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Abstract

We develop a rigorous and general framework for constructing information-theoretic diver-
gences that subsume both f -divergences and integral probability metrics (IPMs), such as
the 1-Wasserstein distance. We prove under which assumptions these divergences, hereafter
referred to as (f,Γ)-divergences, provide a notion of ‘distance’ between probability measures
and show that they can be expressed as a two-stage mass-redistribution/mass-transport
process. The (f,Γ)-divergences inherit features from IPMs, such as the ability to compare
distributions which are not absolutely continuous, as well as from f -divergences, namely the
strict concavity of their variational representations and the ability to control heavy-tailed dis-
tributions for particular choices of f . When combined, these features establish a divergence
with improved properties for estimation, statistical learning, and uncertainty quantification
applications. Using statistical learning as an example, we demonstrate their advantage
in training generative adversarial networks (GANs) for heavy-tailed, not-absolutely con-
tinuous sample distributions. We also show improved performance and stability over
gradient-penalized Wasserstein GAN in image generation.
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1. Introduction

Divergences and metrics provide a notion of ‘distance’ between multivariate probability
distributions, thus allowing for comparison of models with one another and with data.
Divergences are used in many theoretical and practical problems in mathematics, engineering,
and the natural sciences, ranging from statistical physics, large deviations theory, uncertainty
quantification and statistics to information theory, communication theory, and machine
learning. In this work, we introduce and study what we term the (f,Γ)-divergences, denoted
by DΓ

f and defined by the variational expression

DΓ
f (Q‖P ) ≡ sup

g∈Γ

{
EQ[g]− ΛPf [g]

}
, (1)

ΛPf [g] ≡ inf
ν∈R
{ν + EP [f∗(g − ν)]} , (2)

where Q and P are probability measures, f is a convex function with f(1) = 0, f∗ denotes
the Legendre Transform (LT) of f , and Γ ⊂Mb(Ω) is an appropriate function space.1 The
resemblance to the variational representation of the f -divergence is evident (see Equation
4 below), however, the additional optimization over shifts ν in (2), which is motivated by
the Gibbs variational principle (Ben-Tal and Teboulle, 2007), will enable the derivation of
many theoretical properties of the (f,Γ)-divergence. In the special case of the Kullback-
Leibler (KL) divergence, ΛP

f [g] is exactly the cumulant generating function that arises in
the Donsker-Varadhan variational formula (Dupuis and Ellis., 1997). We will show that the
(f,Γ)-divergences are related to, interpolate between, and inherit key properties from both
the f -divergences and the integral probability metrics (IPMs). To motivate the definition in
(1), we first recall the definition and basic properties of f -divergences and IPMs.

The family of f -divergences includes among others the KL divergence (Kullback and
Leibler, 1951), the total variation distance, the χ2-divergence, the Hellinger distance, and
the Jensen-Shannon (JS) divergence (Ali and Silvey, 1966; Csiszár, 1967). The f -divergence
between two probability measures Q and P induced by a convex function f satisfying
f(1) = 0 is defined by

Df (Q‖P ) ≡ EP [f(dQ/dP )] . (3)

This definition assumes absolute continuity between Q and P , Q� P , which in particular
means that the support of Q is included in the support of P . The estimation of an f -
divergence directly from (3) is challenging since it requires knowledge of the likelihood
ratio (i.e., Radon-Nikodym derivative) dQ/dP , such as when working within a parametric
family, or of a reasonable approximation to dQ/dP , usually through histogram binning,
kernel density estimation (Wang et al., 2005; Kandasamy et al., 2015), or through k-
nearest neighbor approximation (Wang et al., 2006). However, parametric methods greatly
restrict the collection of allowed models, resulting in reduced expressivity, whereas non-
parametric likelihood-ratio methods do not scale efficiently with the dimension of the data
(Krishnamurthy et al., 2014). To address such challenges, statistical estimators which are
based on variational representations of divergences have recently been introduced (Nguyen
et al., 2010; Belghazi et al., 2018).

1. Mb(Ω) denotes the set of all measurable and bounded real-valued functions on Ω.
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Variational representation formulas for divergences, often referred to as dual formula-
tions, convert divergence estimation into, in principle, an infinite-dimensional optimization
problem over a function space. A typical example of a variational representation is the LT
representation of the f -divergence between Q and P , given by (Broniatowski and Keziou,
2006; Nguyen et al., 2010)

Df (Q‖P ) = sup
g∈Mb(Ω)

{
EQ[g]− EP [f∗(g)]

}
. (4)

Such representations offer a useful mathematical tool to measure statistical similarity
between data collections as well as to build, train, and compare complex probabilistic
models. The main practical advantage of variational formulas is that an explicit form of the
probability distributions or their likelihood ratio, dQ/dP , is not necessary. Only samples
from both distributions are required since the difference of expected values in (4) can be
approximated by statistical averages. In practice, the infinite-dimensional function space
has to be approximated or even restricted. One of the first attempts was the restriction of
the function space to a reproducing kernel Hilbert space (RKHS) and the corresponding
kernel-based approximation in Nguyen et al. (2010). More recently, the optimization (4)
has been approximated using flexible regression models and particularly by neural networks
(Belghazi et al., 2018) and these techniques are widely used in the training of generative
adversarial networks (GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017; Nowozin et al.,
2016; Gulrajani et al., 2017). Variational representations of divergences have also been used
to quantify the model uncertainty in a probabilistic model (arising, e.g., from insufficient
data and partial expert knowledge). For instance, applying the f -divergence formula (4)
to cg − ν, solving for EQ[g], and optimizing over c > 0, ν ∈ R leads to the uncertainty
quantification (UQ) bound (Chowdhary and Dupuis, 2013; Dupuis et al., 2016)

EQ[g] ≤ inf
c>0

{
1

c
ΛPf [cg] +

1

c
Df (Q‖P )

}
. (5)

Similarly, one can obtain a corresponding lower bound for any quantity of interest g ∈Mb(Ω).
The UQ inequality (5) bounds the uncertainty in the expectation of g under an alternative
model Q in terms of expectations under the baseline model P and the discrepancy between
Q and P (quantified via Df (Q‖P )). Further discussion of the general connection between
variational characterizations of divergences and UQ can be found in Glasserman and Xu
(2014); Atar et al. (2015); Lam (2016); Breuer and Csiszár (2016); Gourgoulias et al. (2020);
Dupuis et al. (2020); Dupuis and Mao (2019); Birrell et al. (2020).

Integral probability metrics are defined directly in terms of a variational formula (Müller,
1997; Sriperumbudur et al.), generalizing the Kantorovich-Rubinstein variational formula
for the Wasserstein metric (Villani, 2008). More specifically, they are defined by maximizing
the differences of respective expected values over a function space Γ,

WΓ(Q,P ) = sup
g∈Γ

{
EQ[g]− EP [g]

}
, (6)

and we refer to this object as the Γ-IPM. Despite the name, IPMs are not necessarily metrics
in the mathematical sense unless further assumptions on Γ are made. This will not be
an issue for us going forward, as we are not focused on the metric property; we will be
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concerned with the divergence property, as defined in Section 2.1 below. Examples of IPMs
include: the total variation metric, which is derived when the function space Γ is the unit
ball in the space of bounded measurable functions; the Wasserstein, metric where Γ is the
space of Lipschitz continuous functions with Lipschitz constant less than or equal to one;
the Dudley metric, where the function space Γ is the unit ball in the space of bounded and
Lipschitz continuous functions; and the maximum mean discrepancy (MMD), where Γ is the
the unit ball in a RKHS, see also Müller (1997); Sriperumbudur et al.; Sriperumbudur et al.
(2012). The definition of an IPM through the variational formula (6) leads to straightforward
and unbiased statistical estimation algorithms (Sriperumbudur et al., 2012). Furthermore,
the Wasserstein metric applied to generative adversarial networks (GANs) is known to
substantially improve the stability of the training process (Arjovsky et al., 2017; Gulrajani
et al., 2017), while MMD offers one of the most reliable two-sample tests for high dimensional
statistical distributions (Gretton et al., 2012).

In summary, there are two fundamental mathematical ingredients involved in variational
formulas for f -divergences and IPMs, with both families having their own strengths and
weaknesses.

a) The Objective Functional : The objective functional in a variational representation is
the quantity being maximized, namely EQ[g]− EP [f∗(g)] for the f -divergences and
EQ[g] − EP [g] for the IPMs. The former depends on f and for appropriate f ’s it
is strictly concave in g, while the latter is the same for all IPMs and is linear in g.
Stronger convexity/concavity properties could result in improved statistical learning,
estimation, and convergence performance. The ability to vary the objective functional
by choosing f also allows one to tailor the divergence to the data source, e.g., for
heavy tailed data. Finally, note that alternative objective functionals can yield the
same divergence (Ben-Tal and Teboulle, 2007; Ruderman et al., 2012; Belghazi et al.,
2018; Birrell et al., 2020), and their careful choice can have a substantial impact on
their statistical estimation (Belghazi et al., 2018; Ruderman et al., 2012; Birrell et al.,
2020).

b) The Function Space: This is the space over which the objective functional is optimized.
In (4), it is the same function space for all f -divergences, namely Mb(Ω), while the
choice of function space Γ is what defines an IPM in (6). The choice of Γ has a
profound impact on the properties of a divergence, e.g., the ability to meaningfully
compare not-absolutely continuous distributions.

As we will show, the properties of the (f,Γ)-divergences can be tailored to the require-
ments of a particular problem through the choice of the objective functional (via f) and
the function space Γ. The need for such a flexible family of divergences that combines the
strengths of both f -divergences and IPMs is motivated by problems in machine learning and
UQ, where properties of the data source or baseline model dictate the requirements on f and
Γ, e.g., the f -divergence UQ bound (5) is unable to treat structurally different alternative
models Q, which can easily be mutually singular with P , as Df (Q‖P ) =∞ under a loss of
absolute continuity; similar issues appear in GANs (Arjovsky et al., 2017).

Related approaches include the recent studies by Liu and Chaudhuri (2018); Farnia and
Tse (2018); Miyato et al. (2018); Song and Ermon (2020); Husain et al. (2019); Dupuis and
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Mao (2019); Glaser et al. (2021). In Miyato et al. (2018) the authors studied the use of
spectral normalization to impose a Lipschitz constraint on the discriminator of a GAN; this
is an example of (1) with a particular choice of function space. In Song and Ermon (2020),
the authors proposed a class of objective functionals with an additional optimization layer,
aiming to bridge the gap between the variational formulas for f -divergences and Wasserstein
metrics and applied it to adversarial training of generative models. However, the paper
does not provide a rigorous connection to the Wasserstein metric, since the function space
appearing in their main Theorem 1 cannot include a Lipschitz constraint. This is in contrast
to their practical implementation in Algorithm 1, which does employ a Lipschitz constraint.
Our approach bridges this gap between theory and practice, as we are able to explicitly
handle Lipschitz function spaces. Finally, our approach does not require the introduction of a
third neural network, no matter what the choice of f -divergence may be. On the other hand,
the authors in Dupuis and Mao (2019) developed a variational formula for general function
spaces in the case of the KL divergence, providing a systematic and rigorous interpolation
between KL divergence and IPMs. Definition (1) can be also viewed as a regularization of
the classical f -divergences, and related objects have also been introduced and studied in Liu
and Chaudhuri (2018); Husain et al. (2019); Farnia and Tse (2018); Glaser et al. (2021).
While there is some overlap with several prior works, the aim of this paper is to provide a
systematic and rigorous development of the (f,Γ)-divergences, focusing on a number of new
properties that are potentially beneficial in learning and UQ applications. Specifically:

1. We derive conditions under which DΓ
f has the divergence property, and thus provide

a well-defined notion of ‘distance’ (Part 4 of Theorem 8 and Part 4 of Theorem 15).
One key novelty is the introduction of the object (2) which is critical in the proof of
this property.

2. We show that DΓ
f interpolates between the f -divergence and Γ-IPM in the sense of

infimal convolutions, including existence of an optimizer (Parts 1 and 2 of Theorem
15). Again, (2) plays a critical role here.

3. Using the infimal convolution formula, we derive a mass-redistribution/mass-transport
interpretation of the (f,Γ)-divergences (Section 3).

4. We show that the family of (f,Γ)-divergences includes f -divergences and Γ-IPMs in
suitable asymptotic limits (Theorem 17).

5. The relaxation of the hard constraint g ∈ Γ in (1) to a soft-constraint penalty
term is presented in Theorem 31. This is a generalization of the gradient penalty
method for Wasserstein metrics (Gulrajani et al., 2017) to a much larger class of
objective functionals and penalties and a key tool in designing numerically efficient
implementations while still preserving the divergence property.

6. Relaxation of the condition Γ ⊂Mb(Ω) in (1), i.e., allowing Γ to contain appropriate
unbounded functions, is addressed in Theorem 36. This is a necessary point when
employing neural network estimation with unbounded activation functions.

7. We show that the (f,Γ)-divergences inherit several properties from both f -divergences
and the IPMs. The primary advantage inherited from IPMs is the ability to compare
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distributions which are not absolute continuous. The primary advantages inherited
from the f -divergence are the strict concavity of the objective functional with respect
to the test function, g, and the ability to compare heavy-tailed distributions (Section
6).

When combined, these advantages establish a divergence with better convergence and
estimation properties. We numerically demonstrate these merits in the training of GANs.
In Section 6.2, we show that the proposed divergence is capable of adversarial learning
of lower dimensional sub-manifold distributions with heavy tails. In this example, both
f -GAN (Nowozin et al., 2016) and Wasserstein GAN with gradient penalty (WGAN-GP)
(Gulrajani et al., 2017) fail to converge or perform very poorly. Furthermore, in Section
6.3 we present improvements over WGAN-GP and WGAN with spectral-normalization
(WGAN-SN) (Miyato et al., 2018), as measured by the inception score (Salimans et al.,
2016) and FID score (Heusel et al., 2017) (two standard performance measures), in real data
sets and particularly in CIFAR-10 (Krizhevsky, 2009) image generation. Interestingly, the
training stability is significantly enhanced when using the proposed (f,Γ)-divergence, as
compared to WGAN, which is evident from the fact that increasing the learning rate (i.e.,
stochastic gradient descent step size) eventually results in the collapse of WGAN but has
comparatively little impact on our newly proposed method. We conjecture that this is due
to the strict concavity of the objective functional of the (f,Γ)-divergence. We refer to these
new proposed GANs which are based on (f,Γ)-divergences as (f,Γ)-GANs.

The organization of the paper is as follows. The key properties of the (f,Γ)-divergences
are presented in Section 2. The mass-redistribution/mass-transport interpretation of the
(f,Γ)-divergences is discussed in Section 3. Section 4 develops a general theory of soft-
constraint penalization. Section 5 provides conditions under which the function space Γ can
be expanded to contain unbounded functions. The application of the (f,Γ)-divergences in
adversarial generative modeling is presented in Section 6. We conclude the paper and discuss
plans for future work in Section 7. Finally, detailed proofs can be found in the appendices.

2. Construction and Properties of the (f,Γ)-Divergences

In this section, we will derive the divergence property for the (f,Γ)-divergences and show
that they interpolate between f -divergences and IPMs as it is described in our main result
(Theorem 15). First we introduce our notation and recall some important properties of the
f -divergences.

2.1 Notation

For the remainder of the paper (Ω,M) will denote a measurable space, M(Ω) will be the set
of all measurable real-valued functions on Ω, Mb(Ω) will denote the subspace of bounded
measurable functions, P(Ω) will denote the space of probability measures on (Ω,M), and
M(Ω) will be the set of finite signed measures on (Ω,M). A subset Ψ ⊂ Mb(Ω) will be
called P(Ω)-determining if for all Q,P ∈ P(Ω),

∫
ψdQ =

∫
ψdP for all ψ ∈ Ψ implies

Q = P . The integral (expectation) of g with respect to P ∈ P(Ω) will also be written
as EP [g]. We say that a map D : P(Ω) × P(Ω) → [0,∞] has the divergence property

6



(f,Γ)-Divergences

Notation Description Reference

(Ω,M) Measurable space Section 2.1

(S, d) Metric space Section 2.1

M(Ω) & M(S) Spaces of finite signed measures Section 2.1

P(Ω) & P(S) Spaces of probability measures Section 2.1

M(Ω) & Mb(Ω) Spaces of measurable real-valued functions Section 2.1

C(S) & Cb(S) Spaces of continuous real-valued functions Section 2.1

Lip(S) & Lipb(S) Spaces of Lipschitz continuous functions Section 2.1

P , Q Probability distributions/measures Section 2.1

f Convex function on R Definition 2

F1(a, b) Set of convex functions Definition 2

Df f -Divergence Eq. (7)

ΛPf Generalized cumulant generating function Eq. (9)

Γ Test function space Definition 5

DΓ
f (f,Γ)-Divergence Eq. (15)

WΓ Γ-Integral probability metric Eq. (16)

W ρ Gradient-penalty Wasserstein divergence Eq. (38)

DL
α Lipschitz α-divergence Eq. (43) - (44)

Table 1: List of main symbols used throughout the manuscript.

if D(Q,P ) = 0 if and only if Q = P ; such maps provide a notion of ‘distance’ between
probability measures.

Remark 1 We emphasize that despite the standard (but potentially confusing) terminology,
not all f -divergences have the divergence property; see Section 2.2 below for further informa-
tion. Going forward, we will continue to distinguish between what we call a divergence and
the divergence property.

(S, d) will denote a complete separable metric space (i.e., a Polish space), C(S) will
denote the space of continuous real-valued functions on S, and Cb(S) will be the subspace
of bounded continuous functions. Lip(S) will denote the space of Lipschitz functions on S,
Lipb(S) the subspace of bounded Lipschitz functions, and for L > 0 we let LipLb (S) denote
the subspace consisting of bounded L-Lipschitz functions (i.e., functions having Lipschitz
constant L). P(S) will denote the space of Borel probability measures on S equipped
with the Prokhorov metric, thus making P(S) a Polish space. Recall that the Prokhorov
metric topology on P(S) is the same as the weak topology induced by the set of functions
πg : P 7→ EP [g], g ∈ Cb(S). For µ ∈ M(S) (finite signed Borel measures on S) we define
τµ : Cb(S) → R by τµ(g) =

∫
gdµ and we let T = {τµ : µ ∈ M(S)}. T is a separating

vector space of linear functionals on Cb(S). We equip Cb(S) with the weak topology from
T (i.e., the weakest topology on Cb(S) for which every τ ∈ T is continuous), which makes
Cb(S) a locally convex topological vector space with dual space Cb(S)∗ = T (Rudin, 2006,
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Theorem 3.10). We will let R ≡ R ∪ {−∞,∞} denote the extended reals. Given a function
h : R → R, its Legendre transform is defined by h∗(y) ≡ supx∈R{yx − h(x)}. Recall that
if h : R→ (−∞,∞] is convex and lower semicontinuous (LSC) then (h∗)∗ = h (Bot et al.,
2009, Theorem 2.3.5). Also recall that if h is convex and finite on (a, b) then the left and
right derivatives, which we denote by h′−(x) and h′+(x) respectively, exist for all x ∈ (a, b)
(Roberts and Varberg, 1974, Chapter 1). We will denote the closure of a set A by A and its
interior by Ao. Finally, we include in Table 1 a list of important notations, some of which
are defined elsewhere in the manuscript, with corresponding references.

2.2 Background on f-Divergences

The f -divergences are constructed using functions of the following form:

Definition 2 For a, b with −∞ ≤ a < 1 < b ≤ ∞ we define F1(a, b) to be the set of convex
functions f : (a, b)→ R with f(1) = 0. For f ∈ F1(a, b), if b is finite we extend the definition
of f by f(b) ≡ limx↗b f(x). Similarly, if a is finite we define f(a) ≡ limx↘a f(x) (convexity
implies these limits exist in (−∞,∞]). Finally, extend f to x 6∈ [a, b] by f(x) = ∞. The
resulting function f : R→ (−∞,∞] is convex and LSC.

The f -divergences are then defined as follows:

Definition 3 For f ∈ F1(a, b) and Q,P ∈ P(Ω) the corresponding f -divergence is defined
by

Df (Q‖P ) ≡

{
EP [f(dQ/dP )], Q� P

∞, Q 6� P .
(7)

A number of important properties of f -divergences are collected in Appendix B. An f -
divergence defines a notion of ‘distance’ between probability measures, as is made precise by
the following divergence property: Df (Q‖P ) ≥ 0 for all f ∈ F1(a, b) and if f is furthermore
strictly convex at 1 (i.e., f is not affine on any neighborhood of 1) then Df (Q‖P ) = 0 if
and only if Q = P . However, the f -divergences are generally not probability metrics. Our
primary examples will be the KL divergence and the family of α-divergences, which are
constructed from the following functions:

fKL(x) ≡ x log(x) ∈ F1(0,∞) , fα(x) =
xα − 1

α(α− 1)
∈ F1(0,∞) ,where α > 0, α 6= 1 . (8)

See Nowozin et al. (2016, Table 1) for further examples.
Key to our work are a pair of variational formulas that relate the f -divergence to the

functional

ΛPf [g] ≡ inf
ν∈R
{ν + EP [f∗(g − ν)]} , g ∈Mb(Ω) . (9)

As we will see, ΛPf takes the place of the cumulant generating function when one generalizes
from the KL divergence to f -divergences. The first of the following formulas expresses Df

as an infinite-dimensional convex conjugate of ΛP
f and the second is the dual variational

formula.
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1. Let f ∈ F1(a, b) and Q,P ∈ P(Ω). Then,

Df (Q‖P ) = sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} (10)

= sup
g∈Mb(Ω)

{EQ[g]− ΛPf [g]} , (11)

where the second equality follows from (9) and (10) due to the invariance of Mb(Ω)
under the shift map g 7→ g − ν for ν ∈ R; see also Proposition 50.

2. Let f ∈ F1(a, b) with a ≥ 0, P ∈ P(Ω), and g ∈Mb(Ω). Then we can rewrite ΛPf [g] as

ΛPf [g] = sup
Q∈P(Ω):Df (Q‖P )<∞

{EQ[g]−Df (Q‖P )} . (12)

Remark 4 f -divergences can alternatively be defined in terms of the densities of Q and P
with respect to some common dominating measure (Liese and Vajda, 2006). This definition
agrees with Eq. (7) when Q� P but in some cases the definition in Liese and Vajda (2006)
leads to a finite value even when Q 6� P . In this paper, we use the definition (7) because it
satisfies the variational formula (10), even when Q 6� P (see the proof of Proposition 50),
as well as the dual formula (12).

When f = fKL it is straightforward to show that ΛP
f becomes the cumulant generating

function,

ΛPfKL [g] = logEP [eg] , (13)

and Eq. (11) becomes the Donsker-Varadhan variational formula (Dupuis and Ellis., 1997,
Appendix C.2). Subsequently, Eq. (12) becomes the Gibbs variational formula (Dupuis and
Ellis., 1997, Proposition 1.4.2). For this reason, we will call (12) the Gibbs variational
formula for f -divergences. Versions of Eq. (10) were proven in Broniatowski and Keziou
(2006); Nguyen et al. (2010); we provide an elementary proof in Theorem 50 of Appendix B
for completeness. Eq. (11) is implicitly found in Ruderman et al. (2012, Theorem 1); see
Birrell et al. (2020) for further discussion of this relationship. More specifically, Ruderman
et al. (2012); Birrell et al. (2020) show that when a ≥ 0 the representation in (10) arises from
convex duality over the space of finite positive measures while (11) arises from convex duality
over the space of probability measures. On a metric space S, the optimizations in Equations
(10) and (11) can be restricted to Cb(S) via the application of Lusin’s Theorem (see Corollary
51). The dual formula (12) was proven in Ben-Tal and Teboulle (2007) and is also implicitly
contained in Ruderman et al. (2012, Equation 5) (we will require a generalization that also
covers the case a < 0; see Proposition 57). Under appropriate assumptions (Broniatowski
and Keziou, 2006, Theorem 4.4) the optimizer of (10) is given by

g∗ = f ′(dQ/dP ) . (14)

The definition in (7) does not depend on the value of f(x) for x < 0 and it is invariant under
the transformation f 7→ fc where fc(x) = f(x) + c(x − 1), c ∈ R. However, the objective
functionals in the variational formulas (10) and (11) can depend on these choices due to
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the presence of f∗. They both depend on the definition of f(x) for x < 0. The identity
f∗c (y) = f∗(y − c) + c implies that the objective functional in (10) depends on the choice of
c but the objective functional in Eq. (11) does not. Substituting fc into Eq. (10) and then
taking the supremum over c ∈ R is another way to derive Eq. (11), thus providing additional
motivation for the introduction of ΛP

f .

2.3 Definition and General Properties of the (f,Γ)-Divergences

Motivated by Eq. (11) - (12), by working with subsets of test functions Γ ⊂Mb(Ω) we can
construct a new family of so-called (f,Γ)-divergences whose convex conjugates at g ∈ Γ
equal ΛPf [g] and that have variational characterizations akin to Eq. (11). This is an extension
of the ideas in Dupuis and Mao (2019), which studied generalizations of the KL-divergence.
The identification of ΛPf as the proper replacement for the cumulant generating function is
the key new insight required to extend from the KL case to general f . Specifically, we make
the following definition:

Definition 5 Let f ∈ F1(a, b) and Γ ⊂Mb(Ω) be nonempty. For Q,P ∈ P(Ω) we define
the (f,Γ)-divergence by

DΓ
f (Q‖P ) ≡ sup

g∈Γ

{
EQ[g]− ΛPf [g]

}
, (15)

where ΛPf was defined in Eq. (9), and we define the Γ-IPM by

WΓ(Q,P ) ≡ sup
g∈Γ
{EQ[g]− EP [g]} . (16)

When we want to emphasize the distinction between Df (Q‖P ) and DΓ
f (Q‖P ) we will

refer to the former as a classical f -divergence. When f corresponds to the KL-divergence
(see Equation 8) we write R(Q‖P ) and RΓ(Q‖P ) in place of Df (Q‖P ) and DΓ

f (Q‖P ),
respectively.

The definition (15) is an infinite-dimensional convex conjugate, akin to Eq. (11). From
(11), we see that Df = DΓ

f when Γ =Mb(Ω) or, on a metric space S (and for appropriate

f ’s), when Γ = Cb(S) (see Corollary 51 and Remark 53). The WΓ’s are generalizations of
the classical Wasserstein metric on a metric space, which is obtained by setting Γ = Lip1

b(S).
Neither WΓ nor DΓ

f necessarily have the divergence property, however, our main results

present conditions which do imply the divergence property. As we will see, the use of ΛP
f

in (15) is crucial in our proof of the divergence property (see Theorem 8), as well as in our
derivation of the infimal convolution formula (see Theorem 15).

One can alternatively write the (f,Γ)-divergence as

DΓ
f (Q‖P ) = sup

g∈Γ,ν∈R
{EQ[g − ν]− EP [f∗(g − ν)]} . (17)

This formulation is useful when computing a numerical approximation to DΓ
f (Q‖P ). It

shows that ΛP
f in (15) does not need to be computed separately; one can formulate the

computation as a single optimization problem, incorporating one additional 1-dimensional

10
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parameter. In addition, if Γ is closed under the shift transformations g 7→ g − ν, ν ∈ R then
one can write

DΓ
f (Q‖P ) = sup

g∈Γ
{EQ[g]− EP [f∗(g)]} , (18)

thus arriving at the objects defined in Liu and Chaudhuri (2018); Husain et al. (2019);
Farnia and Tse (2018). In the KL case, one can simplify Eq. (15) by using (13),

RΓ(Q‖P ) = sup
g∈Γ
{EQ[g]− logEP [eg]}} , (19)

which results in the special case studied in Dupuis and Mao (2019).

Several of our results will require us to work on a metric space (see Section 2.4), but
first we present several properties that hold more generally. In the following theorem we
derive a dual variational formula to (15), which shows that if g ∈ Γ then Eq. (12) holds with
Df replaced by DΓ

f . This lends further credence to the definition (15) and its use of ΛP
f .

Theorem 6 Let f ∈ F1(a, b) where a ≥ 0, P ∈ P(Ω), and Γ ⊂Mb(Ω) be nonempty. For
g ∈ Γ we have

(DΓ
f )∗(g;P ) ≡ sup

Q∈P(Ω)
{EQ[g]−DΓ

f (Q‖P )} = ΛPf [g] . (20)

Remark 7 We refer to Theorem 70 in Appendix C for the proof. While most cases of
interest like Eq. (8) have a ≥ 0, we also cover the case a < 0 in Theorem 70.

Theorem 6 establishes DΓ
f as a natural generalization of Df when Γ is used as the test-

function space, generalizing the dual formula (12) for f -divegences obtained in Ben-Tal and
Teboulle (2007); Ruderman et al. (2012). Next we show that the DΓ

f is bounded above by
both Df and WΓ. This fact allows the (f,Γ)-divergences to inherit many useful properties
from both f -divergences and IPMs; see the examples in Section 6. We also give conditions
under which DΓ

f has the divergence property and thus provides a notion of ‘distance’ between
probability measures. This, along with Theorem 15 below, constitute the main theoretical
results of this paper. The proof of Theorem 8 can be found in Theorem 71 of Appendix C.

Theorem 8 Let f ∈ F1(a, b), Γ ⊂Mb(Ω) be nonempty, and Q,P ∈ P(Ω).

1.

DΓ
f (Q‖P ) ≤ inf

η∈P(Ω)
{Df (η‖P ) +WΓ(Q, η)} . (21)

In particular, DΓ
f (Q‖P ) ≤ min{Df (Q‖P ),WΓ(Q,P )}.

2. The map (Q,P ) ∈ P(S)× P(S) 7→ DΓ
f (Q‖P ) is convex.

3. If there exists c0 ∈ Γ ∩ R then DΓ
f (Q‖P ) ≥ 0.

4. Suppose f and Γ satisfy the following:

11
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(a) There exist a nonempty set Ψ ⊂ Γ with the following properties:

i. Ψ is P(Ω)-determining.

ii. For all ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0.

(b) f is strictly convex on a neighborhood of 1.

(c) f∗ is finite and C1 on a neighborhood of ν0 ≡ f ′+(1).

Then:

(i) DΓ
f has the divergence property.

(ii) WΓ has the divergence property.

Remark 9 Under stronger assumptions one can show that Eq. (21) is in fact an equality;
see Theorem 15 below.

Remark 10 Assumptions 4(b) and 4(c) hold, for instance, if f is strictly convex on (a, b)
and ν0 ∈ {f∗ <∞}o; see Theorem 26.3 in Rockafellar (1970).

Eq. (21) implies the following upper bound on DΓ
f :

Corollary 11 (Upper Bounds) Let U ⊂ P(Ω). Then

DΓ
f (Q‖P ) ≤ inf

η∈U
{Df (η‖P ) +WΓ(Q, η)} .

For instance, U could be a pushforward family, i.e., the distributions of hθ(X), θ ∈ Θ where
hθ are Ω-valued measurable maps and X is a random quantity. Such families are used in
GANs; see Section 6.

Examples of P (Ω)-determining sets:

1. Exponentials, ec·x, c ∈ Rn, i.e., the moment generating function; see Section 30 in
Billingsley (2012).

2. The set of 1-Lipschitz functions, g, on a metric space with ‖g‖∞ ≤ 1. This follows
from the Portmanteau Theorem; see, e.g., Theorem 2.1 in Billingsley (2013).

3. The unit ball of a reproducing kernel Hilbert space (RKHS), under appropriate
assumptions; see Sriperumbudur et al. (2011).

4. The set of ReLU neural networks. This follows from the universal approximation
theorem (Cybenko, 1989) and also applies to other activation functions, e.g., sigmoid.

5. The set of ReLU neural networks with spectral normalization (Miyato et al., 2018).

Several of these classes of functions have been used in existing methods; see Table 2 below.
Our examples in Section 6 will use Lipschitz functions and ReLU neural networks, including
spectral normalization in Section 6.3.1.

Remark 12 Note that it is a well-known result that polynomials do not constitute a P(Ω)-
determining set; there exist distinct measures that agree on all moments.

Remark 13 Depending on the domain, several of the above examples of P (Ω)-determining
sets consist of unbounded functions. To fit them into our framework it generally suffices
to work with truncated versions of these functions; we refer to Section 5 for a detailed
discussion.

12
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2.4 (f,Γ)-Divergences on Polish Spaces

When working on a Polish space, S, and under further assumptions on f and Γ, we are able
to show that DΓ

f interpolates between the classical f -divergence, Df , and the Γ-IPM, WΓ.
At various points, we will require f and Γ to have the following properties:

Definition 14 We will call f ∈ F1(a, b) admissible if limy→−∞ f
∗(y) <∞ (note that this

limit always exists by convexity) and {f∗ <∞} = R. If f is also strictly convex at 1 then we
will call f strictly admissible. We will call Γ ⊂ Cb(S) admissible if 0 ∈ Γ, Γ is convex,
and Γ is closed in the weak topology generated by the maps τµ, µ ∈M(S) (see Section 2.1).
Γ will be called strictly admissible if it also satisfies the following property: There exists a
P(S)-determining set Ψ ⊂ Cb(S) such that for all ψ ∈ Ψ there exists c ∈ R, ε > 0 such that
c± εψ ∈ Γ.

Our main result, Theorem 15, will require admissibility of both f and Γ. The functions
fKL and fα, α > 1, defined in Eq. (8), are strictly admissible but fα, α ∈ (0, 1) is not
admissible (however, Theorem 8 above does apply to fα for 0 < α < 1). The admissibility
requirements that Γ be convex and closed will let us express DΓ

f as the infinite-dimensional

convex conjugate of a convex and LSC functional. This will allow us to analyze DΓ
f using

tools from convex analysis. Strict admissibility will be key in proving the divergence property
for both WΓ and DΓ

f .

Examples of strictly admissible Γ:

1. Γ = Cb(S), which leads to the classical f -divergences.

2. Γ = Lip1
b(S), i.e., all bounded 1-Lipschitz functions, which leads to generalizations of

the Wasserstein metric.

3. Γ = {g ∈ Cb(S) : |g| ≤ 1}, which leads to generalizations of the total variation metric.

4. Γ = {g ∈ Lip1
b(S) : |g| ≤ 1}, which leads to generalizations of the Dudley metric.

5. Γ = {g ∈ X : ‖g‖X ≤ 1}, the unit ball in a RKHS X ⊂ Cb(S) (under appropriate
assumptions given in Lemma 77). This yields a generalization of MMD and is also
related to the recent KL-MMD interpolation method in Glaser et al. (2021); the latter
employs a soft constraint rather than working on the RKHS unit ball and is based on
the representation (10) instead of (11).

Note that the first two examples are shift invariant (hence Equation 18 is applicable) while
the latter three are not.

We are now ready to present the second key theorem in this paper, where we derive the
infimal convolution representation of DΓ

f and provide alternative (to Theorem 8) conditions

that ensure DΓ
f possesses the divergence property. The proof can be found in Appendix C,

Theorem 74.

Theorem 15 Suppose f and Γ are admissible. For Q,P ∈ P(S) let DΓ
f (Q‖P ) be defined

by (15) and let WΓ(Q,P ) be defined as in (16). These have the following properties:

13
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1. Infimal Convolution Formula:

DΓ
f (Q‖P ) = inf

η∈P(S)
{Df (η‖P ) +WΓ(Q, η)} . (22)

In particular, 0 ≤ DΓ
f (Q‖P ) ≤ min{Df (Q‖P ),WΓ(Q,P )}.

2. If DΓ
f (Q‖P ) <∞ then there exists η∗ ∈ P(S) such that

DΓ
f (Q‖P ) = Df (η∗‖P ) +WΓ(Q, η∗) . (23)

If f is strictly convex then there is a unique such η∗.

3. Divergence Property for WΓ: If Γ is strictly admissible then WΓ has the divergence
property.

4. Divergence Property for DΓ
f : If f and Γ are both strictly admissible then DΓ

f has the
divergence property.

Remark 16 If a ≥ 0 in Definition 2 then f∗ is nondecreasing and so the condition
limy→−∞ f

∗(y) <∞ is satisfied; see Lemma 46. In many cases, the divergence property for
DΓ
f still holds even if one or both of the conditions limy→−∞ f

∗(y) <∞, {f∗ <∞} = R are
violated and also under relaxed conditions on Γ; this was shown in Theorem 8.

The infimal convolution formula (22) - (23) gives one precise sense in which the (f,Γ)-
divergence variationally interpolates between the Γ-IPM, WΓ, and the classical f -divergence,
Df . It is a generalization of the results in Farnia and Tse (2018); Dupuis and Mao (2019),
the former assuming compactly supported measures and the latter covering the KL case.

2.5 Additional Properties

The following theorem details the behavior of DΓ
f in a pair of limiting regimes and further

illustrates the manner in which DΓ
f interpolates between Df and WΓ. These results again

require (strict) admissibility (see Definition 14).

Theorem 17 Let Q,P ∈ P(S) and Γ, f both be admissible. Then for all c > 0 the set
Γc ≡ {cg : g ∈ Γ} is admissible and we have the following two limiting formulas.

1. If Γ is strictly admissible then the sets ΓL are strictly admissible for all L > 0 and

lim
L→∞

DΓL
f (Q‖P ) = Df (Q‖P ) .

2. If f is strictly admissible then

lim
δ↘0

1

δ
DΓδ
f (Q‖P ) = WΓ(Q,P ) .

The proof of Theorem 17 is very similar to that of the corresponding results in the KL case
(Dupuis and Mao, 2019, Proposition 5.1 and 5.2). For completeness, we include its proof in
Appendix C (Theorem 79).

Theorem 8 implies the following convergence and continuity properties (see Theorem 80
in Appendix C for the proof):
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Theorem 18 Let f ∈ F1(a, b) and Γ ⊂Mb(Ω). Then:

1. If there exists c0 ∈ Γ∩R then WΓ(Qn, P )→ 0 =⇒ DΓ
f (Qn‖P )→ 0 and Df (Qn‖P )→

0 =⇒ DΓ
f (Qn‖P )→ 0, and similarly if one permutes the order of Qn and P .

2. Suppose f and Γ satisfy the following:

(a) There exist a nonempty set Ψ ⊂ Γ with the following properties:

i. Ψ is P(Ω)-determining.

ii. For all ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0.

(b) f is strictly convex on a neighborhood of 1.

(c) f∗ is finite and C1 on a neighborhood of ν0 ≡ f ′+(1).

Let P,Qn ∈ P(Ω), n ∈ Z+. If DΓ
f (Qn‖P ) → 0 or DΓ

f (P‖Qn) → 0 then EQn [ψ] →
EP [ψ] for all ψ ∈ Ψ.

3. On a metric space S, if f is admissible then the map (Q,P ) ∈ P(S)×P(S) 7→ DΓ
f (Q‖P )

is lower semicontinuous.

Corollary 19 Under the assumptions of Part 2 of Theorem 18 we have the following: If
Γ = Lip1

b(S) where S is a compact metric space then one can take Ψ = Γ and thereby conclude
that DΓ

f (Qn‖P )→ 0 iff DΓ
f (P‖Qn)→ 0 iff Qn → P in distribution iff WΓ(Qn, P )→ 0.

Remark 20 Corollary 19 follows from the equivalence between weak convergence and con-
vergence in the Wasserstein metric on compact spaces; see Theorem 2 in Arjovsky et al.
(2017) for this further relations between convergence in the Wasserstein metric and other
notions of convergence.

Finally, we derive a data processing inequality for (f,Γ)-divergences (see Theorem 81 in
Appendix C for the proof). This result applies to general measurable spaces. We will need
the following notation: Let (N,N ) be another measurable space and K be a probability
kernel from Ω to N . Given P ∈ P(Ω) we denote the composition of P with K by P ⊗K
(a probability measure on Ω×N) and we denote the marginal distribution on N by K[P ].
Given g ∈Mb(Ω×N) we let K[g] denote the bounded measurable function on Ω given by
x→

∫
g(x, y)Kx(dy).

Theorem 21 (Data Processing Inequality) Let f ∈ F1(a, b), Q,P ∈ P(Ω), and K be
a probability kernel from (Ω,M) to (N,N ).

1. Let Γ ⊂Mb(N) be nonempty. Then

DΓ
f (K[Q]‖K[P ]) ≤ DK[Γ]

f (Q‖P ) . (24)

2. Let Γ ⊂Mb(Ω×N) be nonempty. Then

DΓ
f (Q⊗K‖P ⊗K) ≤ DK[Γ]

f (Q‖P ) . (25)

Remark 22 In Eq. (24) we use the obvious embedding of Mb(N) ⊂Mb(Ω×N) to define
K[Γ] ≡ {K[g] : g ∈ Γ}.

We end this section by referring the reader to Table 2, which lists related works and
connections to our general framework.
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Extension of & connections to related work

Related Paper Function Space Γ Objective Functional Relevant Theorems

(Goodfellow et al.,
2014)

Neural networks JS divergence using
(10)

Theorem 8

(Nowozin et al., 2016) Neural networks f-divergence using
(10)

Theorem 8

(Belghazi et al., 2018) Neural networks KL-div. using (10) &
(11)

Theorem 8

(Miyato et al., 2018) Neural networks
& spectral nor-
malization

IPM (16) or f-
divergence (10)

Theorem 8

(Arjovsky et al., 2017) Lip1
b(S) IPM (16) Theorem 15

(Gulrajani et al., 2017) Lipb(S) IPM (16) & gradient
penalty

Theorems 15 & 31

(Song and Ermon, 2020,
Algorithm 1)

Lip1
b(S) KL divergence using

(10)
Theorem 15

(Nguyen et al., 2010) RKHS KL, f-divergence us-
ing (10)

Theorem 15

(Gretton et al., 2012) Unit ball in
RKHS

IPM (16) Theorem 15

(Glaser et al., 2021) RKHS KL-div. using (10) &
RKHS norm penalty

Theorems 15 & 31

(Dupuis and Mao,
2019)

convex & closed Γ KL-divergence Theorem 15

Table 2: Summarizing how our main theorems extend or relate to certain existing methods.
Our theory either applies directly to the cited methods or motivates the construction
of closely related interpolation and/or regularization methods that are based on
(11).
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3. Mass Redistribution/Transport Interpretation of (f,Γ)-Divergences

The bound

DΓ
f (Q‖P ) ≤WΓ(Q,P ) , (26)

which follows from Part 1 of either Theorem 8 or Theorem 15, makes it clear that DΓ
f (Q‖P )

can be finite and informative even if Q 6� P . For instance, if Γ = Lip1
b(S) then WΓ is the

classical Wasserstein metric, and this can be finite even for mutually singular Q and P . It
is well-known that the Wasserstein metric can be understood in terms of mass transport
(Villani, 2008). Generalizing this idea, the variational formula (23) allows us to interpret
the (f,Γ)-divergences in terms of a two-stage mass-redistribution/mass-transport process:

1. First the ‘mass’ distribution, P , is redistributed to form an intermediate measure,
η∗. This has cost Df (η∗‖P ), which depends on the relative amount of mass moved
from or added to each point, but is insensitive to the distance that the mass is moved.
However, the support of η∗ cannot be enlarged or shifted outside the support of P
during its construction, otherwise the cost would be infinite.

2. Next, the mass is transported from η∗ to Q with a cost WΓ(Q, η∗) that depends on the
distance the mass must be moved. In this step, the support of η∗ could be drastically
different from the support of Q, if necessary.

The optimizing η∗ achieves the optimal balance between the cost of redistributing mass in
step 1 and the cost of transporting mass in step 2.

Remark 23 When Γ 6= Lip1
b(S), DΓ

f is still characterized by the above two-stage procedure,

with the only difference being that the interpretation of WΓ may differ.

In this section we derive a characterization of the solution to the infimal convolution problem
(22) in the case where f ∈ F1(a, b) with a ≥ 0 and will use this to provide further insight
into the mass-redistribution/mass-transport interpretation. A key step will be to first
obtain existence and uniqueness results regarding the dual optimization problem (12) for
the classical f -divergences. The proof is found in Appendix C, Theorem 82.

Theorem 24 Let P ∈ P(Ω), g ∈ Mb(Ω), and f ∈ F1(a, b) be admissible with a ≥ 0. If f
is strictly convex on (a, b) then there exists ν∗ ∈ R such that

dQ∗ ≡ (f∗)′(g − ν∗)dP

is a probability measure and

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} = EQ∗ [g]−Df (Q∗‖P ) = ν∗ + EP [f∗(g − ν∗)] = ΛPf [g] .

Moreover, Q∗ is the unique solution to the optimization problem

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} . (27)
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Theorem 24 (specifically, the generalization found in Theorem 82) allows us to derive
in Theorem 25 a characterization of the solution, η∗, to the infimal convolution problem
(22). First we present a formal calculation; a precise statement of the result can be found
in Theorem 25 and a rigorous proof is given in Theorem 83 of Appendix C. This result
generalizes Theorem 4.12 in Dupuis and Mao (2019), which considered the KL case: First
assume (g∗, ν∗) is a maximizer of (15), and assume η∗ solves (22). Then

DΓ
f (Q‖P ) = EQ[g∗]− (ν∗ + EP [f∗(g∗ − ν∗)]) (28)

= EQ[g∗]− Eη∗ [g∗] + Eη∗ [g∗]− (ν∗ + EP [f∗(g∗ − ν∗)])
≤WΓ(Q, η∗) +Df (η∗‖P ) = DΓ

f (Q‖P ) .

Therefore, as the inequalities become equalities, we have

WΓ(Q, η∗) = EQ[g∗]− Eη∗ [g∗]

and

Df (η∗‖P ) = Eη∗ [g∗]− (ν∗ + EP [f∗(g∗ − ν∗)]) . (29)

Note that this also implies EP [(f∗)′(g∗ − ν∗)] = 1 and

dη∗ = (f∗)′(g∗ − ν∗)dP ,
g∗ = f ′(dη∗/dP ) + ν∗ P -a.s.

In particular, in the KL case (Dupuis and Mao, 2019, Remark 4.11), one has

g∗ = log(dη∗/dP ) + c0 P -a.s.

for some c0 ∈ R and, if Q� P , this leads to

RΓ(Q‖P ) = EQ[log(dη∗/dP )] , (30)

which has an obvious similarity to the formula for the classical KL divergence.

Theorem 25 Let Γ ⊂ Cb(S) be admissible and f ∈ F1(a, b) be admissible, where a ≥ 0 and
f∗ is C1. Fix Q,P ∈ P(S) and suppose we have g∗ ∈ Γ and ν∗ ∈ R that satisfy the following:

1. f((f∗)′(g∗ − ν∗)) ∈ L1(P ),

2. EP [(f∗)′(g∗ − ν∗)] = 1,

3. WΓ(Q, η∗) = EQ[g∗]− Eη∗ [g∗], where dη∗ ≡ (f∗)′(g∗ − ν∗)dP .

Then η∗ ∈ P(S) solves the infimal convolution problem (22) and

DΓ
f (Q‖P ) = EQ[g∗]− (ν∗ + EP [f∗(g∗ − ν∗)]) . (31)

If f is strictly convex then η∗ is the unique solution to the infimal convolution problem.
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Remark 26 In the context of MMD, g∗ is called the witness function (Gretton et al., 2012).
In the KL case, the existence of g∗ can be proven under appropriate compactness assumptions
(Dupuis and Mao, 2019, Theorem 4.8).

Remark 27 Eq. (23) from Theorem 15 makes it clear that DΓ
f (Q‖P ) < Df (Q‖P ) in ‘most’

cases. An exception to this occurs when Eq. (10) has an optimizer g∗ with g∗ ∈ Γ. In such
cases we have DΓ

f (Q‖P ) = Df (Q‖P ), the supremum (15) will also be achieved at g∗ since
Eq. (31) holds with ν∗ = 0, and the solution to the infimal convolution problem is η∗ = Q.

In general, the task of computing the intermediate measure η∗ in (23) is difficult, though
a naive approach could proceed as follows:

1. Approximate η ∈ P(S) by a neural network family hθ(X), where X is some random
noise source (as in the generator of a GAN; see Section 6); in this step we are using
Corollary 11 to construct an upper bound.

2. Approximate Df (η‖P ) and WΓ(Q, η) via their variational formulas (10) or (11) and
(16) respectively, with the function spaces being approximated via neural network
families (as in the discriminator of a GAN; again, see Section 6).

3. Solve the resulting min-max problem (22) via a stochastic-gradient-descent method to
approximate η∗ (and also g∗).

We did not explore the effectiveness of this naive method here, as it is tangential to the goals
of this paper; we leave the computation of η∗ for a future work. Nevertheless, the following
subsection presents a simple example that provides useful intuition.

3.1 Example: Dirac Masses

Here we consider a simple example involving Dirac masses where the (f,Γ)-divergence can
be explicitly computed using Theorem 25. This example further illustrates the two-stage
mass-redistribution/mass-transport interpretation of the infimal convolution formula (23)
and demonstrates how the location and distribution of probability mass impacts the result;
see Figure 1. Further explicit examples in the KL case can be found in Dupuis and Mao
(2019).

Let 0 = x1 < x2 < x3 and define the uniform distributions

P =
1

2
δx1 +

1

2
δx2 , Q =

1

3
δx1 +

1

3
δx2 +

1

3
δx3 . (32)

Note that Q 6� P and so Df (Q‖P ) = ∞; we will see that the (f,Γ)-divergences can be
finite. Specifically, we will compute the (fα,Lip1

b(R))-divergence for α > 1 via Theorem 25.
To do this we must find g∗ ∈ Lip1

b(R) and ν∗ ∈ R such that

1

2
(f∗α)′(g∗(x1)− ν∗) +

1

2
(f∗α)′(g∗(x2)− ν∗) = 1 , (33)

g∗ ∈ argmax
g∈Lip1

b(R)

{
1

3
(g(x1) + g(x2) + g(x3))− 1

2

(
g(x1)(f∗α)′(g∗(x1)− ν∗) (34)

+g(x2)(f∗α)′(g∗(x2)− ν∗)
)}

,
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where

(f∗α)′(y) = (α− 1)1/(α−1)y1/(α−1)1y>0

(see Eq. (60)); Eq. (33) is a simplification of Assumption 2 from Theorem 25 while Eq. (34)
corresponds to Assumption 3. The solution to the infimal convolution problem then has the
form

dη∗ =
1

2
(f∗α)′(g∗(x1)− ν∗)δx1 +

1

2
(f∗α)′(g∗(x2)− ν∗)δx2 . (35)

We will now outline how one solves for ν∗ and g∗. Without loss of generality we can assume
g∗(x1) = 0 (the objective functional for WΓ is invariant under constant shifts and at the
same time, shifting g∗ in η∗ can be achieved by redefining ν∗). The only dependence on g(x3)
in Eq. (34) is in the g(x3)/3 term, hence the optimal solution has g(x3) = x3 − x2 + g(x2).
Therefore we need to solve

1

2
(f∗α)′(−ν∗) +

1

2
(f∗α)′(g∗(x2)− ν∗) = 1 , (36)

g∗(x2) ∈ argmax
g(x2)∈[−x2,x2]

{
1

3
(x3 − x2) +

(
2

3
− 1

2
(f∗α)′(g∗(x2)− ν∗)

)
g(x2)

}
for ν∗ and g∗(x2). The solution to this is obtained as follows:

1. Let ν∗(g2) be the unique solution to 1
2(f∗α)′(−ν∗) + 1

2(f∗α)′(g2 − ν∗) = 1; the two terms
on the left hand side will be used to obtain the redistributed weights in η∗.

2. Take g∗,2 such that 1
2(f∗α)′(g∗,2 − ν∗(g∗,2)) = 2/3; this is inspired by the second line in

Eq. (36).

3. If 0 < x2 < g∗,2 then the solution to Eq. (36) is obtained at ν∗ = ν∗(x2) and

g∗(x) =


0, x < 0

x, x ∈ [0, x3)

x3, x ≥ x3 .

In this case, the optimal solution has 1/3 < η∗(x2) < 2/3, i.e., some amount of mass is
redistributed from x1 = 0 to x2 when forming η∗ and then mass is transported from
both x1 and x2 to x3 to form Q.

4. If x2 ≥ g∗,2 then the solution to Eq. (36) is obtained at ν∗ = ν∗(g∗,2) and

g∗(x) =


0, x < 0
g∗,2
x2
x, x ∈ [0, x2)

x− x2 + g∗,2, x ∈ [x2, x3)

x3 − x2 + g∗,2, x ≥ x3 .

In this case, x2 is sufficiently far away from x1 = 0 that the optimal solution, η∗,
is obtained by first redistributing mass from x1 = 0 to x2 so that η∗(x1) = 1/3,
η∗(x2) = 2/3. In the second step, mass is transported solely from x2 to x3 in order to
form Q.

20



(f,Γ)-Divergences

10-2 100 102 104
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

10-2 10-1 100 101 102
10-3

10-2

10-1

100

101

102

Figure 1: Solution of the infimal convolution problem (23) for DΓ
fα

(Q‖P ), where Γ = Lip1
b(R)

and Q and P are given by Eq. (32). The left panel shows the mass η∗(x2) as a
function of x2. For each value of α there is a transition point where all of the
mass required by Q at x3 is first redistributed to x2 when forming η∗, resulting in
η∗(x2) = 2/3. Note that the amount of mass moved to x2 in the redistribution
step does not depend on the distance of x3 from x2, only on the distance of x2

from x1 = 0. The right panel shows DΓ
f2

(Q‖P ) as a function of x2 and for several
different values of the ratio x3/x2.

This completes the construction of η∗ from Eq. (35). The value of the (fα,Lip1
b(R))-divergence

can then be computed via Eq. (31). The computation of g∗,2 and ν∗(g∗,2) from steps 1 and
2 must be done numerically and so we illustrate the solution graphically in Figure 1 by
plotting η∗(x2) as a function of x2 for a number of α’s. This shows how the mass must
be redistributed when forming η∗ from P . The above calculations reveal an interesting
transition; when x2 is not close 2 to x1 then the mass is transferred solely from x2 after it has
been redistributed from x1. However, when x1 and x2 are close enough then redistributing
all the necessary mass from x1 to x2 is not optimal and it is cheaper to transport probability
mass from both x1 and x2 to x3. The transition between these cases corresponds to the
point where x2 crosses above g∗,2 (which depends on α) and hence η∗(x2) saturates at the
value 2/3.

4. Soft Constraints and the Divergence Property

For computational purposes, it is often advantageous to replace the hard (i.e., strict)
constraint g ∈ Γ with a soft constraint in the form of a penalty term, V , subtracted from
the objective functional; by a penalty term, we mean V ‘activates’ (i.e., is nonzero) when
the constraint g ∈ Γ is violated. In this way we can construct a new divergence DV

f with

DΓ
f ≤ DV

f ≤ Df (we let the context distinguish between cases where the superscript denotes

2. Here, ‘closeness’ depends not only on the distance between the two points but also on f .
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a constraint space and cases where it denotes a penalty term); see Theorem 31 for the main
result of this section.

Of particular interest is the case Γ = Lip1
b(Rn) (we equip Rn with the Euclidean metric),

where the 1-Lipschtiz constraint can be relaxed to a one-sided gradient penalty term, thus
defining objects such as

Dρ
f (Q‖P ) = sup

g∈Lipb(Rn)

{
EQ[g]− ΛPf [g]− λ

∫
max{0, ‖∇g‖2 − 1}dρQ,P

}
, (37)

where λ > 0 is the strength of the penalty term and ρQ,P is a positive measure (often
depending on Q and P ). Here we are relying on Rademacher’s theorem (see Theorem 5.8.6
in Evans, 2010): L-Lipschitz functions on Rn are differentiable Lebesgue-a.e. and the norm
of the gradient is bounded by L. The penalty term in Eq. (37) will therefore be activated
only when g is not 1-Lipschitz.

Divergences with soft Lipschitz constraints were first applied to Wasserstein GAN
(Gulrajani et al., 2017) with great success, but the theoretical properties of such objects
have not been explored; specifically, it has not been shown that they satisfy the divergence
property. Here we show in great generality that the relaxation of a hard constraint to a soft
constraint preserves the divergence property, and therefore objects such as (37) still provide
a well-defined notion of ‘distance’ between probability measures. The basic requirement is
that the penalty term, which we denote by V , vanishes on the constraint space Γ.

Lemma 28 Let (Ω,M) be a measurable space, Γ ⊂ Γ̃ ⊂M(Ω), H : Γ̃×P(Ω)×P(Ω)→ R,
and V : Γ̃× P(Ω)× P(Ω)→ [0,∞] with V |Γ×P(Ω)×P(Ω) = 0. Define

DΓ(Q‖P ) = sup
g∈Γ

H[g;Q,P ] , DΓ̃(Q‖P ) = sup
g∈Γ̃

H[g;Q,P ] ,

DV (Q‖P ) = sup
g∈Γ̃

{H[g;Q,P ]− V [g;Q,P ]} ,

where ∞−∞ ≡ −∞. If DΓ and DΓ̃ both have the divergence property then so does DV .

Remark 29 The convention ∞−∞ ≡ −∞ is simply a convenient rigorous shorthand for
restricting the supremum to those g’s for which this generally undefined operation does not
occur.

Remark 30 More generally, if the supremum supg∈ΓH[g;Q,P ] is achieved at g∗ ∈ Γ
(depending on Q,P ) then the requirement V |Γ×P(Ω)×P(Ω) = 0 can be relaxed to V [g∗;Q,P ] = 0
for all Q,P .

Proof Using Γ ⊂ Γ̃, V ≥ 0, and V |Γ = 0 we have DΓ ≤ DV ≤ DΓ̃. DΓ satisfies the

divergence property, hence is non-negative. Therefore DV ≥ 0. DΓ̃ has the divergence

property, hence if Q = P then 0 = DΓ̃(Q‖P ) ≥ DV (Q‖P ) ≥ 0. Therefore DV (Q‖P ) = 0.
Finally, if DV (Q‖P ) = 0 then DΓ(Q‖P ) = 0 and hence the divergence property for DΓ

implies Q = P .

Using Theorem 15 and Corollary 68, we can apply Lemma 28 to the (f,Γ)-divergences
and thereby conclude the following:

22



(f,Γ)-Divergences

Theorem 31 Let f and Γ ⊂ Cb(S) be strictly admissible. Let Γ ⊂ Γ̃ ⊂ M(S) and
V : Γ̃× P(S)× P(S)→ [0,∞] with V |Γ×P(S)×P(S) = 0. For Q,P ∈ P(S) define

DV
f (Q‖P ) ≡ sup

g∈Γ̃

{(
EQ[g]− ΛPf [g]

)
− V [g;Q,P ]

}
,

where ∞−∞ ≡ −∞, −∞ +∞ ≡ −∞. Then DV
f has the divergence property and DΓ

f ≤
DV
f ≤ Df .

Proof Combine Lemma 28 with Part 4 of Theorem 15 and Theorem 65 below; the latter
shows that the variational formula for Df also holds when using the test-function space
M(Ω).

4.1 Soft-Lipschitz Constraints on Rn: One-Sided Versus Two-Sided Penalties

The gradient penalty term in Eq. (37) is one-sided, meaning that it penalizes ‖∇g‖ > 1 but
not ‖∇g‖ ≤ 1. This is consistent with the hard constraint that the Lipschitz constant be
less than or equal to 1. The first use of soft Lipschitz penalties in Gulrajani et al. (2017),
which considered the Wasserstein metric, also used a two-sided gradient penalty,

W ρ(Q,P ) = sup
g∈Lipb(Rn)

{
EQ[g]− EP [g]− λ

∫
(‖∇g‖ − 1)2dρQ,P

}
, (38)

which penalizes ‖∇g‖ 6= 1. An intuitively reasonable requirement to impose on any soft
constraint is that it vanish on the exact optimizer (if one exists) of the original strictly-
constrained optimization problem. The justification for a two-sided gradient penalty in
the Wasserstein case rests on Proposition 1 in Gulrajani et al. (2017), which shows that
the exact optimizer of the Kantorovich-Rubinstein variational formula for the classical
Wasserstein metric has gradient with norm 1 a.e. As the two-sided gradient penalty vanishes
on such functions, the object (38) will still possess the divergence property (see Remark
30). However, two-sided gradient penalties are not appropriate constraint-relaxations of
the (f,Γ)-divergences, as the gradient of the exact optimizer generally does not have norm
1 a.e. We demonstrate this via the following simple counterexample: Let Γ = Lip1

b(Rn),
P ∈ P(Rn), and define Q by dQ/dP = Z−1e−min{‖x‖,1}/2. The optimizer of the variational
formula defined in (14) is given for the classical KL divergence by

g∗ = log(dQ/dP ) + 1 = −min{‖x‖, 1}/2 + 1 + log(Z−1) ,

which is bounded and 1/2-Lipschitz, and so g∗ ∈ Γ. Therefore it is straightforward to see
that g∗ is also the optimizer for RΓ(Q‖P ) and it satisfies ‖∇g∗‖ ≤ 1/2 a.e. This proves that
the 2-sided penalty does not vanish on g∗. Similar counterexamples can be constructed using
Eq. (14) for other choices of f .

5. Extension of the (f,Γ)-Divergence Variational Formula to Unbounded
Functions

The assumption that all of the test functions g ∈ Γ are bounded can be very restrictive in
practice. In this section we provide general conditions under which the test-function space
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can be expanded to include (possibly) unbounded functions without changing the value of
DΓ
f . This fact will be used in the numerical examples in Section 6 below. The main result

in this Section in Theorem 36.
The key step in the extension to unbounded g’s is the following lower bound.

Lemma 32 Let f , Γ be admissible and, in addition, suppose f∗ is bounded below. Fix
Q,P ∈ P(S). If g ∈ L1(Q) and there exists gn ∈ Γ, a measurable set A, and C ∈ R with
gn → g pointwise, |gn| ≤ |g| for all n, and gn ≤ g1A + C1Ac for all n, then

DΓ
f (Q‖P ) ≥ EQ[g]− ΛPf [g] .

Remark 33 The additional assumption that f∗ is bounded below is satisfied in many cases
of interest, e.g., the KL divergence and α-divergences for α > 1.

Proof We need to show that

DΓ
f (Q‖P ) ≥ EQ[g]− (ν + EP [f∗(g − ν)])

for all ν ∈ R. Note that we have assumed f∗ is bounded below by some D ∈ R, hence
EP [f∗(g − ν)] exists in (−∞,∞]. If EP [f∗(g − ν)] =∞ then the claim is trivial, so for the
remainder of this proof we suppose f∗(g − ν) ∈ L1(P ).

The assumptions on g allow us to use the dominated convergence theorem to conclude
EQ[gn] → EQ[g]. Continuity of f∗ implies f∗(gn − ν) → f∗(g − ν). The admissibility
assumption implies limy→−∞ f

∗(y) <∞. Using this together with Lemma 44 we see that
f∗ is nondecreasing, hence

D ≤ f∗(gn − ν) ≤ f∗(g − ν)1A + f∗(C − ν)1Ac ∈ L1(P ) .

Therefore the dominated convergence theorem implies EP [f∗(gn − ν)]→ EP [f∗(g − ν)]. We
have gn ∈ Γ, hence Eq. (15) implies

DΓ
f (Q‖P ) ≥ lim

n→∞
(EQ[gn]− (ν + EP [f∗(gn − ν)]))

=EQ[g]− (ν + EP [f∗(g − ν)]) .

This completes the proof.

Using Lemma 32, one can augment Γ by including any functions that satisfy the stated
assumptions; this will not change the value of the supremum in (15). Rather than formulating
a general result of this type, we consider one of the most useful special cases, the set of
Lipschitz functions. Other cases can be treated similarly.

Lemma 34 Let c : S × S → [0,∞], L ∈ (0,∞), and define

LipLb (S, c) = {g ∈ Cb(S) : |g(x)− g(y)| ≤ Lc(x, y)for allx, y ∈ S} . (39)

If c = d (the metric on S) then we use our earlier notation, LipLb (S), in place of LipLb (S, d).
The set LipLb (S, c) is admissible and if d ≤ Kc for some K ∈ (0,∞) then LipLb (S, c) is

strictly admissible.
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Proof Convexity is trivial. Weak convergence in Cb(S) implies pointwise convergence (take
µ = δx, x ∈ S), hence LipLb (S, c) is closed. Finally, if d ≤ Kc then strict admissibility follows

from the fact that Lip
L/K
b (S) is P(S)-determining and Lip

L/K
b (S) ⊂ LipLb (S, c).

Remark 35 For L > 0 we have LipLb (S, c) = {Lg : g ∈ Lip1
b(S, c)} and so (under appropri-

ate assumptions) Theorem 17 implies the following limiting formulas:

lim
L→∞

D
LipLb (S,c)
f (Q‖P ) = Df (Q‖P ) ,

lim
L↘0

L−1D
LipLb (S,c)
f (Q‖P ) = WLip1b(S,c)(Q,P ) .

Using Lemma 32 we can show that the boundedness constraint can be dropped in the formula
for DΓ

f when Γ = LipLb (S, c); we exploit this fact in the numerical examples in Section 6
below.

Theorem 36 Let c : S × S → [0,∞], L ∈ (0,∞), and define

LipL(S, c) = {g ∈ C(S) : |g(x)− g(y)| ≤ Lc(x, y)for allx, y ∈ S} .

Let f be admissible such that f∗ is bounded below. Then for Q,P ∈ P(S) we have

D
LipLb (S,c)
f (Q‖P ) = sup

g∈LipL(S,c)∩L1(Q)

{
EQ[g]− ΛPf [g]

}
. (40)

Proof Lemma 34 shows that Γ ≡ LipLb (S, c) satisfies the conditions of Theorem 15. Fix
g ∈ LipL(S, c) ∩ L1(Q). For n ∈ Z+ define gn = n1g>n + g1−n≤g≤n − n1g<−n. It is easy to
see that gn ∈ LipLb (S, c), gn → g, |gn| ≤ |g|, gn ≤ g1g≥0. Therefore Lemma 32 implies

DΓ
f (Q‖P ) ≥ EQ[g]− inf

ν∈R
{ν + EP [f∗(g − ν)]} . (41)

One inequality in Eq. (40) follows from taking the supremum over all g ∈ LipL(S, c) ∩ L1(Q)
in Eq. (41) and the reverse follows from the fact that LipLb (S, c) ⊂ LipL(S, c) ∩ L1(Q).

6. (f,Γ)-GANs

Generative adversarial networks constitute a class of methods for ‘learning’ a probability
distribution, Q, via a two-player game between a discriminator and a generator (both neural
networks) (Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky et al., 2017; Gulrajani
et al., 2017; Pantazis et al., 2020). Mathematically, most GANs can be formulated as
divergence minimization problems for a divergence, D, that has a variational characterization
D(Q‖P ) = supg∈ΓH[g;Q,P ]. The goal is then to solve the following optimization problem:

inf
θ∈Θ

D(Q‖Pθ) = inf
θ∈Θ

sup
g∈Γ

H[g;Q,Pθ] . (42)
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Here, g is called the discriminator and Pθ is the distribution of hθ(X), where X is a random
noise source and hθ, θ ∈ Θ is a neural network family (the generator). The min-max problem
(42) can be interpreted as two-player zero-sum game. GANs based on the Wasserstein-metric
have been very successful (Arjovsky et al., 2017; Gulrajani et al., 2017) and GANs based on
the classical f -divergences have also been explored (Nowozin et al., 2016). Here we show
that GANs based on the DΓ

f divergences, which generalize and interpolate between the
above two extremes, inherit desirable properties from both IPM-GANs (e.g., Wasserstein
GAN) and f -GANs. Specifically, we focus on the following:

1. (f,Γ)-GANs can perform well when applied to heavy-tailed distributions. This property
is inherited from the classical f -divergences.

2. (f,Γ)-GANs can perform well even when there is a lack of absolute continuity. This
property is inherited from the Γ-IPMs.

We will specifically focus on the cases where f = fα, α > 1, (see Equation 8) and Γ =
LipLb (Rn) (see Lemma 34). We call the corresponding (f,Γ)-divergences the Lipschitz α-
divergences and will denote them by DL

α . As Γ is closed under shifts, we can express these
divergences in one of two ways (see Equation 18):

DL
α(Q‖P ) = sup

g∈LipLb (Rn)

{EQ[g]− ΛPfα [g]} (43)

= sup
g∈LipLb (Rn)

{EQ[g]− EP [f∗α(g)]} . (44)

The formula for f∗α can be found in Eq. (60) below.

Remark 37 Formally taking the α→∞ limit of (44) we arrive at what we call the Lipschitz
∞-divergence:

DL
∞(Q‖P ) = sup

g∈LipLb (Rn)

{EQ[g]− EP [max{g, 0}]} .

It is straightforward to show that DL
∞(Q‖P ) = LW (Q,P ), where W is classical Wasserstein

metric

W (Q,P ) = sup
g∈Lip1b(Rn)

{EQ[g]− EP [g]} ,

though they are expressed in terms of different objective functionals (and hence their perfor-
mance can differ in practice).

In numerical computations it can be inconvenient to restrict one’s attention to bounded dis-
criminators only. Fortunately, as shown in Theorem 36 above, the equality (15) remains true
when Γ is expanded to include many unbounded g’s. This fact justifies our use of unbounded
discriminators (i.e., unbounded activation functions) in the following computations.

As our baseline method we take the two-sided gradient-penalized Wasserstein GAN
(WGAN-GP) from Gulrajani et al. (2017),
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WGAN-GP

inf
θ

sup
g∈Lip(Rn)

{
EQ[g]− EPθ [g]− λ

∫
(‖∇g‖/L− 1)2dρθ

}
, (45)

where λ > 0 is the strength of the penalty regularization. Here, and below, we have relaxed
the Lipschitz constraint to a gradient penalty (two-sided for WGAN-GP and one-sided
otherwise; see Section 4 for further discussion). We approximate the supremum over g
by the supremum over a neural network family (the discriminator network). Again, the
family of measures Pθ are the distributions of Xθ = hθ(X) where hθ is the generator neural
network, parameterized by θ ∈ Θ, and we let X be a Gaussian noise source. Finally, we let
ρθ ∼ TXθ + (1− T )Y where Xθ, Y ∼ Q, T ∼ Unif([0, 1]) are all independent (this choice of
ρθ was used in Gulrajani et al., 2017).

We compare WGAN-GP to the Lipschitz α-GANs and Lipschitz KL-GAN, which are
based on (44) and (43) respectively.

Lipschitz α-GAN

inf
θ∈Θ

sup
g∈Lip(Rn)

{
EQ[g]− EPθ [f

∗
α(g)]− λ

∫
max{0, ‖∇g‖2/L2 − 1}dρθ

}
. (46)

When we want to make the values of α and/or L explicit we will refer to these as the
DL
α -GANs. By swapping Q and Pθ one obtains another family of GANs, which we call the

reverse Lipschitz α-GANs (when clarity is needed, Equation 46 will be called a forward
GAN). We note that forward and reverse GANs can have very different properties Goodfellow
(2016).

In the case of the KL-divergence one can evaluate the optimization over ν in (43) (see
Equation 19), leading to the following:

Lipschitz KL-GAN

inf
θ∈Θ

sup
g∈Lip(Rn)

{
EQ[g]− logEPθ [e

g]− λ
∫

max{0, ‖∇g‖2/L2 − 1}dρθ
}
. (47)

Remark 38 For numerical purposes the GAN (47), obtained using the representation (11),
performs significantly better than the GAN obtained from (10). This is due to the numerical
issues inherent in computing EP [f∗KL(g)] = EP [exp(g − 1)], as compared to computing
the cumulant generating function logEP [exp(g)]; see also Belghazi et al. (2018). We also
refer to Birrell et al. (2020) for a more general perspective on finding tighter variational
representations of divergences.

6.1 Statistical Estimation of (f,Γ)-Divergences

In numerical computations, we approximate the (f,Γ)-divergence by replacing expectations
under Q and P in (15) or (17) with their m-sample empirical means using i.i.d. samples
from Q and P respectively, i.e., we estimate

E[DΓ
f (Qm‖Pm)] = E

[
sup

g∈Γ,ν∈R
{EQm [g − ν]− EPm [f∗(g − ν)]}

]
. (48)
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Note that, at fixed g and ν, the objective functional on the right-hand-side of (48) is an
unbiased estimator of the (f,Γ)-divergence objective functional. Including the optimization
over g and ν we obtain a biased estimator which is an upper bound on DΓ

f , as shown in the
lemma below.

Lemma 39 Let f ∈ F1(a, b), Γ ⊂ Mb(Ω) be nonempty, Q,P ∈ P(Ω), and Qm, Pm be
empirical distributions constructed from m i.i.d. samples from Q and P respectively. Then

E[DΓ
f (Qm‖Pm)] ≥ DΓ

f (Q‖P ) .

Proof Using (17) we can compute

E[DΓ
f (Qm‖Pm)] =E

[
sup

g∈Γ,ν∈R
{EQm [g − ν]− EPm [f∗(g − ν)]}

]
≥ sup
g∈Γ,ν∈R

E [EQm [g − ν]− EPm [f∗(g − ν)]]

= sup
g∈Γ,ν∈R

{EQ[g − ν]− EP [f∗(g − ν)]} = DΓ
f (Q‖P ) .

Remark 40 As noted above, in the KL case one can evaluate the optimization over ν in
(48). This results in a biased objective functional due to the presence of the logarithm outside
the expectation in (19). This same issue was addressed earlier in Belghazi et al. (2018), e.g.,
by using sufficiently large minibatch sizes or an exponential moving average. This concern is
not present in the objective functional for (48) or (46).

In the following GAN examples we work with Lipschitz functions and approximate the
optimization over Lip(Rn) by the optimization over some neural network family gφ, φ ∈ Φ,
and estimate the expectations using the m-sample empirical measures Qm, Pm,θ, ρm,θ, e.g.,
we approximate the Lipschitz α-GAN (46) by

inf
θ∈Θ

sup
φ∈Φ

{
EQm [gφ]− EPm,θ [f

∗
α(gφ)]− λ

∫
max{0, ‖∇gφ‖2/L2 − 1}dρm,θ

}
. (49)

Various neural network architectures are known to be universal approximators (Hornik et al.,
1989; Cybenko, 1989; Pinkus, 1999; Lu et al., 2017; Kidger and Lyons, 2020). Approximating
the supremum over g ∈ Lip(Rn) by the supremum over a finite-dimensional neural network
family essentially results in a lower bound on the original, intended divergence. In the case
of KL and Rényi divergences, such an approximation scheme is known to lead to consistent
estimators as the sample size and network complexity grows (see Belghazi et al., 2018 and
Birrell et al., 2021 respectively). Investigating the analogous consistency result for the
(f,Γ)-divergence estimator is one avenue for future work.

28



(f,Γ)-Divergences

6.2 (f,Γ)-GANs for Non-Absolutely-Continuous Heavy-Tailed Distributions

We mentioned above that the f -divergences are better suited to heavy-tailed distributions,
as compared to the Wasserstein metric. Before demonstrating this in the context of GANs
we provide a simple explicit example. Let dQ = x−21x≥1dx and dP = (1 + δ)x−(2+δ)1x≥1dx
for δ > 0, i.e., the tail of P decays faster than that of Q. For α > 1 we can use Eq. (7) to
compute

Dfα(Q‖P ) =
1

α(α− 1)(1 + δ)α−1

∫ ∞
1

xδα−(2+δ)dx− 1

α(α− 1)
,

and so Dfα(Q‖P ) <∞ for all δ ∈ (0, 1/(α− 1)). On the other hand, we can use the formula
for the Wasserstein metric on P(R) from Vallender (1974) to compute

W (Q,P ) =

∫ ∞
−∞
|FQ(t)− FP (t)|dt =

∫ ∞
1

t−1 − t−(1+δ)dt =∞ (50)

for all δ > 0 (FP and FQ denote the cumulative distribution functions).
This calculation suggests that Lipschitz α-GANs may succeed for heavy-tailed distribu-

tions, even when WGAN-GP fails to converge. On the other hand the Wasserstein metric
can be finite and informative even when Q and P are non-absolutely continuous, unlike the
classical f -divergences (7). The (f,Γ)-divergences inherit both of these strengths from the
Wasserstein and f -divergences (see Part 1 of Theorem 15), thus allowing for the training of
GANs with heavy-tailed data and in the absence of absolute continuity. We demonstrate this
via the following example, where both the WGAN-GP and classical f -GAN (i.e., without
gradient penalty) fail to converge but the (f,Γ)-GANs succeed.

Here the data source, Q, is a mixture of four 2-dimensional t-distributions with 0.5
degrees of freedom, embedded in a plane in 12-dimensional space; note that this is a heavy-
tailed distribution, as the mean does not exist; this suggests that WGAN will have difficulty
learning this distribution. The generator uses a 10-dimensional noise source and so the
generator and data source are generally not absolutely continuous with respect to one
another (the former has support equal to the full 12-dimensional space while the latter is
supported on a 2-dimensional plane). This suggests one cannot use the classical f -GAN
(Nowozin et al., 2016), i.e., without gradient penalty (we confirmed that they perform very
poorly on this problem). The (f,Γ)-GANs allow us to address both of the above difficulties;
heavy tails can be accommodated by an appropriate choice of f and the lack of absolute
continuity is addressed by using a 1-Lipschitz constraint (as in the Wasserstein metric). In
this example we used gradient-penalty parameter values λ = 10, L = 1; Wasserstein GAN
was run with both 1-sided and 2-sided gradient penalties (GP-1 and GP-2 respectively). In
all cases the generator and discriminator have three fully connected hidden layers of 64,
32, and 16 nodes respectively, and with ReLU activation functions. The generator uses a
10-dimensional Gaussian noise source. Each SGD iteration was performed with a minibatch
size of 1000 and 5 discriminator iterations were performed for every one generator iteration.
Computations were done in TensorFlow and we used the RMSProp SGD algorithm with a
learning rate of 2× 10−4.

In Figure 2 below we show generator samples for Wasserstein GAN, as in Eq. (45) and
Gulrajani et al. (2017), and for various reverse Lipschitz α-GANs (46). Specifically, Panel
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Figure 2: Generator samples and their statistical behavior from Wasserstein and reverse
Lipschitz α-GAN methods. The data set consists of 5000 samples from a mixture of
four 2-dimensional t-distributions with 0.5 degrees of freedom that are embedded
in a plane in 12-dimensional space. Panel (a) shows the projection onto the
2-dimensional support plane (each column shows the result after a given number
of training epochs); the solid and dashed blue ovals mark the 25% and 50%
probability regions, respectively, of the data source while the heat-map shows
the generator samples. Panel (b) shows the generator distribution, projected
onto components orthogonal to the support plane. Values concentrated around
zero indicate convergence to the sub-manifold. Panel (c) shows the fraction of
generator samples, projected onto the 2D support plane of the measure, that are
within the 25% and 50% probability regions.
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(a) shows the projection onto the 2-dimensional support plane of Q (the heat-map shows
samples from the generator and the data source, Q, is illustrated by the blue ovals) and Panel
(b) shows the generator distribution, projected onto components orthogonal to the support
plane. Panel (a) does not show WGAN-GP samples, as WGAN-GP failed to converge in
this example; this is demonstrated in Panel (b) wherein we see that the Lipschitz α-GAN
samples concentrate near the support plane (at 0) while the WGAN-GP samples spread
out away from the support plane. The classical f -GAN without gradient penalty (Nowozin
et al., 2016), which we don’t show here, similarly failed to converge; this is unsurprising
due to the lack of absolute continuity. Again, we can see that WGAN-GP fails to converge,
while the Lipschitz α-GANs perform well. Some α’s perform significantly better than others,
making it an important hyperparameter to tune in this case. Results from a second set of
runs, using a larger sample set, are shown in Figure 5 in Appendix E; the conclusions are
similar. Forward Lipschitz GANs and forward Lipschitz KL-GANs all experienced blow-up
and so they are not shown here. This behavior is reasonable when one considers the fact
that Q is heavy tailed, while Pθ is not (it is generated by pushing forward Gaussian noise by
Lipschitz functions), and so Df (Q‖Pθ) =∞, while Df (Pθ‖Q) <∞ (see Equation 7). As we
have already demonstrated the inability of the Wasserstein metric to compare heavy-tailed
distributions (see Equation 50), it is reasonable to conjecture that the finiteness of Dfα is
key in determining the success of the DL

α -GAN. Interestingly, the Lipschitz constraint also
appears to be key to the convergence of the method, something one would not anticipate
solely based on finiteness of the corresponding divergences. We illustrate this with Figure
6 in Appendix E, where we apply the same method to the mixture of four 2-dimensional
t-distributions, but without the high-dimensional embedding. In this case, the classical
f -divergence is finite, however we find that the classical f -GAN fails to converge –WGAN
also fails– but the (f,Γ)-GANs succeed. The theoretical understanding of this behavior is
an interesting question, but we will not pursue it further here.

6.3 Strict Convexity and Enhanced Stability of (f,Γ)-GANs

Even in the absence of heavy tails, we find that the Lipschitz α-GANs can outperform
WGAN-GP, as measured both by accuracy on quantities of interest as well as improved
stability. The improved stability can be motivated by a simple (formal) calculation of the
Hessian of the objective functional in Eq. (18),

Hf [g;Q,P ] ≡ EQ[g]− EP [f∗(g)] (51)

(see Appendix D for an analysis of the objective functional in the non shift-invariant case
(15)). Let g0 ∈ Γ and perturb in some direction ψ, i.e., take a line segment gε = g0 + εψ ∈ Γ.
Then

d2

dε2
|ε=0Hf [gε;Q,P ] = −EP [(f∗)′′(g0)ψ2] . (52)

Convexity of f∗ implies (f∗)′′ ≥ 0. If we have (f∗)′′ > 0 then (52) implies the objective
functional is strictly concave at g0 in all directions, ψ, are nonzero on a set of positive
P -probability. This strict concavity implies that the maximization problem (15) is a strictly
convex optimization problem and suggests that numerical computation of DΓ

f (Q‖P ) via
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(15) may generally be more stable than computation of the Γ-IPM (16), as the latter uses a
linear objective functional. Indeed, in Daskalakis et al. (2018) the authors demonstrated that
gradient descent/ascent dynamics (used for training of GANs) oscillate without converging to
the optimum for the Wasserstein-GAN loss function (16) in the special case where Γ consists
of a parametric family of linear functions. In this case, more sophisticated algorithms such
as training with optimism (Daskalakis et al., 2018) or two-step extra-gradient approaches
(Mokhtari et al., 2020) were required to guarantee convergence. Here our (f,Γ) interpolation
replaces the optimization of a linear objective functional in the case of the Γ-IPM (16) with
the strictly concave problem (15). In the case of a linear discriminator space Γ, we obtain a
complete theoretical justification based on the concavity calculation (52). In particular, we
consider (51) where

Hf [gφ;Q,P ] = EQ[gφ]− EP [f∗(gφ)] , (53)

and where we assume that Γ = {g = gφ(x) : φ = (φ1, φ2, ..., φk) ∈ D} is a parametric linear
family (D is a closed, convex subset of Rk), i.e., for any constants a0, a1 and any parameter
values φ0, φ1 we have

ga0φ0+a1φ1(x) = a0gφ0(x) + a1gφ1(x) . (54)

Using (54) and considering (52) for any g = gφ0 and ψ(x) = gφ1 , gε = gφ0 + εgφ1 , we readily
have

φᵀ1∇
2
φHf [gφ0 ;Q,P ]φ1 =

d2

dε2
|ε=0Hf [gε;Q,P ] = −EP [(f∗)′′(gφ0)g2

φ1 ] , (55)

provided all expected values are finite. As in (52), this analysis implies the strict concavity of
(53) with respect to the linear parameterization φ. Thus our analysis covers linear spaces Γ
such as linear combinations of splines or reproducing kernel Hilbert spaces (RKHS). However,
when Γ is a family of neural networks then the gφ’s are not linear in φ and the above analysis
does not apply. We will not pursue the theoretical analysis of this important case here but
instead we will carry out an empirical study that explores the improved stability that (local)
strict concavity would imply.

In Figure 3 we demonstrate both improved performance and improved stability of the
Lipschitz α-GANs, as compared to WGAN-GP, on the CIFAR-10 data set (Krizhevsky,
2009), which consists of 32x32 RGB images from 10 classes. We use the same ResNet neural
network architecture as in Gulrajani et al. (2017, Appendix F) and focus on evaluating the
benefits of simply modifying the objective functional. We employ the adaptive learning rate
Adam Optimizer method (Kingma and Ba, 2014) using the hyperparameter values shown in
Algorithm 1 of Gulrajani et al. (2017) (note that in Gulrajani et al. (2017), α denotes the
learning rate parameter and should not be confused with our use for α-divergences). We
show the inception score as a function of the number of training epochs; the inception score
(Salimans et al., 2016) is a commonly used performance measure for evaluating the diversity
of images produced by a GAN. It uses a pre-trained classifier to estimate the number of
distinct classes produced by the generator and so, when applied to CIFAR-10, values closer
to 10 are considered better. In the legends we also show the final FID score achieved
by each method. FID score is a performance measure that computes a distance between
feature vectors of a classification model when applied to the original data, as compared to
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Figure 3: Comparison between Lipschitz α-GAN and WGAN-GP (both 1 and 2-sided) on
the CIFAR-10 data set. Here we plot the inception score as a function of the
number of training epochs (moving average over the last 5 data points, with
results averaged over 5 runs). We also show the averaged final FID score in the
legend, computed using 50000 samples from both Q and P . The neural network
architecture is as in Appendix F of Gulrajani et al. (2017); in particular, it employs
residual blocks. The left panel used an initial learning rate of 0.0002, the same as
in Gulrajani et al. (2017), while in the right panel we used an initial learning rate
of 0.001. Here, and in other similar tests, we find the Lipschitz α-GANs to be
significantly more stable and require less tuning of the learning rate; in particular,
none of the WGAN-GP2 runs shown in the right panel were able to complete
successfully.

the generated samples (Heusel et al., 2017); a lower FID score is better. In the left panel
of Figure 3 we show the results using an initial learning rate of 0.0002; we find a small
improvement in inception score and substantial improvement in FID score when using the
Lipschitz α-GANs, as compared to WGAN-GP (either 1 or 2-sided). In this example we
find the performance to be relatively insensitive to the value of α.

In addition to the performance improvement, we find the Lipschitz α-GANs to be far less
sensitive to the choice of learning rate. In the right panel of Figure 3 we show results using
an initial learning rate of 0.001; here we observe significant degradation of the performance
of WGAN-GP, but only a slight impact on the Lipschitz α-GANs. We conjecture that
this increased stability is due to the strong concavity of the (f,Γ)-divergence objective
functionals. Regarding increased stability, these numerical findings, the analysis for a
general (non-parameterized) function space Γ in (52), as well as for the linear parametric
case (55) provide only preliminary indications for the conjecture; a dedicated analysis for
general parameterized Γ’s that will include nonconvex parametric families such as neural
networks is clearly necessary but we will not pursue it further here.
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Figure 4: A comparison between Lipschitz α-GAN and WGAN, both using spectral normal-
ization (SN) to enforce Lipschitz constraints. We used an initial learning rate of
0.0001 and otherwise employed same ResNet architecture and hyperparameters as
in Figure 3. In particular, we did not attempt to further optimize the architecture
when changing from a gradient penalty to SN. None of the methods performed as
well as their gradient penalty counterparts from Figure 3, but note the especially
poor performance of WGAN-SN. This suggests a further robustness of our methods
to the use of sub-optimal architecture and hyperparameters.

6.3.1 Enhanced Stability and Spectral Normalization

In Miyato et al. (2018) the authors showed that spectral normalization, which directly
controls the Lipschitz constant of each layer of a neural network by setting the largest
singular value of its weight matrix to 1, provides enhanced stability as compared to WGAN-
GP and at a lower computational cost (see Figures 1 and 2 in Miyato et al., 2018). Their
method, which uses the Jensen-Shannon divergence, is equivalent to Eq. (18) (i.e., they
do not include an optimization over shifts as in Equation 17) with a change of variables
g = log(D) and using a function space Γ that consists of a neural network family with
spectral normalization. In this example we use a spectral normalization function space in
our method (17); this falls under the purview of Theorem 8 (see Table 2). We provide
empirical evidence that the improved stability they observed is at least partially due to the
strict concavity of the objective functional. Specifically, we find that WGAN with spectral
normalization fails to inherit this improved stability and even fails to outperform WGAN-GP.
Our results demonstrate that combining spectral normalization with other (strictly convex)
objective functionals can enhance stability, similar both to what was observed in Miyato
et al. (2018) and also to what we found in Figure 3. Here we again study the case f = fα,
denoting these methods by DSN

α ; results are shown in Figure 4.

7. Conclusion

We have provided a systematic and rigorous exploration of the properties of the (f,Γ)-
divergences, as defined in Eq. (1). This work was motivated by the need for a flexible collection
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of novel divergences that combine key properties from f -divergences and Wasserstein metrics,
such as the ability to work with heavy tails and with not-absolutely continuous distributions.
A large list of proposed GANs fall under the presented mathematical framework (see Table
2), unifying to a considerable extent the loss formulation of GANs. We have illustrated the
utility of the (f,Γ)-divergences in the training of GANs, showing both an increased domain
of applicability and improved convergence stability. The theoretical results allow for a wide
range of choices on f and Γ. We have shown that there are families of distributions that are
better suited for (f,Γ)-divergence over either f -divergence or Γ-IPM. A more systematic
exploration on the selection of proper f and Γ will add practical value from a practitioner’s
perspective, but further and more elaborate experimentation is required, along with a need
for new theoretical insights. In the future we intend to further study the stability, the related
statistical estimation theory, and explore these new divergences in additional challenging
settings such as high-dimensional time-series generation, extreme events prediction, mutual
information estimation, and uncertainty quantification for heavy-tailed distributions and in
the absence of absolute continuity.
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Appendix A. Properties of the Legendre Transform of f ∈ F1(a, b)

Here we collect a number of important properties regarding the LT of function in F1(a, b).
Recall that we use the same notation for the convex LSC extension f : R→ (−∞,∞] (see
Definition 2). First we state an important continuity result (Rockafellar, 1970, Theorem
10.1).

Lemma 41 Let f ∈ F1(a, b). Then f∗(y) = supx∈(a,b){yx− f(x)} and f∗ is continuous on

{f∗ <∞}.

Lemma 42 Let f ∈ F1(a, b). Then f∗(y) ≥ y for all y ∈ R.

Proof f∗(y) = supx∈R{yx− f(x)} ≥ 1 · y − f(1) = y.
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Lemma 43 If f ∈ F1(a, b) is superlinear, i.e., limx→±∞ f(x)/|x| =∞, then {f∗ <∞} =
R.

Proof Suppose y ∈ R with f∗(y) =∞, i.e., supx∈(a,b){yx− f(x)} =∞. Then there exists
xn ∈ (a, b) with yxn − f(xn)→∞. We can take a subsequence xnj with xnj → x ∈ [a, b]. If

x is finite then continuity of f on (a, b) allows us to compute f(x) = −∞, a contradiction.
If x is infinite then we write

|xnj |(sgn(xnj )y − f(xnj )/|xnj |)→∞ ,

which contradicts f(xnj )/|xnj | → ∞. This completes the proof.

Lemma 44 Let f ∈ F1(a, b) and suppose there exists xn ∈ R with xn → −∞ and f∗(xn)
uniformly bounded above. Then f∗ is nondecreasing.

Proof Suppose not. Then there exists y1 < y2 with f∗(y1) > f∗(y2) (in particular, f∗(y2) <
∞). Take N such that for n ≥ N we have xn < y1. For n ≥ N let tn = (y1 − xn)/(y2 − xn).
Then tn ∈ (0, 1), 1 − tn = (y2 − y1)/(y2 − xn) → 0 as n → ∞ and tny2 + (1 − tn)xn = y1.
Hence

f∗(y1) ≤ tnf∗(y2) + (1− tn)f∗(xn) .

Note that this implies f∗(y1) <∞. We therefore have

f∗(xn) ≥ f∗(y1)− f∗(y2)

1− tn
+ f∗(y2)→∞

as n→∞. This is a contradiction and so we are done.

Lemma 45 Let f ∈ F1(a, b). Then one of the following holds:

1. f∗ is bounded below.

2. The set I = {y : f∗(y) < ∞} is of the form I = (−∞, d) or I = (−∞, d] for some
d ∈ (−∞,∞] and f∗ is nondecreasing.

In addition, if f∗ is not bounded below then there exists b ≤ 0 such that f∗|(−∞,b] ≤ 0 and
f∗|(b,∞) ≥ 0.

Proof Suppose f∗ is not bounded below. Take yn ∈ I with f∗(yn) → −∞. We know
f∗(y) ≥ y, hence yn → −∞. Let d = sup I. The set I is convex, therefore (yn, d) ⊂ I for all
n. Hence (−∞, d) ⊂ I ⊂ (−∞, d].

Now suppose we have x1 < x2 with f∗(x1) > f∗(x2). With yn as above, take n such that
yn < x1 and f∗(yn) < f∗(x2) and let t = (x2 − x1)/(x2 − yn) ∈ (0, 1). f∗ is convex, hence

f∗(x1) =f∗(tyn + (1− t)x2) ≤ tf∗(yn) + (1− t)f∗(x2)

≤tf∗(x2) + (1− t)f∗(x2) = f∗(x2) < f∗(x1) .
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This is a contradiction, therefore f∗ is nondecreasing.
If f∗ is not bounded below then let b = sup{x : x ≤ 0, f∗(x) ≤ 0}. The properties

f∗|(−∞,b] ≤ 0 and f∗|(b,∞) ≥ 0 follow from the fact that f∗(0) ≥ 0 and f∗ is non-decreasing

and is continuous on I (see Lemma 41).

Lemma 46 Let f ∈ F1(a, b) with a ≥ 0. Then f∗ is nondecreasing and {f∗ <∞} = (−∞, d)
for d ∈ (−∞,∞] or {f∗ <∞} = (−∞, d] for d ∈ R.

Proof Let y1 < y2. Then xy1 − f(x) ≤ xy2 − f(x) for all x ≥ 0. f |(−∞,0) =∞, hence

f∗(y1) = sup
x∈R
{y1x− f(x)} = sup

x≥0
{y1x− f(x)} ≤ sup

x≥0
{y2x− f(x)} = f∗(y2) .

Next we give several results pertaining to the derivative of a convex function and its LT.
A key tool will be the following decomposition of a convex function into an affine part and a
remainder which can be found in Liese and Vajda (2006):

Lemma 47 Let f ∈ F1(a, b). For x, y ∈ (a, b) we have

f(y) = f(x) + f ′+(x)(y − x) +Rf (x, y) , (56)

where Rf ≥ 0, Rf (x, x) = 0, and if z is between x and y then Rf (x, z) ≤ Rf (x, y).

Using this we can derive an explicit formula for f∗ and prove several useful identities.

Lemma 48 Let f ∈ F1(a, b) and y ∈ {f∗ <∞}o. Then

f∗(y) = y(f∗)′+(y)− f((f∗)′+(y)) .

Proof By assumption, I ≡ {f∗ <∞} has nonempty interior and so

f(x) = sup
z∈Io
{zx− f∗(z)}

for all x. Applying Lemma 47 to the convex function f∗ on the interval Io gives

f∗(z) = f∗(y) + (f∗)′+(y)(z − y) +Rf∗(y, z)

for all z ∈ Io. The assumption y ∈ I implies (f∗)′+(y) exists and is finite. Hence

f((f∗)′+(y)) = sup
z∈Io
{z(f∗)′+(y)− f∗(z)}

= sup
z∈Io
{z(f∗)′+(y)− f∗(y)− (f∗)′+(y)(z − y)−Rf∗(y, z)}

=(f∗)′+(y)y − f∗(y)− inf
z∈Io

Rf∗(y, z) = (f∗)′+(y)y − f∗(y) .
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Lemma 49 Let f ∈ F1(a, b) and define ν0 = f ′+(1). Then:

1. f∗(ν0) = ν0.

2. If ν0 ∈ {f∗ <∞}o and f is strictly convex on a neighborhood of 1 then (f∗)′+(ν0) = 1.

Proof

1. Using Lemma 47 we can compute

f∗(ν0) = sup
x∈(a,b)

{ν0x− f(x)} = sup
x∈(a,b)

{ν0x− (ν0(x− 1) +Rf (1, x))}

=ν0 − inf
x∈(a,b)

Rf (1, x) = ν0 .

2. Using Lemma 48 along with Part 1 of this lemma we can write

f((f∗)′+(ν0)) = ν0(f∗)′+(ν0)− f∗(ν0) = ν0((f∗)′+(ν0)− 1) . (57)

In particular, we see that (f∗)′+(ν0) ∈ {f < ∞} ⊂ (a, b). Using Lemma 47 we can
write

f(x) = f ′+(1)(x− 1) +Rf (1, x) (58)

for x ∈ (a, b). Therefore

f((f∗)′+(ν0)) = ν0((f∗)′+(ν0)− 1) +Rf (1, (f∗)′+(ν0))

(this holds even if (f∗)′+(ν0) equals either a or b, as can be seen by taking limits in (58)
and using the continuous extension of Rf (1, ·)). Combining this with Eq. (57) we find

Rf (1, (f∗)′+(ν0)) = 0 .

Using Lemma 47 (and taking limits if necessary) we obtain 0 ≤ Rf (1, z) ≤ Rf (1, (f∗)′+(ν0))
for all z between 1 and (f∗)′+(ν0), and hence Rf (1, z) = 0 for all such z. If (f∗)′+(ν0) 6= 1
then this, combined with Eq. (56), implies that f is affine on the (non-trivial) line
segment from 1 to (f∗)′+(ν0), which would contradict the assumption that f is strictly
convex on a neighborhood of 1. Therefore we conclude that (f ∗)′+(ν0) = 1.

Finally, we will need formulas for f∗KL and f∗α from Eq. (8):

f∗KL(y) = exp(y − 1), (59)

f∗α(y) =

α
−1(α− 1)α/(α−1)yα/(α−1)1y>0 + 1

α(α−1) , α > 1

∞1y≥0 +
(
α−1(1− α)−α/(1−α)|y|−α/(1−α) − 1

α(1−α)

)
1y<0, α ∈ (0, 1) .

(60)

Note that fKL and fα for α > 1 are all strictly admissible but fα is not admissible if
α ∈ (0, 1) (see Definition 14). Theorem 15 applies to fKL and to fα, α > 1 while Theorem 8
applies to the case α ∈ (0, 1).

38



(f,Γ)-Divergences

Appendix B. Properties of the Classical f-Divergences

Here we collect a number of important properties of the classical f -divergences; see Definition
3. Perhaps most important is the following variational characterization. Versions of this
were proven in Broniatowski and Keziou (2006) and Nguyen et al. (2010).

Proposition 50 Let f ∈ F1(a, b) and P , Q be probability measures on (Ω,M). Then

Df (Q‖P ) = sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} (61)

= sup
g∈Mb(Ω)

{EQ[g]− ΛPf [g]}.

Proof Lemma 42 implies that f∗(y) ≥ y and so for g ∈ Mb(Ω) we have EP [f∗(g)] ≥
EP [g] > −∞. Therefore the objective functional in Eq. (61) is well defined. Fix y0 ∈ R with
f∗(y0) ∈ R and first consider the case Q 6� P . Then there exists a measurable set A with
P (A) = 0 and Q(A) > 0. If we define g = R1A + y01Ac then g is bounded, measurable, and

EQ[g]− EP [f∗(g)] = RQ(A) + y0Q(Ac)− f∗(y0)P (Ac)

for all R. Hence

sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} ≥ lim
R→∞

(RQ(A) + y0Q(Ac)− f∗(y0)P (Ac)) =∞ .

Therefore supg∈Mb(Ω){EQ[g]− EP [f∗(g)]} =∞ = Df (Q‖P ).

Now suppose Q� P : f is convex and LSC on R, hence we can use convex duality to
compute

EQ[g]− EP [f∗(g)] =EP [gdQ/dP − f∗(g)] ≤ EP [sup
y∈R
{ydQ/dP − f∗(y)}]

=EP [(f∗)∗(dQ/dP )] = EP [f(dQ/dP )] = Df (Q‖P )

for all g ∈Mb(Ω). Therefore it suffices to show supg∈Mb(Ω){EQ[g]−EP [f∗(g)]} ≥ Df (Q‖P ).
Let I ≡ {f∗ <∞}. This is a nonempty interval in R, hence we can find compact intervals
In ⊂ In+1 ⊂ I with ∪nIn = I. f∗ is convex and LSC on R, hence it is continuous on I.
In particular, y → yx− f∗(y) is continuous on the compact set In. Therefore there exists
measurable gn : Ω→ In such that |gndQ/dP − f∗(gn)− supy∈In{ydQ/dP − f

∗(y)}| < 1/n.
The functions gn are also bounded since Range(gn) ⊂ In, a compact subset of R, hence

sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} ≥ EQ[gn]− EP [f∗(gn)] = EP [dQ/dPgn − f∗(gn)]

≥EP [ sup
y∈In
{ydQ/dP − f∗(y)}]− 1/n

for all n. Therefore

sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} ≥ lim inf
n→∞

EP [ sup
y∈In
{ydQ/dP − f∗(y)}] .
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Fix a large enough N such that y0 ∈ IN . Then for n ≥ N we have supy∈In{ydQ/dP −
f∗(y)} ≥ y0dQ/dP − f∗(y0) ∈ L1(P ) (recall that f∗(y0) is finite). Therefore we can use
Fatou’s Lemma to compute

lim inf
n→∞

EP [ sup
y∈In
{ydQ/dP − f∗(y)}] ≥EP [lim inf

n→∞
sup
y∈In
{ydQ/dP − f∗(y)}]

=EP [sup
y∈I
{ydQ/dP − f∗(y)}]

=EP [(f∗)∗(dQ/dP )] = Df (Q‖P ) .

This completes the proof of the first equality. To prove the second we compute

sup
g∈Mb(Ω)

{EQ[g]− ΛPf [g]} = sup
g∈Mb(Ω)

{EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]}}

= sup
g∈Mb(Ω),ν∈R

{EQ[g − ν]− EP [f∗(g − ν)]}

= sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} ,

where in the last line we used the fact that the map R×Mb(Ω)→Mb(Ω), (ν, g) 7→ g− ν is
surjective.

On a metric space, and assuming f∗ is everywhere finite, one can restrict the optimization
in (61) to the set of bounded continuous functions.

Corollary 51 Let f ∈ F1(a, b), S be a metric space, and Q,P ∈ P(S). If {f∗ <∞} = R
then

Df (Q‖P ) = sup
g∈Cb(S)

{EQ[g]− EP [f∗(g)]} . (62)

In particular, (Q,P ) 7→ Df (Q‖P ) is lower semicontinuous.

Proof To prove Eq. (62) we start with Eq. (61) and use the extension of Lusin’s theorem
found in Appendix D of Dudley (2014) (which applies to an arbitrary metric space) to approx-
imate bounded measurable functions with bounded continuous functions. The assumption
{f∗ < ∞} implies f∗(g) ∈ Cb(S) for all g ∈ Cb(S) and so (Q,P ) 7→ EQ[g] − EP [f∗(g)] is
continuous. The supremum over g is therefore lower semicontinuous.

One can further restrict the optimization to Lipschitz functions.

Corollary 52 Let f ∈ F1(a, b), S be a metric space, Q,P ∈ P(S). If {f∗ <∞} = R then

Df (Q‖P ) = sup
g∈Lipb(S)

{EQ[g]− EP [f∗(g)]} , (63)

where Lipb(S) denotes the set of real-valued bounded Lipschitz functions on S.

Proof The result follows from Corollary 51, together with the fact that every g ∈ Cb(S) is
the pointwise limit of Lipschitz functions, gn, with ‖gn‖∞ ≤ ‖g‖∞ (see Box 1.5 on page 6 of
Santambrogio, 2015).
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Remark 53 Due to the invariance of the spaces Mb(S), Cb(S), and Lipb(S) under shifting
by a constant, one can replace EP [f∗(g)] in any of Eq. (61), Eq. (62), or Eq. (63) by infν∈R{ν+
EP [f∗(g − ν)]} without changing the left-hand-side.

Lemma 54 Let f ∈ F1(a, b), S be a Polish space, and P ∈ P(S). If {f∗ <∞} = R then
the map P(S)→ [0,∞], Q 7→ Df (Q‖P ) has compact sublevel sets.

Proof Let c ∈ R and consider the sublevel set Lc = {Q : Df (Q‖P ) ≤ c}. If c < 0
then Lc = ∅ and the claim is trivial, hence let c ≥ 0. Corollary 51 implies that the map
P(S)× P(S)→ [0,∞], (Q,P ) 7→ Df (Q‖P ) is LSC, therefore Lc is closed. By Prokhorov’s
theorem, if Lc is tight then Lc is precompact which will complete the proof: S is Polish,
hence P is tight. Therefore for every δ > 0 there exists a compact set K such that P (Kc) ≤ δ.
Given ε > 0 choose d > 0 large enough that (c+ f∗(0))/d ≤ ε/2 and choose δ > 0 such that
1
d(f∗(d) − f∗(0))δ ≤ ε/2. Then for any Q ∈ Lc, letting g = d1Kc (a bounded measurable
function) and using the variational formula (61) we find

c ≥ Df (Q‖P ) ≥ EQ[g]− EP [f∗(g)] = dQ(Kc)− f∗(0)− (f∗(d)− f∗(0))P (Kc) .

Hence

Q(Kc) ≤ (f∗(0) + c)/d+ d−1(f∗(d)− f∗(0))P (Kc) ≤ ε .

Therefore we conclude that Lc is tight. This completes the proof.

In light of Corollary 51 and Lemma 54, it is useful to have simple conditions that ensure
{f∗ <∞} = R; see Lemma 43 above for such a result.

Next we show that Df (Q‖P ) is strictly convex in Q when f is strictly convex.

Lemma 55 Let f ∈ F1(a, b) be strictly convex and P ∈ P(Ω). Then Q 7→ Df (Q‖P ) is
strictly convex on {Q : Df (Q‖P ) <∞}.

Proof First note that strict convexity of f on (a, b) implies strict convexity of the convex
LSC extension (also denoted by f) on {f < ∞}. Fix distinct Q0, Q1 ∈ {Df (Q‖P ) < ∞}
and t ∈ (0, 1), and define Qt = tQ1 + (1− t)Q0. Convexity of Q 7→ Df (Q‖P ) (which follows
from Equation 61) implies Df (Qt‖P ) <∞.

Define F = {f(dQ1/dP ) < ∞andf(dQ0/dP ) < ∞} and G = {dQ1/dP 6= dQ0/dP}.
Finiteness of Df (Qi‖P ) implies P (F ) = 1 and Q0 6= Q1 implies P (F ∩G) > 0. We can write

tDf (Q1‖P ) + (1− t)Df (Q0‖P )−Df (Qt‖P )

=EP [1F tf(dQ1/dP ) + 1F (1− t)f(dQ0/dP )− 1F f(dQt/dP )] ,

where convexity of f implies the integrand is non-negative and strict convexity of f implies
the integrand is positive on F ∩G. Therefore we can bound it below by integrating only
over F ∩G, a set of positive measure. Hence the expectation is positive and we have proven
the claim.

The following lemma is the key step in the proof of the Gibbs variational principle for
f -divergences in Proposition 57 below.
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Lemma 56 Let f ∈ F1(a, b), P be a probability measure on (Ω,M), and g ∈Mb(Ω). Then

EP [f∗(g)] = sup
h∈Mb(Ω):EP [f(h)]<∞

{EP [gh]− EP [f(h)]} (64)

= sup
h∈Mcr(Ω,(a,b))

{EP [gh]− EP [f(h)]} ,

where Mcr(Ω, (a, b)) denotes the set of measurable functions on Ω whose range is contained
in a compact subset of (a, b).

Proof f is convex and f(1) = 0, hence f(x) ≥ f ′+(1)(x− 1). This implies EP [f(h)] exists
in (−∞,∞]. Therefore the right-hand-sides of (64) are well defined and the terms inside the
suprema are finite for all h’s satisfying the indicated conditions. The left-hand-side is well
defined in (−∞,∞] since f∗(g) ≥ g (see Lemma 42). For h ∈ Mb(Ω) with EP [f(h)] <∞
we have

EP [gh]− EP [f(h)] = EP [gh− f(h)] ≤ EP [sup
x∈R
{gx− f(x)}] = EP [f∗(g)]

and hence

sup
h∈Mb(Ω):EP [f(h)]<∞

{EP [gh]− EP [f(h)]} ≤ EP [f∗(g)] . (65)

For the other direction, let a < an < 1 < bn < b with an ↘ a, bn ↗ b. Then

f∗(g) = sup
n

sup
x∈[an,bn]

{gx− f(x)} = lim
n

sup
x∈[an,bn]

{gx− f(x)} .

By letting x = 1 we see that supx∈[an,bn]{gx − f(x)} ≥ g ∈ L1(P ), and therefore Fatou’s
Lemma implies

EP [f∗(g)] = EP [lim
n

sup
x∈[an,bn]

{gx− f(x)}] ≤ lim inf
n

EP [ sup
x∈[an,bn]

{gx− f(x)}] .

Using continuity of gx− f(x) on x ∈ (a, b) and finiteness of supx∈[an,bn]{gx− f(x)} we see
that there exists measurable hn : Ω→ [an, bn] such that

sup
x∈[an,bn]

{gx− f(x)} ≤ 1

n
+ ghn − f(hn) .

hn ∈Mcr(Ω, (a, b)), hence

EP [ sup
x∈[an,bn]

{gx− f(x)}] ≤ 1

n
+ sup
h∈Mcr(Ω,(a,b))

{EP [gh]− EP [f(h)]} .

Therefore

EP [f∗(g)] ≤ lim inf
n

EP [ sup
x∈[an,bn]

{gx− f(x)}] ≤ sup
h∈Mcr(Ω,(a,b))

{EP [gh]− EP [f(h)]} .
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We have Mcr(Ω, (a, b)) ⊂ {h ∈Mb(Ω) : EP [f(h)] <∞} and so

EP [f∗(g)] ≤ sup
h∈Mcr(Ω,(a,b))

{EP [gh]− EP [f(h)]} ≤ sup
h∈Mb(Ω):EP [f(h)]<∞

{EP [gh]− EP [f(h)]} .

When combined with Eq. (65), this completes the proof.

We can now prove the Gibbs variational formula for f -divergences in full generality; note
that Corollary 58, which covers the case where a ≥ 0, as proven in Ben-Tal and Teboulle
(2007), but to the best of our knowledge the case (66), which covers a < 0, is new.

Proposition 57 Let f ∈ F1(a, b), P ∈ P(Ω), and g ∈Mb(Ω). Then

sup
h∈Mb(Ω):EP [h]=1,EP [f(h)]<∞

{EP [gh]− EP [f(h)]} = inf
ν∈R
{ν + EP [f∗(g − ν)]} . (66)

Corollary 58 If a ≥ 0 then (66) can be written as

sup
Q∈P(Ω):Df (Q‖P )<∞

{EQ[g]−Df (Q‖P )} = inf
ν∈R
{ν + EP [f∗(g − ν)]} . (67)

Remark 59 Eq. (66) is an optimization over signed measures, dµ = hdP , of net ‘charge’ 1.

Remark 60 The most commonly used case where a < 0 is the χ2-divergence, which corre-
sponds to the choice f(x) = x2 − 1, a = −∞, b =∞.

Proof Define the convex set X = {h ∈ Mb(Ω) : EP [f(h)] < ∞} (note that convexity of
f implies EP [f(h)] > −∞ for all h ∈ Mb(Ω)), define the convex function F : X → R by
F [h] = EP [f(h)]−EP [gh], and define the affine function H :Mb(Ω)→ R byH [h] = 1−EP [h].
These satisfy the Slater conditions (see Theorem 8.3.1 and Problem 8.7 in Luenberger, 1997)
and so we have strong duality:

sup
h∈Mb(Ω):EP [h]=1,EP [f(h)]<∞

{EP [gh]− EP [f(h)]} (68)

= inf
ν∈R
{ν + sup

h∈Mb(Ω):EP [f(h)]<∞
{EP [(g − ν)h]− EP [f(h)]}

= inf
ν∈R
{ν + EP [f∗(g − ν)]} ,

where we used Lemma 56 to obtain the last line. If a ≥ 0 then EP [f(h)] =∞ unless h ≥ 0
P -a.s. and so the supremum in (68) can be restricted to non-negative h. Defining dQ = hdP
we can then rewrite (68) as the supremum over Q ∈ P(Ω) with Df (Q‖P ) <∞.

B.1 Variational Characterization over Unbounded g’s

In many cases it is useful to extend the variational formula (61) to unbounded g’s. In this
section we give several such results. First we prove a pair of lemmas that ensure certain
expectations are finite. The first of these can also be found in Lemma 2 of Birrell et al.
(2020).
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Lemma 61 Let f ∈ F1(a, b) and Q,P ∈ P(Ω) with Df (Q‖P ) < ∞. If g ∈ L1(Q) then
EP [f∗(g)−] <∞.

Remark 62 Recall that we use g± to denote the positive and negative parts of a function g
(so that g± ≥ 0 and g = g+ − g−).

Proof Fix g ∈ L1(Q). The result it trivial if f∗ is bounded below, so suppose not. Lemma
45 therefore implies that I = {y : f∗(y) <∞} is of the form I = (−∞, d) or I = (−∞, d] for
some d ∈ (−∞,∞], f∗ is nondecreasing, and there exists b ∈ R such that f∗ ≤ 0 on (−∞, b]
and f∗ ≥ 0 on (b,∞). Define gb = g1g≤b + b1g>b, so that gb ≤ b and gb ∈ L1(Q). We have

EP [f∗(g)−] = EP [1g≤bf
∗(g)−] = EP [1g≤bf

∗(gb)
−]

≤EP [f∗(gb)
−] = EP [−f∗(gb)] ,

hence

EP [f∗(gb)] ≤ −EP [f∗(g)−] .

Let gb,n = −n1gb<−n + gb1gb≥−n. The gb,n are bounded, therefore we can use (61) to
obtain

EQ[gb,n]− EP [f∗(gb,n)] ≤ Df (Q‖P ) ,

where EP [f∗(gb,n)] ∈ (−∞,∞]. This implies

EQ[gb,n] ≤ Df (Q‖P ) + EP [f∗(gb,n)] .

gb,n → gb pointwise, |gb,n| ≤ |gb|, and gb ∈ L1(Q), so we use the dominated convergence
theorem to compute

EQ[gb] ≤ lim inf
n

(Df (Q‖P ) + EP [f∗(gb,n)]) = Df (Q‖P ) + lim inf
n

EP [f∗(gb,n)] . (69)

(The assumption that Df (Q‖P ) <∞ implies the right-hand-side of (69) is well-defined). We
have gb,n+1 ≤ gb,n, hence f∗(gb,n+1) ≤ f∗(gb,n). The function f∗ is continuous on (−∞, b]
and for N large enough we have gb,n ≤ b for all n ≥ N , hence

0 ≤ −f∗(gb,n)↗ −f∗(gb)

as n → ∞. Therefore the monotone convergence theorem gives limnEP [f∗(gb,n)] =
EP [f∗(gb)] and we find

−∞ < EQ[gb] ≤ Df (Q‖P ) + EP [f∗(gb)] ≤ Df (Q‖P )− EP [f∗(g)−] .

This proves EP [f∗(g)−] <∞, as claimed.

Lemma 63 Let f ∈ F1(a, b), P ∈ P(Ω), and g ∈M(Ω). Suppose EP [f∗(cg−ν)+] <∞ for
some ν ∈ R and c > 0. Then for all Q ∈ P(Ω) with Df (Q‖P ) <∞ we have EQ[g+] <∞.
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Proof Fix d for which f∗(d) is finite and define gn = g1g∈[0,n) + (d+ ν)/c1g 6∈[0,n) ∈Mb(Ω).
Hence cgn − ν ∈ L1(Q) and the variational formula (61) gives

Df (Q‖P ) ≥ EQ[cgn − ν]− EP [f∗(cgn − ν)] ,

where EP [f∗(cgn − ν)] is defined in (−∞,∞]. Hence

EQ[cgn]−Df (Q‖P ) ≤ ν + EP [f∗(cgn − ν)] .

We can bound

f∗(cgn − ν) = f∗(cg − ν)1g∈[0,n) + f∗(d)1g 6∈[0,n) ≤ f∗(cg − ν)+ + |f∗(d)| ,

and so

EP [f∗(cgn − ν)] ≤ EP [f∗(cg − ν)+] + |f∗(d)| .

Therefore

EQ[cgn]−Df (Q‖P ) ≤ ν + EP [f∗(cg − ν)+] + |f∗(d)| <∞

for all n. Taking n→∞ we obtain

lim inf
n

EQ[gn] ≤ c−1(ν + EP [f∗(cg − ν)+] + |f∗(d)|+Df (Q‖P )) <∞ .

The functions gn are uniformly bounded below, therefore Fatou’s Lemma implies

EQ[lim inf
n

gn] ≤ lim inf
n

EQ[gn] ≤ c−1(ν + EP [f∗(cg − ν)+] + |f∗(d)|+Df (Q‖P )) <∞ .

We have gn → g1g≥0 + c−1(d+ ν)1g<0 pointwise, hence

EQ[g+] + c−1(d+ ν)Q(g < 0) = EQ[g+ + c−1(d+ ν)1g<0] <∞ .

This implies EQ[g+] <∞, as claimed.

We can now prove variational characterizations of Df that allow for g to be unbounded.
The following is found in Theorem 2 of Birrell et al. (2020).

Proposition 64 Let f ∈ F1(a, b) and P,Q be probability measures on (Ω,M). If f∗ is
bounded below or Df (Q‖P ) <∞ then

Df (Q‖P ) = sup
g∈L1(Q)

{EQ[g]− EP [f∗(g)]} , (70)

where EP [f∗(g)] exists in (−∞,∞].

Proof If f∗ is bounded below then EP [f∗(g)−] <∞ for all g ∈ L1(Q). IfDf (Q‖P ) <∞ then
Lemma 61 also implies EP [f∗(g)−] <∞. So in either case we find that EP [f∗(g)] is defined in
(−∞,∞]. In particular, the objective functional in (70) is well defined. Due to the variational
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characterization (61), to prove (70) it suffices to prove EQ[g]− EP [f∗(g)] ≤ Df (Q‖P ) for
all g ∈ L1(Q).

Fix g ∈ L1(Q). If Df (Q‖P ) =∞ or EP [f∗(g)] =∞ then the required bound is trivial,
so suppose not. In this case we have f∗(g) < ∞ P -a.s., i.e., g maps into I ≡ {f∗ < ∞}
P -a.s. We are in the case where Df (Q‖P ) < ∞ so Q � P , hence g maps into I Q-a.s.
as well. Therefore, by redefining g on a measure zero set (under both Q and P ) we can
assume that Range(g) ⊂ I. In summary, we have now reduced the problem to showing that
EQ[g]−EP [f∗(g)] ≤ Df (Q‖P ) in the case where g ∈ L1(Q), f∗(g) ∈ L1(P ), Df (Q‖P ) <∞,
Range(g) ⊂ I: Fix y0 ∈ I and define gn = y01g<−n + g1−n≤g≤n + y01g>n ∈Mb(Ω). Eq. (61)
implies

Df (Q‖P ) ≥ EQ[gn]− EP [f∗(gn)] .

gn → g pointwise, and |gn| ≤ |g| + |y0| ∈ L1(Q), hence the dominated convergence
theorem gives EQ[gn]→ EQ[g]. Range(gn),Range(g) ⊂ I and f∗ is continuous on I, hence
f∗(gn)→ f∗(g) pointwise. We have

|f∗(gn)| =|f∗(gn)|1g<−n + |f∗(gn)|1−n≤g≤n + |f∗(gn)|1g>n
≤|f∗(y0)|+ |f∗(g)| ∈ L1(P ) .

Therefore the dominated convergence theorem implies EP [f∗(gn)]→ EP [f∗(g)]. Hence

Df (Q‖P ) ≥ lim
n→∞

(EQ[gn]− EP [f∗(gn)]) = EQ[g]− EP [f∗(g)] .

This completes the proof.

In some cases it is convenient to define conventions regarding infinities that result in a
variational formula involving the supremum over all measurable g:

Theorem 65 Let f ∈ F1(a, b), Q,P ∈ P(Ω), and Mb(Ω) ⊂ Γ ⊂M(Ω). Then

Df (Q‖P ) = sup
g∈Γ
{EQ[g]− EP [f∗(g)]} , (71)

where we define ∞−∞ ≡ −∞, −∞+∞ ≡ −∞.

Remark 66 Our convention regarding infinities ensures that
∫
gdη ≡

∫
g+dη −

∫
g−dη is

defined in R for all η ∈ P(Ω), g ∈M(Ω).

Remark 67 The above conventions regarding infinities can be viewed as a convenient but
rigorous shorthand for restricting the optimization in (71) to those g ∈ Γ for which such
infinitities do not occur. However, there is more content to Theorem 65 than this simple
convention. For instance, the equality Eq. (71) implies that if Df (Q‖P ) <∞ and g ∈ Γ with
EQ[g] =∞ then it must also be the case that EP [f∗(g)] =∞.
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Proof From (61) we have

Df (Q‖P ) = sup
g∈Mb(Ω)

{EQ[g]− EP [f∗(g)]} (72)

≤ sup
g∈Γ
{EQ[g]− EP [f∗(g)]}

≤ sup
g∈M(Ω)

{EQ[g]− EP [f∗(g)]} .

If Df (Q‖P ) =∞ then the above inequalities are all equalities and we are done. In the case
where Df (Q‖P ) <∞, Proposition 64 implies

Df (Q‖P ) ≥ EQ[g]− EP [f∗(g)] (73)

for all g ∈ L1(Q). In light of Eq. (72), if we can show (73) holds for all g ∈M(Ω) then we
are done. If g− 6∈ L1(Q) then (73) is a trivial consequence of our conventions regarding
infinities. This leaves only the case where g ∈M(Ω) with g+ 6∈ L1(Q) and g− ∈ L1(Q).

First we show that EP [f∗(g)−] <∞ in this case: If f∗ is bounded below this is trivial so
suppose not. Therefore Lemma 45 implies f∗ is nondecreasing and there exists b ≤ 0 such
that f∗|(−∞,b] ≤ 0 and f∗|(b,∞) ≥ 0. Define gn = g1g≤n + b1g>n for n ∈ Z+. gn ∈ L1(Q) and
f∗(g)−1g≥n = 0, hence EP [f∗(gn)] ∈ (−∞,∞] and

∞ > EP [f∗(gn)−] = EP [f∗(g)−1g≤n + f∗(b)−1g>n] = EP [f∗(g)−] + f∗(b)−EP [1g>n] .

Therefore EP [f∗(g)−] < ∞ as claimed. Lemma 63 together with Df (Q‖P ) < ∞ and
g+ 6∈ L1(Q) implies EP [f∗(g)+] = ∞. Therefore we conclude that EQ[g] − EP [f∗(g)] =
∞−∞ = −∞ < Df (Q‖P ). This completes the proof.

The following alternative form is also useful:

Corollary 68 Let f ∈ F1(a, b) and Q,P ∈ P(Ω). Then

Df (Q‖P ) = sup
g∈M(Ω)

{EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]}} ,

where we define ∞−∞ ≡ −∞, −∞+∞ ≡ −∞.

Proof The bound

sup
g∈M(Ω)

{EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]}} ≥ Df (Q‖P )

is an obvious consequence of Theorem 65. To conclude the reverse inequality, we need to
show that

EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]} ≤ Df (Q‖P ) (74)

for all g ∈M(Ω). If EQ[g] =∞ and infν∈R{ν +EP [f∗(g − ν)]} 6=∞ then EQ[g−] <∞ and
there exists ν0 with EP [f∗(g − ν0)] <∞. Hence Theorem 65 implies

Df (Q‖P ) ≥ EQ[g − ν0]− EP [f∗(g − ν0)] =∞ .
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Therefore the claim holds in this case. Otherwise, we are in the case where infν∈R{ν +
EP [f∗(g− ν)]} =∞ or EQ[g] = −∞ or EQ[g] ∈ R. The first two of these immediately imply
(74), due to our conventions regarding infinities. Finally, if EQ[g] ∈ R then

EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]} = sup

ν∈R
{EQ[g − ν]− EP [f∗(g − ν)]}

≤ sup
g∈M(Ω)

{EQ[g]− EP [f∗(g)]} = Df (Q‖P ) .

This completes the proof.

Appendix C. Proofs of Properties of (f,Γ)-Divergences

In this appendix we prove the (f,Γ)-divergence properties from Section 2; some results will
be proven in greater generality than were stated earlier. Our method of proof will require
us to work with finite signed measures (at least during the intermediate steps), and not
just with probability measures. For that reason we provide a more general definition of the
(f,Γ)-divergences here:

Definition 69 Let f ∈ F1(a, b) and Γ ⊂Mb(Ω) be nonempty. For P ∈ P(Ω) and µ ∈M(Ω)
we define the (f,Γ)-divergence by

DΓ
f (µ‖P ) = sup

g∈Γ

{∫
gdµ− inf

ν∈R
{ν + EP [f∗(g − ν)]}

}
(75)

and for µ, κ ∈M(Ω) we define the Γ-IPM by

WΓ(µ, κ) = sup
g∈Γ

{∫
gdµ−

∫
gdκ

}
. (76)

We start with the proof of the dual variational formula from Theorem 6, which we restate
below. In addition, we treat the case a < 0, which requires the more general definition (75).

Theorem 70 Let f ∈ F1(a, b), P ∈ P(Ω), and Γ ⊂ Mb(Ω) be nonempty. For g ∈ Γ we
have

(DΓ
f )∗(g;P ) ≡ sup

µ∈M1(Ω)

{∫
gdµ−DΓ

f (µ‖P )

}
= inf

ν∈R
{ν + EP [f∗(g − ν)]} , (77)

where M1(Ω) ≡ {µ ∈M(Ω) : µ(Ω) = 1}. If a ≥ 0 then

(DΓ
f )∗(g;P ) ≡ sup

Q∈P(Ω)
{EQ[g]−DΓ

f (Q‖P )} = inf
ν∈R
{ν + EP [f∗(g − ν)]} . (78)
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Proof Let g ∈ Γ ⊂Mb(Ω). Using the definition of DΓ
f along with Proposition 57 we have

sup
µ∈M1(Ω)

{∫
gdµ−DΓ

f (µ‖P )

}

= sup
µ∈M1(Ω)

{∫
gdµ− sup

g̃∈Γ

{∫
g̃dµ− inf

ν∈R
{ν + EP [f∗(g̃ − ν)]}

}}

≤ sup
µ∈M1(Ω)

{∫
gdµ−

(∫
gdµ− inf

ν∈R
{ν + EP [f∗(g − ν)]}

)}
= inf
ν∈R
{ν + EP [f∗(g − ν)]}

= sup
h∈Mb(Ω):EP [h]=1,EP [f(h)]<∞

{∫
gdPh − EP [f(h)]

}
,

where dPh = hdP . Noting that Ph ∈M1(Ω) and using (f∗)∗ = f we obtain the bound

DΓ
f (Ph‖P ) = sup

g∈Γ
sup
ν∈R

EP [(g − ν)h− f∗(g − ν)] ≤ EP [f(h)] .

Hence

sup
h∈Mb(Ω):EP [h]=1,EP [f(h)]<∞

{∫
gdPh − EP [f(h)]

}
≤ sup
h∈Mb(Ω):EP [h]=1,EP [f(h)]<∞

{∫
gdPh −DΓ

f (Ph‖P )

}
≤ sup
µ∈M1(Ω)

{∫
gdµ−DΓ

f (µ‖P )

}
.

Combining these we arrive at Eq. (77). If a ≥ 0 then we can use Eq. (77), the bound
DΓ
f (Q‖P ) ≤ Df (Q‖P ), and then Eq. (67) to obtain

inf
ν∈R
{ν + EP [f∗(g − ν)]} ≥ sup

Q∈P(Ω)
{EQ[g]−DΓ

f (Q‖P )}

≥ sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )}

= inf
ν∈R
{ν + EP [f∗(g − ν)]} ,

which proves (78).

Next we prove that the (f,Γ)-divergences are bounded above by the classical f -divergence
and Γ-IPM and also derive the convexity and divergence properties from Theorem 8.

Theorem 71 Let f ∈ F1(a, b), Γ ⊂Mb(Ω) be nonempty, and Q,P ∈ P(Ω).

1.

DΓ
f (Q‖P ) ≤ inf

η∈P(Ω)
{Df (η‖P ) +WΓ(Q, η)} . (79)

In particular, DΓ
f (Q‖P ) ≤ min{Df (Q‖P ),WΓ(Q,P )}.
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2. The map (Q,P ) ∈ P(S)× P(S) 7→ DΓ
f (Q‖P ) is convex.

3. If there exists c0 ∈ Γ ∩ R then DΓ
f (Q‖P ) ≥ 0.

4. Suppose f and Γ satisfy the following:

(a) There exist a nonempty set Ψ ⊂ Γ with the following properties:

i. Ψ is P(Ω)-determining.

ii. For all ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0.

(b) f is strictly convex on a neighborhood of 1.

(c) f∗ is finite and C1 on a neighborhood of ν0 ≡ f ′+(1).

Then:

(i) DΓ
f has the divergence property.

(ii) WΓ has the divergence property.

Proof

1. Let f0 be the restriction of f to the interval (max{a, 0}, b), so that f0 ∈ F1(max{a, 0}, b).
Note that f and f0 agree on [0,∞) and so Df = Df0 (see Equation 7). The definition
of the Legendre transform implies f∗0 ≤ f∗ and so ΛPf0 ≤ ΛPf (see Equation 9). We can
now compute

inf
η∈P(Ω)

{Df (η‖P ) +WΓ(Q, η)} = inf
η∈P(Ω)

{Df0(η‖P ) +WΓ(Q, η)}

= inf
η∈P(Ω)

{sup
g∈Γ
{Df0(η‖P ) + EQ[g]− Eη[g]}}

≥ sup
g∈Γ
{ inf
η∈P(Ω)

{Df0(η‖P ) + EQ[g]− Eη[g]}}

= sup
g∈Γ
{EQ[g]− ΛPf0 [g]}

≥ sup
g∈Γ
{EQ[g]− ΛPf [g]} = DΓ

f (Q‖P ) ,

where we used Eq. (12) to obtain the second-to-last line.

Remark 72 We emphasize that ΛPf naturally appears when working with the infimal
convolution of an f -divergence and a Γ-IPM, due to the identity (12).

2. Convexity of DΓ
f on P(S)×P(S) follows from (17), which shows that DΓ

f (Q‖P ) is the
supremum of functions that are affine in (Q,P ).

3. Lemma 49 implies f∗(ν0) = ν0, where ν0 ≡ f ′+(1). By assumption, c0 ∈ Γ ∩ R, hence
bounding (17) below by its value at g = c0, ν = c0 − ν0 we find

DΓ
f (Q‖P ) ≥EQ[c0 − (c0 − ν0)]− EP [f∗(c0 − (c0 − ν0))]

=ν0 − f∗(ν0) = 0 .
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Remark 73 Note the importance of the infimum over ν in ΛPf , which allowed us to
obtain a lower bound at an appropriate value of ν. This same technique will be used
several times below and highlights the importance of employing ΛP

f in the definition

(15) of DΓ
f . See also Remark 75.

4. Now suppose f and Γ satisfy 2.a - 2.c Lemma 49 implies that

f∗(ν0) = ν0 , (f∗)′(ν0) = 1 . (80)

Assumption 2.a.ii implies there exists c0 ∈ Γ ∩ R hence Part 3 of this theorem implies
DΓ
f (Q‖P ) ≥ 0. From Eq. (79) we have DΓ

f (Q‖P ) ≤ Df (Q‖P ). Combining this with

the non-negativity of DΓ
f and the fact that Df (P‖P ) = 0 we see that if Q = P then

DΓ
f (Q‖P ) = 0.

Next assume DΓ
f (Q‖P ) = 0: From assumption 2.a.ii, given ψ ∈ Ψ there exists c0 ∈ R,

ε0 > 0 such that gε ≡ c0 + εψ ∈ Γ ∩Mb(Ω) for all |ε| < ε0. Therefore

0 =DΓ
f (Q‖P ) ≥ EQ[gε]− inf

ν∈R
{ν + EP [f∗(gε − ν)]}

≥EQ[gε]− (c0 − ν0 + EP [f∗(ν0 + εψ)])

=(ν0 + εEQ[ψ])− EP [f∗(ν0 + εψ)]) ≡ h(ε) .

By assumption 2.c, there exists δ > 0 such that f∗ is finite and C1 on the ball of
radius δ centered at ν0, denoted by Bδ(ν0). ψ is bounded, therefore we can find C > 0
with |ψ| ≤ C. For |ε| < min{ε0, δ/(2C)} we have Range(ν0 + εψ) ⊂ Bδ/2(ν0). On
Bδ/2(ν0), f∗ is C1 and f∗, (f∗)′ are both bounded. Hence the dominated convergence
theorem implies h is C1 on |ε| < min{ε0, δ/C} and h′(ε) = EQ[ψ]−EP [(f∗)′(ν0 +εψ)ψ].
Evaluating this at ε = 0 and using Eq. (80) we find

h′(0) = EQ[ψ]− EP [(f∗)′(ν0)ψ] = EQ[ψ]− EP [ψ] .

Again using (80) we can also compute h(0) = ν0 − EP [f∗(ν0)] = 0. Combining
these facts with the bound h(ε) ≤ 0 we can conclude that h′(0) = 0 and hence
EQ[ψ] = EP [ψ] for all ψ ∈ Ψ. By assumption 2.a.i, Ψ is P(Ω)-determining and so
Q = P . This completes the proof of the divergence property for DΓ

f .

The divergence property for WΓ then follows from the divergence property for DΓ
f

together with the bound DΓ
f (Q‖P ) ≤WΓ(Q,P ) and the definition (16).

Next we prove the infimal convolution formula, (22), as well as the other properties from
Theorem 15, again in somewhat greater generality.

Theorem 74 Suppose f and Γ are admissible. For P ∈ P(S), µ ∈M(S) let DΓ
f (µ‖P ) be

defined by (75) and for µ, κ ∈ M(S) let WΓ(µ, κ) be defined as in (76). These have the
following properties:
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1. Infimal Convolution Formula:

DΓ
f (µ‖P ) = inf

η∈P(S)
{Df (η‖P ) +WΓ(µ, η)} . (81)

In particular, DΓ
f (µ‖P ) ≤WΓ(µ, P ) and if Q ∈ P(S) then DΓ

f (Q‖P ) ≤ Df (Q‖P ).

2. If DΓ
f (µ‖P ) <∞ then there exists η∗ ∈ P(S) such that

DΓ
f (µ‖P ) = Df (η∗‖P ) +WΓ(µ, η∗) . (82)

If f is strictly convex then there is a unique such η∗.

3. Divergence Property for WΓ: WΓ ≥ 0 and WΓ(µ, µ) = 0 for all µ ∈ M(S). If Γ is
strictly admissible then for all Q,P ∈ P(S) we have WΓ(Q,P ) = 0 if and only if
Q = P .

4. Divergence Property for DΓ
f : For Q,P ∈ P(S) we have DΓ

f (Q‖P ) ≥ 0 and DΓ
f (P‖P ) =

0. If f and Γ are both strictly admissible then DΓ
f (Q‖P ) = 0 if and only if Q = P .

Proof

1. Define H1, H2 : Cb(S)→ (−∞,∞] by

H1(g) = inf
ν∈R
{ν + EP [f∗(g − ν)]} (83)

and H2(g) = ∞1Γc(g) (note that H1 > −∞ follows from the bound f∗(y) ≥ y; see
Lemma 42). We first show that H1 and H2 are convex and LSC. To see that H1 is
convex, note that convexity of f∗ implies that the map (g, ν) 7→ ν + EP [f∗(g − ν)]
is convex on Cb(S) × R. Therefore, taking the infimum over ν results in a convex
function of g; see Theorem 2.2.6 in Bot et al. (2009). To show lower semicontinuity of
H1, first recall the variational formula (66)

inf
ν∈R
{ν + EP [f∗(g − ν)]} = sup

h∈Mb(S):EP [h]=1,EP [f(h)]<∞
{EP [gh]− EP [f(h)]} . (84)

We can write EP [gh] =
∫
gdPh where dPh ≡ hdP ∈ M(S). Recalling that Cb(S)∗ =

{τη : η ∈ M(S)}, τη(g) ≡
∫
gdη we see that g 7→ EP [gh] is continuous on Cb(S).

Therefore Eq. (84) expresses H1 as the supremum of a family of continuous functions,
thus proving H1 is LSC. H2 is LSC and convex since Γ is closed and convex. We can
write DΓ

f (µ‖P ) as the infinite-dimensional convex conjugate of H1 +H2:

DΓ
f (µ‖P ) = sup

g∈Cb(S)
{τµ(g)− (H1(g) +H2(g))} = (H1 +H2)∗(τµ) .

We will now use the theory of infimal convolutions to compute the convex conjugate
of H1 +H2. Under appropriate assumptions, this theory allows one to show

(H1 +H2)∗(τ) = inf{H∗1 (τ1) +H∗2 (τ2) : τ1 + τ2 = τ} ≡ (H∗1�H
∗
2 )(τ) , τ ∈ Cb(S)∗ ,

(85)
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where H∗1�H
∗
2 is called the infimal convolution; see, e.g., Chapter 2 in Bot et al. (2009)

for further information on infimal convolutions. Specifically, using Theorem 2.3.10 in
Bot et al. (2009), if domH1 ∩ domH2 6= ∅ and H∗1�H

∗
2 is LSC in the weak-* topology

on Cb(S)∗ then (H1 + H2)∗ = H∗1�H
∗
2 . To show the first condition, note that f∗ is

not identically equal to ∞ and 0 ∈ Γ; using these facts it is straightforward to show
that 0 ∈ domH1 ∩ domH2. Therefore if we can prove lower semicontinuity of H∗1�H

∗
2

then we can conclude (85). To accomplish this, first rewrite

H∗1�H
∗
2 (τµ) = inf

η∈M(S)
{H∗1 (τη) +WΓ(µ, η)} . (86)

Next we show that the infimum in (86) can be restricted to P(S). We do this in two
steps:

(a) H∗1 (τη) =∞ when η is not positive: To show this, first note that

H∗1 (τη) ≥ sup
g∈Cb(S)

{∫
gdη − EP [f∗(g)]

}
.

If there exists a measurable set F ⊂ S with η(F ) < 0 then by the extension of
Lusin’s theorem found in Appendix D of Dudley (2014), for any ε > 0 there exists
a closed set Eε ⊂ S such that |η|(Ecε ) < ε and a gε ∈ Cb(S) such that 0 ≤ gε ≤ 1
and gε = 1F on Eε. For n ∈ Z+ define gn,ε = −ngε ∈ Cb(S). The assumption
that f is admissible implies limy→−∞ f

∗(y) <∞. Therefore f∗(gn,ε) is bounded
above independent of n, ε, and so there exists D ∈ R with

H∗1 (τη) ≥ −n
∫
gεdη −D = n|η(F )|+ n

∫
1Ecε 1Fdη − n

∫
Ecε

gεdη −D

≥n|η(F )| − 2εn−D .

Letting ε < |η(F )|/2 and sending n→∞ proves the claim.

(b) H∗1 (τη) =∞ if η(S) 6= 1: For c ∈ R we can use the fact that (f∗)∗ = f to compute

H∗1 (τη) ≥cη(S)− inf
ν∈R
{ν + f∗(c− ν)} = c(η(S)− 1) + sup

ν∈R
{c− ν − f∗(c− ν)}

(87)

=c(η(S)− 1) + f(1) = c(η(S)− 1) .

Taking c→ ±∞ proves the claim.

Remark 75 In light of the variational formula (10), one might be motivated to
define DΓ

f using EP [f∗(g)] in place of H1(g). However, the property proven in
Eq. (87) would fail in that case and we would be unable to proceed with our method
of proof. If Γ is closed under the shift transformations g 7→ g − ν, ν ∈ R, then
the choice of H1(g) versus EP [f∗(g)] does not impact the value of DΓ

f (µ‖P ) when
µ = Q ∈ P(S), but it can change the value if µ ∈ M(S) \ P(S) and the choice
can also impact the performance of numerical computations (see Ruderman et al.,
2012 and Birrell et al., 2020 for discussion of this issue in the context of classical
f -divergences).
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Having proven the above two properties we can now conclude that H∗1 (τη) = ∞ if
η 6∈ P(S), hence

H∗1�H
∗
2 (τµ) = inf

η∈P(S)
{Df (η‖P ) +WΓ(µ, η)} , (88)

where we used Corollary 51 and Remark 53 to evaluate H∗1 (τη). To prove lower
semicontinuity of H∗1�H

∗
2 , let a ∈ R and take a net {τµα}α∈A in {H∗1�H∗2 ≤ a} with

τµα → τµ. For any ε > 0, Eq. (88) implies there exists ηα,ε ∈ P(S) with

ε+ a > Df (ηα,ε‖P ) +WΓ(µα, ηα,ε) ≥ Df (ηα,ε‖P ) ,

where in the second inequality we used the fact that WΓ ≥ 0 (to see this, bound it
below by taking g = 0 in Equation 76). Df (·‖P ) is lower semicontinuous (see Corollary
51) and has compact sublevel sets in the Prokhorov-metric topology (see Lemma 54),
so there exists a subnet ηαβ ,ε, β ∈ B (where B is some directed set) with ηαβ ,ε → ηε in
the Prokhorov metric (i.e., weakly) and

Df (ηε‖P ) ≤ lim inf
β

Df (ηαβ ,ε‖P ) ≡ sup
β̃

inf
β≥β̃

Df (ηαβ ,ε‖P ) .

The weak-* topology on Cb(S)∗ is generated by {πg : g ∈ Cb(S)}, πg(τ) ≡ τ(g) and
we have

WΓ(µ, η) = wΓ(τµ, τη) , (89)

where wΓ : Cb(S)∗ × Cb(S)∗ → [0,∞] is given by

wΓ = sup
g∈Γ
{πg ◦ π1 − πg ◦ π2} (90)

and is therefore LSC in the product topology (π1, π2 denote the projection maps onto
the first and second components). By assumption, τµα → τµ in the weak-* topology.
The fact that ηαβ ,ε → ηε weakly implies that τηαβ,ε → τηε in the weak-* topology as

well. Therefore (τµαβ , τηαβ,ε)→ (τµ, τηε) in the product topology on Cb(S)∗ × Cb(S)∗.

Lower semicontinuity of wΓ and the equality (89) then imply

WΓ(µ, ηε) ≤ lim inf
β

WΓ(µαβ , ηαβ ,ε) .

Next we need the following simple to prove lemma about nets in (−∞,∞]: Let xβ , yβ ,
β ∈ B be nets in (−∞,∞]. If xβ and yβ are nondecreasing then

sup
β
{xβ + yβ} = sup

β
xβ + sup

β
yβ .
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Using this we have

ε+ a ≥ sup
β̃∈B

inf
β≥β̃

{
Df (ηαβ ,ε‖P ) +WΓ(µαβ , ηαβ ,ε)

}
≥ sup
β̃∈B

{
inf
β≥β̃

Df (ηαβ ,ε‖P ) + inf
β≥β̃

WΓ(µαβ , ηαβ ,ε)

}
= sup
β̃∈B

inf
β≥β̃

Df (ηαβ ,ε‖P ) + sup
β̃∈B

inf
β≥β̃

WΓ(µαβ , ηαβ ,ε)

= lim inf
β

Df (ηαβ ,ε‖P ) + lim inf
β

WΓ(µαβ , ηαβ ,ε)

≥Df (ηε‖P ) +WΓ(µ, ηε)

≥ inf
η∈P(S)

{Df (η‖P ) +WΓ(µ, η)}

=H∗1�H
∗
2 (τµ) .

This holds for all ε > 0 and so τµ ∈ {H∗1�H∗2 ≤ a}. This proves that {H∗1�H∗2 ≤ a}
is closed for all a ∈ R and hence we have proven lower semicontinuity of H∗1�H

∗
2 .

Therefore we can conclude that

DΓ
f (µ‖P ) =(H1 +H2)∗(τµ) = H∗1�H

∗
2 (τµ)

= inf
η∈P(S)

{Df (η‖P ) +WΓ(µ, η)}

as claimed.

2. If DΓ
f (µ‖P ) <∞ then there exists ηn ∈ P(S) such that

DΓ
f (µ‖P ) = lim

n
(Df (ηn‖P ) +WΓ(µ, ηn)) , (91)

with Df (ηn‖P ) + WΓ(µ, ηn) finite for all n. WΓ ≥ 0 and so (91) implies Df (ηn‖P )
is a bounded sequence, i.e., there exists M ∈ R with ηn ∈ {Q : Df (Q‖P ) ≤ M}.
Lemma 54 implies Q 7→ Df (Q‖P ) has compact sublevel sets, hence there exists a
convergence subsequence ηnj → η∗ ∈ P(S). By Corollary 51, (Q,P ) 7→ Df (Q‖P ) is
LSC and so Df (η∗‖P ) ≤ lim infj Df (ηnj‖P ). η 7→ WΓ(µ, η) is the supremum of a
collection of continuous functions on P(S), and so is also LSC. Therefore WΓ(µ, η∗) ≤
lim infjW

Γ(µ, ηnj ) and we have

DΓ
f (µ‖P ) ≤ Df (η∗‖P ) +WΓ(µ, η∗) ≤ lim inf

j
Df (ηnj‖P ) + lim inf

j
WΓ(µ, ηnj )

≤ lim inf
j

(Df (ηnj‖P ) +WΓ(µ, ηnj )) = DΓ
f (µ‖P ) .

This completes the proof of (82). If f is strictly convex then the map η 7→ Df (η‖P ) is
strictly convex on the set {η : Df (η‖P ) <∞} (see Lemma 55). It is straightforward to
see that η 7→WΓ(µ, η) is convex. Therefore the objective functional in (81) is strictly
convex and hence has at most one minimizer.
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3. We have already noted that WΓ ≥ 0. The property WΓ(µ, µ) = 0 is trivial from the
definition. If Γ is strictly admissible and Q,P ∈ P(S) with WΓ(Q,P ) = 0 then for
ψ ∈ Ψ we can find c ∈ R, ε > 0 such that c± εψ ∈ Γ. Therefore

0 = WΓ(Q,P ) ≥ EQ[c± εψ]− EP [c± εψ] = ±ε(EQ[ψ]− EP [ψ]) .

From this we can conclude that EQ[ψ] = EP [ψ] for all ψ ∈ Ψ and hence Q = P .

4. Both Df and WΓ are non-negative, hence the infimal convolution formula (81) implies
DΓ
f ≥ 0. By taking η = P in (81) it is easy to see that DΓ

f (P‖P ) = 0. Now suppose
f and Γ are strictly admissible. Strict convexity of f at 1 implies that Df has the
divergence property (Liese and Vajda, 2006). If Q,P ∈ P(S) with DΓ

f (Q‖P ) = 0 then
Eq. (82) implies there exists η∗ ∈ P(S) with

0 = DΓ
f (Q‖P ) = Df (η∗‖P ) +WΓ(Q, η∗) .

Therefore Df (η∗‖P ) = 0 = WΓ(Q, η∗). The first equality implies η∗ = P and so we
have WΓ(Q,P ) = 0. We have assumed Γ is strictly admissible, hence Part 3 implies
Q = P .

Under slightly stronger assumptions we find that DΓ
f (µ‖P ) is infinite when µ 6∈ M1(S) ≡

{µ ∈M(S) : µ(S) = 1}.

Corollary 76 Suppose f and Γ are admissible and Γ contains the constant functions. Then
for P ∈ P(S), µ ∈M(S) \M1(S) we have DΓ

f (µ‖P ) =∞.

Proof We have assumed that Γ contains the constant functions. Therefore, for any η ∈ P(S)
we have

WΓ(µ, η) ≥ c(µ(S)− η(S)) = c(µ(S)− 1)

for all c ∈ R. If µ(S) 6= 1 then taking c → ±∞ implies WΓ(µ, η) = ∞. This holds for all
η ∈ P(S) and so Eq. (81) implies DΓ

f (µ‖P ) =∞.

Here we prove that, under appropriate assumptions, the unit ball in a RKHS is an
admissible set and hence falls under the purview of Theorem 15. See Chapter 4 in Steinwart
and Christmann (2008) for a detailed treatment of the properties of an RKHS, several of
which are used below.

Lemma 77 Let X ⊂ Cb(S) be a separable RKHS with reproducing-kernel k : S × S → R.
Let Γ = {g ∈ X : ‖g‖X ≤ 1} be the unit ball in X. Then Γ is admissible.

Proof We clearly have 0 ∈ Γ and Γ is convex. Therefore we just need to show that Γ is a
closed subset of Cb(S) under the weak topology generated by M(S): First note that Γ is
compact in the weak topology induced by X∗; this follows from Alaoglu’s theorem (see, e.g.,
Theorem 5.18 in Folland, 2013) together with the fact that X is reflexive.
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Next we show that the topology on Γ induced by M(S) is the same as the topology
induced by X∗. To do this, first recall that the assumption X ⊂ Cb(S) implies k is bounded,
separately continuous, and jointly measurable. This allows us to define the linear map
µX : M(S)→ X by µX(ν) =

∫
k(·, x)ν(dx) that satisfies

τν(g) ≡
∫
gdν = 〈g, µX(ν)〉X

for all g ∈ X. This shows that τν ∈ X∗ for all ν ∈ M(S). Therefore the topology on Γ
induced by M(S) is weaker than the topology induced by X∗. The former is Hausdorff,
since M(S) separates points, and, as shown above, the latter is compact. Therefore the two
topologies are in fact equal (see, e.g., Proposition 4.28 in Folland, 2013).

Combining the above two properties we conclude that the weak topology on Γ induced
by M(S) is compact. The topology induced by M(S) on Cb(S) is Hausdorff (again, because
M(S) separates points) and Γ is a compact subset of this space, hence we have proven that
Γ is closed in Cb(S).

Remark 78 By imposing various additional conditions on the kernel (e.g., if it is charac-
teristic or universal) one can ensure that the unit ball in X is measure determining and
hence is strictly admissible; see Sriperumbudur et al. (2011) and references therein.

Now we prove the limiting properties from Theorem 17, which are repeated below.

Theorem 79 Let Q,P ∈ P(S) and Γ, f both be admissible. Then for all c > 0 the set
Γc ≡ {cg : g ∈ Γ} is admissible and we have the following two limiting formulas.

1. If Γ is strictly admissible then the sets ΓL are strictly admissible for all L > 0 and

lim
L→∞

DΓL
f (Q‖P ) = Df (Q‖P ) .

2. If f is strictly admissible then

lim
δ↘0

1

δ
DΓδ
f (Q‖P ) = WΓ(Q,P ) .

Proof

1. From the definition, it is straightforward to see that Γc is strictly admissible for all
c > 0 and WΓc(µ, κ) = cWΓ(µ, κ). To prove that limL→∞D

ΓL
f (Q‖P ) = Df (Q‖P ), first

suppose that Df (Q‖P ) <∞: From Eq. (81) we see that DΓL
f (Q‖P ) ≤ Df (Q‖P ) <∞

for all L > 0 and (82) implies that there exists η∗,L ∈ P(S) such that DΓL
f (Q‖P ) =

Df (η∗,L‖P ) +WΓL(Q, η∗,L). Take a sequence Ln ↗∞. We have

Df (η∗,Ln‖P ) ≤ DΓL
f (Q‖P ) ≤ Df (Q‖P ) ≡M <∞ ,
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and so for all n we have η∗,Ln ∈ {Df (·‖P ) ≤ M}, a compact set (see Lemma 54).
Hence there exists a weakly convergence subsequence η∗,Lnj → η∗. We can compute

WΓ(Q, η∗) ≤ lim inf
j

WΓ(Q, η∗,Lnj ) = lim inf
j

1

Lnj
W

ΓLnj (Q, η∗,Lnj )

≤ lim inf
j

1

Lnj
D

ΓLnj
f (Q‖P ) ≤ lim inf

j

1

Lnj
Df (Q‖P ) = 0 .

Therefore WΓ(Q, η∗) = 0. Γ is strictly admissible, hence WΓ has the divergence
property (see Part 3 of Theorem 15) and so η∗ = Q. Therefore we can use lower
semicontinuity of Df to compute

lim inf
j

D
ΓLnj
f (Q‖P ) = lim inf

j
(Df (η∗,Lnj ‖P ) +WΓL(Q, η∗,Lnj ))

≥ lim inf
j

Df (η∗,Lnj ‖P ) ≥ Df (Q‖P ) .

Combining this with the fact that D
ΓLn
f (Q‖P ) ≤ Df (Q‖P ) we find limj D

ΓLnj
f (Q‖P ) =

Df (Q‖P ). Therefore we have shown that every sequence Ln ↗∞ has a subsequence

with D
ΓLnj
f (Q‖P ) → Df (Q‖P ). This implies D

ΓLn
f (Q‖P ) → Df (Q‖P ) and so we

have proven the result in the case where Df (Q‖P ) <∞.

Now suppose Df (Q‖P ) =∞: If limL→∞D
ΓL
f (Q‖P ) 6=∞ then there exists R ∈ R and

Ln → ∞ with D
ΓLn
f (Q‖P ) ≤ R for all n. Eq. (82) implies there exists η∗,n ∈ P(S)

such that

R ≥ DΓLn
f (Q‖P ) = Df (η∗,n‖P ) +WΓLn (Q, η∗,n) ≥ Df (η∗,n‖P ) . (92)

Using compactness of sublevel sets we again see that there is a convergent subsequence
η∗,nj → η∗. Similarly to (92), we can compute

R ≥DΓLn
f (Q‖P ) = Df (η∗,n‖P ) +WΓLn (Q, η∗,n) ≥WΓLn (Q, η∗,n) = LnW

Γ(Q, η∗,n) .

This implies

R/Ln ≥WΓ(Q, η∗,n) ≥ 0 ,

and so WΓ(Q, η∗,n)→ 0. Γ is strictly admissible and η∗,nj → η∗ weakly, hence a similar
argument to that of the previous case implies Q = η∗ and

Df (Q‖P ) ≤ lim inf
j

Df (η∗,nj‖P ) ≤ lim inf
j

(Df (η∗,nj‖P ) +W
ΓLnj (Q, η∗,nj ))

= lim inf
j

D
ΓLnj
f (Q‖P ) ≤ R .

Therefore Df (Q‖P ) ≤ R <∞, a contradiction. This completes the proof.
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2. It is again straightforward to see that Γδ is admissible and WΓδ = δWΓ. Fix Q,P ∈
P(S) and take a sequence δn ↘ 0. Using the infimal convolution formula (81) we see
that

1

δn
D

Γδn
f (Q‖P ) = inf

η∈P(S)
{δ−1
n Df (η‖P ) +WΓ(Q, η)} ≤WΓ(Q,P )

and the left-hand-side is nondecreasing in n. Therefore

lim
n→∞

1

δn
D

Γδn
f (Q‖P ) = sup

n

1

δn
D

Γδn
f (Q‖P ) ≤WΓ(Q,P ) .

Suppose supn
1
δn
D

Γδn
f (Q‖P ) < WΓ(Q,P ): This implies D

Γδn
f (Q‖P ) < ∞ for all n,

hence Eq. (82) implies there exists η∗,n ∈ P(S) such that D
Γδn
f (Q‖P ) = Df (η∗,n‖P ) +

WΓδn (Q, η∗,n). Therefore

∞ > sup
n

1

δn
D

Γδn
f (Q‖P ) ≥ sup

n

1

δn
Df (η∗,n‖P ) .

δn ↘ 0 and so this implies Df (η∗,n‖P ) is uniformly bounded. η 7→ Df (η‖P ) has
compact sublevel sets (see Lemma 54), hence there exists a weakly convergent sub-
sequence η∗,nj → η∗. The fact that supn

1
δn
Df (η∗,n‖P ) < ∞ together with δn ↘ 0

implies Df (η∗,n‖P )→ 0. Df is LSC and η∗,nj → η∗ so this implies

0 ≤ Df (η∗‖P ) ≤ lim inf
j

Df (η∗,nj‖P ) = 0 ,

i.e., Df (η∗‖P ) = 0. f is strictly convex at 1, hence Df has the divergence property
and so η∗ = P . Therefore η∗,nj → P weakly and we can compute

WΓ(Q,P ) > sup
n

1

δn
D

Γδn
f (Q‖P ) ≥ lim inf

j

1

δnj
D

Γδnj
f (Q‖P )

≥ lim inf
j

1

δnj
W

Γδnj (Q, η∗,nj ) = lim inf
j

WΓ(Q, η∗,nj ) ≥WΓ(Q,P ) .

This is a contradiction, hence we can conclude that

lim
n→∞

1

δn
D

Γδn
f (Q‖P ) = sup

n

1

δn
D

Γδn
f (Q‖P ) = WΓ(Q,P ) .

δn ↘ 0 was arbitrary, therefore

lim
δ↘0

1

δ
DΓδ
f (Q‖P ) = WΓ(Q,P ) .

Next we prove the convergence and continuity results from Theorem 18.

Theorem 80 Let f ∈ F1(a, b) and Γ ⊂Mb(Ω). Then:
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1. If there exists c0 ∈ Γ∩R then WΓ(Qn, P )→ 0 =⇒ DΓ
f (Qn‖P )→ 0 and Df (Qn‖P )→

0 =⇒ DΓ
f (Qn‖P )→ 0, and similarly if one exchanges Qn and P .

2. Suppose f and Γ also satisfy the following:

(a) There exist a nonempty set Ψ ⊂ Γ with the following properties:

i. Ψ is P(Ω)-determining.

ii. For all ψ ∈ Ψ there exists c0 ∈ R, ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0.

(b) f is strictly convex on a neighborhood of 1.

(c) f∗ is finite and C1 on a neighborhood of ν0 ≡ f ′+(1).

Let P,Qn ∈ P(Ω), n ∈ Z+. If DΓ
f (Qn‖P ) → 0 or DΓ

f (P‖Qn) → 0 then EQn [ψ] →
EP [ψ] for all ψ ∈ Ψ.

3. On a metric space S, if f is admissible then the map (Q,P ) ∈ P(S)×P(S) 7→ DΓ
f (Q‖P )

is lower semicontinuous.

Proof Part 1 follows from the upper bound (21) and the lower bound from Part 3 of
Theorem 8. Now work under the assumptions of Part 2 and suppose DΓ

f (Qn‖P )→ 0. Fix

δ > 0 and take Nδ such that for all n ≥ Nδ we have DΓ
f (Qn‖P ) ≤ δ. Fix ψ ∈ Ψ and, per

Assumption 2.a.ii, take c0 ∈ R and ε0 > 0 such that c0 + εψ ∈ Γ for all |ε| < ε0. Using (17)
we obtain

EQn [ν0 + εψ]− EP [f∗(ν0 + εψ)] ≤ DΓ
f (Qn‖P ) ≤ δ

for all n ≥ Nδ, |ε| < ε0, where ν0 is as in (80). Taylor expanding f∗ then gives

EQn [ν0 + εψ]− EP [f∗(ν0) + (f∗)′(ν0)εψ +R(εψ)εψ] ≤ δ

for all n ≥ Nδ, |ε| < ε0 (using a possibly smaller ε0), where the remainder, R, is continuous,
bounded, and satisfies R(0) = 0. The identities (80) then imply

ε(EQn [ψ]− EP [ψ]) ≤ δ + εEP [R(εψ)ψ]

for all n ≥ Nδ, |ε| < ε0. By appropriately choosing the sign of ε, we therefore find

sup
n≥Nδ

|EQn [ψ]− EP [ψ]| ≤ δ/ε+ ‖ψ‖∞ sup
[−ε‖ψ‖∞,ε‖ψ‖∞]

|R|

for all 0 < ε < ε0. For δ sufficiently small we can let ε = δ1/2 and therefore find

sup
n≥Nδ

|EQn [ψ]− EP [ψ]| ≤ δ1/2 + ‖ψ‖∞ sup
[−δ1/2‖ψ‖∞,δ1/2‖ψ‖∞]

|R| → 0

as δ → 0. Hence EQn [ψ]→ EP [ψ] as claimed. The proof in the case where DΓ
f (P‖Qn)→ 0

is similar. Finally, Part 3 follows from (17), which show that DΓ
f (Q‖P ) is the supremum

of functions that are continuous in (Q,P ), where the topology on P(S) is induced by the
Prokhorov metric; here we used the fact that Lemma 41 implies f∗ is finite and continuous
on R and hence f∗(g − ν) ∈ Cb(S).

Now we derive the data processing inequality from Theorem 21.
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Theorem 81 (Data Processing Inequality) Let f ∈ F1(a, b), Q,P ∈ P(Ω), and K be
a probability kernel from (Ω,M) to (N,N ).

1. Let Γ ⊂Mb(N) be nonempty. Then

DΓ
f (K[Q]‖K[P ]) ≤ DK[Γ]

f (Q‖P ) . (93)

2. Let Γ ⊂Mb(Ω×N) be nonempty. Then

DΓ
f (Q⊗K‖P ⊗K) ≤ DK[Γ]

f (Q‖P ) . (94)

Proof From Eq. (17) we have

DΓ
f (K[Q]‖K[P ]) = sup

g∈Γ,ν∈R

{∫ ∫
(g(y)− ν)Kx(dy)Q(dx)

−
∫ ∫

f∗(g(y)− ν)Kx(dy)P (dx)

}
.

Using convexity of f∗ we can apply Jensen’s inequality to find∫
f∗(g(y)− ν)Kx(dy) ≥ f∗

(∫
(g(y)− ν)Kx(dy)

)
for all x ∈ Ω. Hence

DΓ
f (K[Q]‖K[P ]) ≤ sup

g∈Γ,ν∈R
{EQ[K[g]− ν]− EP [f∗(K[g]− ν)]} = D

K[Γ]
f (Q‖P ) .

This proves Eq. (93). The proof of Eq. (94) is very similar and so we omit it.

Next we prove (a generalization of) Theorem 24, which gives existence and uniqueness
results regarding the dual optimization problem (12) for the classical f -divergences.

Theorem 82 Let f ∈ F1(a, b), a ≥ 0, P ∈ P(Ω), and g ∈Mb(Ω).

1. If f is strictly convex then the optimization problem

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} (95)

has at most one optimizer.

2. Suppose there exists ν∗ ∈ R such that Range(g − ν∗) ⊂ {f∗ <∞}o and

EP [(f∗)′+(g − ν∗)] = 1 . (96)

Then

dQ∗ ≡ (f∗)′+(g − ν∗)dP (97)

is a probability measure and

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} = EQ∗ [g]−Df (Q∗‖P )

=ν∗ + EP [f∗(g − ν∗)] = inf
ν∈R
{ν + EP [f∗(g − ν)]} .
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3. If f is strictly convex on (a, b) and {f∗ <∞} = R then there exists ν∗ ∈ R such that

EP [(f∗)′(g − ν∗)] = 1 .

Proof

1. We obviously have

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} = sup
Q∈P(Ω):Df (Q‖P )<∞

{EQ[g]−Df (Q‖P )} , (98)

and optimizers (if they exist) must be in {Q : Df (Q‖P ) <∞}. If f is strictly convex
then Lemma 55 implies that the map Q 7→ Df (Q‖P ) is strictly convex on the set
{Q : Df (Q‖P ) < ∞}. The objective functional Q 7→ EQ[g] −Df (Q‖P ) is therefore
strictly concave and hence has at most one maximizer.

2. Lemma 46 implies f∗ is nondecreasing, and so (f∗)′+ ≥ 0. Together with the assumption
(96), this implies Q∗ is a probability measure. From Lemma 48 we have

f((f∗)′+(g − ν∗)) = (g − ν∗)(f∗)′+(g − ν∗)− f∗(g − ν∗) (99)

and so we can compute

sup
Q∈P(Ω)

{EQ[g]−Df (Q‖P )} ≥ EQ∗ [g]−Df (Q∗‖P )

=ν∗ + EP [(g − ν∗)(f∗)′+(g − ν∗)− f((f∗)′+(g − ν∗))]
=ν∗ + EP [f∗(g − ν∗)] ≥ inf

ν∈R
{ν + EP [f∗(g − ν)]}

= sup
Q:Df (Q‖P )<∞

{EQ[g]−Df (Q‖P )} ,

where we used Eq. (99) to go from the second to the third line and we used Eq. (67) to
obtain the last line. The equality (98) then completes the proof.

3. Strict convexity of f implies f∗ is C1 (see Theorem 26.3 in Rockafellar, 1970). g is
bounded and so the dominated convergence theorem implies that the map h : R→ R,
h(ν) = EP [(f∗)′(g−ν)] is continuous. From Lemma 49 we see that ν0 ≡ f ′+(1) satisfies
(f∗)′(ν0) = 1. Convexity of f∗ implies that (f∗)′ is nondecreasing, therefore

h(‖g‖∞ − ν0) ≤ (f∗)′(ν0) = 1

and

h(−‖g‖∞ − ν0) ≥ (f∗)′(ν0) = 1 .

Continuity therefore implies there exists ν∗ ∈ [−‖g‖∞ − ν0, ‖g‖∞ − ν0] with h(ν∗) = 1
as claimed.

Finally, we prove the characterization from Theorem 25 in the more general case of
DΓ
f (µ‖P ) where µ ∈M(S).
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Theorem 83 Let Γ ⊂ Cb(S) be admissible and f ∈ F1(a, b) be admissible, where a ≥ 0.
Fix P ∈ P(S), µ ∈M(S). Suppose we have g∗ ∈ Γ and ν∗ ∈ R that satisfy the following:

1. f((f∗)′+(g∗ − ν∗)) ∈ L1(P ),

2. EP [(f∗)′+(g∗ − ν∗)] = 1,

3. WΓ(µ, η∗) =
∫
g∗dµ−

∫
g∗dη∗, where dη∗ ≡ (f∗)′+(g∗ − ν∗)dP .

Then η∗ ∈ P(S) solves the infimal convolution problem (81) (Equation 22 for the case of
µ = Q ∈ P(S)) and

DΓ
f (µ‖P ) =

∫
g∗dµ− (ν∗ + EP [f∗(g∗ − ν∗)]) . (100)

If f is strictly convex then η∗ is the unique solution to the infimal convolution problem.

Proof Admissibility of f implies {f∗ < ∞} = R. Convexity of f∗ then implies that the
right derivative (f∗)′+ exists everywhere and so Range(g∗ − ν∗) ⊂ {(f∗)′+ <∞}. Therefore
we can use Theorem 82 to conclude that

dη∗ = (f∗)′+(g∗ − ν∗)dP

is a probability measure, Df (η∗‖P ) <∞, and

sup
Q:Df (Q‖P )<∞

{EQ[g∗]−Df (Q‖P )} =Eη∗ [g∗]−Df (η∗‖P ) = ν∗ + EP [f∗(g∗ − ν∗)]

= inf
ν∈R
{ν + EP [f∗(g∗ − ν)]} .

In particular,

Df (η∗‖P )− Eη∗ [g∗] = −(ν∗ + EP [f∗(g∗ − ν∗)]) .

Using Part 1 of Theorem 74 we can compute

DΓ
f (µ‖P ) ≤Df (η∗‖P ) +WΓ(µ, η∗)

=Df (η∗‖P ) +

∫
g∗dµ−

∫
g∗dη∗

=

∫
g∗dµ− (ν∗ + EP [f∗(g∗ − ν∗)])

=

∫
g∗dµ− inf

ν∈R
{ν + EP [f∗(g∗ − ν)]}

≤ sup
g∈Γ

{∫
gdµ− inf

ν∈R
{ν + EP [f∗(g − ν)]}

}
= DΓ

f (µ‖P ) .

Therefore η∗ solves the infimal convolution problem and (100) holds. If f is strictly convex
then, as shown in Theorem 74, the solution to the infimal convolution problem is unique.
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Appendix D. Strict Concavity of the (f,Γ)-Divergence Objective
Functional

Here we will (formally) compute the Taylor expansion of the objective functional in (15) for
the (f,Γ)-divergences. The computation is very similar to the classical f -divergence case
considered in Appendix C of Birrell et al. (2020). First define

Hf [g;Q,P ] = EQ[g]− inf
ν∈R
{ν + EP [f∗(g − ν)]}

and note that this map is concave in g, due to the convexity of f∗. In fact, under weak
assumptions it is strictly concave, as we now show. Take a line segment gε = g0 + εψ ∈ Γ,
ε ∈ (−δ, δ). We will compute d2

dε2
|ε=0Hf [gε;Q,P ].

The optimization problem infν∈R{ν + EP [f∗(gε − ν)]} is solved by νε that satisfies

0 = ∂ν |ν=νε{ν + EP [f∗(gε − ν)]} ,

i.e.,

EP [(f∗)′(gε − νε)] = 1 (101)

for all ε. Differentiating this at ε = 0 we find

ν ′0 = EP0 [ψ] , dP0 ≡
(f∗)′′(g0 − ν0)

EP [(f∗)′′(g0 − ν0)]
dP . (102)

Note that convexity of f∗ implies EP [(f∗)′′(g0− ν0)] ≥ 0. We assume this inequality is strict.
We can compute

d

dε
|ε=0H[gε;Q,P ] =EQ[ψ]− ν ′0 − EP [(f∗)′(g0 − ν0)ψ] + EP [(f∗)′(g0 − ν0)]ν ′0

=EQ[ψ]− EP [(f∗)′(g0 − ν0)ψ] , (103)

d2

dε2
|ε=0Hf [gε;Q,P ] =− ν ′′0 − EP [(f∗)′′(g0 − ν0)(ψ − ν ′0)2] + EP [(f∗)′(g0 − ν0)]ν ′′0

=− EP [(f∗)′′(g0 − ν0)] VarP0 [ψ] , (104)

where we used Eq. (101) and Eq. (102) to simplify and

ν0 = argminν∈R{ν + EP [f∗(g0 − ν)]} .

In particular, the second derivative is strictly negative when VarP0 [ψ] 6= 0, i.e., Hf [g;Q,P ]
is strictly concave at g0 in all directions, ψ, of nonzero variance under P0. This can be made
more explicit in the KL case. First recall the objective functional from Eq. (13),

HKL[g;Q,P ] ≡ EQ[g]− inf
ν∈R
{ν + EP [f∗KL(g − ν)]} = EQ[g]− logEP [eg] . (105)

Fixing g0 ∈ Γ and perturbing in a direction ψ we can compute

d2

dε2
|ε=0HKL[g0 + εψ;Q,P ] =− (EP [ψ2eg0 ]EP [eg0 ]−1 − EP [ψeg0 ]2EP [eg0 ]−2) (106)

=−VarP0 [ψ], dP0 ≡ eg0dP/EP [eg0 ] .

Thus we again have strict convexity in all directions ψ of nonzero variance under P0.
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Appendix E. Additional Figures
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Figure 5: Here we present generator samples and their statistical behavior from Wasserstein
and reverse Lipschitz α-GAN methods using the same setup as in Figure 5, except
that training was done with a much larger set of samples (100000 samples). We
obtain similar results, with the primary difference being that the training converges
faster.
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Figure 6: Here we present generator samples from WGAN-GP, reverse classical f -GAN
(denoted Dα), and reverse Lipschitz α-GAN using the setup described in Section
6.2 and Figure 5, except that we do not embed in higher-dimensional space; the
results are similar to what was described in Section 6.2. In the case of classical
f -GAN this is intriguing since, unlike in Figure 5, here we have Df (Pθ‖Q) <∞
yet the classical f -GAN still fails to converge. This suggests that the Lipschitz
constraint aids in the stability of the training even in such cases where the classical
f -divergence is finite. We show the result only for α = 5 but the behavior for
other values of α is similar.
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