
Ordering-Based Causal Structure Learning

in the Presence of Latent Variables

Daniel Irving Bernstein
⇤

Basil Saeed
⇤

Chandler Squires
⇤

Caroline Uhler

MIT MIT MIT MIT

Abstract

We consider the task of learning a causal
graph in the presence of latent confounders
given i.i.d. samples from the model. While
current algorithms for causal structure dis-
covery in the presence of latent confounders
are constraint-based, we here propose a hy-
brid approach. We prove that under assump-
tions weaker than faithfulness, any sparsest
independence map (IMAP) of the distribu-
tion belongs to the Markov equivalence class
of the true model. This motivates the Spars-

est Poset formulation - that posets can be
mapped to minimal IMAPs of the true model
such that the sparsest of these IMAPs is
Markov equivalent to the true model. Mo-
tivated by this result, we propose a greedy
algorithm over the space of posets for causal
structure discovery in the presence of latent
confounders and compare its performance to
the current state-of-the-art algorithms FCI
and FCI+ on synthetic data.

1 INTRODUCTION

Determining the causal structure between variables
from observational data of these variables is a cen-
tral task in many applications (Friedman et al., 2000;
Robins et al., 2000; Heckerman et al., 1995). Causal
structure is often modelled by a directed acyclic graph
(DAG), where the nodes are associated with the vari-
ables of interest and the edges represent the direct
causal e↵ects these variables have on one another.
In most realistic settings, only some of the variables
in an environment are observed at any given time,
i.e., only partial observations are available, leading
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to confounding e↵ects on the observed variables. In
such settings, a class of mixed graph models, called
maximal ancestral graphs (MAGs) containing directed
edges (representing direct causal e↵ects), bidirected
edges (representing the e↵ect of a latent confounder
on two variables) and undirected edges (representing
selection bias), have been proposed to model the struc-
ture among the observed variables (Richardson and
Spirtes, 2002). In this paper, we concentrate on latent
confounders and are concerned with the recovery of
mixed graphs containing directed and bidirected edges.

Current methods for estimating MAGs are constraint-
based generalizing the prominent PC algorithm for es-
timating DAGs in the fully observed setting (Spirtes
et al., 2000). This includes the Fast Causal Infer-

ence (FCI ) algorithm (Spirtes et al., 2000) and its
variants: the Really Fast Causal Inference (RFCI ) al-
gorithm (Colombo et al., 2012), and the FCI+ algo-
rithm (Claassen et al., 2013). These methods depend
on the faithfulness assumption to guarantee sound-
ness and completeness, which has been shown to be
restrictive (Uhler et al., 2013). In settings without la-
tent confounders, studies have shown that score-based
approaches, including the prominent GES algorithm
(Chickering, 2002), achieve superior performance to
constraint-based approaches (Nandy et al., 2018). In
purely constraint-based approaches such as PC, mis-
takes made in early stages of the algorithm tend to
propagate and lead to later mistakes. Score-based ap-
proaches (which are usually greedy) are often more re-
silient to error propagation, since early mistakes only
a↵ect the local structure of the search space but do
not a↵ect the scores of later graphs. This motivates
the development of an algorithm for causal structure
discovery in the presence of latent confounders that
shares this resilience with score-based approaches.

In this paper, we propose the sparsest poset (SPo) al-

gorithm for causal structure discovery in the presence
of latent confounders. Since this algorithm uses both a
scoring criterion and conditional independence testing
to learn the model, we refer to it as a hybrid method.
The key idea that we use is that every MAG containing



Ordering-Based Causal Structure Learning in the Presence of Latent Variables

only directed and bidirected edges is consistent with
a partial order of the observed variables (poset) and
hence the problem of causal structure discovery can
be recast as the problem of learning a poset. In par-
ticular, our main contributions are as follows:

• We define a map that associates to each partial
order of the observed variables a MAG, so that the
sample-generating distribution is Markov to it.

• We prove that the sparsest such MAG is Markov
equivalent to the true graph under conditions that
are strictly weaker than faithfulness.

• We propose a greedy search over the space of
posets based on the legitimate mark changes by
Zhang and Spirtes (2012) to move e↵ectively be-
tween MAGs associated with di↵erent posets to
find the poset yielding the sparsest graph.

• By comparing the performance and speed of our
algorithm to FCI and FCI(+) on synthetic data,
we show that it is competitive to current stat-
of-the-art methods for causal structure discovery
with latent confounders.

2 PRELIMINARIES AND

RELATED WORK

In the following, we review relevant concepts and re-
lated work; see also Appendix A.

2.1 Directed Maximal Ancestral Graphs

All graphs in this paper can have directed and bidi-
rected edges. Let G = (V,D,B) be a graph with ver-
tices V , directed (!) edges D, and bidirected ($)
edges B. We use skel(G) to denote the skeleton of
G, i.e., the undirected graph obtained by replacing all
edges with undirected edges. We denote the number of
edges of G by |G| := |D|+ |B|. We use pa

G
(i), sp

G
(i),

and anG(i) respectively to denote the parents, spouses,
and ancestors of a node i in G, where we use the typ-
ical definitions as in Lauritzen (1996). G is said to
be ancestral if it has no directed cycles, and whenever
there is a bidirected edge i $ j in G, there is no di-
rected path from i to j (Richardson and Spirtes, 2002).
While ancestral graphs have been defined to also allow
for undirected edges, we restrict our treatment to an-
cestral graphs with only directed and bidirected edges,
which we will call directed ancestral graphs.

Richardson and Spirtes (2002) generalized the stan-
dard notions of d-separation and d-connectedness for
DAGs (see e.g. (Lauritzen, 1996)) to m-separation
and m-connectedness for ancestral graphs. We write
A ??G B | C to indicate that A and B are m-separated

given C in G. We denote the set of allm-separation re-
lations of a graph G by I(G). Unlike for DAGs, in the
case of ancestral graphs it is possible to have a pair of
non-adjacent vertices i and j without an m-separation
relation of the form i ??G j | S for any S ✓ V \ {i, j}

(see Richardson and Spirtes (2002)). An ancestral
graph is maximal if every non-adjacent pair i and j

satisfies i ??G j | S for some S ✓ V \ {i, j}. Richard-
son and Spirtes (2002) showed that associated to every
graph G is a unique maximal supergraph, denoted G,
with the same set of m-separation statements. They
also give an e�cient procedure for computing G from
G. We refer to a directed ancestral graph that is max-
imal as a directed maximal ancestral graph (DMAG).

2.2 Markov Properties of DMAGs

Given a DMAG G = (V,D,B), we associate to each
vertex i 2 V a random variable Xi such that the ran-
dom vectorXV = (Xi : i 2 V ) has joint distribution P.
This distribution can be connected to the separation
relations in G via the Markov property (Richardson,
1999); namely, P is Markov with respect to the DMAG
G if every m�separation relation in G implies the cor-
responding conditional independence relation in P, i.e.

A ??G B | C ) XA ??P XB | XC

for all disjoint A,B,C ✓ V, where ??P denotes inde-
pendence in P. Denoting by I(P) the set of all CI
relations in P, the Markov property is then equivalent
to I(G) ✓ I(P). In this case, G is called an indepen-

dence map (IMAP) of P; G is called a minimal IMAP

of P if there is no edge of G that can be deleted while
keeping G both maximal and an IMAP of P.

Graphs G and H are said to be Markov equivalent

if I(G) = I(H). The set of all graphs that are
Markov equivalent to a given G will be denotedM(G).
Spirtes and Richardson (1996) provided a combina-
torial characterization of graphs in the same Markov
equivalence class (MEC). To do this, they used the
notion of discriminating paths for a vertex k: a path
� = hi, . . . , k, ji between non-adjacent i and j is dis-

criminating for k if every node between i and k is both
a collider and a parent of j, and there is at least one
node between i and k. Spirtes and Richardson (1996)
show that G and H are Markov equivalent if and only
if they have the same skeleta, the same v-structures,
and if for any path � that is discriminating for k in
both G and H, k is a collider on � in G if and only if
k is a collider on � for H.

Zhang and Spirtes (2012) provided a transformational
characterization for the Markov equivalence class of a
DMAG that will play an essential role in this paper.
For this, they called the transformation of the edge
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i ! j in G into i $ j, or of the edge i $ j to i ! j

a legitimate mark change if there is no other directed
path from i to j in G, pa

G
(i) ✓ pa

G
(j), sp

G
(i)\{j} ✓

pa
G
(j) [ sp

G
(j), and there is no discriminating path

for i on which j is the endpoint adjacent to i. They
showed that G and H are Markov equivalent if and
only if there is a sequence of legitimate mark changes
from G to H.

2.3 Causal Structure Discovery Algorithms

The problem of causal structure discovery in the set-
ting of latent confounders is to recover the Markov
equivalence class of the underlying DMAG G

⇤ from
samples on the observed variables. In particular, when
the sample size n!1, the problem is to recover the
Markov equivalence class of the DMAG G

⇤ from I(P).
The most prominent existing algorithms for learning
DMAGs1 are the Fast Casual Inference (FCI) algo-
rithm (Spirtes et al., 2000) and its variants, most no-
tably FCI+ (Claassen et al., 2013), which has polyno-
mial time complexity for sparse graphs while retain-
ing large-sample consistency. All of these methods are
constraint-based; they start by estimating the skeleton
of the graph based on the results of CI tests, then use
the results of those CI tests to determine some edge
orientations. However, constraint-based methods re-
quire the faithfulness assumption (Zhang and Spirtes,
2002), which is restrictive in practice, and faithfulness
violations lead to the removal of too many edges Uhler
et al. (2013).

In the DAG setting (i.e., no latent confounders) it
has been shown that score-based approaches may re-
quire weaker assumptions for consistency (Van de
Geer et al., 2013; Raskutti and Uhler, 2018) and usu-
ally achieve superior performance for a given sample
size (Nandy et al., 2018). This motivates the devel-
opment of an algorithm for causal structure discov-
ery that shares these properties with score-based ap-
proaches, and works in the presence of latent con-
founders. Existing score-based approaches that can
handle latent confounders require parametric assump-
tions. For example, Shpitser et al. (2012) requires dis-
creteness and Tsirlis et al. (2018); Nowzohour et al.
(2017) requires Gaussianity.

A particular approach that will play an important role
in this paper is the Sparsest Permutation algorithm,
introduced in Raskutti and Uhler (2018), which as-
sociates to each permutation ⇡ a DAG G⇡, which
is a minimal IMAP of the data-generating distribu-
tion. The Sparsest Permutation algorithm is a hy-

1In fact, all of these methods are able to estimate
MAGs, which may include undirected edges to model se-
lection bias.

brid method, combining aspects of the constraint- and
score-based paradigms. Like many constraint-based
methods, it does not require parametric assumptions,
and like many score-based methods, it seems resilient
to error-propagation. Since under restricted faith-
fulness assumptions the sparsest such G⇡ is Markov
equivalent to the true DAGG

⇤, this motivates a greedy
search over the space of permutations to determine the
sparsest G⇡. In fact, in Solus et al. (2017) the authors
proved that starting in any minimal IMAP there ex-
ists a sequence of minimal IMAPs connecting it to the
true DAG G

⇤ by legitimate mark changes such that
the number of edges is weakly decreasing. Hence the
Greedy Sparsest Permutation (GSP) algorithm is con-
sistent for causal structure discovery in the fully ob-
served setting.

In the following section, we generalize the sparsest
permutation algorithm to the setting with latent con-
founders by using posets instead of permutations. In
particular, we show that under restricted faithfulness
assumptions the DMAG associated with the Spars-

est Poset is Markov equivalent to the true DMAG.
This motivates the introduction of a greedy search over
posets, which we term Greedy Sparsest Poset (GSPo)
algorithm and introduce in Section 4. Finally, in Sec-
tion 5 we analyze its performance and compare it to
the FCI algorithms on synthetic data.

3 SPARSEST POSET

This section contains our main results. We first in-
troduce the restricted faithfulness notion required for
our results and show that it is strictly weaker than
the standard faithfulness assumption. Then we intro-
duce a map from posets to DMAGs which are minimal
IMAPs of the data-generating distribution, and show
that the sparsest DMAG in the image of this map is
Markov equivalent to the true DMAG G

⇤.

3.1 Restricted Faithfulness

An important assumption for constraint-based meth-
ods to recover G⇤ from I(P) is the faithfulness assump-

tion, which asserts that I(P) = I(G⇤). In practice,
this assumption is very sensitive to hypothesis testing
errors for inferring CI relations from data and almost-
violations are frequent (Uhler et al., 2013). This mo-
tivates studying restricted versions of the faithfulness
assumption Ramsey et al. (2012); Raskutti and Uh-
ler (2018). In the following, we introduce a restricted
faithfulness assumption for DMAGs, which we show is
su�cient for learning DMAGs.

Definition 1. A distribution P is restricted-faithful to
a DMAG G = (V,D,B) if it is Markov to G satisfying
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Xi = XpaG⇤ (i) + "i, i 6= 6

X6 = X3 �X5 + "6

(a) Structural equation model (b) G⇤

Figure 1: A structural equation model giving rise to a
joint distribution P that is restricted-faithful, but not
faithful, to the graph G

⇤.

1. Adjacency-faithfulness: If (i, j) 2 B [ D, then

Xi 6??P Xj | XS for any S ✓ V \ {i, j};

2. Orientation-faithfulness: If i�k�j is contained in

the skeleton of G and i is m-connected to j given

some subset S ✓ V \ {i, j}, then Xi 6??P Xj | XS.

3. Discriminating-faithfulness: If hi, . . . , k, ji is a

discriminating path in G and i is m-connected

to j given some subset S ✓ V \ {i, j}, then

Xi 6??P Xj | XS.

It is clear that faithfulness implies restricted-
faithfulness. Moreover, restricted-faithfulness is a
strictly weaker condition - there exist joint distribu-
tions P that are restricted-faithful to a DMAG that
are not faithful. For example, let P be given by the
structural equation model in Figure 1a, where each
"i ⇠ N (0, 1). Then P is restricted-faithful, but not
faithful to the graph G

⇤ displayed in Figure 1b. To
see that P is not faithful to G

⇤, note that X1 ??P X6

even though 1 and 6 are not m-separated in G
⇤.

3.2 Sparsest Poset

In this section, we show that the Markov equivalence
class of a DMAG G

⇤ = (V,D⇤
, B

⇤) can be determined
from I(P) under the restricted faithfulness assumption
by casting this problem into an minimization problem
over the space of partial orders of the set V . We do
this by mapping the space of these partial orders to
minimal IMAPs of G⇤ and minimizing a cost that is a
function of such an IMAP.

A partial order on a set V is a relation  on V that is
reflexive, transitive, and antisymmetric. Two elements
i, j 2 V are said to be incomparable if neither i  j

nor j  i holds. We denote this symbolically by i 67 j.
A set V equipped with a specified partial order  is
called a partially ordered set (poset), denoted (V,).
Then, V is called the ground set of the poset. The
empty poset is the poset (V,) such that all i, j 2 V

are incomparable. We denote the set of all posets with
a ground set V by P(V ). Given a poset ⇡ = (V,)
and s1, . . . , sk 2 V , define

pre
⇡
(s1, . . . , sk) := {x 2 V : x  si for some 1  i  k}.

Associated to each directed ancestral graph G =
(V,D,B) is a partial order G on V , defined by

i G j , i 2 anG(j).

Note that the ancestral property implies that if i$G

j, then i 67G j. We denote the poset (V,G) by po(G).
The map G 7! (V,G) gives a bijection from the set of
complete DMAGs, i.e., DMAGs whose skeleta are com-
plete graphs, to P(V ), the set of posets with ground
set V . Since not all DMAGs are complete, the set of
DMAGs on V is strictly larger than P(V ).

This relationship between ancestral graphs and posets
motivates describing the sparsest IMAP of a distribu-
tion P that is restricted-faithful to a DMAG G

⇤ in
terms of posets by mapping every poset to an IMAP.
This will lead to the concept of sparsest posets ; the
posets of P(V ) that are mapped to DMAGs inM(G⇤).
To obtain the map, we need the following definition.

Definition 2. Given a joint distribution P on the

random vector XV and a poset ⇡ = (V,⇡). Define

AG(⇡,P) as the ancestral graph with directed edge set

{i! j : i ⇡ j,Xi 6??P Xj | Xpre⇡(i,j)\{i,j}}

and bidirected edge set

{i$ j : i 67⇡ j,Xi 6??P Xj | Xpre⇡(i,j)\{i,j}}.

When ⇡ is a total order, i.e. a partial order where
the relations i ⇡ j or j ⇡ i hold for all i, j, then
AG(⇡,P) defines a map from permutations to DAGs
and is the one used in the GSP algorithm (Raskutti
and Uhler, 2018). The authors showed in this case
that AG(⇡,P) is a minimal IMAP for P for all total
orders ⇡. Unfortunately, as shown in the following
example, AG(⇡,P) may not be an IMAP of P when
⇡ is allowed to be an arbitrary partial order.

Example 1. Let P be a joint distribution that is

restricted-faithful to the DMAG G
⇤

shown in Fig-

ure 2a. Let ⇡ be the poset with ground set {1, 2, 3, 4}
and relations 2  3, 1  4, and i 67 j otherwise.

Then AG(⇡,P), shown in Figure 2b, is not an IMAP

of P. To see this, note that 4 ??AG(⇡,P) 3 | {2}, but

X4 6??P X3 | {X2} since 4 $ 2  1 ! 3 is a {2}-
connecting path in G

⇤
.

However, we show in the following proposition, which
is proven in Appendix B, that one can construct a
minimal IMAP of P for any poset ⇡ using the map
AG(·, ·) by defining

G
P
⇡
:= AG(po(AG(⇡,P)),P).

where P and ⇡ are as in Definition 2. Recall that
G denotes the maximal closure of G. We want G⇡
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1

4

2

3

(a) G⇤

1

4

2

3

(b) AG(⇡,P)

Figure 2: Graphs for Example 1. P is faithful to G
⇤

but AG(⇡,P) is not an IMAP of P.

1
2

3
4

5

(a) G⇤

1
2

3
4

5

(b) AG(po(AG(⇡,P),P)

Figure 3: Graphs for Example 2. P is faithful to G
⇤

but AG(po(AG(⇡,P),P) is not maximal.

to be maximal since the results of Zhang and Spirtes
(2012) regarding legitimate mark changes apply only
to maximal ancestral graphs. To simplify notation, we
use G⇡ instead of GP

⇡
when P is clear from context.

Proposition 1. Let P be a joint distribution on V

that is restricted-faithful to a DMAG. Then G⇡ is a

minimal IMAP of P for any poset ⇡ 2 P(V ).

As we show in the following example, including the
maximal closure in the definition of G⇡ is required
since it may otherwise not be maximal.

Example 2. Let P be a joint distribution faithful to

the graph G
⇤
displayed in Figure 3a. Let ⇡ be the

poset with ground set V = {1, 2, 3, 4, 5} and order-

ing relations 1  2, 3  4, 5  4, and i 67 j

otherwise. Then AG(po(AG(⇡,P)),P), displayed in

Figure 3b, is not maximal. To see this, note that

AG(po(AG(⇡,P)),P) lacks an edge between 2 and 4,
while there is no set S ✓ V \ {2, 4} that m-separates 2
and 4 in AG(⇡(AG(⇡,P),P).

Having defined a map from posets to minimal IMAPs
for DMAGs, we are almost ready to state our result
on the consistency of the sparsest poset. The following
theorem establishes that under restricted-faithfulness
all sparsest IMAPs of G⇤ are Markov equivalent to G⇤.

Theorem 1. Given a distribution P and a DMAG G
⇤

that is an IMAP of P, let

G 2 arg min
{H: H is an IMAP of P}

|H|. (1)

(a) If P is adjacency-faithful to G
⇤
, then skel(G) =

skel(G⇤).

(b) If P is restricted-faithful to G
⇤
, then G 2M(G⇤).

The proof of this theorem is given in Appendix C; it
involves using the adjacency faithfulness condition to
obtain skel(G) ◆ skel(G⇤) for any IMAP G. Then we
show that the IMAP condition on G, under restricted-
faithfulness of P, forces a graph with the same skele-
ton as G

⇤ to have matching unshielded colliders and
matching discriminating paths when these discrimi-
nating paths are present in both of these graphs.

The following proposition establishes that G⇤ is in the
image of ⇡ 7! G⇡; its proof is given in Appendix D.
Thus, when restricting our search over IMAPs to the
the image of this map, the optimum is still in our fea-
sible set.

Proposition 2. Let P be restricted-faithful to DMAG

G
⇤
. If G 2M(G⇤), and ⇡ = po(G), then G⇡ = G.

We are now ready to state our main result.

Theorem 2 (Sparsest Poset). Let P be a distribution

on V that is restricted faithful to a DMAG G
⇤
. If

⌧ 2 arg min
⇡2P(V )

|G⇡|,

then G⌧ is Markov equivalent to G
⇤
.

Proof. Propositions 1 and 2 together imply that there
is an IMAP H = G⇡ for some ⇡ such that |H| = |G

⇤
|.

Theorem 1 then gives the desired result.

4 GREEDY SPARSEST POSET

Theorem 2 formulates the problem of finding a graph
G

⇤ from P as a discrete optimization problem over
P(V ), the set of all posets on the ground set V . In this
section, we discuss solving this optimization problem
by imposing a graph structure on P(V ) and then per-
forming a greedy search along the edges of the graph.
Note that Theorem 2 does not guarantee that a greedy
approach returns an optimum. Supported by simula-
tions, we will conjecture that this is indeed the case.

4.1 Greedy Sparsest Poset

Perhaps the most natural graph structure on P(V )
is known as the Hasse diagram of the poset of posets

(Bouc, 2013), which we denote by HP(V ). One obtains
this by adding an edge to connect posets (V,1) and
(V,2) whenever there exists a unique pair i, j 2 V

such that i 1 j, but i 672 j. Figure 4a gives an
example of HP(V ) when V = {1, 2, 3}. For more details
about Hasse diagrams, see Stanley (2011).

Algorithm 1 is a greedy search along the edges of
HP(V ) to determine a poset ⇡ yielding the sparsest
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(a) HP(V ) for V = {1, 2, 3}. (b) A relabeling of HP(V ) be replacing each ⇡ with its
corresponding G⇡ when I(P) = {X1 ??P X2 | X3}.

Figure 4: (a) shows HP(V ) for V = {1, 2, 3}. Each of the large squares represents a poset ⇡ 2 P (V ). We represent
each ⇡ by having i lie above j only if j ⇡ i. For example, the square in the upper left corner represents the
poset with relations 1 ⇡ 2 ⇡ 3 while the bottom most square represents the empty poset. Posets (V,1) and
(V,2) are connected by an edge whenever there exists a unique pair i, j 2 V such that i 1 j, but i 672 j. (b)
shows a relabeling of HP(V ) by replacing each ⇡ with G⇡ when I(P) = {X1 ??P X2 | X3}. The number of edges
of each G⇡ is indicated in the bottom right corner of the square containing it. The direction of edges indicates a
strict decrease in the number of edges from one graph to the next. A possible path that algorithm 1 could take
starting at the bottom square is highlighted in blue, with the graph returned colored green.

G⇡. Figure 4b shows an example run of Algorithm 1
when I(P) = {X1 ??P X2 | X3}, where each poset
⇡ is replaced by its corresponding G⇡, along with a
possible path taken when starting at the empty poset.

As the example in Figure 4b shows, G⇡ = G⌧ can
happen for ⇡ 6= ⌧ . To achieve better run-time per-
formance, one might optimize directly over the set
{G⇡ : ⇡ 2 P(V )} rather than P(V ), thus avoid-
ing moving between posets that give rise to the same
graph, similar as in GSP (Solus et al., 2017; Moham-
madi et al., 2018). We propose to do this by moving
from G⇡ to GpoG0 where G

0 is obtained from G⇡ via
a legitimate mark change, the definition of which we
now restate.

Algorithm 1

Input: I(P), with P restricted-faithful to G
⇤; a

starting poset ⇡0.
Output: A minimal IMAP of G⇤.
Set ⇡ = ⇡0;
Via depth-first search on HP(V ) with root ⇡, find a
path ⇡1 := ⇡, . . . ,⇡k := ⌧ such that ⇡i is adjacent
to ⇡i+1 in HP , |G⇡i | � |G⇡i+1 | and |G⇡| > |G⌧ |.
If such ⇡k exists, set ⇡ to ⇡k, and repeat this step.
Otherwise, return G⇡.

Definition 3 (Zhang and Spirtes (2012)). Given a

DMAG G, a legitimate mark change ofG is the process

of turning an edge i! j to i$ j, or vice-versa, when

1. there is no directed path from i to j aside from

possibly i! j;

2. if k ! i, then k ! j. If k $ i, then k $ j or

k ! j;

3. there is no discriminating path hk, . . . , i, ji.

Zhang and Spirtes (2012) showed that DMAGs G and
H are Markov equivalent if and only if G can be
transformed into H via a sequence of legitimate mark
changes. This is analogous to the result by Chicker-
ing (1995) that DAGs G and H are Markov equiva-
lent if and only if G can be transformed into H via a
sequence of covered edge flips, which are exactly the
moves used by GSP (Solus et al., 2017; Mohammadi
et al., 2018). Using this notion of edge change gives a
di↵erent search space, defined in terms of the IMAPs
G⇡. Namely, given a distribution P, define LP to be
the directed graph with vertex set {G⇡ : ⇡ 2 P(V )}
with an arc from G⇡ to G⌧ when there exists a graph
G

0, obtainable from G⇡ via a single legitimate mark
change, such that ⌧ = po(G0).

Figure 5 shows the outgoing edges of a particular min-
imal IMAP G⇡ in LP when P is faithful to G

⇤ of Fig-
ure 2a. As shown, there are two possible legitimate
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Figure 5: Example of the outgoing edges (in bold)
of the node G⇡ in LP where P is faithful to G

⇤ from
Figure 2b. The graphs G

0
1 and G

0
2 are obtained from

G⇡ via legitimate mark changes of the colored dashed
edges. The posets ⌧1, ⌧2 are po(G0

1), po(G
0
2) respec-

tively so LP has edges from G⇡ to G⌧1 and G⌧2 .

mark changes that can be performed on G⇡ shown as
dashed. Changing the bidirected dashed edge, for ex-
ample, would result in G

0
1 with ⌧1 = po(G0

1). Hence,
there is an outgoing edge from G⇡ to G⌧1 in LP.

Algorithm 2 is the resulting greedy search for the
sparsest G⇡ over LP. We call this algorithm the greedy
sparsest poset algorithm (GSPo). We conjecture, sup-
ported by simulations on the order of 100,000s of ex-
amples (see Appendix E), that GSPo is consistent un-
der the restricted-faithfulness assumption (using a suf-
ficiently large depth d in the search), i.e., it yields a
DMAG that is Markov equivalent to G

⇤ no matter the
starting point. This conjecture generalizes the con-
sistency result proven for GSP in the fully observed
setting (Solus et al., 2017).

Conjecture 1. Let P be a probability distribution that

is restricted-faithful to a DMAG G
⇤
. If ⇡0 is any poset,

then there exists a directed path ⇡0 ! ⇡1 ! · · · !

⇡k in LP such that G⇡k is sparsest, and such that ⇡i

always has weakly fewer edges than ⇡i�1.

4.2 Implementation

A crucial practical consideration for GSPo is the choice
of the starting poset ⇡0, since a sparser initial IMAP
would be favorable. The empty poset ; provides a sim-
ple starting place, with G; = {i$ j | Xi 6??P Xj}, but
in general will not be sparse. An e↵ective alternative
is to start at a sparse DAG that is a minimal IMAP
(e.g., given by a permutation), either by running a
DAG-learning algorithm such as GSP or by simply us-
ing the same starting heuristic as GSP based on the
minimum-degree (MD) algorithm (Solus et al., 2017).
We compare these initialization schemes in Section 5.

Algorithm 2 Greedy Sparsest Poset (GSPo)

Input: I(P), with P restricted-faithful to G
⇤; start-

ing poset ⇡0; maximum depth d.
Output: A minimal IMAP of P.
Set ⇡ = ⇡0;
Via depth-first search with root ⇡ and depth at most
d, find path ⇡0, . . . ,⇡k such that ⇡i and ⇡i+1 are
adjacent in LP, |G⇡i | � |G⇡i+1 | and |G⇡0 | > |G⇡k |.
If such ⇡k exists, set ⇡ to ⇡k, and repeat this step.
Otherwise, return G⇡.

5 EXPERIMENTAL RESULTS

In this section, we compare the performance of GSPo
to FCI and FCI+ in recovering DMAGs from samples
of the observed nodes. In each simulation, we sample
100 Erdös-Rényi DAGs on p+K nodes with s expected
neighbors per node, then form DMAGs by marginal-
izing over the first K nodes, to obtain DMAGs on p

nodes. If i, j is an edge i ! j in the DAG, we assign
an edge weight wij drawn uniformly at random from
[�1,�.25] [ [.25, 1]; we set wij = 0 otherwise. Finally,
we generate n samples from the structural equation
model X = W

>
X + ✏ where ✏ ⇠ N (0, IK+p) and re-

move the first K columns of the data matrix.

In each run of GSPo, we set the depth parameter d to
4, and run the algorithm 5 times for each graph (using
di↵erent initializations). For DAGs, a depth of 4 has
been used to reflect the empirically-observed average
size of the MECs (Gillispie and Perlman, 2001; Solus
et al., 2017). Although we are not aware of results on
the average size of the MECs of DMAGs, we found
little benefit in using values larger than 4.

In Figure 6, we chose p = 10, K = 3, and s = 3.
The resulting graphs have on average about 4 neigh-
bors per node, and have varying proportions of bidi-
rected edges, from 0% bidirected to 75% bidirected,
with roughly 30% bidirected on average.

Figure 6a shows performance of GSPo with three ini-
tialization schemes as compared to FCI and FCI+ on
recovering the skeleton of the true MAG. Regardless
of the initialization scheme, GSPo generally estimates
denser graphs than FCI and FCI+, with the densest
graphs estimated when starting at the empty poset.
The performance of initializing GSPo by the MD al-
gorithm and GSP are comparable, so for simplicity we
recommend initializing by the MD algorithm. While
FCI and FCI+ achieve better performance in the low
false positive rate regime, GSPo begins to surpass FCI
and FCI+ in the middle regime. This indicates that
even with a large number of samples, FCI(+) su↵ers
from near-faithfulness violations, which leads to mis-
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(a) Skeleton edge recovery (ROC) (b) Skeleton Edge Recovery (SHD) (c) Median Runtime

Figure 6: In (a) and (b), p = 10, K = 3, and s = 3. In (a), each variant of GSPo was run on 8 ↵ values from
10�10 to .7, and each variant of FCI was run on 7 ↵ values from 10�20 to .5. The best ↵ for each algorithm
was selected for (b); the corresponding point is marked by ? in (a). These values were ↵ = .1 for each variant of
GSPo and for FCI+, and ↵ = .7 for FCI. In (c), p = 10, 20, 30, 40, 50, K = 3, and s = 3. Again the best ↵ was
selected for (c), except for FCI, which was run with ↵ = 10�3 since higher ↵ values were extremely slow.

takenly removing edges. ROC curves for p = 50 nodes
are reported in Appendix F, with similar findings.

Figure 6b shows the structural Hamming distance
(SHD)2 of the skeleton of the true DMAG to the skele-
ton of the DMAG estimated by each algorithm. For
each algorithm, the value of ↵ was picked from among
the values used in Figure 6a in order to minimize the
average SHD over all sample sizes; the corresponding
values are marked by stars on the ROC curves. All
variants of GSPo outperform both variants of FCI for
all sample sizes in terms of SHD.

Figure 6c shows the median computation time required
for each algorithm for graphs of varying number of
vertices. Average computation time is in Appendix F.
For each algorithm, we chose the parameter ↵ based
on the best-performing value in Figure 6b; FCI we
were limited to ↵ = 10�3 due to its poor scaling for
dense graphs. Thus, the median runtime for FCI is a
conservative lower bound. We observe that GSPo with
GSP initialization is faster than FCI or FCI+ for small
graphs, but slower than FCI+ as the number of nodes
increases. Given that CI tests in the construction of
G⇡ involve all ancestors of pairs of nodes, this poor
scaling is expected. Fortunately, this suggests that
improvements along the lines of those in FCI+ may
bring the scaling of GSPo in line with that of FCI+.

6 DISCUSSION

We provided a new characterization of the Markov
equivalence class of a DMAG in terms of the set of
sparsest minimal IMAPs, which allows structure learn-
ing in the presence of latent confounders to be ex-

2the SHD between two undirected graphs is equal to the
minimum number of edge additions/deletions required to
transform from one graph to another

pressed as a discrete optimization problem. To restrict
the search space for this problem, we introduced a map
from posets to minimal IMAPs whose image contains
the true DMAG. Then, we proposed a greedy algo-
rithm in the space of minimal IMAPs to determine
the sparsest minimal IMAP and hence a graph that
is Markov equivalent to the true DMAG. This algo-
rithm extends the Greedy Sparsest Permutation algo-
rithm (Solus et al., 2017) for learning DAGs to the
setting with latent confounders, thereby providing a
general hybrid approach for causal structure discovery
in this setting. We also demonstrated that it outper-
forms the current constraint-based methods FCI and
FCI+ in some relevant settings.

Consistency of our greedy algorithm remains an open
question, and is an interesting issue for future work.
Furthermore, it may be possible to improve the statis-
tical and computational performance of GSPo through
modifications such as: more e�ciently obtaining min-
imal IMAPs after legitimate mark changes, using dy-
namic connectivity algorithms to keep track of ances-
tral relations, and better heuristics for initialization.

By introducing a method for structure learning for
DMAGs that is not a variant of FCI, we open the
door to comparisons between the behavior of di↵er-
ent types of methods on issues besides just statistical
and computational performance, such as behavior of
the algorithms under misspecification of parametric or
modeling assumptions (e.g., non-i.i.d. data or non-
Gaussianity when using partial correlation tests). It
would also be interesting to use the idea of an ordering-
based search as provided in this paper for the prob-
lem of learning general MAGs (i.e., including selection
bias). To the best of our knowledge, there is no known
transformational characterization for Markov equiva-
lence classes of general MAGs yet, which is a key ingre-
dient in the development of such a greedy algorithm.
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