Proceedings of the IISE Annual Conference & Expo 2022
K. Ellis, W. Ferrell, J. Knapp, eds.

A Scenario-based Optimization Model for Long-term Healthcare
Infrastructure Resilience against Flooding

Gizem Toplu-Tutay, John J. Hasenbein, Erhan Kutanoglu
Operations Research and Industrial Engineering
The University of Texas at Austin, Austin, TX, United States

Abstract

The total cost for weather-related disasters in the US has been increasing. Storms and storm-induced flooding usually
create the most damage. One way to minimize the impact of damages due to floods is to increase the resilience of
lifeline infrastructures (power grids, transportation, healthcare, etc.) via proactive flood mitigation efforts. In this
paper, we propose a stochastic optimization model that provides hospital and nursing home hardening decisions in
preparation for a variety of flood scenarios. Scenarios are generated using the state-of-the-art physics-based flood
models (WRF-Hydro and SLOSH) for two types of floods, inland river flooding, and storm surge, using historical and
simulated storms. The model then identifies hospitals and nursing homes susceptible to flooding and considers the
costs of evacuating facilities to inform the hardening decisions and apportion the budget spent on hardening vs
recovery. The computational study focuses on Texas, with special emphasis on the coastal areas and the Southeast
Texas region, considering the actual healthcare facility locations in the region.
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1. Introduction and Problem Description

The U.S. has sustained 308 weather and climate disasters since 1980 where overall damages/costs reached or exceeded
$1 billion, and the total cost of these 308 events exceeds $2 trillion. Hurricanes and hurricane-induced inland and
coastal floods have caused the most damage and have the highest average event cost ($20.3 billion per event) [1]. In
2017, Hurricane Harvey hit Texas and caused record-breaking rainfall over a week, which induced catastrophic
flooding over a large area of southeastern Texas. It is the deadliest hurricane to hit Texas since 1919, and the second-
costliest U.S. tropical cyclone ($125 billion) after Hurricane Katrina ($161.3 billion in 2017 dollars) [2]. The 1980—
2020 annual average for billion-dollar disasters is 7.1 events, while the annual average for the most recent 5 years
(2016-2020) is 16.2 events, 12 of which are severe storms and tropical cyclones [1]. These figures and the increase in
the frequency of these “rare” storms with aftermath costs of billions motivate planning for longer-term investments to
mitigate the impacts of future disasters.

Mitigation, preparedness, response, and recovery are four phases of emergency management defined by the Federal
Emergency Management Agency (FEMA) [3]. In this paper, we focus on mitigation phase investments to increase the
resilience of healthcare facilities against storm-induced floods. In our context, building flood defenses including
floodwalls, and specialized doors and windows, installing a backup generator, and always keeping a 3-day food supply
are among mitigation efforts for hospitals and nursing homes. Relocating generators, electricity rooms, and
medicine/food supplies to upper floors are other ways to increase the resilience of healthcare facilities during the
mitigation phase. If an emerging storm is a major hurricane like Hurricane Harvey, Ike, or Rita, Regional Advisory
Councils (non-profit governmental organizations) plan and coordinate all preparedness stage activities within the 48-
hour period before the hurricane landfall. These activities include choosing staging areas, positioning emergency
vehicles (e.g., ambulances), and planning and executing the evacuations. Any applicable activity which has not been
performed as a permanent hardening during the mitigation phase can be done temporarily in the preparedness stage
(e.g., moving medicine supplies to upper floors). Finally, response activities include search and rescue missions while
recovery activities include rebuilding damaged structures and caring for patients during the disaster.

FEMA is involved in disaster management both to support facilities financially in their mitigation efforts and to help
during and after the event with disaster relief packages for the damaged facilities. In this paper, we build a model that
is beneficial to FEMA or other regional governmental organizations to prioritize healthcare facilities and their relative
funding for permanent hardening investments to reduce future flood preparedness, response, and recovery costs. To
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achieve this, we propose a scenario-based optimization model that integrates physics-based flood models with decision
making models to recommend optimal resilience planning for healthcare facilities.

Our paper is organized as follows: Section 2 reviews existing work in the literature while Section 3 introduces the
notation and explains the mathematical model. Section 4 introduces the actual healthcare network from southeast
Texas and flood scenarios generated from Hurricane Harvey along with the parameters used in the sensitivity analysis.
We present the results of the sensitivity analysis with zero-budget and unlimited-budget benchmarks in Section 5. We
also assess some properties of facilities chosen to be hardened in the optimal resilience plan. Finally, Section 6 presents
conclusions and future research directions.

3. Related Research

Scenario-based optimization has been used in the literature to determine permanent hardening investments against
extreme weather events like hurricanes [4, 5] and winter storms [6]. These studies mostly seek to increase power
infrastructure resilience. However, in healthcare infrastructure, there is little research on enhancing nursing home and
hospital resilience. Several studies focus on health system resilience by capacity planning and resource allocation to
enhance response and recovery with the surge of patients after the disaster [7] whereas others study patient evacuations
during the preparedness phase [8]. In terms of mitigation applications in healthcare facilities against hurricane-induced
flooding, FEMA has best practice reports [9, 10]. Our methodology is similar to [4]. However, our lifeline
infrastructure is healthcare facilities rather than the power grid and our future costs are patient evacuation and facility-
recovery costs.

4. Methodology

We introduce the nomenclature for our formulation, starting with sets and parameters, followed by decision variables.

] Set of hospitals (J;;) and nursing homes (/)

S Set of flooding scenarios

C ]-G Cost of emergency generator per kKW

ct Cost of permanent hardening per bed count per level of hardening
cEt Cost of evacuation and recovery per patient

k; Back-up power at facility j

b;, d; Bed capacity and number of patients at facility j, respectively

T Expected number of storms per year

T Investment horizon in years

B Investment budget

r Discount rate

Ds Probability of scenario s

M Very large number

Bs; Flood level considering both inland flooding and storm surge at facility j, in scenario s

x; Binary variable - 1 if facility j is chosen for deployment/upgrade of a backup generator as the
first step of permanent hardening

Yj Integer variable indicating flood level to which the facility j is hardened

Ysj Binary variable - 1 if facility j is flooded in scenario s even if hardened

The modeling methodology is two-stage stochastic optimization that considers the costs of response and recovery in
the individual flood scenarios in the second stage to inform permanent hardening decisions at each healthcare facility
in the first stage. We consider nursing homes and hospitals as facilities. The overall model is as follows:
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Objective function (1) minimizes the total spending on permanent hardening and expected response and recovery
expenditures due to flooding over a T-year horizon. We assume that we invest at time 0, and no more hardening is
done later in the time horizon. The first term captures acquisition of emergency generators and structural hardening
investments at time 0. When the term hardened facility is used in this paper, we mean that it has both a back-up
generator and structural flood resilience to a certain level. We assume that hospitals already have a back-up power
due to regulatory enforcement while nursing homes do not have one. With this assumption, CjG significantly lower for
hospitals than that of nursing homes since nursing homes need to purchase the generator whereas hospitals only need
to upgrade the generator or relocate it to upper floors. In the second term, T ), ps (Z ;C E djys j) is the expected annual
evacuation and recovery (i.e., “damage fixing”) cost of the facilities not hardened enough in the first stage. When
multiplied by the coefficient in front of the sum, the second term turns into the discounted total expected cost.

Neither C* in the first nor C£ in the second term differentiate in terms of hospital versus nursing home. They are
constant. We multiply the former by the size, b;, and the level of hardening, y; to calculate the structural hardening
cost at facility j by assuming that the size of the facility is proportional to the bed count, and we multiply the latter by
the demand, d;, to get response and recovery cost for facility j.

There could be variable costs such as fuel or maintenance costs of the emergency generator before each hurricane
season. However, we ignore them in the model since it is from the perspective of a governmental organization trying
to allocate hazard mitigation funding rather than a perspective of an individual facility and its costs.

Constraint (2) stipulates the investment at time 0 to be lower than budget B. In constraint (3), the hardening level
against flooding is set to zero if a facility does not have a generator. Even though we consider flood mitigation to a
certain level (say via flood walls or doors) for a facility, it must evacuate because we have not installed a back-up
generator. If patients shelter in place at those facilities, their health condition would deteriorate due to heat (loss of air
conditioning). Thus, connecting structural hardening, y;, to having backup generator, x;, is essential. We also choose
not to limit the level of hardening, y;, with a tighter upper bound since we minimize it with the objective function.
Additionally, constraint (4) forces binary variable y to be 1 if the facility is inundated, (85; — y;), even if it is hardened
in the first stage to flood level y;. Constraint (5) forces y to be 0 if the facility is considered not flooded. Finally,
constraints (6) and (7) stipulate variables to be either non-negative integer or binary.

5. Results

5.1. Case Study
We use hospital (/) and nursing home (/) data sets from the Homeland Infrastructure Foundation Level-Data

(HIFLD)l. By filtering applicable locations in the southeast Texas region (i.e., Houston-Galveston area, including
Harris County, which is the third largest in the U.S.), we obtain 170 hospitals and 702 nursing homes to apply and test
our model. We utilize 25 flood scenarios generated by running hydrological models for both inland (WRF-Hydro) and
coastal flooding (SLOSH Display) using Hurricane Harvey [11]. Using Hurricane Harvey as a test instance is
important since it caused heavy flooding and patient evacuations in the region in 2017. With these test instances,
without hardening, there are 215 facilities flooded in at least one of the scenarios, 45 of which are hospitals. Figure
1.a shows the impact of flood scenarios on the hospitals.

In the model, we install a back-up generator as a first step of permanent hardening. Acquisition, installation, and other
related costs of it for nursing homes, C¢, is around $300-450 per kW depending on the brand, and we set it at $300
and $450 in our parametric study. We assume that the cost is 10 times lower for hospitals since they only need upgrades

1 https:/hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
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and reinstallations. Back-up power for facility j, k;, converts bed count of facility j first into area (400 sq feet/bed)2 ,

then power to be enough for 92 hours (50 kW + 4 kW/bed - bj)3.

After tropical Storm Allison hit Texas in 2001, the Texas Medical Center with 42 medical institutions, 19 of which
are hospitals, incurred over $2.03 billion in damage due to flooding [9]. We may consider this case as an extreme
example for the aftermath cost. Given they have 9,200 patient beds, the recovery cost is almost $200,000 per patient.
Also, Lourdes Hospital in New York had a loss of $20M during flooding due to Storm Lee in 2006 [10]. Given they
have 197 patient beds, the recovery cost is almost $100,000 per patient. These losses are high since they are
comprehensive for a facility, but they include costs that may not be eligible for grant funding by either FEMA or state.
That is why we decide to use a response and recovery cost, CZ as $20,000 and $40, 000 per patient in our parametric
study. The response (evacuation mission cost) comprises a small portion in this unit cost. For mass evacuations, the
cost of evacuation including transportation, housing, and food was $1,000 per person in the aftermath of Hurricane

Harvey in Texas*. On the other hand, evacuation of people with special needs requires more resources. Depending on
how spread-out evacuating facilities are, how many patients they have, and time left before hurricane landfall, the cost
may change tremendously because emergency vehicles must perform single or multiple trips to transport patients to
safe locations, which changes the quantity of vehicles, and in return alters the total evacuation cost.

Additionally, a $7M mitigation project of Lourdes Hospital [10] included closure structures, interior drainage, passive
flood gates, pumping stations, utility relocations, letter of map revision, and the development of an operation and
maintenance plan. We use its permanent hardening investment (C = $3,000 per bed count per hardening level (ft))
as a reference since Lourdes Hospital makes the building flood resilient from scratch. We also set C# at $4,500
because buildings would need more protection in the future with more intense disasters.

In the last 42 years, 84 storms hit the Texas coastline, 17 of which are the deadliest major hurricanes including
Hurricane Harvey in 2017 and Ike in 2008. Given our model considers permanent hardening investment decisions
against major hurricanes that cause catastrophic flooding and damage, we use the expected number of annual storms,
T=04(17/4). We also test T = 2 (84/42) as an extreme case given the expectation of more intense and wet
tropical cyclones due to climate change.

Finally, the discount rates, r =7 % is used to adjust the future flood related costs since it is the rate suggested for
government investment and regulatory analyses by the Office of Management and Budget (OMB). We use investment
horizon as 10 yrs, and we assume the 25 flood scenarios are equiprobable.

5.2. Results

We use Python-based optimization tool, Pyomo, to implement the stochastic optimization model instantiated with the
data from the previous section and use Gurobi to solve the model to optimality. We perform sensitivity analysis for
the model without budget limit by permuting the following values of parameters: CjG= $300, $450; CH= $3,000,
$4,500; CE=$20,000, $30,000, $40,000; T= 5,10 years, and T = 0.4, 2. From 48 unique settings of parameters, Table
1 illustrates six of the settings (with 7=10 and CjG=$450) and their results facilitating insights into general trends
common in all settings. In the table, the first three columns display the parameters (expected number of storms - T,
evacuation cost per patient - CE, and permanent hardening cost — C*) used in each setting. The next two columns
show the properties of the chosen facilities to be hardened in the optimal solution. The column labeled “Quantity”
shows the numbers of hospitals and nursing homes hardened, and their total, respectively. The column labeled “Level
of Hardening” shows the highest and mean flood level hardening in feet across all hardened facilities. “Optimal
Spending” columns display the objective value (Total) in millions of dollars and its allocation between “Hardening”
and “Expected Recovery” cost. Finally, the last two columns show the total costs in millions of dollars obtained with
zero facilities hardened (“None”) and all facilities hardened to their maximum level (“All”) to compare with the
optimal objective value.

Before comparing different parameter settings, we present the results of setting 5 as our base case. With zero
investment budget, the expected cost of future floods is $342M. The optimal plan has a total cost of $261M and

2 https://seniorcare.levinassociates.com/2017/07/03/paying-square-footage-skilled-nursing/
3 https://www.genpowerusa.com/blog/how-to-calculate-commercial-generator-size

4 https://law.utexas.edu/news/2018/09/14/the-cost-of-emergency-evacuation/

5 https://www.energy.gov/sites/default/files/2021-04/202 1discountrates.pdf
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suggests hardening 75 facilities out of 215 flooded locations in at least one scenario. The maximum level of hardening
among those facilities is 5 feet while maximum flood level among all scenarios is 17 feet. In comparison, the optimal
plan with budget $50M has a total cost of $272M and suggests hardening 46 facilities, with the maximum hardening
level of 4 feet across facilities.

Table 1: Results of Sensitivity Analysis

Settings Hardened Facilities - Optima Optimal Spending $M Hardening $M

T el cHf Quantity (L N.Total) Level of Hardening (Max.Mean) Hardening Expected Recovery Total  None All

1 04 $20,000 $3.000 (26.,79.105) (12.3) §100 §123 $223 8342 §321
2 04 540,000 $3.000 (41.129.170) (17.4) §226 $69 $205  S683  §321
32 820,000 $3.000 (45.164.209) (17.5) §316 $4 $320 81,708 $321
4 2 $40,000 $3,000 (45.170.215) (17.5) §321 $0 $321 $3415 $321
504 520000 $4.500 (22,53.73) (5.2 §102 §159 $261  S342  $470
6 04 540,000 $4.500 (35.108.143) (12.3) §219 $154 $373  S683  $470

As we expect more intense hurricanes like Harvey, the importance of mitigating flood risks grows tremendously
because otherwise we must face its catastrophic consequences as in setting 3. Almost all facilities (97%) are hardened
since leaving the facilities as is (without any hardening, “None”) has a total cost almost six times that of the “All”
hardened solution. We also observe that when the parameter settings are such that an optimal solution is close to the
solution of “All”, inducing more hardening by changing a parameter’s value does not alter the results (setting 3—-4).
Furthermore, when the permanent hardening cost, C, increases (setting 2—6), the model hardens fewer facilities, by
choosing facilities with lower flood levels.
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Figure 1: (a) Flooding in 45 Hospitals in each scenario before mitigation (hospitals are sorted by their size in ascending order
from left to right). Colors represent flood level ranges. When it is dark blue, the flood level is very low (almost zero). As the flood
level increases, the color is lighter until it is yellow, an indication of the highest flood level. The top bar chart shows the number of
scenarios each facility gets inundated in. The right bar chart depicts the number of hospitals flooded in each scenario. (b) Flooded
Hospitals after mitigation in setting 5. (¢) The bar chart shows the number of hospitals flooded in each scenario after mitigation
in setting 2.

Figure 1 depicts 3 figures about flooded hospitals at each scenario before and after mitigation. We only show hospitals
in these figures rather than all flooded facilities, but the results do not change according to facility type. Figure 1.a
shows flooded hospitals at each scenario before mitigation. We observe which scenarios each hospital gets inundated
in, and flood levels in those scenarios by the color change. At the top, the bar chart demonstrates the number of
scenarios in which a facility is inundated. At the right, the bar chart shows how many hospitals are flooded in each
scenario. Whenever mitigation over recovery is more feasible, more facilities become resilient via hardening to even
the worst scenarios (11, 12, and 13). Then, this bar chart is closer to uniform as in setting 2 shown in Figure 1.c.
However, if the aftermath cost per patient, CZ, and the expected number of future hurricanes, 7t are low, in other
words, if the model does not choose mitigation over recovery for most of the facilities as it is in setting 5, the number
of hospitals flooded bar chart is not close to uniform, but similar to the one in Figure 1.a, but with fewer flooded
hospitals in most of the scenarios. Figure 1.b demonstrates flooded hospitals after mitigation in setting 5. When we
analyze hardened facilities and their resilience levels, we discover common features in those facilities chosen to be
hardened: (1) they consistently get inundated to similar flood levels in many scenarios, (2) flood levels are below 5

5
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feet, and (3) the hardened facilities mostly become resilient to all the flood scenarios. The ones not fully hardened
have higher flood-levels in some of the scenarios compared to the others chosen to be fully hardened. If we look at
the dark blue vertical lines in Figure 1.a (Hospitals 10000, 5000, 2000, 80, and 20), they consistently have very low
flood levels throughout the scenarios. It means that if we do not apply permanent hardening, they will regularly
experience flooding in the future. As expected, they are not part of Figure 1.b since they get fully hardened during
the mitigation, and they are not flooded in any of the scenarios. On the other hand, although Hospital 5 has a low flood
level (dark blue), it is not selected for mitigation since it is flooded only in scenario 13. Flooding to similar levels in
many scenarios, the consistency, is an essential factor in decision making. It is indeed intuitive because if a facility is
expected to be regularly inundated to a similar level, it is better to increase its resilience to endure those flood events.

An analysis of the optimal solutions reveals that when two facilities have identical flood profiles in each scenario,
larger one is typically chosen for hardening. Therefore, the number of scenarios in which a facility is flooded, flood
level consistency in those scenarios, and facility size are main drivers to choose a facility for hardening.

6. Conclusions

We propose a scenario-based optimization model to decide on resiliency planning of healthcare facilities and show
how mitigation investments change with different parameter settings. An organization (e.g., FEMA) could utilize our
model to prioritize the projects and find their optimal hardening level to allocate grant funds for mitigation by
considering uncertainty of future costs. One limitation of our current study is generation of flood scenarios from
historical data of Hurricane Harvey which we may consider as worst-case for Texas. However, when we consider
climate change and population growth in big cities, a location that has never experienced flooding in the past would
start getting inundated in the future. Increasing intensity or number of past flood events may be inadequate to consider
future flood risks. Finally, flood events in general must be considered rather than simulating only hurricane-induced
ones for future research.
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