
Proceedings of the IISE Annual Conference & Expo 2022 
K. Ellis, W. Ferrell, J. Knapp, eds. 

A Scenario-based Optimization Model for Long-term Healthcare 

Infrastructure Resilience against Flooding 
 

Gizem Toplu-Tutay, John J. Hasenbein, Erhan Kutanoglu 
Operations Research and Industrial Engineering  

The University of Texas at Austin, Austin, TX, United States 

 
Abstract 

 
The total cost for weather-related disasters in the US has been increasing. Storms and storm-induced flooding usually 
create the most damage. One way to minimize the impact of damages due to floods is to increase the resilience of 
lifeline infrastructures (power grids, transportation, healthcare, etc.) via proactive flood mitigation efforts. In this 
paper, we propose a stochastic optimization model that provides hospital and nursing home hardening decisions in 
preparation for a variety of flood scenarios. Scenarios are generated using the state-of-the-art physics-based flood 
models (WRF-Hydro and SLOSH) for two types of floods, inland river flooding, and storm surge, using historical and 
simulated storms. The model then identifies hospitals and nursing homes susceptible to flooding and considers the 
costs of evacuating facilities to inform the hardening decisions and apportion the budget spent on hardening vs 
recovery. The computational study focuses on Texas, with special emphasis on the coastal areas and the Southeast 
Texas region, considering the actual healthcare facility locations in the region. 
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1.  Introduction and Problem Description 
The U.S. has sustained 308 weather and climate disasters since 1980 where overall damages/costs reached or exceeded 
$1 billion, and the total cost of these 308 events exceeds $2 trillion. Hurricanes and hurricane-induced inland and 
coastal floods have caused the most damage and have the highest average event cost ($20.3 billion per event) [1]. In 
2017, Hurricane Harvey hit Texas and caused record-breaking rainfall over a week, which induced catastrophic 
flooding over a large area of southeastern Texas. It is the deadliest hurricane to hit Texas since 1919, and the second-
costliest U.S. tropical cyclone ($125 billion) after Hurricane Katrina ($161.3 billion in 2017 dollars) [2]. The 1980–
2020 annual average for billion-dollar disasters is 7.1 events, while the annual average for the most recent 5 years 
(2016–2020) is 16.2 events, 12 of which are severe storms and tropical cyclones [1]. These figures and the increase in 
the frequency of these “rare” storms with aftermath costs of billions motivate planning for longer-term investments to 
mitigate the impacts of future disasters. 
 
Mitigation, preparedness, response, and recovery are four phases of emergency management defined by the Federal 
Emergency Management Agency (FEMA) [3]. In this paper, we focus on mitigation phase investments to increase the 
resilience of healthcare facilities against storm-induced floods. In our context, building flood defenses including 
floodwalls, and specialized doors and windows, installing a backup generator, and always keeping a 3-day food supply 
are among mitigation efforts for hospitals and nursing homes. Relocating generators, electricity rooms, and 
medicine/food supplies to upper floors are other ways to increase the resilience of healthcare facilities during the 
mitigation phase. If an emerging storm is a major hurricane like Hurricane Harvey, Ike, or Rita, Regional Advisory 
Councils (non-profit governmental organizations) plan and coordinate all preparedness stage activities within the 48-
hour period before the hurricane landfall. These activities include choosing staging areas, positioning emergency 
vehicles (e.g., ambulances), and planning and executing the evacuations. Any applicable activity which has not been 
performed as a permanent hardening during the mitigation phase can be done temporarily in the preparedness stage 
(e.g., moving medicine supplies to upper floors). Finally, response activities include search and rescue missions while 
recovery activities include rebuilding damaged structures and caring for patients during the disaster. 
 
FEMA is involved in disaster management both to support facilities financially in their mitigation efforts and to help 
during and after the event with disaster relief packages for the damaged facilities. In this paper, we build a model that 
is beneficial to FEMA or other regional governmental organizations to prioritize healthcare facilities and their relative 
funding for permanent hardening investments to reduce future flood preparedness, response, and recovery costs. To 



Toplu-Tutay, Hasenbein, and Kutanoglu 

 

2 

 

achieve this, we propose a scenario-based optimization model that integrates physics-based flood models with decision 
making models to recommend optimal resilience planning for healthcare facilities. 
 
Our paper is organized as follows: Section 2 reviews existing work in the literature while Section 3 introduces the 
notation and explains the mathematical model. Section 4 introduces the actual healthcare network from southeast 
Texas and flood scenarios generated from Hurricane Harvey along with the parameters used in the sensitivity analysis. 
We present the results of the sensitivity analysis with zero-budget and unlimited-budget benchmarks in Section 5. We 
also assess some properties of facilities chosen to be hardened in the optimal resilience plan. Finally, Section 6 presents 
conclusions and future research directions. 
 

3.  Related Research 
Scenario-based optimization has been used in the literature to determine permanent hardening investments against 
extreme weather events like hurricanes [4, 5] and winter storms [6]. These studies mostly seek to increase power 
infrastructure resilience. However, in healthcare infrastructure, there is little research on enhancing nursing home and 
hospital resilience. Several studies focus on health system resilience by capacity planning and resource allocation to 
enhance response and recovery with the surge of patients after the disaster [7] whereas others study patient evacuations 
during the preparedness phase [8]. In terms of mitigation applications in healthcare facilities against hurricane-induced 
flooding, FEMA has best practice reports [9, 10]. Our methodology is similar to [4]. However, our lifeline 
infrastructure is healthcare facilities rather than the power grid and our future costs are patient evacuation and facility-
recovery costs. 
 

4.  Methodology 
We introduce the nomenclature for our formulation, starting with sets and parameters, followed by decision variables. 𝐽 Set of hospitals (𝐽𝐻) and nursing homes (𝐽𝑁) 𝑆 Set of flooding scenarios 𝐶𝑗𝐺 Cost of emergency generator per kW 𝐶𝐻 Cost of permanent hardening per bed count per level of hardening 𝐶𝐸 Cost of evacuation and recovery per patient 𝑘𝑗 Back-up power at facility 𝑗 𝑏𝑗 , 𝑑𝑗 Bed capacity and number of patients at facility 𝑗, respectively τ Expected number of storms per year 𝑇 Investment horizon in years 𝐵 Investment budget 𝑟 Discount rate 𝑝𝑠 Probability of scenario 𝑠 𝑀 Very large number β𝑠𝑗  Flood level considering both inland flooding and storm surge at facility 𝑗, in scenario 𝑠 𝑥𝑗  Binary variable - 1 if facility 𝑗 is chosen for deployment/upgrade of a backup generator as the 

first step of permanent hardening 𝑦𝑗  Integer variable indicating flood level to which the facility 𝑗 is hardened γ𝑠𝑗  Binary variable - 1 if facility 𝑗 is flooded in scenario 𝑠 even if hardened 

 
The modeling methodology is two-stage stochastic optimization that considers the costs of response and recovery in 
the individual flood scenarios in the second stage to inform permanent hardening decisions at each healthcare facility 
in the first stage. We consider nursing homes and hospitals as facilities. The overall model is as follows: 
 min (∑ 𝐶𝑗𝐺𝑘𝑗𝑥𝑗𝑗∈𝐽 + 𝐶𝐻𝑏𝑗𝑦𝑗) + (1 + 𝑟)𝑇 − 1𝑟(1 + 𝑟)𝑇−1 ⋅ 𝜏 ∑ 𝑝𝑠 (∑ 𝐶𝐸𝑑𝑗𝛾𝑠𝑗𝑗∈𝐽 )𝑠∈𝑆    (1) 

  
subject to:   ∑ 𝐶𝑗𝐺𝑘𝑗𝑥𝑗𝑗∈𝐽 + 𝐶𝐻𝑏𝑗𝑦𝑗 ≤ 𝐵  (2) 
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𝑦𝑗 ≤ 𝑥𝑗𝑀 ∀𝑗 ∈ 𝐽, (3) β𝑠𝑗 ≤ 𝑦𝑗 + γ𝑠𝑗𝑀 ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, (4) β𝑠𝑗 ≥ 𝑦𝑗 − (1 − γ𝑠𝑗)𝑀 ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, (5) 𝑦𝑗 ∈ 𝑍+ ∀𝑗 ∈ 𝐽, (6) 𝑥𝑗 , γ𝑠𝑗 ∈ {0,1} ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽. (7) 

 
Objective function (1) minimizes the total spending on permanent hardening and expected response and recovery 
expenditures due to flooding over a 𝑇-year horizon. We assume that we invest at time 0, and no more hardening is 

done later in the time horizon. The first term captures acquisition of emergency generators and structural hardening 
investments at time 0. When the term hardened facility is used in this paper, we mean that it has both a back-up 
generator and structural flood resilience to a certain level. We assume that hospitals already have a back-up power 

due to regulatory enforcement while nursing homes do not have one. With this assumption, 𝐶𝑗𝐺  significantly lower for 

hospitals than that of nursing homes since nursing homes need to purchase the generator whereas hospitals only need 

to upgrade the generator or relocate it to upper floors. In the second term, τ ∑ 𝑝𝑠(∑ 𝐶𝐸𝑑𝑗γ𝑠𝑗𝑗 )𝑠  is the expected annual 

evacuation and recovery (i.e., “damage fixing”) cost of the facilities not hardened enough in the first stage. When 
multiplied by the coefficient in front of the sum, the second term turns into the discounted total expected cost. 
 

Neither 𝐶𝐻 in the first nor 𝐶𝐸 in the second term differentiate in terms of hospital versus nursing home. They are 

constant. We multiply the former by the size, 𝑏𝑗 , and the level of hardening, 𝑦𝑗, to calculate the structural hardening 

cost at facility 𝑗 by assuming that the size of the facility is proportional to the bed count, and we multiply the latter by 

the demand, 𝑑𝑗 , to get response and recovery cost for facility 𝑗.  

 
There could be variable costs such as fuel or maintenance costs of the emergency generator before each hurricane 
season. However, we ignore them in the model since it is from the perspective of a governmental organization trying 
to allocate hazard mitigation funding rather than a perspective of an individual facility and its costs. 
 

Constraint (2) stipulates the investment at time 0 to be lower than budget 𝐵. In constraint (3), the hardening level 

against flooding is set to zero if a facility does not have a generator. Even though we consider flood mitigation to a 
certain level (say via flood walls or doors) for a facility, it must evacuate because we have not installed a back-up 
generator. If patients shelter in place at those facilities, their health condition would deteriorate due to heat (loss of air 

conditioning). Thus, connecting structural hardening, 𝑦𝑗, to having backup generator, 𝑥𝑗, is essential. We also choose 

not to limit the level of hardening, 𝑦𝑗 , with a tighter upper bound since we minimize it with the objective function. 

Additionally, constraint (4) forces binary variable γ to be 1 if the facility is inundated, (β𝑠𝑗 −  𝑦𝑗), even if it is hardened 

in the first stage to flood level 𝑦𝑗. Constraint (5) forces γ to be 0 if the facility is considered not flooded. Finally, 

constraints (6) and (7) stipulate variables to be either non-negative integer or binary. 
 

5.  Results  

 
5.1. Case Study 

We use hospital (𝐽𝐻) and nursing home (𝐽𝑁) data sets from the Homeland Infrastructure Foundation Level-Data 

(HIFLD)1. By filtering applicable locations in the southeast Texas region (i.e., Houston-Galveston area, including 

Harris County, which is the third largest in the U.S.), we obtain 170 hospitals and 702 nursing homes to apply and test 
our model. We utilize 25 flood scenarios generated by running hydrological models for both inland (WRF-Hydro) and 
coastal flooding (SLOSH Display) using Hurricane Harvey [11]. Using Hurricane Harvey as a test instance is 
important since it caused heavy flooding and patient evacuations in the region in 2017. With these test instances, 
without hardening, there are 215 facilities flooded in at least one of the scenarios, 45 of which are hospitals. Figure 

1.a shows the impact of flood scenarios on the hospitals. 
 
In the model, we install a back-up generator as a first step of permanent hardening. Acquisition, installation, and other 

related costs of it for nursing homes, 𝐶𝐺, is around $300-450 per kW depending on the brand, and we set it at $300 

and $450 in our parametric study. We assume that the cost is 10 times lower for hospitals since they only need upgrades 

 
1 https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals 
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and reinstallations. Back-up power for facility j, 𝑘𝑗 , converts bed count of facility j first into area (400 sq feet/bed)2, 

then power to be enough for 92 hours (50 kW + 4 kW/bed ⋅ 𝑏𝑗)3. 

After tropical Storm Allison hit Texas in 2001, the Texas Medical Center with 42 medical institutions, 19 of which 
are hospitals, incurred over $2.03 billion in damage due to flooding [9]. We may consider this case as an extreme 

example for the aftermath cost. Given they have 9,200 patient beds, the recovery cost is almost $200,000 per patient. 

Also, Lourdes Hospital in New York had a loss of $20M during flooding due to Storm Lee in 2006 [10]. Given they 
have 197 patient beds, the recovery cost is almost $100, 000 per patient. These losses are high since they are 

comprehensive for a facility, but they include costs that may not be eligible for grant funding by either FEMA or state. 

That is why we decide to use a response and recovery cost, 𝐶𝐸 as $20, 000 and $40, 000 per patient in our parametric 
study. The response (evacuation mission cost) comprises a small portion in this unit cost. For mass evacuations, the 

cost of evacuation including transportation, housing, and food was $1,000 per person in the aftermath of Hurricane 

Harvey in Texas4. On the other hand, evacuation of people with special needs requires more resources. Depending on 

how spread-out evacuating facilities are, how many patients they have, and time left before hurricane landfall, the cost 
may change tremendously because emergency vehicles must perform single or multiple trips to transport patients to 
safe locations, which changes the quantity of vehicles, and in return alters the total evacuation cost.  
 
Additionally, a $7M mitigation project of Lourdes Hospital [10] included closure structures, interior drainage, passive 
flood gates, pumping stations, utility relocations, letter of map revision, and the development of an operation and 

maintenance plan. We use its permanent hardening investment (𝐶𝐻 ≈ $3,000 per bed count per hardening level (ft)) 

as a reference since Lourdes Hospital makes the building flood resilient from scratch. We also set 𝐶𝐻 at $4,500 
because buildings would need more protection in the future with more intense disasters. 
 
In the last 42 years, 84 storms hit the Texas coastline, 17 of which are the deadliest major hurricanes including 
Hurricane Harvey in 2017 and Ike in 2008. Given our model considers permanent hardening investment decisions 
against major hurricanes that cause catastrophic flooding and damage, we use the expected number of annual storms, 𝜏 = 0.4 (17/4). We also test 𝜏 =  2 (84/42) as an extreme case given the expectation of more intense and wet 

tropical cyclones due to climate change. 
 

Finally, the discount rate5, r = 7 % is used to adjust the future flood related costs since it is the rate suggested for 

government investment and regulatory analyses by the Office of Management and Budget (OMB). We use investment 

horizon as 10 yrs, and we assume the 25 flood scenarios are equiprobable.  

 
5.2. Results 

We use Python-based optimization tool, Pyomo, to implement the stochastic optimization model instantiated with the 
data from the previous section and use Gurobi to solve the model to optimality. We perform sensitivity analysis for 

the model without budget limit by permuting the following values of parameters: 𝐶𝑗𝐺= $300, $450; 𝐶𝐻= $3,000, 

$4,500; 𝐶𝐸= $20,000, $30,000, $40,000;  𝑇= 5,10 years, and τ = 0.4, 2. From 48 unique settings of parameters, Table 

1 illustrates six of the settings (with T=10 and 𝐶𝑗𝐺=$450) and their results facilitating insights into general trends 

common in all settings. In the table, the first three columns display the parameters (expected number of storms - τ, 

evacuation cost per patient - 𝐶𝐸, and permanent hardening cost – 𝐶𝐻) used in each setting. The next two columns 
show the properties of the chosen facilities to be hardened in the optimal solution. The column labeled “Quantity” 
shows the numbers of hospitals and nursing homes hardened, and their total, respectively. The column labeled “Level 
of Hardening” shows the highest and mean flood level hardening in feet across all hardened facilities. “Optimal 
Spending” columns display the objective value (Total) in millions of dollars and its allocation between “Hardening” 
and “Expected Recovery” cost. Finally, the last two columns show the total costs in millions of dollars obtained with 
zero facilities hardened (“None”) and all facilities hardened to their maximum level (“All”) to compare with the 
optimal objective value. 
 

Before comparing different parameter settings, we present the results of setting 5 as our base case. With zero 

investment budget, the expected cost of future floods is $342M. The optimal plan has a total cost of $261M and 

 
2 https://seniorcare.levinassociates.com/2017/07/03/paying-square-footage-skilled-nursing/ 

3 https://www.genpowerusa.com/blog/how-to-calculate-commercial-generator-size 

4 https://law.utexas.edu/news/2018/09/14/the-cost-of-emergency-evacuation/ 

5 https://www.energy.gov/sites/default/files/2021-04/2021discountrates.pdf 
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feet, and (3) the hardened facilities mostly become resilient to all the flood scenarios. The ones not fully hardened 
have higher flood-levels in some of the scenarios compared to the others chosen to be fully hardened. If we look at 
the dark blue vertical lines in Figure 1.a (Hospitals 10000, 5000, 2000, 80, and 20), they consistently have very low 
flood levels throughout the scenarios. It means that if we do not apply permanent hardening, they will regularly 
experience flooding in the future. As expected, they are not part of Figure 1.b since they get fully hardened during 
the mitigation, and they are not flooded in any of the scenarios. On the other hand, although Hospital 5 has a low flood 
level (dark blue), it is not selected for mitigation since it is flooded only in scenario 13. Flooding to similar levels in 
many scenarios, the consistency, is an essential factor in decision making. It is indeed intuitive because if a facility is 
expected to be regularly inundated to a similar level, it is better to increase its resilience to endure those flood events. 
 
An analysis of the optimal solutions reveals that when two facilities have identical flood profiles in each scenario, 
larger one is typically chosen for hardening. Therefore, the number of scenarios in which a facility is flooded, flood 
level consistency in those scenarios, and facility size are main drivers to choose a facility for hardening. 
 

6.  Conclusions   
We propose a scenario-based optimization model to decide on resiliency planning of healthcare facilities and show 
how mitigation investments change with different parameter settings. An organization (e.g., FEMA) could utilize our 
model to prioritize the projects and find their optimal hardening level to allocate grant funds for mitigation by 
considering uncertainty of future costs. One limitation of our current study is generation of flood scenarios from 
historical data of Hurricane Harvey which we may consider as worst-case for Texas. However, when we consider 
climate change and population growth in big cities, a location that has never experienced flooding in the past would 
start getting inundated in the future. Increasing intensity or number of past flood events may be inadequate to consider 
future flood risks. Finally, flood events in general must be considered rather than simulating only hurricane-induced 
ones for future research.  
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