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ABSTRACT

Recommender systems are important tools for many commercial
applications such as online shopping websites. There are several
issues that make the recommendation task very challenging in
practice. The first is that an efficient and compact representation
is needed to represent users, items and relations. The second is-
sue is that the online markets are changing dynamically, it is thus
important that the recommendation algorithm is suitable for fast
updates and hardware acceleration. In this paper, we propose a new
hardware-friendly recommendation algorithm based on Hyperdi-
mensional Computing, called HyperRec. Unlike existing solutions
which leverages floating-point numbers for the data representation,
in HyperRec, users and items are modeled with binary vectors in a
high dimension. The binary representation enables to perform the
reasoning process of the proposed algorithm only using Boolean
operations, which is efficient on various computing platforms and
suitable for hardware acceleration. In this work, we show how to
utilize GPU and FPGA to accelerate the proposed HyperRec. When
compared with the state-of-the-art methods for rating prediction,
the CPU-based HyperRec implementation is 13.75x faster and con-
sumes 87% less memory, while decreasing the mean squared error
(MSE) for the prediction by as much as 31.84%. Our FPGA imple-
mentation is on average 67.0x faster and has 6.9x higher energy
efficient as compared to CPU. Our GPU implementation further
achieves on average 3.1x speedup as compared to FPGA, while
providing only 1.2x lower energy efficiency.
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1 INTRODUCTION

Many commercial applications such as online shopping websites
adopt recommender systems to present products that users will
potentially purchase. A fundamental challenge of the recommenda-
tion algorithms [1] is to understand and leverage users’ preferences
for accurate product recommendation by assimilating the large
volume of products. Traditional recommender systems [15, 16] typi-
cally leverage low-dimensional vectors with floating-point numbers
to represent users and items. There are several drawbacks of this
approach. First, the user and item information would not be fully ex-
ploited due to the low dimensionality of the encoding (embedding)
vectors, and it is unclear how to choose a suitable dimensional-
ity. In addition, since there is a significant growth in the number
of users and items, the traditional approaches consume a large
amount of memory to represent user and item vectors with the
full-precision numbers. This representation is thereby hard to scale
and also unsuitable for hardware acceleration. Thus, it is important
to rethink and develop an efficient representation for recommenda-
tion systems in order to achieve fast processing and low resource
consumption without compromising prediction quality.

In this paper, we develop the first recommendation solution,
called HyperRec, which only relies on binary representation and
Boolean operations. Although our representation for the users and
items is based on binary, i.e., lower precision than the existing meth-
ods, it can preserve required information in the encoding vectors
using a high dimensionality, e.g., D = 10, 000. We design HyperRec
using the principle of Hyperdimensional (HD) Computing [12, 13]
which is a brain-inspired computing model. In HyperRec, we encode
users, items and ratings using hyperdimensional binary vectors,
called hypervectors. We represent the relation between users and
items via the binding and bundling operation in HD computing.
The recommendation phase is based on the the “nearest neighbor”
principle [4] via Hamming distance.

In summary, we show that our proposed HyperRec has the fol-
lowing advantages:

(1) Our evaluation on several large datasets, such as Amazon’s
datasets, demonstrate that the proposed algorithm is able
to improve the recommedataion quality. For example, com-
pared with various previous work on recommender systems,
HyperRec decreases the mean squared error (MSE) by as
much as 31.84%.

When implementing on CPU, HyperRec is 13.75x faster and
reduces the memory consumption by about 87%, as compared
with the best performed recommendation algorithm based
on SVD++.

Our FPGA implementation is on average 67.0x faster and
6.9x higher energy efficient as compared to CPU. Our GPU
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implementation further achieves on average 3.1x speedup as
compared to FPGA, while providing only 1.2x lower energy
efficiency.

2 RELATED WORK

Recommender systems have drawn much attention from a variety
of communities. The emergence of the e-commerce promotes the de-
velopment of recommendation algorithms. Various approaches have
been proposed to provide better product recommendations. Among
them, collaborative filtering [6] is a leading technique which recom-
mends the user with products by analyzing similar users’ records.
We can roughly classify the collaborative filtering algorithms into
two categories: neighbor-based methods and latent-factor methods.
Neighbor-based methods [1, 26] identify similar users and items for
recommendation. Latent-factor models [15, 16] use vector represen-
tation to encode users and items, and approximate the rating that a
user will give to an item by the inner product of the latent vectors.
To give the latent vectors probabilistic interpretations, Gaussian
matrix factorization models [21] were proposed to handle extremely
large datasets and to deal with cold-start users and items. Neural
networks-based recommender systems [2, 9] are proposed recently
as generalization of the traditional matrix factorization. Although
neural networks have achieved great success in many other ar-
eas, recent work [3] pointed out that it is not clear that the neural
networks-based recommendation algorithms can really advance
the field of recommender systems due to the model complexity. Al-
though such various algorithms have been proposed, to the best of
the authors’ knowledge, there are no recommendation algorithms
that are designed specifically for high efficiency to enable ease of
hardware acceleration. There are few research work to accelerate
existing algorithms, e.g., an FPGA design for a neighborhood-based
collaborative filtering [19]; given the massive amount of data, it
is critical to develop new recommender systems in a hardware
friendly manner.

3 PRELIMINARY

The proposed algorithm is based on the principle of Hyperdimen-
sional (HD) computing [13]. HD computing [14] is a brain-inspired
computing model in which entities are represented as hyperdi-
mensional binary vectors. Hyperdimensional computing has been
used in language recognition [10, 11, 22], prediction from multi-
modal sensor fusion [24, 25], hand gesture recognition [22] and
brain-computer interfaces [23]. HD computing is inspired by the
understanding that the human brain is more capable of recogniz-
ing patterns than calculating with numbers. This fact motivates
us to simulate the process of brain’s computing with points in
high-dimensional space [14]. These points can effectively model
the neural activity patterns of the brain’s circuits. This capability
makes hyperdimensional vectors very helpful in many real-world
tasks. The information that contained in hyperdimensional vectors
is spread uniformly among all its components in a holistic manner
so that no component is more responsible to store any piece of
information than another.

We can easily construct a new hypervector based on some old
ones using vector or Boolean operations. Such as binding that
forms a new hypervector which associates two base hypervectors,
and bundling that combines several hypervectors into a single
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Figure 1: Overview of HyperRec.

composite hypervector. We introduce several arithmetic operations
that are designed for hypervectors.

e Component-wise XOR: we can bind two hypervectors A
and B by component-wise XOR and denote the operation
as A ® B. The result of this operation is a new hypervector
that is dissimilar to its constituents (i.e., d(A® B; A) ~ D/2),
where d() is the Hamming distance; hence XOR can be used
to associate two hypervectors.

Component-wise majority: bundling operation is done
via the component-wise majority function and is denoted
as [A + B + C]. The majority function is augmented with a
method for breaking ties if the number of component hyper-
vectors is even. The result of the majority function is similar
to its constituents, i.e., d([A + B+ C]; A) < D/2. This prop-
erty makes the majority function well suited for representing
sets.

4 HYPERREC

4.1 Overview

In this paper, we propose a new recommendation solution called
HyperRec. HyperRec is based on HD computing and leverages the
“nearest neighbor" principle for recommendation. Figure 1 shows
the overview of HyperRec. HyperRec has two stages to make the
recommendation: i) HD encoding stage which creates the database
from the dataset, and ii) Recommending product stage which pro-
vides the rating for the products.

In the HD encoding stage, we convert the raw data of users,
items and ratings with hyperdimensional binary vectors, in short,
hypervectors. This is very different from the traditional approaches
that represent users and items with low-dimensional full-precision
vectors. By representing users and items with hyperdimensional
binary vectors, we can save memory as well as enable fast hardware
acceleration. Next, we construct the characterization vectors to
represent the relation between users and items. Traditional matrix
factorization techniques often leverage the latent user and item
vectors to approximate the ratings with an iterative optimization
procedure [21]. However, it requires the global information of the
user-item relation. The proposed relation encoding module only
leverages the local information of each user and item which is
faster and more scalable. In the next recommending product stage,
we make recommendations with the encoded hypervectors based
on the “nearest neighbor" principle via Hamming distance. In this
section, we will introduce the details of the proposed algorithm.
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Figure 2: (a): Generation of user characterization vector. (b): Generation of item characterization vector.

4.2 HD Encoding

The encoding strategy of the proposed HyperRec is based on HD
computing. We encode all users, items and ratings using hyper-
dimensional binary vectors. Our goal is to discover and preserve
users’ and items’ information based on their historical interactions
in an efficient manner. For each user u and item o, we first randomly
generate a D dimensional binary vector, In HD computing, D can be
as large as ten thousands. Note that if the binary vector for each rat-
ing is generated randomly, the information that consecutive ratings
should be similar is lost. Instead, we first generate a hypervector
filled with ones for rating 1. To generate the hypervector for rating
r, we flip the bits between (r —2) % and (r—1) % of the hypervector
of rating r — 1 and assign the resulting vector to rating r. By this
means, consecutive ratings are close in terms of Hamming distance.
Particularly, the Hamming distance between rating r and rating
r—1is % while the Hamming distance between rating 1 and rating
R is D. Following the proposed procedure, we can generate the
hypervectors H, for each rating r.

To encode the relation between users and items, we propose an
encoding strategy based on the binding and bundling operation in
HD computing. The intuition of the proposed encoding strategy is
that if two users given similar rating to the same item, their should
have a high similarity. The proposed encodings can be written
as: Cy = [Hy,, ® Hy + ...+ Hr,,, ® Hy,l{u,,...0,eB,} and Co =
[Hr,,, ®Huy + ...+ Hy, , ® Hu,l(u,, . u,eB,}> Where ® is the XOR
operator and [A + ... + B] is the component-wise majority function.
Tuop is the rating that user u given to item v. By this approach, we
can capture the difference between users’ consuming behaviors and
their rating patterns. For instance, if two users u and u” bought the
same item and rated it similarly, the Hamming distance between
their characterization hypervectors C,, and C,» will be small. The
distance is proportional to the difference of the ratings. Note that
we keep the last D/R bits of all rating hypervectors the same, so
if two users rated the same item very differently, the Hamming
distance between their characterization vectors will still be closer
than the users who have no co-purchasing behaviors. The process
is shown in Fig. 2.

4.3 Recommending Products

After we obtain the characterization hypervectors of users and items
in the form of encoded hypervectors, we use Hamming distance to
identify similarity. In order to compute the rating that user u will
give to item v, we first identify the k-nearest items of item v based
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the ratings they received, and denote this set as N¥ (). For each
of the k-nearest item v’ € N¥ (v), we also identify k’-nearest users
of user u in the set B,y based on the ratings they give, and denote

this set as N¥'(u,0”). Then we compute the predicted rating of
weNk (u,0') (1_di5t(u’u’)) (ru'u’ _I‘lu')

user u for item o’ as = piy, +
where C is the normalization factor which is

5

C

Zu’ eNK (u,0) (1 -
dist(u,u’)). And dist(u,u’) is the normalized Hamming distance
between the characterization vectors of users u and u’. Then, we
compute the predicted rating of user u for item v as 7, = p1p +
Zv/&—Nk(v)(l — dist(v,0")) (Fyy — pe)- Similarly, dist(v,v”) is the
normalized Hamming distance between the characterization vector
of item v and item v’. After we obtain the predicted ratings of user
u for all the items he/she did not buy before, we can recommend the
user u with the items with highest predicted ratings. HyperRec has
the simplicity of neighbor-based methods and meanwhile utilizes
the effectiveness of HD computing. It is fast since the training phase
only needs single pass of the data and the computation consists of
only Boolean operations.

5 HYPERREC ACCELERATION

As HyperRec uses binary representation for the encoded data, we
can efficiently implement the proposed algorithm on various pro-
cessors and systems. For example, similar to the existing recom-
mendation solutions, HyperRec can be implemented on the con-
temporary CPU in a relatively straight-forward way. We can also
further accelerate HyperRec on parallel computing platforms, since
the operations are either component-wise binary operations and
associative search using Hamming distance. In this section, we
elaborate our acceleration strategies for two parallel computing
platforms, FPGA and GPU.

5.1 HyperRec FPGA Implementation

We use query hypervector to denote a particular user or item char-
acterization hypervector and class hypervector to denote the user
or item characterization hypervector used for similarity check. Sub-
stantial number of operations that can be executed in parallel in
HyperRec is matched with intrinsic parallelism of FPGAs. Each
dimension of the encoded hypervector can be generated indepen-
dent of the other dimensions. The similarity metric between the
generated dimensions and the class hypervectors can also be calcu-
lated independent of the other dimensions. We fully pipeline the
encoding and the associative search of HD such that the encod-
ing module generates D dimensions of the query hypervector and
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Figure 3: Architecture of HyperRec FPGA-based accelerator.

then the associative search module calculates the similarity metric
between these D dimensions and their corresponding dimensions
in every class hypervector and accumulates the similarity metric
between the query hypervector and each class hypervector.

Figure 3 shows the architecture of HyperRec FPGA-based accel-
erator. As illustrated in the figure, to generate D dimension of the
query hypervector, first we read the base hypervectors for each
user or item, permute them and then by using D tree adders, we
accumulate the dimensions of all the permuted hypervectors. The
generated dimensions of the query hypervector are binarized and
passed to the associative search module. D dimensions of the query
hypervector are compared against their corresponding D dimen-
sions of every class hypervector using a series of XORs. The outputs
of the XORs are aggregated together using C tree adders where C
is the number of users or items. HyperRec FPGA-based accelerator
accumulates the partial similarity metrics for each user or item. At
the end the maximum number between all the similarity metrics
represents the output.

5.2 HyperRec GPU Implementation

Before running the GPU program, also called as kernel, we first
generate hypervectors corresponding to user, item, and rating hy-
pervectors on CPU. Note that this generation is a single-time cost
since these hypervectors only depend on the number of users, items,
and rating scale but not on the actual data. Next, we copy these
hypervectors to GPU memory and encode the characterization vec-
tors. The dimensionality of the hypervectors has a large impact
on the performance of HD computing. In the encoding module,
threads of a kernel sum up each dimension of the characterization
vector. After the accumulation, we normalize and binarize the result
hypervector. This binarization helps to avoid the divergence and
the use of expensive operations. We selectively save the results
when the rating of an item and the corresponding user exists. This
technique reduces the number of write operations in the global
memory of the GPU.

For the recommending products stage, we construct a matrix
of pairwise Hamming distance from user and item characteriza-
tion vector, respectively. The calculation of Hamming distance can
simply parallelize over (user, user) or (item, item) pairs. We com-
pute Hamming distance by comparing bit similarity between two
characterization vectors. Using the symmetric nature of pairwise
Hamming distance (i.e. dist(u,u”) = dist(u’, u)), we only calculate
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the upper triangular part of the distance matrix which can reduce
the global memory access. Even though this adds divergence to each
thread, it showed curtailed execution time of pairwise hamming
distance calculation.

We parallelize the nearest neighbor computation over users and
items, with each thread predicting the rating of a user for a specific
item. As mentioned above, this process involves selecting the near-
est users and items. Searching similar items can be done before the
kernel execution of the nearest neighbor recommendation stage.
Once the kernel executes, each thread extracts similar users based
on Hamming distance, as finding analogous user depends on the
user purchase history. We then select similar top-K users/items
using the heap data structure.

6 EVALUATION

6.1 Experimental Setup

We implement the proposed HyperRec on three different platforms,
CPU, FPGA, and GPU. The CPU-based HyperRec is implemented
on Python 2.7 using Numpy library, which efficiently performs the
binary operations using C++ backend. We use the CPU-based imple-
mentation to compare with the state-of-the-art algorithms running
on CPU. The experiments are run on Intel Core i5 2.9 GHz with 8G
RAM. We also evaluate the efficiency of HyperRec on two parallel
computing platforms: Xilinx Kintex-7 FPGA, and NVIDIA GPU
GTX 1080Ti. For FPGA, we extended the same framework as [27]
for implementing HyperRec. For GPU, we used our implementation
introduced in Section 5 using CUDA v10.0.

We conduct extensive experiments using several real-world large
datasets for evaluating the proposed algorithm as follows:

6.1.1 Datasets. We use datasets from Movielens [8], Amazon [20],
FilmTrust [7] and Yelp '. The Movielens datasets contain thousands
of ratings that users given to movies over various periods of time.
For the movilens-10M, we randomly sample 10000 users and for each
user we sample 5 items. Amazon datasets [20] contain a variety of
categories ranging from Arts to Sports. The FilmTrust dataset was
crawled from the FilmTrust website in June, 2011 and is a relatively
small dataset. Yelp dataset contains over 700000 ratings that users
given to food and restaurants.

https://www.yelp.com/dataset
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Table 1: The mean squared error of all the algorithms on Movielens, Yelp and Filmtrust.

KNNBasic | KNNWithMeans SVD SVD++ PMF NMF SlopeOne | Co Clustering NCF GCNN | FMRec | HyperRec
movielens-100K 0.9811 0.9507 0.9357 0.9215 0.9502 0.9632 0.9442 0.9646 1.3561 0.9236 0.8923 0.9649
movielens-1M 0.9335 0.9414 0.8920 0.8797 0.8734 0.9190 0.9045 0.9148 1.2120 0.9123 0.9178 0.9195
movielens-10M 1.1597 1.1469 1.0088 1.0043 1.0966 1.1254 1.2100 1.1170 1.2258 0.9812 1.1123 1.1030
Yelp 1.1065 1.0832 1.0703 1.0709 1.1550 1.1190 1.1048 1.0822 1.3551 1.2312 1.1123 1.0604
Filmrust 0.9232 0.9203 0.8996 | 08821 | 11562 | 0.9231 | 0.9378 0.9416 10282 | 09820 | 09210 0.8806
Table 2: The mean squared error of all the algorithms on Amazon’s datasets.
KNNBasic | KNNWithMeans SVD SVD++ PMF NMF SlopeOne Co Clustering NCF GCNN | FM Rec HyperRec
Arts 1.0380 0.9837 1.0467 1.0109 0.9445 1.1065 0.9897 1.0672 1.2762 1.1231 0.9721 0.9320
Tools 11370 1.1233 10583 | 10437 | 11272 | 12208 | 11457 11265 12618 | 10123 | 0.9981 11506
Sports 0.9874 0.9227 0.9681 0.9423 1.0917 1.0535 0.9311 0.9926 0.8583 0.9122 0.9212 0.9108
Musical 1.0784 11568 10636 | 1.0593 | 1.0551 | 12772 | 11628 11903 12092 | 11213 | 12012 12965
Clothing 0.7117 0.4768 0.7439 0.6849 0.7262 0.5961 0.4824 0.6362 0.3311 0.3412 0.3348 0.3250
Patio 1.2455 12536 12178 | 1.2062 | 1.1965 | 13284 | 12716 1269 15917 | 13324 | 12341 12805
Office 1.2241 1.1885 1.1788 1.1658 1.2815 1.2587 1.2026 1.2820 1.5197 1.3412 1.3212 1.2527
6.1.2  Baselines for Existing Algorithms. We compare our algorithm = 100 z 100
. . P . n =] [m]
with several state-of-the-art rating prediction methods: KNNBasic 2 GPUDFPGA | g _
. KN
[6], KNNWithMeans [6], SVD [15], SVD++ [15], PMF [21], NMF e 10 EL 49
. Qo
[17], SlopeOne [18], Co-clustering [5], NCF [9], GCNN [28] and FM E 3?5
. . . ey s . @ =
Rec [9]. MSE is used for evaluation since it is the standard metric g H @ II_I |_|
. . s . w1 w 1 =
for comparing rating prediction algorithms [21]. B A o o N A o o
/ i J o
m\_\g ot c\°\“‘“ 2 ‘“\_‘\0 v ot (A

6.2 Recommendation Quality Evaluation

We first evaluate the recommendation quality for different solutions.
We randomly select 70% of ratings in each dataset as training dataset
and 20% of ratings in each dataset as testing dataset. The rest 10%
of ratings are for validation data to tune hyperparameters. We
use the best performed hyperparameters on the validation set. For
KNNBasic and KNNWithMeans, the number of neighbors is 40. For
SVD, SVD++ and PMF, the dimension of the latent factors is 100.
For NMF, the dimension of the latent factor is 20. The learning rate
of SVD and PMF is 0.005. The learning rate of SVD++ is 0.007. For
all the latent-factor based methods, the regularization parameters
is 0.02 and the training epoch is 50. For the co-clustering algorithm,
we choose the size of the cluster to be 3. For NCF, we follow the
recommended parameters settings in the original paper [9]. For
HyperRec, the dimension of the hypervectors is set to be 1000.
The number of neighboring items is set to be 5 and the number of
neighboring users is set to be 30. Please note that prediction results
of HyperRec is independent upon the computing platform.

We list the experimental results of all the algorithms in Table 1
and Table 2. The best result on each dataset is shown in bold. As
we can see, HyperRec achieves the best results on about half of the
considered benchmarks. Compared with neighbor-based methods,
our method can capture richer information about users and items
with HD computing, which can help us identify similar users and
items easily. Compared with latent-factor based methods, HyperRec
needs much less memory and is easily scalable. We will show the
time and memory comparison of HyperRec with SVD++ in Section
6.3. Note that the neural network based recommendation algorithm,
such as NCF, does not achieve competitive performance compared
with other methods, which is consistent with the phenomenon
observed in a recent work [3]. The possible reason is that neural
network based algorithsm can easily overfit the data due to the
high complexity of the model.
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Figure 4: HyperRec Efficiency on GPU and FPGA.

Different from other methods which utilize floating-point num-
bers, HyperRec stores users and items as hiperdimensional binary
vectors rather than full-precision numbers and only relies Boolean
operations. These unique properties make it very hardware-friendly
so it can be easily accelerated. In the following sections, we will
show how the proposed HyperRec is accelerated on various hard-
ware platforms.

Table 3: Efficiency Comparison between SVD++ and Hyper-
Rec on CPU.

Metrics SVD++ HyperRec
1-100K Time 186.08s 25.88s
m Memory  27.56M 2.625M
Art Time 3.10s 1.10s
rts Memory  23.24M 2.619M
. Time 43.50s 40.99s
Clothing | y\iomory  10274M  13.03M
N Time 412.2s 9.43s
Office | Nemory  7332M 7.66M

6.3 Efficiency Evaluation

6.3.1 Comparison with State-of-the-Art Method. We compare the
efficiency of HyperRec with SVD++. Since SVD++ is typically run
on CPU, we compare the results with the CPU-based HyperRec.
Table 3 compares the memory consumption and execution time
of HyperRec with SVD++ on the four datasets of different sizes: mi-
100k, Arts, Clothing and Office. The results show that HyperRec is
about 13.75 times faster than SVD++ on these four datasets which
is crucial for real-time applications. In SVD++, users and items
are usually represented by one hundred dimension full-precision
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vectors. For each user, we need at least 3200 bits to store his/her
latent features and 3200 bits to store the gradients that are used
for optimization. In contrast, HyperRec need only 1000 bits to
represent each user, which amounts to a factor of six of memory
saving. Along with the simpler computations of HyperRec, i.e.,
binary operations, the reduction of the computed data size leads
the significant performance improvement. In our measurements,
HyperRec reduces the memory consumption by about 87%.

6.3.2  Different Hardware Accelerations. Figure 4 compares Hyper-
Rec efficiency on different platforms. All results are reported as
compared to energy and execution time of CPU-based HyperRec.
Our evaluation shows that FPGA implementation can provide on
average 67.0 faster and 6.9x higher energy efficiency as compared
to CPU. FPGA exploits lookup-tables to paralleize bitwise opera-
tions involves in encoding and Hamming computing modules. GPU
further improves FPGA efficiency by (i) providing higher paral-
lelism during similarity search and nearest neighbor modules, and
(ii) exploiting data sparsity. By utilizing register on FPGA is not
sufficient to handle the sparse data. Hence, frequent access to mem-
ory degrades performance. However, GPU are general-purpose and
consume more energy than FPGA. Our evaluation shows that our
GPU implementation is on average 3.1X faster than FPGA, while
providing only 1.2X lower energy efficiency. Note that the efficiency
of FPGA and GPU can vary depending on the platforms and devices.

7 CONCLUSION

In this paper, we propose a novel recommendation algorithm called
HyperRec. We conducted extensive experiments to show that Hy-
perRec can achieve competitive recommendation quality as com-
pared with the state-of-the-art methods, while improving the per-
formance by 13.75x with much less memory footprints. We also
demonstrate that how to accelerate HyperRec on parallel computing
platforms. The results show that our FPGA implementation is on
average 67.0x faster and 6.9x higher energy efficiency as compared
to CPU. Our GPU implementation further achieves on average 3.1x
speedup compared to FPGA.
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