣 = 𝜇𝑣 +∑
𝑣′ ∈𝑁𝑘 (𝑣) (1 − 𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′)) (𝑟𝑢𝑣′ − 𝜇𝑣′ ). Similarly, 𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′) is the

normalized Hamming distance between the characterization vector

of item 𝑣 and item 𝑣 ′. After we obtain the predicted ratings of user

𝑢 for all the items he/she did not buy before, we can recommend the

user 𝑢 with the items with highest predicted ratings. HyperRec has

the simplicity of neighbor-based methods and meanwhile utilizes

the effectiveness of HD computing. It is fast since the training phase

only needs single pass of the data and the computation consists of

only Boolean operations.

5 HYPERREC ACCELERATION

As HyperRec uses binary representation for the encoded data, we

can efficiently implement the proposed algorithm on various pro-

cessors and systems. For example, similar to the existing recom-

mendation solutions, HyperRec can be implemented on the con-

temporary CPU in a relatively straight-forward way. We can also

further accelerate HyperRec on parallel computing platforms, since

the operations are either component-wise binary operations and

associative search using Hamming distance. In this section, we

elaborate our acceleration strategies for two parallel computing

platforms, FPGA and GPU.

5.1 HyperRec FPGA Implementation

We use query hypervector to denote a particular user or item char-

acterization hypervector and class hypervector to denote the user

or item characterization hypervector used for similarity check. Sub-

stantial number of operations that can be executed in parallel in

HyperRec is matched with intrinsic parallelism of FPGAs. Each

dimension of the encoded hypervector can be generated indepen-

dent of the other dimensions. The similarity metric between the

generated dimensions and the class hypervectors can also be calcu-

lated independent of the other dimensions. We fully pipeline the

encoding and the associative search of HD such that the encod-

ing module generates 𝐷 dimensions of the query hypervector and
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Figure 3: Architecture of HyperRec FPGA-based accelerator.

then the associative search module calculates the similarity metric

between these 𝐷 dimensions and their corresponding dimensions

in every class hypervector and accumulates the similarity metric

between the query hypervector and each class hypervector.

Figure 3 shows the architecture of HyperRec FPGA-based accel-

erator. As illustrated in the figure, to generate 𝐷 dimension of the

query hypervector, first we read the base hypervectors for each

user or item, permute them and then by using 𝐷 tree adders, we

accumulate the dimensions of all the permuted hypervectors. The

generated dimensions of the query hypervector are binarized and

passed to the associative search module. 𝐷 dimensions of the query

hypervector are compared against their corresponding 𝐷 dimen-

sions of every class hypervector using a series of XORs. The outputs

of the XORs are aggregated together using 𝐶 tree adders where 𝐶

is the number of users or items. HyperRec FPGA-based accelerator

accumulates the partial similarity metrics for each user or item. At

the end the maximum number between all the similarity metrics

represents the output.

5.2 HyperRec GPU Implementation

Before running the GPU program, also called as kernel, we first

generate hypervectors corresponding to user, item, and rating hy-

pervectors on CPU. Note that this generation is a single-time cost

since these hypervectors only depend on the number of users, items,

and rating scale but not on the actual data. Next, we copy these

hypervectors to GPU memory and encode the characterization vec-

tors. The dimensionality of the hypervectors has a large impact

on the performance of HD computing. In the encoding module,

threads of a kernel sum up each dimension of the characterization

vector. After the accumulation, we normalize and binarize the result

hypervector. This binarization helps to avoid the divergence and

the use of expensive operations. We selectively save the results

when the rating of an item and the corresponding user exists. This

technique reduces the number of write operations in the global

memory of the GPU.

For the recommending products stage, we construct a matrix

of pairwise Hamming distance from user and item characteriza-

tion vector, respectively. The calculation of Hamming distance can

simply parallelize over (𝑢𝑠𝑒𝑟,𝑢𝑠𝑒𝑟 ) or (𝑖𝑡𝑒𝑚, 𝑖𝑡𝑒𝑚) pairs. We com-

pute Hamming distance by comparing bit similarity between two

characterization vectors. Using the symmetric nature of pairwise

Hamming distance (i.e. 𝑑𝑖𝑠𝑡 (𝑢,𝑢 ′) = 𝑑𝑖𝑠𝑡 (𝑢 ′, 𝑢)), we only calculate

the upper triangular part of the distance matrix which can reduce

the global memory access. Even though this adds divergence to each

thread, it showed curtailed execution time of pairwise hamming

distance calculation.

We parallelize the nearest neighbor computation over users and

items, with each thread predicting the rating of a user for a specific

item. As mentioned above, this process involves selecting the near-

est users and items. Searching similar items can be done before the

kernel execution of the nearest neighbor recommendation stage.

Once the kernel executes, each thread extracts similar users based

on Hamming distance, as finding analogous user depends on the

user purchase history. We then select similar top-K users/items

using the heap data structure.

6 EVALUATION

6.1 Experimental Setup

We implement the proposed HyperRec on three different platforms,

CPU, FPGA, and GPU. The CPU-based HyperRec is implemented

on Python 2.7 using Numpy library, which efficiently performs the

binary operations using C++ backend. We use the CPU-based imple-

mentation to compare with the state-of-the-art algorithms running

on CPU. The experiments are run on Intel Core i5 2.9 GHz with 8G

RAM. We also evaluate the efficiency of HyperRec on two parallel

computing platforms: Xilinx Kintex-7 FPGA, and NVIDIA GPU

GTX 1080Ti. For FPGA, we extended the same framework as [27]

for implementing HyperRec. For GPU, we used our implementation

introduced in Section 5 using CUDA v10.0.

We conduct extensive experiments using several real-world large

datasets for evaluating the proposed algorithm as follows:

6.1.1 Datasets. We use datasets from Movielens [8], Amazon [20],

FilmTrust [7] and Yelp 1. The Movielens datasets contain thousands

of ratings that users given to movies over various periods of time.

For themovilens-10M, we randomly sample 10000 users and for each

user we sample 5 items. Amazon datasets [20] contain a variety of

categories ranging from 𝐴𝑟𝑡𝑠 to 𝑆𝑝𝑜𝑟𝑡𝑠 . The FilmTrust dataset was

crawled from the FilmTrust website in June, 2011 and is a relatively

small dataset. Yelp dataset contains over 700000 ratings that users

given to food and restaurants.

1https://www.yelp.com/dataset
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Table 1: The mean squared error of all the algorithms on Movielens, Yelp and Filmtrust.

KNNBasic KNNWithMeans SVD SVD++ PMF NMF SlopeOne Co Clustering NCF GCNN FM Rec HyperRec

movielens-100K 0.9811 0.9507 0.9357 0.9215 0.9502 0.9632 0.9442 0.9646 1.3561 0.9236 0.8923 0.9649

movielens-1M 0.9335 0.9414 0.8920 0.8797 0.8734 0.9190 0.9045 0.9148 1.2120 0.9123 0.9178 0.9195

movielens-10M 1.1597 1.1469 1.0088 1.0043 1.0966 1.1254 1.2100 1.1170 1.2258 0.9812 1.1123 1.1030

Yelp 1.1065 1.0832 1.0703 1.0709 1.1550 1.1190 1.1048 1.0822 1.3551 1.2312 1.1123 1.0604

Filmtrust 0.9232 0.9203 0.8996 0.8821 1.1562 0.9231 0.9378 0.9416 1.0282 0.9820 0.9210 0.8806

Table 2: The mean squared error of all the algorithms on Amazon’s datasets.

KNNBasic KNNWithMeans SVD SVD++ PMF NMF SlopeOne Co Clustering NCF GCNN FM Rec HyperRec

Arts 1.0380 0.9837 1.0467 1.0109 0.9445 1.1065 0.9897 1.0672 1.2762 1.1231 0.9721 0.9320

Tools 1.1370 1.1233 1.0583 1.0437 1.1272 1.2208 1.1457 1.1265 1.2618 1.0123 0.9981 1.1506

Sports 0.9874 0.9227 0.9681 0.9423 1.0917 1.0535 0.9311 0.9926 0.8583 0.9122 0.9212 0.9108

Musical 1.0784 1.1568 1.0636 1.0593 1.0551 1.2772 1.1628 1.1903 1.2092 1.1213 1.2012 1.2965

Clothing 0.7117 0.4768 0.7439 0.6849 0.7262 0.5961 0.4824 0.6362 0.3311 0.3412 0.3348 0.3250

Patio 1.2455 1.2536 1.2178 1.2062 1.1965 1.3284 1.2716 1.2690 1.5917 1.3324 1.2341 1.2805

Office 1.2241 1.1885 1.1788 1.1658 1.2815 1.2587 1.2026 1.2820 1.5197 1.3412 1.3212 1.2527

6.1.2 Baselines for Existing Algorithms. We compare our algorithm

with several state-of-the-art rating prediction methods: KNNBasic

[6], KNNWithMeans [6], SVD [15], SVD++ [15], PMF [21], NMF

[17], SlopeOne [18], Co-clustering [5], NCF [9], GCNN [28] and FM

Rec [9]. MSE is used for evaluation since it is the standard metric

for comparing rating prediction algorithms [21].

6.2 Recommendation Quality Evaluation

We first evaluate the recommendation quality for different solutions.

We randomly select 70% of ratings in each dataset as training dataset

and 20% of ratings in each dataset as testing dataset. The rest 10%

of ratings are for validation data to tune hyperparameters. We

use the best performed hyperparameters on the validation set. For

KNNBasic and KNNWithMeans, the number of neighbors is 40. For

SVD, SVD++ and PMF, the dimension of the latent factors is 100.

For NMF, the dimension of the latent factor is 20. The learning rate

of SVD and PMF is 0.005. The learning rate of SVD++ is 0.007. For

all the latent-factor based methods, the regularization parameters

is 0.02 and the training epoch is 50. For the co-clustering algorithm,

we choose the size of the cluster to be 3. For NCF, we follow the

recommended parameters settings in the original paper [9]. For

HyperRec, the dimension of the hypervectors is set to be 1000.

The number of neighboring items is set to be 5 and the number of

neighboring users is set to be 30. Please note that prediction results

of HyperRec is independent upon the computing platform.

We list the experimental results of all the algorithms in Table 1

and Table 2. The best result on each dataset is shown in bold. As

we can see, HyperRec achieves the best results on about half of the

considered benchmarks. Compared with neighbor-based methods,

our method can capture richer information about users and items

with HD computing, which can help us identify similar users and

items easily. Compared with latent-factor based methods, HyperRec

needs much less memory and is easily scalable. We will show the

time and memory comparison of HyperRec with SVD++ in Section

6.3. Note that the neural network based recommendation algorithm,

such as NCF, does not achieve competitive performance compared

with other methods, which is consistent with the phenomenon

observed in a recent work [3]. The possible reason is that neural

network based algorithsm can easily overfit the data due to the

high complexity of the model.
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Figure 4: HyperRec Efficiency on GPU and FPGA.

Different from other methods which utilize floating-point num-

bers, HyperRec stores users and items as hiperdimensional binary

vectors rather than full-precision numbers and only relies Boolean

operations. These unique properties make it very hardware-friendly

so it can be easily accelerated. In the following sections, we will

show how the proposed HyperRec is accelerated on various hard-

ware platforms.

Table 3: Efficiency Comparison between SVD++ and Hyper-

Rec on CPU.

Metrics SVD++ HyperRec

ml-100K
Time

Memory
186.08s
27.56M

25.88s
2.625M

Arts
Time

Memory
3.10s
23.24M

1.10s
2.619M

Clothing
Time

Memory
43.50s
102.74M

40.99s
13.03M

Office
Time

Memory
412.2s
73.32M

9.43s
7.66M

6.3 Efficiency Evaluation

6.3.1 Comparison with State-of-the-Art Method. We compare the

efficiency of HyperRec with SVD++. Since SVD++ is typically run

on CPU, we compare the results with the CPU-based HyperRec.

Table 3 compares the memory consumption and execution time

of HyperRec with SVD++ on the four datasets of different sizes: ml-

100k, Arts, Clothing and Office. The results show that HyperRec is

about 13.75 times faster than SVD++ on these four datasets which

is crucial for real-time applications. In SVD++, users and items

are usually represented by one hundred dimension full-precision
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vectors. For each user, we need at least 3200 bits to store his/her

latent features and 3200 bits to store the gradients that are used

for optimization. In contrast, HyperRec need only 1000 bits to

represent each user, which amounts to a factor of six of memory

saving. Along with the simpler computations of HyperRec, i.e.,

binary operations, the reduction of the computed data size leads

the significant performance improvement. In our measurements,

HyperRec reduces the memory consumption by about 87%.

6.3.2 Different Hardware Accelerations. Figure 4 compares Hyper-

Rec efficiency on different platforms. All results are reported as

compared to energy and execution time of CPU-based HyperRec.

Our evaluation shows that FPGA implementation can provide on

average 67.0× faster and 6.9× higher energy efficiency as compared

to CPU. FPGA exploits lookup-tables to paralleize bitwise opera-

tions involves in encoding and Hamming computing modules. GPU

further improves FPGA efficiency by (i) providing higher paral-

lelism during similarity search and nearest neighbor modules, and

(ii) exploiting data sparsity. By utilizing register on FPGA is not

sufficient to handle the sparse data. Hence, frequent access to mem-

ory degrades performance. However, GPU are general-purpose and

consume more energy than FPGA. Our evaluation shows that our

GPU implementation is on average 3.1× faster than FPGA, while

providing only 1.2× lower energy efficiency. Note that the efficiency

of FPGA and GPU can vary depending on the platforms and devices.

7 CONCLUSION

In this paper, we propose a novel recommendation algorithm called

HyperRec. We conducted extensive experiments to show that Hy-

perRec can achieve competitive recommendation quality as com-

pared with the state-of-the-art methods, while improving the per-

formance by 13.75× with much less memory footprints. We also

demonstrate that how to accelerate HyperRec on parallel computing

platforms. The results show that our FPGA implementation is on

average 67.0× faster and 6.9× higher energy efficiency as compared

to CPU. Our GPU implementation further achieves on average 3.1×

speedup compared to FPGA.
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