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Abstract. Exponential growth in the use of smart speakers (SS) for the automa-
tion of homes, offices, and vehicles has brought a revolution of convenience to
our lives. However, these SSs are susceptible to a variety of spoofing attacks,
known/seen and unknown/unseen, created using cutting-edge Al generative al-
gorithms. The realistic nature of these powerful attacks is capable of deceiving
the automatic speaker verification (ASV) engines of these SSs, resulting in a
huge potential for fraud using these devices. This vulnerability highlights the
need for the development of effective countermeasures capable of the reliable
detection of known and unknown spoofing attacks. This paper presents a novel
end-to-end deep learning model, AEXANet, to effectively detect multiple types
of physical- and logical-access attacks, both known and unknown. The pro-
posed countermeasure has the ability to learn low-level cues by analyzing raw
audio, utilizes a dense convolutional network for the propagation of diversified
raw waveform features, and strengthens feature propagation. This system em-
ploys a maximum feature map activation function, which improves the perfor-
mance against unseen spoofing attacks while making the model more efficient,
enabling the model to be used for real-time applications. An extensive evalua-
tion of our model was performed on the ASVspoof 2019 PA and LA datasets,
along with TTS and VC samples, separately containing both seen and unseen
attacks. Moreover, cross corpora evaluation using the ASVspoof 2019 and
ASVspoof 2015 datasets was also performed. Experimental results show the re-
liability of our method for voice spoofing detection.

Keywords: ASVspoof2019, logical access, physical access, spoofing counter-

measure, text-to-speech synthesis, voice conversion.

1 Introduction

Smart speakers (SS) equipped with intelligent voice assistants, like Google Home,
Apple’s Siri, and Amazon’s Alexa are being used nowadays to “smarten” our offices,
homes, and automobiles through the use of speaker verification systems. These sys-
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tems have become an integral part of cyber intelligent systems through the inclusion
of cutting-edge and highly precise knowledge engines for speaker verifica-
tion. Automatic Speaker Verification (ASV) systems are routinely used to accept or
reject the speaker's claimed identification. Although the quality of modern-day ASV
systems has increased significantly, they continue to be susceptible to audio spoofing
attacks due to the extremely sophisticated nature of synthetic speech generative algo-
rithms. The ASVspoof community has categorized voice spoofing attacks into two
main types: physical access (PA) and logical access (LA) [1]. The PA scenario in-
volves speech samples that are captured in a physical reverberant space. Attacks use
replayed samples in a simulated setup, captured surreptitiously by recording bonafide
speech, and then replayed to the microphones of ASV systems. On the other hand,
spoofing attacks are directly injected into the ASV system in the LA scenario. These
attacks are generated either by text-to-speech synthesis (TTS) or voice conversion
(VC) algorithms. These attacks generate samples that are perceptually identical to the
real voice of a verified subject. TTS synthesis spoofing uses the text command,
whereas VC uses the audio samples as input and feeds to the generative algorithms
for the creation of LA attacks. High-quality digital recording and playback devices,
minimal effort for replay creation, and advanced Al generative algorithms have en-
couraged attackers to produce and use these spoofing attacks for scamming. Thus,
anti-spoofing systems capable of the reliable detection of both LA and PA attacks are
strongly needed. These countermeasures have many applications across multiple
voice biometric [2,3] domains.

Existing voice spoofing detection approaches use evolving reliable acoustic spec-
tral characteristics with either the traditional machine learning (ML) or the deep learn-
ing (DL) algorithms. Current acoustic features are based on factors like pitch pattern,
phase spectrum, group delay, and spectral magnitude. The Gaussian mixture model
(GMM) and its variations, along with the support vector machine (SVM) classifiers
[4] [5], are being heavily leveraged for audio spoofing detection. Techniques that use
pitch patterns for detection are mean pitch stability range (MPSR) and mean pitch
stability (MPS) [6]. Time-domain acoustic features such as local binary patterns
(LBP) [7] and our previously proposed acoustic ternary patterns (ATP) [8] have also
been used to develop voice spoofing countermeasures. However, LBP features are
more sensitive to noise, and ATP features, by employing a fixed threshold value, are
not robust to dynamic pattern detection, and thus, they are unable to achieve better
performance in a real-time scenario. Another work [9] highlights the importance of
phase information for voice spoofing detection, which can be derived using the Fouri-
er spectrum and its fusion with other existing phase-based features. Existing ML-
based approaches have potential limitations concerning time complexity, inaccurate
data interpretation, and high error-susceptibility. All must be taken into consideration
when creating a successful spoofing detection application.

The ASVspoof research community also employed DL models as front-end feature
extractors e.g., Gated Recurrent neural network (GRNN) is the fusion of Light convo-
lutional neural network and gated recurrent RNNs (GRNN) [10]. A GRNN extracted
the deep features and used them to train classifiers like SVM, linear discriminant
analysis (LDA), etc., for voice spoofing detection. Another technique involved using



backend classifiers with various acoustical features, e.g., Mel frequency cepstral coef-
ficients (MFCC), constant Q cepstral coefficients (CQCC), short-time Fourier trans-
form (STFT), and their fusion, for audio spoofing detection. To overcome the issues
of our ATP features, we proposed extended-local ternary patterns (ELTP) in our prior
work [11] and used them with a bidirectional LSTM for LA attack detection. Alt-
hough we successfully addressed the limitations of our ATP-based method, this sys-
tem was unable to achieve good results on VC samples. These deep learning variants
showed significant performance improvements over many baseline spoofing detection
approaches developed by the ASVspoof community, i.e., CQCC-GMM, and LFCC-
GMM [5].

More recently, we have seen a trend in the development and usage of frontend fea-
ture extractors with either traditional classifiers, like GMM, or DL classifiers like an
LSTM/BILSTM. A recent study has shown that frontend features-based spoofing
detectors often fail to generalize better to unseen attacks [12]. Another observation
has shown that despite the performance of unforeseen attacks is not comparable to, or
even superior to that of known attacks, there is significant variation in performance
for known attacks of diverse nature [13]. To address these challenges, the ASV com-
munity has worked on developing effective end-to-end DL detectors for various clas-
ses of spoofing attacks, including unseen attacks. The use of these newly optimized
end-to-end representations has shown an assembly of multiple frequency responses,
extracted at every kernel of convolutional layers [14], instead of using general fixed-
bandwidth decomposition methods such as Fourier-based analysis [15].

In view of these challenges, we present an end-to-end DL-based anti-spoofing
model. In addition, we address the limitations of our previous countermeasure [11] by
enhancing the detection performance on VC attacks. This work presents a reliable
countermeasure for the effective identification of seen and unseen spoofing attacks.
The significant contributions of our work are in the following areas:

e We propose an effective end-2-end DL-based voice anti-spoofing system, AEX-
ANet, which is capable of capturing a low-level representation of raw waveforms
to effectively detect multiple types of seen and unseen spoofing attacks.

e Our proposed model employs a dense convolutional network, which gives a com-
pelling advantage for propagating diversified raw waveform features with minimal
complexity and strengthens feature propagation.

e Our proposed system employs a maximum feature map (MFM) activation function
which makes it computationally more efficient.

e Rigorous experiments were performed on the PA and LA collections including the
cross-corpora evaluation to show the strength of our method for voice spoofing de-
tection.

2 PROPOSED COUNTERMEASURE

This section shows the details of our Audio Examiner RawNet model (AEXANet) for
voice spoofing detection (Fig. 1). ASVspoof baseline solutions are unable to achieve
better detection on most forms of spoofing attacks and are less robust to dynamic



voice spoofing patterns [16]. Our model extracts dense features from the raw wave-
forms in the higher layers of the dense convolutional network, which gives an ad-
vantage in improved detection performance against diverse spoofing attacks. We in-
troduce an MFM activation function in our architecture, which demonstrates robust-
ness against unseen spoofing attacks and helps to learn audio cues easily.

A1

Lo

- - ] s s
d | e
1 T 1 I :ll-.rn g g
| K=k 3 -I-llu-w.n...
— "] ellack] i il Demhlockid
L

Fig. 1. Architecture diagram of proposed AEXANet model.

* Fig 1(a). shows the bottleneck layer (BN) and transition block (TN), and K = 5 indicates five
more bottlenecks and transition layers in the architecture, (b) shows the working of densenet
blocks in every bottleneck layer; K = 16 shows 16 additional densely connected blocks (not
shown), for a total of 19 in the network.

2.1 Details of the AEXANet Architecture

AEXANet is a neural speaker embedding extractor that takes raw waveforms as input
and generates speaker embeddings specifically designed for speaker verification. We
employed our deep neural network (DNN) to directly derived the speaker embeddings
from raw waveforms with hidden layers to yield more discriminative information.
The first layer that makes use of the raw audio is SincNet, which makes use of a par-
ametrized sinc function to implement the band-pass filters. Network usage is encour-
aged because the first convolutional layer provides informative filters within higher
and lower cut-off frequencies. The SincNet architecture was created for speaker and
speech recognition tasks, and therefore we consider it to be suitable for audio exami-
nation, especially for the artifacts spoofed by TTS and VC attacks. A DenseNet con-
nectivity pattern was introduced in [17] to enhance the optimal information flow with-
in higher layers. The network enhances computational efficiency by utilizing the same
feature map size to generate direct connections from any layer to all of the preceding
layers. The [*" layer receives the feature-maps of all preceding layers x,, ... ,x; _; as
input:
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The concatenation of the feature maps produced in layers O, ...,I — 1 is denoted by
[ x0, xq,...,x;_1] H; (.) represents the concatenation of several inputs into a single
tensor. H;(.) is a composite function created using three consecutive operations:
batch normalization (BN), max feature map [5], and convolution (Conv) layer. For
consistent and improved performance, the DenseNet architecture uses computational-
ly efficient transition blocks after every dense block. This reduces feature redundancy
and optimizes parameter learning. The transition layers of our model use a BN layer,
maxout layer, and 3 X 3 convolutional layers, followed by 3 X 3 average pooling
layers. The DNN ensures maximum information flow between the deep layers, allow-
ing them to rely more on high-level characteristics rather than low-level features.

Further improvement to the network can be achieved by progressive-
ly raising the growth rate. The increasing growth rate (IGR) technique places more
parameters in the deeper layers of the model. This may decrease the parameter effi-
ciency and increases the computational efficiency substantially in some cases. To
make our model computationally more efficient, we employ BN and MFM [18] as an
activation function to further down-sample the network layers. MFM activation is
introduced in the proposed model to provide a more effective replacement for non-
linear activation functions such as ReLU. Existing threshold-based non-linear func-
tions can cause information loss and may not generalize well to unknown data distri-
butions, particularly in the first few convolutional layers. To solve this problem,
MFM uses an elementwise max operation instead of ReLU’s non-linearity to build an
economical connection between feature maps without any dependency on the thresh-
old or parameters. This makes our end-2-end spoofing detector model generalize well
even for different data distributions. Moreover, MFM initializes layers with the same
dimension and selects the most important values among items in the layers. This im-
proves the efficiency of our model and makes it lighter. The MFM applied feature
map is created elementwise by applying the max (ay, a,) as:

ko _ koo ok
yij = max(xf; + x5 (2)

For an input convolution layer x™ € R?*W, W and H represent the height and
width of input tensor where n = {1, ...,2N}. The channel of the input convolution
layeris 2N,1 <k <N, 1<i<H, 1<j<W.The output yl-lfj via the MFM func-
tion is RF*W*N The outputs of the denseNet are fed independently to the FMS layers,
where the most informative filters are extracted using a hybrid additive and multipli-
cative feature scaling technique [19]. A gated recurrent unit (GRU) architecture with
1024 hidden nodes aggregates the frame-level features into a speech-level representa-
tion that precedes the fully connected layers, giving the final timestep. Finally, a
softmax function is used to predict the output class, i.e., bonafide or spoof. The com-
plete AEXANet architecture is presented in Table 1.



3 PERFORMANCE EVALUATION

The performance of our system is evaluated using the ASVspoof 2019 LA and PA
datasets. We used the following parameters to train our AEXANet model: an ADAM
optimizer, 100 epochs, a learning rate of 0.0001, with a mini-batch size of 8 for train-
ing and 16 for testing. The minimum tandem detection cost function (min t-DCF) and
equal error rate (EER) were used as the primary and secondary metrics, per the eval-
uation plan of the ASVspoof 2019 dataset [20]. Thus, we also used min t-DCF and
EER for performance evaluation. Moreover, we used the ASVspoof 2015 dataset for
cross-corpus evaluation.

Table 1. DETAILS OF AEXANET ARCHITECTURE

Layers Input=64000 samples Qutput shape

Conv(1024,1,20)

Fixed Sinc filters MaxPooling(3) (21192,20)
BN & LeakyReLU

Conv(7,1,20)

MaxPooling(3)

BN & Maxout

BottleNeck block Conv(1,1.20) 6 (5296.20)

BN & Maxout

Conv(7.1.20)
BN & Maxout

Transition block Conv(3,1,20) ; *6
AvgPooling(3)
Conv(7,1,20)
MaxPooling(3)

BN & Maxout
BottleNeck block Conv(1,1,20) (165,20)
BN & Maxout
Conv(7,1,20)
FMS
GRU GRU (1024) (1024)
FC 1024 (1024)
Output 1024 2

*For convolutional layers, numbers inside parentheses refer to kernel size, stride size, and the number of
filters. Each bottleneck is densely connected with 20 dense blocks following a transition block. AEXANet
comprises seven bottleneck blocks and six transitions. For the gated recurrent unit (GRU) and fully con-
nected layers, numbers inside the parentheses indicate the output for the voice conversion dataset.

3.1 Dataset

ASVspoof 2019 is a large and diverse audio spoofing dataset comprising two main
collections, LA and PA. Each of these two collections is further broken into three
independent partitions i.e., training, development, and evaluation. The bonafide and
spoof samples are generated using 17 diverse TTS and VC systems for the LA subset.
The evaluation set contains 2 known and 11 unknown spoofing attacks. The training
and development sets contain only known spoofing attacks [21]. The PA subset is
developed in a reverberant acoustic environment and simulates [11] offering replay



samples to the microphone of an ASV system. There are 27 distinct acoustic and 9
different replay configurations in the training and development sets. The evaluation
set is generated in the same way but uses varying acoustics and playback configura-
tions. Table 2 shows the statistics of the ASVspoof 2019 dataset.

Table 2. STATISTICS FOR ASVSPOOF 2019 LA AND PA DATASET

Logical Access Physical Access
Subsets Bonafide Spoofed Bonafide Spoofed
#Utterances  #Utterances  #Utterances  #Utterances
Training 2,580 22,800 5,400 48,600
Development 2,548 22,296 5,400 24,300
Evaluation 7,355 63,882 18,090 199,367

3.2  Performance Evaluation of Proposed Countermeasure

Effectiveness of the proposed countermeasure is evaluated on the VC, TTS, LA, and
PA datasets. The objective of these experiments is to measure the countermeasure's
ability to learn and detect spoofed speech. Experiments are conducted separately us-
ing the AEXANet model for VC, TTS, and complete LA and PA sets, and the results
are shown in Table 3. Our experiments attained an EER and min t-DCF of 12.10%
and 0.40 for VC, 0.60% and 0.08 on TTS, 4.93% and 0.17 on the LA evaluation sub-
set, and 5.29% and 0.2 for the PA evaluation subset, separately. From Table 3, we can
argue that our AEXANet countermeasure is very effective in terms of classifying the
TTS LA spoofing. The reason better performance is achieved on TTS is the synthetic
nature of the text data in a digitalized and completely synthetic structure. TTS models
use RNNs for waveform generation and have sequential data patterns with rich infor-
mation which makes successful prediction more likely. Thus, our model has less ac-
curacy against voice conversion than other sets. NN-based VC systems use VAE-
based, GMM-UBM, and i-vector PLDA with MFCC acoustic models. These models
not only preserve the prosodic characteristics of the speaker but also create realistic
spoofed pitch. This in turn makes it difficult for countermeasures to detect channel
variability and increases the impostor acceptance rate in ASV systems [22]. Based on
our prior work [11], we have attained improved results by reducing the EER to
21.18% for VC spoofing.

For evaluation of the LA set, our proposed model exhibited a substantial improve-
ment over other systems with an EER of 4.9%. Even the best performing system sug-
gests that reliable performance against the LA scenario depends upon the fusion of
complementary sub-systems with an ensemble of classifiers because of the diversity
of attacks (TTS, VC, and hybrid).

For the PA scenario, we also achieved good results despite the fact that the PA-
Eval set used for testing contains samples of unseen speakers, recording, and play-
back devices. Moreover, the replay spoofing attacks in the PA dataset are generated
according to different replay configurations (acoustic environment and replay devic-
es) rather than with different spoofing algorithms. These results, considering this de-
gree of diversity and the challenging conditions, show the robustness of the proposed



method for replay spoofing detection against both seen and unseen attacks. Table 3
shows the results of the proposed countermeasure in terms of min t-DCF and EER for
VC, TTS, LA, and PA evaluation subsets.

Table 3. PERFORMANCE EVALUATION OF PROPOSED COUNTERMEASURE

Spoofing Category min t-DCF EER (%)
Text-to-Speech (TTS) 0.08 0.61
Voice Conversion (VC) 0.40 12.10
Overall LA eval dataset 0.17 4.93
Overall PA eval dataset 0.2 5.29

3.3 Performance comparison on different activation functions

In the proposed AEXANet architecture, we employed the MFM activation function
because MFM achieves better computational efficiency while maintaining good accu-
racy. MFM activation is based on the Max-Out activation function. Our DNN with
MFM is capable of choosing reliable features that not only capture the distinctive
traits of the signal but also make the model computationally more efficient. To better
investigate the effectiveness of MFM activation, we designed an experiment to test
our AEXANet model with different activation functions, i.e., ReLU, leakyReLU,
SiLU, and MFM separately, and the results are shown in Table 4. Our experiments
attained an EER and min t-DCF of 4.93% and 0.17, 6.75% and 0.21, and 7.24% and
0.21, on MFM, LeakyRelu, SiLU, and Relu, respectively. All were evaluated using
the ASVspoof 2019 LA-Eval dataset. In Table 4, it should be noted that the AEX-
ANet model achieved the highest results with MFM activation and the second-best
performance with leakyReLU. Moreover, AEXANet with ReLU attained the worst
results. Dense connections make the network more compact by substantially reducing
the parameters, and MFM further suppresses those compact representations and per-
forms max-out feature filter selection to separate the noisy and informative low-
activation neurons in each layer. These results justify the selection of MFM activation
in our model.

Table 4. EVALUATION ON VARYING ACTIVATION FUNCTIONS

Activation Function min t-DCF EER (%)
MFM 0.17848 493319
LeakyRelu 0.21226 6.75754
SiLU 0.21299 7.24647
Relu 0.3199 9.39521

3.4  Performance comparison against existing systems

To check the effectiveness of our system against the contemporary methods, we com-
pared our countermeasure with these spoofing detection systems [1], [12], [10], [23],
[24], [25], [26], [27], [28], [29], [30], and [31], including the ASVspoof baseline



methods. Table 5 highlights the results of the proposed and comparative methods on
the LA and PA sets of ASVspoof 2019.

Table 5. PERFORMANCE COMPARISON AGAINST EXISTING SYSTEMS ON THE
ASVSPOOF 2019 LA AND PA DATASET

Logical Access (LA) Physical Access (PA)
Methods min t-DCF EER (%) min t-DCF EER (%)

BaselineRawNet2 0.415 8.95 0.9999 46.03
CQCC:BO1 [1] 0.237 9.57 0.2454 11.04
LFCC:GMM BO02 [1] 0.212 8.09 0.3017 13.54
Chadha et al. [28] - 9.055 - 9.951
Zeinali et al. [12] - 8.01 - -
Yang et al. [27] - - 0.2081 11.44
Lavrentyeva et al. [24] 0.1827 7.86 - -

Das et al. [26] 0.184 7.70 - -
Chettri et al. [25] 0.179 7.66 0.1492 6.11
Patil et al. [29] 0.1718 6.87 0.2499 11.44
Lai et al. [23] - 6.70 - -
Gomez-Alanis et al. [10] - 6.28 - -
Borzi et al. [30] - 5.00 - -
Gao et al. [31] - 4.03 - -
Proposed AEXANet 0.17 4.93 0.2061 5.29

The outcome of this experiment shows that our system outperforms many current
methods including the ASVspoof baseline methods on both the LA and PA subsets.
All of the compared methods also used the ASVspoof 2019 dataset and follow similar
experimentation protocols to the proposed method. A few systems contributed to the
ASVspoof 2019 LA and PA challenge and outline their best outcomes using the mod-
el ensembles, classifiers, and data augmentation, however, our use of a DNN with
feature learning produces improved results. Systems that produce an EER below 4%
on the LA evaluation set or an EER below 5% on the PA evaluation set are rare due to
the increasing challenge in the detection of unforeseen spoofing attacks. The results
for Baseline RawNet2 were not available for the ASVspoof 2019 dataset, therefore,
we also computed the results of the baseline RawNet2 model on the ASVspoof 2019
LA and PA datasets and included those results to better conclude this comparative
analysis. All of the baseline models, i.e., RawNet2, CQCC-GMM, and LFCC-GMM,
attained higher min t-DCF and EER values than the other compared methods. It
should be noted that “VGG + SincNet,” adopted in [12] showed poorer performance
due to a mismatch of attacks between the training and evaluation sets. The system
based on SVM and DBN classifiers from [25] showed a substantial increase in per-
formance due to its focus on phase and wavelet features. As a result of feature engi-
neering and highly optimized DNN models, [10], [23], and [26] provided a promising
performance on the LA and PA sets. Still, for LA and PA attacks, our system outper-
formed the comparative methods for audio spoofing detection.



10

3.5 Cross-Dataset Testing

To examine the generalization power of our AEXANet model, we conducted a two-
stage cross-dataset experiment on the ASVspoof 2015 and ASVspoof 2019 datasets.
For this experiment, we used only the LA collection of the ASVspoof 2019 dataset, as
ASVspoof 2015 only incorporates LA spoofing attacks. In the first stage, we trained
our model using the ASVspoof 2015 training and development subsets and evaluated
it on the ASVspoof 2019 LA-Eval set. In the second stage, we trained our model us-
ing the ASVspoof 2019 LA training and development collections and evaluated it on
the ASVspoof 2015 LA-Eval set. The results are shown in Table 6. Despite the fact
that both training and evaluation sets contain different speakers, synthetic audio gen-
eration algorithms, environments, and microphones, we discovered that our counter-
measure achieved excellent results on the ASVspoof 2019 LA and PA sets. However,
the results in Table 6 show that our proposed countermeasure is unable to generalize
effectively when entirely different databases are used. More specifically, across the
ASVSpoof 2019 dataset, we can see that ASVSpoof 2015 generalizes poorly to un-
seen conditions, with EER and min t-DCF reaching 37% and 0.91, respectively. In
comparison to the first stage experiment, ASVSpoof 2019 performed well, with EER
and min t-DCF of 19% and 0.58, respectively. It should be noted that the ASVspoof
2015 LA training set uses obsolete speech synthesis algorithms that generalize poorly,
resulting in softmax probability distributions that are indistinguishable for real and
false speech samples. This eventually leads to poor performance on the ASVSpoof
2019 LA-Eval set. The average EER for the experiment with ASVSpoof 2019 as a
trained set is much lower due to the fact that the trained set covers the advanced and
diverse nature of the attacks, giving a better generalization capability that provides
good results on the ASVspoof 2015 LA-Eval set. Cross-dataset evaluation demon-
strates that when there is a considerable domain mismatch between the training and
testing sets, the current countermeasures fail to a significant extent. Therefore, aside
from having a large variation in the training dataset, domain adaptation techniques
may be useful in real-time applications where attacks are unseen.

Table 6. CROSS DATASET TESTING BETWEEN ASVSPOOF2015 AND ASVSPOOF2019

Datasets min t-DCF EER (%)
Train ASVspoof2015

Test ASVspoof2019 091 37.60
Train ASVspoof2019

Test ASVspoof2015 0-58 1971

4 Conclusion

In this study, we have presented a reliable voice anti-spoofing system for ASV sys-
tems. We have shown that AEXANet, as a single end-2-end DNN, yielded the best
results for spoofed speech detection. The proposed method makes use of low-level
acoustic features to capture important attributes in the bonafide and spoofed audio
samples. The proposed method is fused with a dense connectivity pattern to provide
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better parameter efficiency and strengthen the propagation of audio features. We have
also introduced MFM activation in our model, which not only selects the reliable
features but also makes the model computationally more efficient. Our method has
shown great potential by giving the min t-DCF and EER of 0.17 and 4.93% on LA,
and 0.20 and 5.29% on the PA dataset, respectively. The proposed algorithm demon-
strated significant performance against the TTS and VC spoofing attacks with the min
t-DCF and EER of 0.08 and 0.6% on TTS and 0.4 and 12% on VC, respectively,
compared to the baseline and other contemporary methods. Our direction for future
work is to improve the generalization power of the AEXANet model for cross-
corpora evaluation.
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