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Abstract—Quantum annealing (QA) that encodes optimization
problems into Hamiltonians remains the only near-term quantum
computing paradigm that provides sufficient many qubits for
real-world applications. To fit larger optimization instances on
existing quantum annealers, reducing Hamiltonians into smaller
equivalent Hamiltonians provides a promising approach. Unfor-
tunately, existing reduction techniques are either computationally
expensive or ineffective in practice. To this end, we introduce
a novel notion of non-separable group, defined as a subset of
qubits in a Hamiltonian that obtains the same value in optimal
solutions. We develop non-separability theory accordingly and
propose FastHare, a highly efficient reduction method. FastHare,
iteratively, detects and merges non-separable groups into single
qubits. It does so within a provable worst-case time complexity of
only O(αn2), for some user-defined parameter α. Our extensive
benchmarks for the feasibility of the reduction are done on both
synthetic Hamiltonians and 3000+ instances from the MQLIB
library. The results show FastHare outperforms the roof duality,
the implemented reduction in D-Wave’s library. It demonstrates
a high level of effectiveness with an average of 62% qubits saving
and 0.3s processing time, advocating for Hamiltonian reduction
as an inexpensive necessity for QA.

I. INTRODUCTION

The last few years has witnessed an exponential growth in

quantum and quantum-inspired computing (QC) with a record

number of breakthroughs [1], [2], [3], [4], [5]. Instead of

encoding information with binary bits as in classical comput-

ing, quantum computers use qubits to encode superposition of

states [3] to explore exponentially combinations of states at

once. QC has paved the way for much faster, more efficient

solving of large-scale real-world optimization problems that

are challenging for classical computers [1], [3].

One promising near-term avenue for QCs is quantum an-

nealing (QA) [6], [7], a framework that incorporates algo-

rithms and hardware designed to solve computational prob-

lems. QA leverages quantum tunneling mechanics to per-

form quantum evolution toward the ground states of final

Hamiltonians that encode classical optimization problems,

without necessarily insisting on universality or adiabaticity

[6]. QA is the only computing paradigm that provides a large

enough number of qubits for real-world applications from

RNA folding [8], [9], [10], portfolio optimization [11], [12],

car manufacturing scheduling [13] and many others [14], [15],

[16]. In addition, the number of Qubits tends to double every

20 months over the last decade [17].
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Yet, the limited hardware resource, including the relatively

small numbers of both qubits and their couplings, as well

as the challenges in mapping the problem Hamiltonian on

quantum processing unit (QPU) hardware topology, aka minor-

embedding [18], pose significant challenges in scaling the

QA to the real-world instances. For example, performing

MIMO channel decoding with a 60Tx60R setup on a 64-QAM,

a configuration several folds lower than the state-of-the-art

hardware, will require about 11,000 physical qubits [19]. This

hardware requirement far exceeds the 5000+ qubits offered

by the largest commercially available quantum annealer, the

D-Wave Advantages platform. Thus, qubits saving techniques

to reduce the hardware resource is much needed to reduce

hardware resource requirement, as well as increasing the size

of solvable instances on existing QPUs.

Only a few qubits reduction techniques have been studied,

yet, are not effective for QA. The most popular method is

the roof duality [20], implemented in the Ocean SDK by

D-Wave. The method aims to find partial assignment to bi-

nary variables in quadratic unconstrained binary optimization

(QUBO) formulation, an equivalent form to the Hamiltonian1.

Despite its fast processing time, the method only works in a

few special cases that rarely happen in practice, as seen in

our comprehensive experiments. Several other methods also

target partial assignment of variables in QUBO [21], [22], [23],

however, their high time-complexities make them unsuitable

for QA, in which a high reduction time can nullify the fast

processing advantage of QPUs.

To this end, we investigate the task of reducing (final)

Hamiltonian to an “equivalent” albeit smaller Hamiltonian

to save on hardware resource. Given an Hamiltonian H that

encodes a classical optimization problem, a reduction of H is

a pair of a new Hamiltonian Hr and a mapping f that maps,

in a polynomial time, each ground energy state (aka optimal

solution) of Hr to a ground energy state of H . Thus, the

ground energy state of H that encodes an optimal solution to

a optimization problem, can be found by finding those of Hr

and performing a mapping with f . An effective Hamiltonian

reduction that results in small Hr can lead to a huge saving

in physical qubits.

We introduce a novel notion of non-separable group, de-

fined as a subset of spins (or logical qubits) in a Hamiltonian

1D-Wave SDK converts the QUBO formulations to Hamiltonians internally
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that obtains the same value in ground states. A group of non-

separable spins can be merged into ones, and the weights

associated with them can be combined to result in a Hamilto-

nian with fewer spins. Thus, the identification of non-separable

spins lead to natural methods to reduce Hamiltonian.

Through developing theory on non-separable groups, we

develop an efficient Fast Hamiltonian Reduction, or FastHare

that, iteratively, detects and merges non-separable groups of

spins. It has a provable worst-case time complexity of only

O(αn2), for some user-defined parameter α while exhibiting

linear running time in practice. FastHare focuses on identifi-

cation of small non-separable groups of size 2 and 3. Further,

it utilizes non-separability index, a measure on how ”non-

separable” a group is, of small groups to aid in locating

larger non-separable groups. Our approach is different than

the vast majority of existing reduction techniques that rely on

identification of partial assignments on variables and has the

lowest time-complexity of all.

We perform the first large-scale benchmarks for the feasi-

bility of the reduction on both synthesized Hamiltonian and

3000+ instances from the MQLib library. The roof duality

[24], implemented in D-Wave’s library, cannot reduce any

synthesized instances and only reduce 8.9% of MQLib in-

stances. In contrast, FastHare can reduce 100% of synthesized

instances and 43% of MQLib instances. And when it does,

it shows a high level of effectiveness with an average 62%

physical qubits saving and 0.3s processing time. Thus, it makes

Hamiltonian reduction techniques an inexpensive necessity and

ready to be adopted for QA.

Organization. We begin by introduce Ising model and

prelimnaries in Section II. The theory on non-separability

and reduction techniques based on identifying non-separable

groups are presented in Section III. FastHare is introduced

in Section IV and the experiments is discussed in Section V.

Finally, Section VI concludes the paper.

II. PRELIMINARIES

We present Ising Hamiltonian that encodes combinatorial

optimization problems and the quantum annealing process to

solve the formulated problem on quantum annealers. Further,

we define a new notion of polynomial-time Hamiltonian

reduction and the problem of finding efficient Hamiltonian

reduction.

A. Ising model and QUBO

Quantum annealers including D-Wave’s can solve optimiza-

tion problems formulated as an Ising model [25]. The Ising

model describes a physical systems with n sites. Each site i
is associated with a discrete variable si ∈ S = {−1,+1},

representing the site’s spin. Each assignment of spin value

s ∈ S
n, called a spin configuration, associates with an energy

of the system, defined through the Ising Hamiltonian

H(s) = −
n
∑

i=1

hisi −
n
∑

i,j=1

Jijsisj = −hT s− sTJs (1)

where hi is the external magnetic field at site i and Jij is the

coupling strength between sites i and j. For a pair i, j, Jij > 0
(Jij < 0) indicates a ferromagnetic (antiferromagnetic) inter-

action.

The configuration probability, the probability that the sys-

tem is in a state with spin configuration s is given by the

Boltzmann distribution with inverse temperature β ≥ 0

Pβ(s) =
e−βH(s)

Zβ

,

where β = (kBT )
−1, and the normalization constant

Zβ =
∑

s∈Sn

e−βH(s)

is the partition function.

The ground state of an Hamiltonian associates with the spin

configuration of lowest energy

s∗ = arg min
s∈Sn

H(s) (2)

and can be searched for using the quantum annealing process.

Quadratic Unconstrained Binary Optimization (QUBO). An-

other popular formulation to encode optimization problem

for quantum annealing is QUBO that minimizes a quadratic

polynomial over binary variables

x∗ = arg min
x∈{0,1}n

Q(x) =
∑

i,j∈[n]

qijxixj ,

where x = (x1, · · · , xn) ∈ {0, 1}n.

A QUBO can be easily converted back and forth to an Ising

Hamiltonian by changing variables xi =
si+1
2 [18].

B. Quantum Annealing (QA)

QA [26], [6] is a class of methods to find global optima

in combinatorial optimization problems, especially when op-

timization landscapes are full with local optima. The method

is inspired by the classical simulated annealing (SA) method

in which an “annealing schedule” dictates the temperature

variation that in turns decides the probability that a candidate

state switch to neighboring states.

In QA, quantum-mechanical fluctuation such as quantum

annealing is utilized to explore the solution space, mimicking

the idea of thermal fluctuations in SA. The system evolves

from an initial Hamiltonian ground state that is easy to find

and setup to a final Hamiltonian ground state that encodes

the optimization problem. QA is closely related to quantum

adiabatic evolution, used in adiabatic quantum computation

[27], [28], however, the adiabatic conditions are relaxed for

faster processing time.

Embedding Hamiltonian to QPU Hardware Topology. Since

the qubits in an quantum annealer are not necessarily all-to-

all connected, the Ising Hamiltonian for the orginial problem

often need to be mapped to a hardware Ising Hamiltonian

through a process called minor embedding [18], [29]. The

process will map each qubit in the original Hamiltonian,

termed logical qubits to one or multiple physical qubits on the

annealer. The solution of the embedded Hamiltonian induces





HSK contains no external fields and is in a form of a

Sherrington-Kirkpatrick Hamiltonian [31], hence, we named

the constructed graph SK graph. In fact, we can prove that

min
y∈Sn+1

HSK(y) = min
y∈Sn+1

−yTJ′y

= min
y∈Sn+1

−
∑

1≤i,j≤n

Jijyiyj − yn+1

∑

1≤i≤n

hiyi

= min
x∈Sn

H(x). (4)

The last equality holds as we can always replace y with

−y to ensure yn+1 = 1 without changing the energy of the

Hamiltonian HSK(y).
b) Equivalence between minimizing energy and weighted

min-cut (WMC) on SK graph: For any subset S ⊆ V , S
induces a cut 〈S, V \ S〉, consisting of the edges crossing S
and V \ S. The capacity of the cut is defined as

c(S) =
∑

(u,v)∈〈S,V \S〉

wuv.

We consider the following variation of the weighted min-cut

(WMC) problem of finding

mc(G) = arg min
S⊆V

c(S).

Remark that the cut space includes the empty cut S = ∅
(or equivalently S = V ). This is different from the standard

minimum-cut problem in which cuts often contain at least one

node on each side. For example, since c(∅) = 0, it follows that,

MC(G) = min
S⊆V

c(S) ≤ 0,

where MC(G) denotes the minimum capacity of any cut.

Thus, min-cuts in WMC often have negative capacities.

There is a one-to-one mapping between the capacity of the

cut in GSK to the energy of the Hamiltonian HSK . Define

for a subset S ⊆ V , the corresponding vector y(S) ∈ S
n+1,

in which for v ∈ V

y(S)
v =

{

+1 if v ∈ S,

−1 if v /∈ S, .

We have,

c(S) =
∑

(u,v)∈〈S,V \S〉

wuv =
1

4

∑

(u,v)∈E

wuv(y
(S)
u − y(S)

v )2

= −
1

2

∑

(u,v)∈E

wuvsusv +
1

2

∑

(u,v)∈E

wuv

= HSK(y(S)) + cw,

where cw = 1
2

∑

(u,v)∈E wuv = 1
2

∑

i,j J
′
ij is a fixed value

that depends only on w.

Thus, finding the lowest energy of Hamiltonian HSK and

H(x) (from Eq. 4) is the same as finding the WMC on GSK .

Lemma III.1. For cw = 1
2

∑

i,j J
′
ij ,

min
x∈Sn

H(x) = min
y∈Sn+1

HSK(y) = MC(G)− cw.

c) Deriving minimum energy configuration from min-cut:

Let S∗ = mc(GSK) and x(S∗) be the vector obtained from

y(S∗) by removing the (n+1)th element y
(S∗)
n+1 . If y

(S∗)
n+1 = −1,

we multiply x(S∗) with −1. We can verify that

H(x(S∗)) = min
x∈Sn

H(x) (5)

d) SK graph vs. Hamiltonian/QUBO graphs: The Hamil-

tonian graph induced by J does not contain the information

on the external fields and, thus, can not represent the Hamil-

tonian, standing alone. The QUBO obtained by converting the

Hamiltonian to a QUBO formulation has edge weights that are

different from the coupling strengths in the hardware. Hence,

it may not reflect the physical interactions among the sites. In

contrast, the SK graph encloses both the external fields and

coupling strengths (that are close to the implemented ones on

the hardware). It enables the exploration of the Hamiltonian’s

energy landscape via exploring the cut space on the SK graph.

B. Non-separable Groups (NGs)

We introduce new notions of non-separable groups (NGs)

in a weighted undirected graph, non-separability index, and a

Hamiltonian reduction framework based on identifying non-

separable groups.

Let G = (V,E,w) be a weighted undirected graph, e.g, the

SK graph of some Ising Hamiltonian. A subset X ⊆ V is

called a non-separable group, if all min-cuts on G will have

all nodes in X on one side. Here, we use min-cut to refer

to an optimal cut for the WMC problem on G. If X stays

completely on one side of some (but not all) min-cuts, we say

X is a weakly non-separable group. As we will show in the

next subsection, all nodes in a (weakly) non-separable group

can be merged into a single node, creating a smaller graph.

Importantly, any min-cut in the smaller graph can be easily

extended to a min-cut in G.

a) Properties of non-separable groups: We show the

basic properties of non-separable groups, including hereditary,

and the closesure under intersection and union.

Lemma III.2. Let X,Y be non-separable groups on G.

1) Hereditary. Any subset of S ⊆ X is also non-separable.

This statement also holds when X is a weakly non-

separable group.

2) Closure under intersection and union. Both X ∩ Y and

X∪Y are non-separable. The statement also holds when

only one of X or Y is non-separable and the other is

weakly non-separable.

The proof comes directly from the definition of non-

separable and weakly non-separable groups.

b) Non-separability index: We propose a measure,

termed non-separability index, to quantify how “difficult” to

separate a group of nodes X ⊆ V . Here, we say a cut S ⊆ V
separates a set X if there exist two nodes u, v ∈ X such that

u ∈ S and v /∈ S. Formally,





identification steps. In contrast, multiple NGs and antipolar

pairs can be compressed simultaneously in a single round.

a) Compression of an NG (or weakly NG) to a single

node: The compression of an NG (or weakly NG) X is done

simply by merging nodes in X into a single nodes. Parallel

edges will be resolved by aggregating the weights.

b) Compression of an antipolar pair: An antipolar pair

u, v is compressed by first, flipping node u (or v), followed

by merging of u and v. The flip of node u is done by negating

the weights of all edges incident at u.

Due to the space limit, we omit the proofs on the correctness

of the enlarging and compression steps. However, most of

the proofs are due to the fact that compression of NGs will

preserve min-cuts as each NG will never be separated by any

min-cut in the first place.

IV. FAST HAMILTONIAN REDUCTION (FASTHARE)

We propose FastHare algorithm, an instance of the compres-

sion framework in Section III with the focus on fast running

time. FastHare limits the search to small-size NGs. Further, it

uses a nested collection of fast and tight-but-expensive bounds

in scanning for potential NGs.

It follows by efficient bounds for small-size NGs of size

2 and 3 in Subsection IV-B. Third, we present in Subsection

IV-C, the efficient search techniques in FastHare that limit the

time complexity to O(αn2) IV-B. Finally, Subsection IV-D

provides the complexity analysis.

A. Bounds to Prove Non-separability

We begin with a lower bound for the non-separability index

for groups of any size. The bound will be used in FastHare to

determine whether a group is an NG.

We define some necessary notations. Given an undirected

and weighted graph G = (V,E,w), we extend wuv to define

wuv = 0 if (u, v) /∈ E. For a node u ∈ V , we denote

by w(u) = (wu1, · · · ,wun) the weight vector of the node

u and by ‖w(u)‖ =
∑n

v=1 |wuv| the 1-norm of w(u). We also

define c|.|(S, T ) =
∑

u∈S,v∈T |wuv|, the total absolute values

of weights over all edges between S and T .

Lemma IV.1 (Non-separability index lower bound). Consider

a graph G = (V,E,w) and a set X ⊆ V , we have

νG(X) ≥ ν̂G(X) = min
Z⊂X,Z 6=∅

(c(Z,X \ Z)− PX(Z)),

where

PX(Z) = min
(1

2

∑

u∈Y

∣

∣

∣

∣

∣

∣

∑

v∈Z

wuv −
∑

v∈X\Z

wuv

∣

∣

∣

∣

∣

∣

,

c|.|(Z, Y ), c|.|(X \ Z, Y )
)

,

and Y = X̄ = V \X .

Proof. Based on Def. III.4, we have,

νG(X) ≥ min
S⊆V,S	X

(

C (S)−min
(

C (S \X) , C
(

S̄ \X
)))

For any set S ⊆ V, s.t., S 	 X , let T = S̄ = V \ S. Let

XS = X ∩ S,XT = X ∩ T be the intersections of X and

S, T , respectively. Let YS = S \ XS , YT = T \ XT be the

intersections of Y and S, T , respectively.

We have

c(S)−min(c(S \X), c(T \X))

= max(c(S)− c(S \X), c(S)− c(T \X))

= max(c(XS , XT ) + c(XS , YT )− c(XS , YS),

c(XT , XS) + c(XT , YS)− c(XT , YT ))

= c(XS , XT )−min(c(XS , YS)− c(XS , YT ),

c(XT , YT )− c(XT , YS))

Let Q(S) = min(c(XS , YS) − c(XS , YT ), c(XT , YT ) −
c(XT , YS)). We have,

Q(S) ≤
1

2
(c(XS , YS)− c(XS , YT )

+ c(XT , YT )− c(XT , YS))

=
1

2

∑

u∈YS

(

∑

v∈XS

wuv −
∑

v∈XT

wuv

)

+
1

2

∑

u∈YT

(

∑

v∈XT

wuv −
∑

v∈XS

wuv

)

≤
1

2

∑

u∈YS

∣

∣

∣

∣

∣

∑

v∈XS

wuv −
∑

v∈XT

wuv

∣

∣

∣

∣

∣

+
1

2

∑

u∈YT

∣

∣

∣

∣

∣

∑

v∈XS

wuv −
∑

v∈XT

wuv

∣

∣

∣

∣

∣

≤
1

2

∑

u∈Y

∣

∣

∣

∣

∣

∑

v∈XS

wuv −
∑

v∈XT

wuv

∣

∣

∣

∣

∣

Further, we have,

Q(S) ≤ min(c|.|(XS , YS) + c|.|(XS , YT ),

c|.|(XT , YT ) + c|.|(XT , YS))

= min(c|.|(XS , V \X), c|.|(XT , V \X))

Therefore, we have, Q(S) ≤ PX(XS).

Thus, we have,

c(S)−min(c(S \X), c(T \X)) = c(XS , XT )−Q(S)

≥ c(XS , XT )− PX(XS).

Hence, we have,

νG(X) ≥ min
S⊆V,S	X

(C (S)−min (C (S \X) , C (T \X)))

≥ min
S⊆V,S	X

(c(XS , XT )− PX(XS))

= min
Z⊂X,Z 6=∅

(c(Z,X \ Z)− PX(Z)).



B. Efficient search for NGs

Now, we use the non-separability index lower bound in

Lemma IV.1 to search for non-separable and antipolar pairs

of sizes 2 and 3.

Non-separable pair identification. Consider an edges (u, v) ∈
E. Our goal is to determine the relation between u and v,

whether they make an NG, a weakly NG, or an antipolar pair.

For an edge (u, v) ∈ E, we define fast score ν̂f and similarity

score ν̂s for (u, v) as follows

ν̂f(u, v) = 2|wuv| −min(‖w(u)‖, ‖w(v)‖), (7)

ν̂s(u, v) =

{

2|wuv| −
1
2‖w

(u) −w(v)‖ if wuv ≥ 0,

2|wuv| −
1
2‖w

(u) +w(v)‖ if wuv < 0.
(8)

Lemma IV.2. Consider a graph G = (V,E,w). For any edges

(u, v) ∈ E, we have:

• If max(ν̂f(u, v), ν̂s(u, v)) > 0,

– if wuv ≥ 0, {u, v} is an NG,

– if wuv < 0, (u, v) is an antipolar pair.

• If max(ν̂f(u, v), ν̂s(u, v)) = 0 and wuv ≥ 0, {u, v} is

classified as a weakly NG2.

Proof. Let X = {u, v} and Y = V \ X . We consider two

cases of wuv as follows.

Case 1: wuv ≥ 0. Based on Lemma IV.1, we have,

νG(X) ≥ wuv −min(
1

2

∑

z∈Y

|wuz − wvz|,

c|.|({u}, Y ), c|.|({v}, Y ))

= 2wuv −min(
1

2
‖w(u) −w(v)‖, ‖w(u)‖, ‖w(v)‖)

= max(ν̂f(u, v), ν̂s(u, v))

Thus, we have:

• If max(ν̂f(u, v), ν̂s(u, v)) > 0, {u, v} is an NG.

• If max(ν̂f(u, v), ν̂s(u, v)) = 0, {u, v} is classified as a

weakly NG.

Case 2: wuv < 0. Let G′ = flip(G, v). Similar to Case 1, we

have,

νG′(X) ≥ max(ν̂f(u, v), ν̂s(u, v)).

Thus, if max(ν̂f(u, v), ν̂s(u, v)) > 0, {u, v} is an NG in G′.

In other words, (u, v) is an antipolar pair in G.

Non-separable triple identification. Consider a group of three

nodes X = {u, v, z} that has at least 2 edges among the nodes.

Apply the lower bound on the non-separability index ν̂G(X)
in Lemma IV.1 on X , we have

ν̂G(X) < min
Z⊂X,Z 6=∅

(c(Z,X \ Z)) ≤ MC(G[X]),

where G[X] is the subgraph induced by X in G.

Recall that, we can only find the relation among the nodes in

X if the ν̂G(X) ≥ 0. Hence, we will flip the nodes in X such

2{u, v} could actually be an NG but the bound is not tight enough to detect

u

v z

u

v z
(a) The number of edges
with negative weight is even.
All edges have non-negative
weights after flipping.

u

v z

u

v z

(b) The number of negative
weights is odd. The edge (u, v)
(with the smallest absolute
weight) has a negative weight
after flipping.

Fig. 3: Flipping nodes in X = {u, v, z} to ensure the WMC

on the induced graph on X is non-negative.

that the WMC in the subgraph induced by X is non-negative.

As every time we flip a node in X , we always change the signs

of two edges in G[X], the parity on the number of negative

weight edges remain the same. Thus, we consider two cases

based on the number of edges with negative weight (see Fig.

3).

• Case 1: The number of edges with negative weight is

even. In this case, we can flip the nodes in X such that

all edges in G[X] is non-negative. Thus, the WMC of

G[X] is non-negative.

• Case 2: The number of edges with negative weight is

even. In this case, we can flip the nodes in X such that

only the edge, with the smallest absolute weight, has a

negative weight after flipping. Now, the WMC of G[X]
is also non-negative.

Let X̄ ⊆ X be the set of nodes that we need to flip so that

the WMC of G[X] is also non-negative. Let G′ = flipX̃(G)
and w̃uv, w̃uz, w̃vz be the weight of (u, v), (u, z), (v, z),
respectively, on G′. We define the triangle score ν̂t as follows.

ν̂t(X) = min
x∈X

(

∑

y∈X\{x}

w̃xy −min
(

‖w(x)‖ −
∑

y∈X\{x}

|wxy|,

∑

y∈X\{x}

(

‖w(y)‖ −
∑

z∈X\{y}

|wyz|
)))

(9)

Lemma IV.3. Consider a graph G = (V,E,w) and any set

X ⊆ V of size 3. Let X̄ ⊆ X be the set of nodes that we

need to flip so that the WMC of G[X] is also non-negative. If

ν̂t(X) > 0, we have:

• X̃ and X \ X̃ are NG groups.

• ∀u ∈ X̃, v ∈ X \ X̃ , (u, v) is an antipolar pair.

Proof. Let G′ = flipX̃(G) and w̃uv, w̃uz, w̃vz be the weight

of (u, v), (u, z), (v, z), respectively, on G′. Let Y = V \X ,

we have,

ν̂G′(X) ≥ min
x∈X

(

∑

y∈X\{x}

w̃xy −min(c|.|({x}, Y ),

c|.|(X \ {x}, Y ))
)

= min
x∈X

(

∑

y∈X\{x}

w̃xy −min
(

‖w(x)‖ −
∑

y∈X\{x}

|wxy|,

∑

y∈X\{x}

(

‖w(y)‖ −
∑

z∈X\{y}

|wyz|
)))

= ν̂t(X).



If ν̂t(X) > 0, X is an NG on G′. Thus, X̃ and X \ X̃ are

NGs. And ∀u ∈ X̃, v ∈ X \ X̃ , (u, v) is an antipolar pair.

C. FastHare algorithm

We now describe the FastHare algorithm to reduce the

Hamiltonian. The algorithm follows the compression frame-

work (see Fig 1) in Section III. It transforms the Hamiltonian

reduction task into a graph compression problem. Its main

algorithm also consists of multiple rounds, each round consists

of three steps: 1) identification of NGs, weakly NGs, and

antipolar pairs 2) enlarging step, and 3) compression step.

The identification of NGs is done by computing fast scores,

the similarity scores, and the triangle scores for groups of

2 and 3 nodes in the graph. The main trick is to levarage

fast score, that can be computed and maintained efficiently

after merging and flipping, to guide the search for potential

edges and triangles and attemp to prove their non-separability

with more expensive bounds/scores. The pseudocode of the

FastHare algorithm is given in Algorithm 1.

Algorithm 1: Algorithm FastHare.

Input : A graph G = (V,E,w) and a parameter α
Output: A compressed graph.

1 Compute the fast score ν̂f(u, v)∀(u, v) ∈ E Add top nα
edges with the highest fast score to a list L

2 Compute the similarity score for all edges in L
3 For (u, v) ∈ L and w ∈ adj(u) ∪ adj(v), compute

ν̂t({u, v, z}
4 repeat
5 Obtain Xs,Xw,R from pairs and triples with

non-negative updated scores (Lemmas IV.2 and IV.3)
6 Compress the graph G based on the list Xs,Xw,R

using the compression in Subsection III-C3
7 Update the scores and the list L on the new graph
8 until Xs,Xw,R = ∅;
9 Return G

a) Initialization (Lines 1-3, Alg. 1): The FastHare algo-

rithm starts with an initialization phase, followed by a loop

of iterations to reduce the Hamiltonian. In the initialization

phase, we compute the fast score (Eq. 7) for all edges and

select the top nα edges with the highest fast score to a list L.

Then, we compute the similarity score for all edges in L and

the triangle score for the groups that have at least one edges

in L.

b) Iterative compression (Lines 5-7, Alg. 1): In each

iteration, we obtain the collection of NGs Xs, the collection

of weakly NGs Xw, and the collection of antipolar pairs

R from pairs and triples with non-negative updated scores

(Lemmas IV.2 and IV.3). The scores are computed in the

previous iteration (or the initialization for the first iteration).

Then, we compress the graph G based on the list Xs,Xw,R
using the compression in Subsection III-C3. Finally, we update

the scores and the list L on the new graph.

Efficiently maintaining the score. For each node v ∈ V , we

maintain a value Av = ‖w(v)‖. Plus, for each edge (u, v) ∈ L,

we maintain a value Buv = B′
uv − |wuz| − |wvz|, where

B′
uv =

{

∑

z∈adj
u
∩adj

v

|wuz − wvz| if wuv ≥ 0,
∑

z∈adj
u
∩adj

v

|wuz + wvz| if wuv < 0,

where adjv is the set of neighbors of the node v.

For any pair (u, v) ∈ E, we can compute the fast score

ν̂f(u, v) = 2|wuv| −min(Au, Av).

For any pair (u, v) ∈ L, we can compute the similarity score

ν̂s(u, v) = 2|wuv| −
1

2
(Au +Av +Buv).

The triangle score of a group X can also be computed based

on the values of A.

Updating the scores after flipping a node. After flipping a node

u, ∀v ∈ V the value Av does not change. We only need to

update the value of Buv for all (u, v) ∈ L such that v ∈ adju.

For the edge (v, z) ∈ L such that v, z ∈ adju, the value of

Buv does not changed since the sign of both wuv and wuz are

changed.

Updating the scores after merging two nodes. After merging

two nodes (x, y) to a new node z. We compute the new value

of Az and update the value Au for all u ∈ adjx∪adjy . For the

similarity score, we remove all edges in L that one endpoint

is x or y. Then we update Buv for all edges (u, v) ∈ L such

that both u and v are adjacent to x or y. We also add at most

α edges from z with the highest fast score to L and update

the value B of those edges. This limitation on the number of

updated edges is important to keep the running time bounded

by O(αn2).

D. Complexity analysis

Lemma IV.4. The time complexity of the FastHare algorithm

(Algorithm 1) is O(n2α)

Proof. For the initialization, the time complexity to compute

the fast score, the similarity score, and the triangle score is

O(n2), O(n2α), and O(n2α), respectively.

For the iterative compression, after flipping a node u, we

only need to compute for all (u, v) ∈ L such that v ∈ adju.

Thus, the cost to update the scores after a flipping is O(nα).
After the merging two nodes (x, y) to a node z, we update

the score for all edges (u, v) ∈ L such that both u and v are

adjacent to x or y and the top α edges from z with the highest

fast score. Thus, the cost to update after a merging is O(nα).
In FastHare the total number of flipping/merging is n. Thus,

the total time complexity to update the score is O(n2α). Plus,

in each iteration, we only check for the pairs and triplets that

have the scores updated. Thus, the time complexity to check

the pairs and triplets is O(n2α).

Therefore, in total, the time complexity of the FastHare

algorithm is O(n2α).





Problem #tests #nodes Deg.
Avg. processing time #reducible instances

Reduction ratio
Logical qubits Physical qubits

FastHare D-Wave FastHare D-Wave FastHare D-Wave FastHare D-Wave

Gset [34] 17 5k-20k 2-12 0.0s 0.1s 5 3 6% (19%) 0% (2%) NA (NA) NA (NA)
Beasley [35] 60 0k-3k 6-250 0.0s 0.1s 20 3 8% (24%) 0% (2%) 10% (31%) 1% (4%)
Culberson [36] 108 1k-5k 4-2,927 0.1s 0.1s 57 0 8% (15%) 0% (0%) 28% (31%) 0% (0%)
Imgseg [37] 100 1k-28k 2-5 0.1s 0.2s 100 0 79% (79%) 0% (0%) 92% (92%) 0% (0%)
Others 3,111 0k-38k 1-6,965 0.3s 0.5s 1,302 296 21% (50%) 8% (82%) 35% (62%) 10% (84%)

Overall 3,396 0k-38k 1-6,965 0.3s 0.5s 1,484 302 22% (51%) 7% (81%) 36% (62%) 10% (84%)

TABLE I: Comparison on real world problems. Here, we can only embed 2, 031 instances with in an hour. The reduction ratio

of physical qubits is reported based on those instances.

Processing time. Based on Fig. 5, the processing time of

FastHare is several folds faster than D-Wave’s. For example,

on the largest Erdos-Renyi network with the number of nodes

n = 100, 000, the running time of FastHare and D-Wave

are 0.2s and 0.8s, respectively. Nevertheless, in terms of

processing time, both roof duality implemented in D-Wave

and FastHare are highly efficient in preprocessing Hamiltonian

before mapping to the QPU.

C. Benchmark on MQLib instances

Our experiments on MQLib [32] is shown in Table I. The

results indicate a significant reduction by FastHare algorithm.

FastHare outperforms D-Wave in the reduction ratio. It can

reduce 1, 484 out of 3, 396 instances, i.e., about 5 times more

than that of D-Wave’s roof duality. The average reduction

ratio in terms of logical and physical qubits among the

reducible instances are 51% and 62%, respectively. It suggest

a significant qubit savings as a 62% reduction mean we can

solve instances that require 2.5 times more qubits than the

current limit on the state-of-the-art quantum annealers.

D. Reducibility prediction

We investigate 70 metrics that are provided in the MQLib6

to see which characteristics affect the reducibility of the in-

stances. We rank the metrics based on the Pearson correlation

coefficient [39] with the reduction ratio. Top 5 characteristics

with the highest correlation for FastHare and D-Wave are

shown in Table II.

The top two metrics (log norm ev2 and log norm ev1,

respectively) are all calculated from the weighted graph Lapla-

cian matrix: the logarithm of the first and second largest

eigenvalues normalized by the average node degree and the

logarithm of the ratio of the two largest eigenvalues (log

ev ratio). This suggests that Hamiltonian with sparse cut are

easier to reduce for FastHare.

The implemented D-Wave’s roof duality seems to work well

on instances with constant clustering coefficient (clust const).

This behavior requires further investigation to determine the

true reason behind why D-Wave’s roof duality works very well

on a few instances but cannot compress for the rest.

We also use logistic regression [40] to identify the metrics

that have the most effect on the reducibility of the instances.

Here, we remove 12 time related metrics and normalize the

6https://github.com/MQLib/MQLib/blob/master/data/metrics.csv

FastHare D-Wave
Metrics Corr. Metrics Corr.

log norm ev2 0.73 clust const 0.42
log norm ev1 0.66 clust log kurtosis -0.35
mis 0.59 clust max -0.27
log ev ratio -0.47 weight mean 0.25
clust stdev 0.46 mis 0.25

TABLE II: Top 5 metrics with the highest correlation with

reduction ratio.

remaining metrics such that the maximum absolute value of

each metric equal one. For each algorithm, we set the label of

an instance to one if the algorithm can reduce that instance.

After running the logistic regression, we normalize the weights

of the logistic regression such that the norm two of the weight

vector equal one. Table III shows the top 5 metrics with the

highest absolute weights.

FastHare D-Wave
Metrics Weight Metrics Weight

chromatic 0.33 mis 0.49
weight log kurtosis 0.29 weight max -0.39
mis 0.27 avg neighbor deg mean -0.26
avg neighbor deg mean -0.24 core log kurtosis 0.25
log ev ratio -0.20 percent pos -0.23

TABLE III: Top 5 metrics that have the highest absolute

weights in the logistic regression.

VI. CONCLUSION

We propose FastHare, an algorithm to reduce the size of

Ising Hamiltonian, thus, provide qubits saving for quantum

annealing. The method is generic and can be applied for Ising

Hamiltonian of different applications. We perform the first

large-scale benchmarks to measure the reducibility in 3000+

instances from MQLib library and synthesized Hamiltonian,

showing significant saving in applying Hamiltonian reduction.

Importantly, the fast processing time of FastHare (averag-

ing 0.3s) make it an inexpensive choice for preprocessing.

FastHare also outperforms the roof duality reduction, imple-

mented in D-Wave’s Ocean SDK, both in time and quality by

several folds. In future, FastHare can be integrated with minor-

embedding methods to balance between number of physical

qubits, chain lengths, and range of the coupling strengths to

further improve the performance of quantum solvers.
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“Hybrid quantum investment optimization with minimal holding period,”
Scientific Reports, vol. 11, no. 1, pp. 1–6, 2021.

[12] C. Grozea, R. Hans, M. Koch, C. Riehn, and A. Wolf, “Optimising
rolling stock planning including maintenance with constraint program-
ming and quantum annealing,” arXiv preprint arXiv:2109.07212, 2021.

[13] S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, and
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