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Abstract

Given a graph, the shortest-path problem requires finding a sequence of edges with minimum
cumulative length that connects a source vertex to a target vertex. We consider a generalization
of this classical problem in which the position of each vertex in the graph is a continuous decision
variable, constrained to lie in a corresponding convex set. The length of an edge is then defined as
a convex function of the positions of the vertices it connects. Problems of this form arise naturally
in motion planning of autonomous vehicles, robot navigation, and even optimal control of hybrid
dynamical systems. The price for such a wide applicability is the complexity of this problem, which
is easily seen to be NP-hard. Our main contribution is a strong mixed-integer convex formulation
based on perspective functions. This formulation has a very tight convex relaxation and makes it
possible to e�ciently find globally-optimal paths in large graphs and in high-dimensional spaces.

1 Introduction

The Shortest-Path Problem (SPP) is one of the most deeply-studied problems in combinatorial opti-
mization. In its single-source single-target version, this problem asks for a path of minimum length
connecting two prescribed vertices of a graph, with the length of a path being defined as the sum of
the length of its edges. Typically, the edge lengths are fixed scalars, given as problem data, and the as-
sumptions made on their values have a dramatic impact on the problem complexity [82, Chapters 6–8].
In this paper we consider a generalization of the SPP in which the edge lengths do not have fixed value
but are convex functions of continuous variables representing the position of the vertices (see Figure 1).
More specifically, we have a graph in which each vertex is paired with a convex set. The spatial position
of a vertex is a continuous decision variable, constrained to lie in the associated convex set. The length
of an edge is a generic convex function (e.g. the Euclidean distance) of the position of the vertices it
connects. When looking for a path of minimum length, we then have the extra degree of freedom of
optimizing the position of the vertices visited by the path. According to the literature, this problem
might be classified as an SPP with neighborhoods (see also Section 1.1.1 below); we use the term graph
of convex sets to highlight the crucial role that convexity will play in the developments of this paper.

SPPs in graphs of convex sets emerge naturally in many areas. The scenario depicted in Figure 1,
for example, might represent a drone flying from a source region Xs to a target region Xt. The
goal is to minimize the total length of the flight. Autonomy constraints might require the drone to
stop multiple times along the way, and recharging breaks can only be taken in suitable areas (convex
regions). Logistic constraints, such as preventing undesired transitions between certain pairs of regions,
can be embedded in the graph underlying the SPP. A main application of the proposed framework is
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Figure 1: Example of an SPP in a graph of convex sets. The dashed blue line is the shortest path
from the source set Xs to the target set Xt. The position of each vertex along the path (white circles)
is allowed to move within the corresponding convex set. Transitions are allowed only between sets
connected by an edge (black arrows). The cost of traveling along an edge is a convex function of the
position of the vertices that this edge connects.

mixed-integer motion planning for robots [19, 20, 63] and autonomous vehicles [79, 29, 78, 92, 50] (see
also the recent review [46]). In this case, the convex sets in our graph represent regions of space that
do not intersect with obstacles. More abstractly, even optimal-control problems for hybrid dynamical
systems [4] can be transcribed as SPPs (see Section 9).

The SPP under analysis is easily seen to be NP-hard, therefore we do not expect to find an exact
polynomial-time algorithm for its solution. In this paper we relax the requirement of polynomial-
time solvability and we formulate the problem as a strong Mixed-Integer Convex Program (MICP)
that can be e↵ectively solved to global optimality via branch and bound. To formulate this MICP,
we develop a novel convex relaxation for a class of bilinear constraints that emerge naturally in our
problem. This relaxation has its roots in the Reformulation-Linearization Technique (RLT) for bilinear
programming [86] and it uses perspective functions, a tool from convex analysis that in the recent years
has seen a multitude of applications in mixed-integer programming [13, 34, 39, 40, 68, 61].

Numerical results show that our MICP has a very tight convex relaxation which enables a quick
identification of globally-optimal shortest paths, even when working in high-dimensional spaces and
with large graphs. At present, computation times are the main limitation to a widespread application of
mixed-integer motion-planning and control algorithms [71, 89, 61, 43, 62, 56]. Our MICP is substantially
di↵erent from state-of-the-art formulations of these problems as we do not use binary variables to encode
the region of space in which the system is at each time step, but, instead, we use binaries to select the
transitions between the regions. This di↵erent parameterization yields slightly larger but much stronger
MICPs that, in our computational experience, are orders of magnitude faster to solve.

Finally, moving beyond the SPP, we highlight that variants of other classical graph problems where
vertices are allowed to move continuously within corresponding sets (also known as graph problems with
neighborhoods) have been analyzed in the literature before (see the related works in Section 1.1.1). Exact
methods for their solution generally rely on Mixed-Integer NonConvex Programming (MINCP) and are
limited to very low-dimensional spaces. As we discuss in Section 10, although the techniques we propose
in this paper are particularly well suited to the structure of the SPP, they apply without modification
to a wide variety of graph problems with neighborhoods, yielding exact MICP formulations that have
the potential to strongly outperform existing methods.
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1.1 Related Works

In this subsection we overview a few variants of classical graph problems that are closely related to our
problem formulation.

1.1.1 Graph Problems with Neighborhoods

As mentioned, graph problems where the vertices are allowed to move within corresponding sets are often
called problems with neighborhoods.1 The SPP with neighborhoods has been analyzed in [25] under
stringent assumptions that ensure polynomial-time solvability: the sets are disjoint rectilinear polygons
in the plane, and the edge lengths penalize the L1 distance between the vertices. The applications
we target with this paper, however, do not verify the majority of these hypotheses. A well-studied
special case of the SPP with neighborhoods is the touring-polygon problem which, in its unconstrained
version, requires finding the shortest path between two points that visits a set of polygons in a given
order [26]. In case of convex polygons, this problem is easily solved using convex optimization, whereas,
for nonconvex polygons, it is NP-hard [26, Theorem 6]. Similar in spirit are also some classical problems
in computational geometry: the safari [73], the zoo-keeper [94], and the watchman-route [14] problems.

The Traveling-Salesman Problem (TSP) with neighborhoods has been originally introduced in [2];
this paper proposed a variety of approximation algorithms for simple classes of neighborhoods. In [36],
the TSP with neighborhoods has been formulated as a MINCP that is solved using spatial branch and
bound. However, the expensiveness of this algorithm limits the scope of this formulation to problems in
at most three dimensions. The Minimum Spanning Tree Problem (MSTP) is another problem that has
been thoroughly analyzed in its version with neighborhoods [96], and also for this problem existing exact
formulations are based on MINCP and do not scale beyond three dimensions [6]. Using the techniques
presented in this paper, under standard convexity assumptions, both the TSP and the MSTP with
neighborhoods can be formulated exactly as MICPs, a much easier class of problems than MINCP. This
is discussed in Section 10.

A main application of graph problems with neighborhoods is robot coverage, a consolidated subfield
of robot motion planning (see [15, 35, 7] and the references therein). Exact formulations of these
problems are typically based on MINCP and can only tackle very simple coverage tasks [10]. In practice,
these problems are solved approximately [10]. The techniques we propose here have the potential to
greatly extend the reach of exact methods also in this area.

1.1.2 Graph Problems with Clusters of Vertices

The second family of problems we mention falls under the name of generalized Steiner problems [27]
or generalized network-design problems [30, 75]. These can be thought as the discrete counterpart of
the graph problems with neighborhoods: the vertex set is partitioned into clusters and the problem
constraints are expressed in terms of these clusters, rather than the original vertices. For example, the
TSP with clusters [72, 32, 33] asks to find a shortest tour that visits each one of the clusters of vertices
at least or exactly once. Analogous generalizations have been studied for many other problems, e.g.: the
MSTP [70, 28, 31, 76], the vehicle routing problem [38, 77], and graph coloring [54, 22, 21]. A clustered
version of the SPP has been presented in [55]: each vertex in the graph is assigned a nonnegative weight,
and the total vertex weight incurred by the shortest path within each cluster must not exceed a given
value. In the same paper, a pseudo-polynomial algorithm based on Dijkstra’s algorithm [24] is proposed
for the solution of this problem.

1
The word “neighborhood” here should not be interpreted in the topological sense, the vertex positions are not assumed

to be in the interior of the corresponding sets.
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The problem we analyze in this paper can be approximated as an SPP with clusters in a natural
way. In low-dimensional spaces, this approximation can be very e�cient and su�ciently accurate for
practical applications. However, in high dimensions, this strategy is inoperable since approximating
a portion of space with a cluster of points requires, in general, an excessive (exponential) number of
points.

1.1.3 Euclidean Shortest Paths

Another variant of the SPP closely related to the one analyzed in this paper is the Euclidean SPP
(see the recent book [53]). This problem requires finding a continuous path that connects two points
and does not collide with a collection of polygonal obstacles. In two dimensions, the shortest path
is a polygonal line whose corners are vertices of the obstacles. By constructing a visibility graph, the
problem is then reduced to a discrete graph search and it is solvable in polynomial time [58, 52]. In three
dimensions or more this strategy breaks; in fact, the problem becomes NP-hard [12, Theorem 2.3.2]. An
approximation algorithm for the three-dimensional case has been proposed [74]. Practical algorithms
for the multidimensional case based on a grid-discretization of the space have been presented in [91, 49].
More recently, exact-geometry algorithms for problems of this nature have been discussed in [23], and a
moment-based technique for computing Euclidean shortest paths in case of semialgebraic obstacles has
been proposed in [48].

An evident di↵erence between the Euclidean SPP and our SPP is that the first requires the iden-
tification of a continuous path. In contrast, we only require a finite set of points to lie in appropriate
regions of space, without any conditions on the path connecting them. Another fundamental di↵erence
concerns the notion of length we employ. While Euclidean-SPP algorithms strongly exploit the metric
structure of the underlying space, the notion of length we use here is much weaker: a convex function
with extended real values. As an example, this allows us to define the distance between two points as
the energy consumed by a dynamical system to move between them, with the length being infinite in
case the motion is infeasible (see Section 9).

1.2 Article Organization

This paper is organized as follows. We start in Section 2 by giving a formal statement of the problem
of finding a shortest path in a graph of convex sets. Section 3 provides a detailed complexity analysis of
this problem. In Section 4 we briefly recall how the classical SPP can be modeled as a Linear Program
(LP): this LP will be the starting point for the derivation of our MICP formulation of the proposed
SPP in Section 5. In Section 6 we provide explicit expressions for the components of the MICP in case
of common types of edge-length functions and convex sets. In Section 7 we describe in more abstract
terms the procedure employed to design the MICP, and we conduct a deeper technical analysis of the
properties of our formulation. Except for Section 10, the rest of the paper does not depend on Section 7.
The dual problem of the MICP is presented in Section 8 and it is used to prove simple bounds on the
tightness of our formulation. Section 9 shows the applicability of the proposed framework to optimal
control of hybrid dynamical systems. In Section 10 we discuss how other classical graph problems can
be generalized from conventional graphs to graphs of convex sets. Numerical results are presented in
Section 11, while conclusions and future works are in Section 12. In Appendix A we describe two
other natural MICP formulations of the SPP and we compare their performance with the proposed one.
Finally, proofs whose content is not relevant for the main body of the paper are deferred to Appendix B.
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2 Problem Statement

We start with a formal statement of the SPP we study in this paper. Let G := (V,E) be a directed graph
with vertex set V and edge set E ✓ V 2. For each vertex v 2 V , we have a nonempty compact convex
set Xv ⇢ Rd and a point xv contained in it.2 The length of an edge e = (u, v) is determined by the
location of the points xu and xv via the expression `e(xu, xv), where `e is convex function taking values
in R�0 [ {1}. We assume the functions `e to be proper (`e attains finite value in at least one point)
and closed (the sublevel sets of `e are closed). Given a source vertex s 2 V and a target t 2 V � {s},
an s-t path ⇡ is a sequence of distinct vertices (vk)Kk=0 such that v0 = s, vK = t, and (vk, vk+1) 2 E for
all k = 0, . . . ,K � 1. We collect in the vector x⇡ := (xvk)

K
k=0 the locations of the vertices visited by the

path ⇡, and we denote with E⇡ := {(vk, vk+1)}K�1
k=0 the set of traversed edges. The length of ⇡ is then

defined as the sum of the length of the traversed edges:

`⇡(x⇡) :=
X

e=(u,v)2E⇡

`e(xu, xv).

Within the set ⇧ of all s-t paths, we seek one of minimum length and, in doing this, we are allowed
to optimize the vertex locations xv. Defining X⇡ := Xv0 ⇥ · · ·⇥XvK , our SPP can be compactly stated
as

min
⇡2⇧

min
x⇡2X⇡

`⇡(x⇡). (1)

Remark 1. Even though we refer to the functions `e as the “edge lengths,” we underline that these
need not to be valid metrics, and axioms such as symmetry or the triangle inequality are not required
to hold.

Remark 2. To allow the solution of the SPP (1) to visit the same region Xv twice we can proceed as
follows. We introduce an auxiliary vertex v0 and we pair it with the convex set Xv0 := Xv. Then we
duplicate each edge (u, v) incoming v by adding (u, v0) to the edge set E, and we do the same for the
edges outgoing v. To allow a self-transition we can also add the edge (v, v0). Of course, this process
generalizes to the case in which we want to allow a finite number of visits to the same set.

Problem (1) generalizes the classical single-source single-target SPP with nonnegative edge costs ce:
this is recovered when the edge-length functions take constant value `e(xu, xv) := ce, or when the sets
Xv are singletons {✓v 2 Rd} such that `e(✓u, ✓v) = ce. However, it is the wide choice of edge lengths
that motivates the study of the SPP (1). For example, an edge length that is commonly encountered
in practice is the Euclidean distance

`e(xu, xv) := kxv � xuk2. (2)

With this choice, the optimal location of the points x⇡ will define a polygonal line connecting xs to xt
via a path as straight as possible, perfectly straight if (s, t) 2 E. Conversely, by letting the edge length
be the Euclidean distance squared

`e(xu, xv) := kxv � xuk22, (3)

2
For simplicity, we assume all the sets Xv to live in the same space, Rd

, but the results presented in this paper can be

easily extended to the case in which each set Xv has di↵erent dimension.
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straight paths may be suboptimal if they require long steps xv�xu. By allowing `e to take infinite values,
we can enforce hard constraints that couple the position of the points xu and xv (see Section 6.1.4).
This can be used to model the scenario in which the points xv describe the time evolution a dynamical
system, allowing one to formulate optimal-control problems as SPPs (see Section 9).

3 Complexity Analysis

The SPP with nonnegative edge lengths can be solved in polynomial-time using, e.g., Dijkstra’s algo-
rithm [24]. Here we show that the same cannot be expected for the SPP presented in this paper. We
give two proofs of NP-hardness of problem (1). The first is very simple, and we will refer to it multiple
times when analyzing the strength of our MICP. However, this proof leverages the presence of cycles
in the graph G and a particular choice of the edge lengths `e. The second proof follows the complexity
analysis of the Euclidean SPP presented in [12]: it covers a broader spectrum of problem instances but
it is much more convoluted.

Recall that an s-t path ⇡ := (vk)Kk=0 is called Hamiltonian if it visits each vertex in the graph (i.e.
if K = |V | � 1), and a graph is said to be Hamiltonian if it contains such a path. The Hamiltonian-
Path Problem (HPP) asks if a graph G is Hamiltonian. As an example, the graph in Figure 1 is not
Hamiltonian.

Theorem 1. Problem (1) is NP-hard.

Proof. We show that the HPP is reducible to the SPP (1) in polynomial time. The thesis then follows
since the HPP is NP-complete [47].

We construct an instance of problem (1) which shares the same graph G as the given HPP. We let
the source Xs := {0} and target Xt := {1} sets be single points on the real line, while we set Xv := [0, 1]
for all v 2 V � {s, t}. The length of each edge is the Euclidean distance squared (3). For a fixed path
⇡, the optimal arrangement of the points x⇡ is unique and given by xvk = k/K for k = 0, . . . ,K. This
yields a path length of K(1/K)2 = 1/K. An optimal path is then one for which K is maximized, and
it is Hamiltonian if and only if G is Hamiltonian. Synthesizing this instance, as well as verifying if
K = |V |� 1, takes polynomial time.

Remark 3. Some graph problems with neighborhoods, e.g. the SPP analyzed in [25], are easier when
the neighborhoods are disjoint. This is not the case for problem (1), which is still NP-hard under the
assumption of disjoint sets Xv. In fact, in the proof of Theorem 1, the one-dimensional sets Xv, with
v /2 {s, t}, can be embedded in a two-dimensional space and separated one from the others by a small
gap along the second dimension, i.e.: Xv := [0, 1] ⇥ {"v} with "v > 0 very small and "u 6= "v if u 6= v.
Such a modification ensures that Xu \ Xv = ;, but does not a↵ect the optimal path, which is still
Hamiltonian if and only if G is Hamiltonian.

The reduction in Theorem 1 leaves two main questions open:

• For an acyclic graphG, the HPP is solvable in linear time through a topological sort [1, Section 4.4].
One might then wonder if, for an acyclic graph, problem (1) is also solvable in polynomial time.
This question is of fundamental relevance for Section 9, where we show that a large family of
optimal-control problems can be recast into an SPP (1) over an acyclic graph.

• Even though any strictly convex function of xv � xu can take the place of the edge length (3) in
the proof of Theorem 1, edge lengths such as (2) would not have the same e↵ect of forcing the
optimal path ⇡ to visit as many vertices as possible. One might then ask if the hardness of our
problem is a consequence of the particular choice of edge lengths made in Theorem 1.
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The following theorem shows that both these questions have negative answer.

Theorem 2. Assume the graph G to be acyclic, and define the edge lengths `e as in (2) for all e 2 E.
Problem (1) is NP-hard.

Sketch of proof. The proof of this theorem is quite involved, and requires retracing step by step the
complexity analysis of the Euclidean SPP given in [12]. The main adjustments needed to adapt the
analysis in [12] to our problem formulation are outlined in Appendix B.1.

To sum up, the SPP (1) is easily solvable when the sets Xv collapse to points or the edge lengths
`e are constants. In case of a graph with cycles, large sets Xv and edge lengths `e that penalize the
distance xv � xu nonhomogeneously can make the search for a shortest path very hard. Furthermore,
even in absence of these issues, hard instances of problem (1) can still be generated via a careful design
of the sets Xv as the one described in [12].

4 Linear-Programming Formulation of the Classical Shortest-Path
Problem

In this section we revise how the classical SPP can be modeled as an LP, and we briefly recall some
important properties of this program. This will set the stage for the design of our MICP formulation
of the SPP (1) in Section 5.

We use the binary variables {'e}e2E to parameterize an s-t path in the graph G: the role of 'e

is to take unit value if and only if edge e is traversed by the path. To determine the constraints
that these binaries must verify, it is convenient to interpret the SPP as the problem of shipping one
unit of flow as cheaply as possible from vertex s to vertex t. From this perspective, the variable 'e

represents the units of flows carried by the edge e. Let Ein
v := {e 2 E : e = (u, v) for some u},

Eout
v := {e 2 E : e = (v, u) for some u}, and Ev := Ein

v [Eout
v denote the sets of edges entering, leaving,

and incident with vertex v 2 V , respectively. Furthermore, for two vertices u and v, define �uv := 1 if
u = v and �uv := 0 if u 6= v. The flows 'v := ('e)e2Ev incident with vertex v are recognized to lie in
the local flow polytope:

�v :=

8
<

:'v

(4a)

� 0 :
X

e2Ein
v

'e + �sv
(4b)

=
X

e2Eout
v

'e + �tv
(4c)

 1

9
=

; . (4)

Condition (4a) simply requires the flows to be nonnegative. Condition (4b) enforces the conservation
of flow : one unit of flow is injected from the source and ejected from the target, while the incoming
and outgoing flows coincide for all the other vertices. This guarantees that the edges for which 'e = 1
actually connect the source to the target. Condition (4c) is a degree constraint which enforces a limit of
one unit on the total flow traversing vertex v. This ensures that a path does not visit the same vertex
multiple times.

Under the assumption that the edge costs ce are nonnegative, and finite, the classical SPP can
compactly formulated as the LP

minimize
X

e2E
ce'e (5a)

subject to 'v 2 �v, 8v 2 V. (5b)
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Remark 4. Note that we do not explicitly require the flow variables 'e to be binary. This because
all the basic feasible solutions of this LP can be shown to have binary value, and the addition of the
constraints 'e 2 {0, 1} would not a↵ect the optimal value.

Remark 5. At the current stage, the degree constraint (4c) is redundant for problem (5). In fact, the
assumption ce � 0 makes the cost of any cycle nonnegative, and (4c) cannot be active at optimality.
However, this constraint will not be redundant for the MICP we design in the next section; for this
reason we include it in our problem formulation from the beginning.

4.1 Extreme Points of the Local Flow Polytopes

The extreme points ext(�v) of the local flow polytopes �v will play an important role in the design and
the analysis of our MICP. These points are listed and described in words below; the proof that their
convex hull is actually �v can be found in Appendix B.2. In the following we let �n denote the set of
the n standard basis vectors in Rn.

• For the source vertex s, we have ext(�s) = {0|Ein
s |} ⇥ �|Eout

s |. In words, all the flows incoming
s are zero, while the unit of flow that is injected in s is channeled in any of its |Eout

s | outgoing
edges.

• Symmetrically, the extreme points of the target polytope are ext(�t) = �|Ein
t | ⇥ {0|Eout

t |}: a unit
of flow enters t from any edge, while all the outgoing flows are zero.

• For the remaining vertices v 2 V � {s, t}, we have ext(�v) = {0|Ev |}[ (�|Ein
v | ⇥�|Eout

v |). Here we
have two options: either the flow incident with v is zero, or a unit of flow is deflected from any of
the incoming edges to any of the outgoing edges.

Remark 6. It is easily verified that the extreme points listed above are the only flows with binary
entries contained in the polytopes �v. Mathematically, ext(�v) = �v \ {0, 1}|Ev | for all v 2 V .

5 Mixed-Integer Convex Formulation

We formulate the SPP (1) as an MICP that can be e�ciently solved to global optimality via branch
and bound. We do this in three steps:

1. In Section 5.1 we extend the LP formulation (5) of the classical SPP to our generalized setting: this
step involves perspective functions and yields an optimization with bilinear equality constraints.

2. In Section 5.2 we use the perspective operation a second time to convexify the constraints of this
bilinear program and design a first MICP formulation of the SPP (1).

3. In Section 5.3 we show that part of the decision variables and constraints of this MICP are
redundant. This results in a reduced-size optimization that will be our definitive MICP formulation
of the SPP (1).

All the necessary background on perspective functions is introduced. Explicit expressions of the various
components of the MICP are given in Section 6 for common edge lengths `e and convex sets Xv. An
in-depth analysis of the properties of the proposed MICP can be found in Section 7.
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5.1 Bilinear Formulation

We build on the LP (5) to formulate the SPP (1) as a mathematical program. A natural attempt in this
direction is to proceed as done for many other graph problems with neighborhoods [36, 6, 10]: include
the vertex positions xv among the decision variables of (5), enforce the convex constraints xv 2 Xv for
all v 2 V , and substitute the objective (5a) with the nonconvex function

X

e=(u,v)2E

`e(xu, xv)'e. (6)

Unfortunately, this approach has two flaws. The first, and most important, is that the nonconvexity
of (6) makes this program very hard to solve. The second is more of a technicality: since in our
problem formulation the functions `e are allowed to take infinite value, the product in (6) is undefined
if `e(xu, xv) = 1 and 'e = 0, while for 'e = 0 we would always want the eth cost addend to be zero.
The first issue will be the subject of the next subsection: there we will see that, if the flow variables 'e

are actually required to take binary values, our mathematical program can be convexified exactly. In
this subsection we show how the desired behavior of “turning on and o↵” the edge lengths `e with the
flows 'e can be correctly achieved using perspective functions [44, Section IV.2.2].

The next definition might appear cumbersome for numerical calculations but, as shown in Section 6,
in most common cases it yields simple expressions readily amenable to standard optimization solvers.

Definition 1. Let f : Rn ! R [ {1} be a closed convex function, and let x̄ 2 Rn be any point such
that f(x̄) is finite. We define the perspective3 of the function f as

f̃(x,�) :=

8
><

>:

�f(x/�) if � > 0

lim⌧#0 ⌧f(x̄+ x/⌧) if � = 0

1 if � < 0

,

where the value of the limit operation can be shown to be independent of the point x̄.

A fundamental property of the perspective operation is that it preserves convexity [44, Proposi-
tions IV.2.2.1 and IV.2.2.2]: the function f̃(x,�) is jointly convex in x and �. Before moving on, let us
work out two simple examples to get familiar with Definition 1.

Example 1. Consider the norm f(x) := kxk. For � > 0 its perspective is f̃(x,�) := �kx/�k = kxk.
For � = 0, we set x̄ = 0 and we get f̃(x, 0) := lim⌧#0 ⌧kx/⌧k = lim⌧#0 kxk = kxk. Overall, we then have

f̃(x,�) =

(
kxk if � � 0

1 if � < 0
.

The same logic shows that any positively homogeneous function f (i.e., any function such that f(cx) =
cf(x) for all x and c > 0) is such that f̃(x,�) = f(x) if � � 0 and f̃(x,�) = 1 if � < 0.

Example 2. Let f(x) := kxk22. For � > 0 the perspective function is f̃(x,�) := �kx/�k22 = kxk22/�.
For � = 0, letting x̄ = 0, we get f̃(x, 0) := lim⌧#0 ⌧kx/⌧k22 = lim⌧#0 kxk22/⌧ . This limit evaluates to zero
if x = 0 and to infinity if x 6= 0. Therefore,

f̃(x,�) :=

8
><

>:

kxk22/� if � > 0

0 if � = 0 and x = 0

1 otherwise

.

3
More precisely, the one defined is the closure of the perspective function of f ; the perspective function is typically

defined to be infinite for � = 0 [44, Section IV.2.2]. Since in this paper we only work with the former, there is no risk of

misunderstanding.
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With the perspective operation at our disposal, we go back to our SPP. We define two auxiliary
variables per edge

ye := 'exu, ze := 'exv, 8e = (u, v) 2 E, (7)

and we replace the objective (6) with the convex function4

X

e2E

˜̀
e(ye, ze,'e). (8)

When a flow variable 'e is positive, the expression in (8) is obtained from (6) simply by dividing and
multiplying the arguments of `e by 'e:

`e(xu, xv)'e = `e('exu/'e,'exv/'e)'e = `e(ye/'e, ze/'e)'e =: ˜̀e(ye, ze,'e). (9)

When 'e = 0 the eth addend in (8) is always well defined, and it correctly evaluates to zero, even if
`e(xu, xv) = 1. In fact, 'e = 0 implies ye = ze = 0 by (7), and Definition 1 gives

˜̀
e(0, 0, 0) := lim

⌧#0
⌧`e(x̄u + 0/⌧, x̄v + 0/⌧) = lim

⌧#0
⌧`e(x̄u, x̄v) = 0,

where x̄u and x̄v are any two points such that `e(x̄u, x̄v) is finite.
Overall, we then have the following formulation of the SPP (1):

minimize
X

e2E

˜̀
e(ye, ze,'e) (10a)

subject to 'v 2 �v, xv 2 Xv, 8v 2 V, (10b)

ye = 'exu, ze = 'exv, 8e = (u, v) 2 E. (10c)

The decision variables are the flows 'e, the vertex positions xv, and the auxiliary variables ye and
ze. The role of the latter is to match the vertices xu and xv when the edge e = (u, v) is traversed
by a unit of flow, and collapse to zero when 'e = 0. This behavior is driven by the bilinear equality
constraints (10c), which are the only nonconvexity in our formulation and whose convexification is the
focus of the next subsection. Before that, let us formally verify that the integrality property of the
LP (5), discussed in Remark 4, is actually inherited by the bilinear program (10).

Proposition 1. Let `? be a local minimum of problem (10). There exists a feasible assignment for the
variables of this problem with cost equal to `? and such that 'e 2 {0, 1} for all e 2 E.

Proof. Let {x?v}v2V and {'?
e}e2E be a local minimizer of problem (10) with cost `?. We add to (10) the

constraints xv = x?v for all v 2 V and 'e = 0 for all e 2 E such that '?
e = 0. After a few manipulations,

this program is simplified to an LP of the form (5) with edge set E0 := {e 2 E : '?
e > 0} and edge costs

ce := `e(x?u, x
?
v) for all e 2 E0. Note that these costs are finite since `e(x?u, x

?
v) = 1 and '?

e > 0 would
imply `? = 1 by (9) and (10a). The optimal value of this LP must equal `?, otherwise our solution
of (10) would not be optimal, not even locally. Furthermore, because of the integrality property from
Remark 4, we can assume the optimal flows of this LP to be binary. Paired with the variables x?v, these
binary flows yield a feasible solution of (10) with cost `?.

In simpler words, Proposition 1 tells us that if we manage to solve the bilinear program (10), even
only to local optimality, a solution with integral flows 'e and same cost as the one we have found can
always be recovered very cheaply.

4
Here we are slightly abusing notation: since we defined the perspective operation for functions with a single argument,

to be precise, we should write ˜̀
e((ye, ze),'e).
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5.2 Mixed-Integer Convex Reformulation of the Bilinear Program

Problem (10) is our first formulation of the SPP (1) that can be solved with a computer. Unfortunately,
the bilinear equalities (10c) make this optimization prohibitive: even for the simplest edge lengths `e
and convex sets Xv, the most e↵ective solvers we have to tackle a problem of this kind are local methods
with no convergence guarantees (e.g. [93]). Our next step is then to reformulate this program as an
MICP that can be reliably solved to global optimality using branch and bound.

We seek a mixed-integer convex formulation of the feasible set5 of problem (10). With this we mean
a family of constraints on the decision variables of (10) that meets two requirements:

1. it delimits a convex set when the flow variables 'e are allowed to take fractional values,

2. it correctly enforces the constraints of problem (10) when the flows 'e are binary.

In doing this we are required to tradeo↵ the size of the formulation (number of constraints and, pos-
sibly, auxiliary variables) with the strength of the formulation (tightness with which the convex set we
design envelops the feasible set of the bilinear program). The approach we describe below represents,
in our experience, the best compromise between these two conflicting needs. For completeness, in Ap-
pendix A we describe two other natural candidate formulations and we provide numerical evidence of
the performance gap between them and the proposed method.

We start by introducing a second perspective operation, this time applied to sets.

Definition 2. Let S ⇢ Rn be a compact6 convex set. We define the perspective of S as the set

S̃ := {(x,�) 2 Rn+1 : � � 0, x 2 �S}. (11)

Just as its counterpart from Definition 1, the set perspective preserves convexity: the set S̃ is easily
verified to be a pointed closed convex cone.

Example 3. Consider the unit ball S := {x : kxk  1}. For � > 0, we have �S = {�x : kxk  1} = {x :
kx/�k  1} = {x : kxk  �}. This equality holds also for � = 0, in fact, 0S = {0} = {x : kxk  0}. The
perspective of the unit ball is then the so-called norm cone [9, Section 2.2.3]: S̃ := {(x,�) : kxk  �}.

Remark 7. The set S̃ is commonly encountered in convex analysis (see e.g. [81, Section 8] or [44,
Section V.1.2]), and sometimes it is referred to as the cone over S. Here we call it perspective of S
to emphasize the connection between the operations in Definitions 1 and 2. Let us denote with ◆S the
indicator function of S: ◆S(x) := 0 if x 2 S and ◆S(x) := 1 if x /2 S. It is easily verified that the
functions ◆S̃ and ◆̃S coincide, i.e., the set perspective morphs the set S the same way as the function
perspective morphs its indicator function.

The set-perspective operation is our main tool to design a convex envelope around the feasible set
of the bilinear program (10). We do this in an algorithmic fashion. Let a>'v + b be any linear function
of the flows incident with vertex v. Multiplying this function by the vertex position xv, and expanding
the product, we get the identity (a>'v + b)xv = (xv'>

v )a + bxv. We then define Mv 2 Rd⇥|Ev | as the
matrix whose columns are the auxiliary variables ze for e 2 Ein

v and ye for e 2 Eout
v , and we note that,

5
For an optimization problem, we call feasible set the set of decision variables that verify all the constraints.

6
The properties of the set S̃ that we discuss in this paper hold also for an unbounded set S, provided that in (11) we

let x 2 �S + S1, with S1 denoting the recession cone of S [81, Section 8]. Note that this definition generalizes the one

we give, since for a bounded set we have S1 = {0}. To unburden the presentation of technical details, and since all the

sets we work with in this paper are bounded, we define the set-perspective operation only for bounded sets.
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in terms of this matrix, the bilinear constraints (10c) read Mv = xv'>
v . We conclude that the following

nonlinear equality is valid7 for the feasible set of the bilinear program (10):

(a>'v + b)xv = Mva+ bxv. (12)

This suggests the following lemma.

Lemma 1. Let a>'v + b be a linear function of the flows incident with vertex v 2 V .

(a) If the equality a>'v + b = 0 is valid for the feasible set of program (10), so is the linear equality
constraint


Mva+ bxv
a>'v + b

�
= 0. (13)

(b) If the inequality a>'v+b � 0 is valid for the feasible set of program (10), so is the convex constraint


Mva+ bxv
a>'v + b

�
2 X̃v. (14)

Proof. Point (a) follows immediately from (12) and the assumption a>'v + b = 0. For point (b), note
that constraint (14) enforces two conditions: a>'v + b � 0 and Mva + bxv 2 (a>'v + b)Xv. The first
is assumed, the second follows from (12) and the constraint xv 2 Xv in (10b). Finally, the convexity
of (14) is due to the convexity of X̃v and to the linearity of the vector on the left-hand side in the
decision variables of (10).

Lemma 1 translates any valid linear constraint on the flows 'v into a convex constraint that envelops
the feasible set of problem (10). Our mixed-integer convex formulation is obtained simply by applying
this lemma to each one of the constraints defining the local flow polytope �v in (4).

• We start by applying Lemma 1(b) to the nonnegativity constraint (4a). In this case, the vector a
is any of the standard basis vectors of dimension |Ev|, while the scalar b is zero. Thus the product
Mva in (14) selects one of the auxiliary variable ze for e 2 Ein

v or ye for e 2 Eout
v . The resulting

convex constraints are

(ze,'e) 2 X̃v, 8e 2 Ein
v , (15a)

(ye,'e) 2 X̃v, 8e 2 Eout
v . (15b)

• Consider the conservation of flow (4b). To put this constraint in the form a>'v + b = 0 we define
a := (1|Ein

v |,�1|Eout
v |) and b := �sv � �tv, where 1n denotes a vector with n entries equal to one,

and where the first entries in 'v are assumed to be the flows incoming v and the last entries to
be the outgoing ones. Lemma 1(a) gives us then the linear constraint

"P
e2Ein

v
ze �

P
e2Eout

v
ye + �svxv � �tvxvP

e2Ein
v
'e �

P
e2Eout

v
'e + �sv � �tv

#
= 0. (16)

7
Recall also that a constraint that is verified by all the points in a set is said to be valid for that set.
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• Finally, the degree constraint (4c). Applying Lemma 1(b) with a := (0|Ein
v |,�1|Eout

v |) and b :=
1� �tv, we get the convex constraint

"
(1� �tv)xv �

P
e2Eout

v
ye

1� �tv �
P

e2Eout
v

'e

#
2 X̃v. (17)

Out of the two requisites listed above for a mixed-integer convex formulation, the three constraints
we just derived certainly meet the first (convexity). What is less obvious is that they are also su�cient
to fulfill the second, and correctly replace the constraints of problem (10) in case of a binary flow. This
is shown in Theorem 3 below. Before that, let us explicitly state the MICP formulation of the SPP (1)
that results from this substitution:

minimize
X

e2E

˜̀
e(ye, ze,'e) (18a)

subject to nonnegativity constraint (15), 8v 2 V, (18b)

conservations of flow (16), 8v 2 V, (18c)

degree constraint (17), 8v 2 V, (18d)

'e 2 {0, 1}, 8e 2 E. (18e)

This program shares the same decision variables as (10): 'e, ye, ze, as well as the vertex positions xv.
Its convex relaxation is obtained simply by dropping constraint (18e). We will call relaxation gap the
di↵erence between the optimal value of an MICP and of its convex relaxation. Note that, in contrast
to the bilinear formulation, we generally expect the optimal value of this MICP to decrease when the
flow variables 'e are allowed to take fractional values.

Theorem 3. The feasible set of the bilinear program (10), subject to the additional constraints 'e 2
{0, 1} for all e 2 E, coincides with the feasible set of the MICP (18).

We will see in Section 7.2.2 that this theorem follows from a simple geometric property of Lemma 1.
Here we give a direct proof of this result; this will also help us gaining a better understanding of the
logic behind our formulation.

Proof of Theorem 3. By construction, any feasible solution of the bilinear program with integer flows
verifies the constraints of the MICP. Therefore we only have to show the reverse inclusion.

Assume we are given a feasible point for the MICP. We start by considering the source vertex s.
Distributed between the constraints (18b)–(18d), we have the constraint 's 2 �s. As seen in Section 4.1,
this polytope, paired with the integrality condition (18e), forces the flows incoming s to be zero and
exactly one of the flows outgoing s to be one. Let o 2 Eout

s be the edge such that 'o = 1. The
nonnegativity constraint (15) gives ze = 0 for all e 2 Ein

s , ye = 0 for all e 2 Eout
s � {o}, and yo 2 Xs.

The conservation of flow (16) gives xs = yo. The degree constraint (17) is then redundant. This behavior
agrees with the constraints of the bilinear program. The analysis for the target t is specular to the one
of the source.

For v /2 {s, t}, the constraints (18b)–(18d) imply 'v 2 �v. This condition, together with (18e),
forces either all the flows incident with v to be zero or one unit of flow to traverse v via two edges
i 2 Ein

v and o 2 Eout
v . In the zero-flow scenario, the nonnegativity constraint (15) sets the variables ze

and ye to zero, the conservation of flow (16) holds trivially, and the degree constraint (17) ensures that
xv 2 Xv. When v is traversed by a unit of flow, from (15) we have ze = 0 for all e 2 Ein

v � {i}, ye = 0
for all e 2 Eout

v � {o}, and zi, yo 2 Xv. Then (16) and (17) give zi = yo = xv. Both these scenarios
agree with the constraints of the bilinear program.
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Remark 8. Even though the constraint xv 2 Xv is not explicitly enforced in the MICP (18), Theorem 3
shows that this condition is verified by any feasible solution of our program. It turns out that the same
is true also for the convex relaxation of (18), and that the inclusion xv 2 Xv is implied by (18b)–(18d).
This will be proven at a higher level of generality in Section 7.2.1.

Remark 9. To construct our MICP we have operated on the constraints corresponding to each vertex
in our graph independently. Similarly to known hierarchies in 0-1 programming [84, 57], the principle
behind Lemma 1 could be extended to leverage potential coupling constraints between flows that do not
share a common vertex. For example, for two vertices u and v, a linear constraint involving the flows
'u and 'v could be multiplied by the vertex positions xu and xv, and used as in Lemma 1 to tighten
our convex envelope. This, however, would require the introduction of auxiliary decision variables
representing the mixed products xv'>

u and xu'>
v , and it would rapidly make the size of our formulation

intractable.

5.3 Reduced Mixed-Integer Convex Formulation

Not all the components of the MICP (18) are actually necessary. In this subsection we show that, due
to the particular structure of the local flow polytopes �v in (4), the vertex locations xv, together with
all the constraints involving them, can be removed from our MICP without a↵ecting its optimal value.
If needed, an optimal assignment for the variables xv can be reconstructed a posteriori from the values
of the flows 'e and the auxiliary variables ye and ze. This observation will significantly decrease the
size and the solution time of our MICP. For a more abstract geometric analysis of this phenomenon we
refer the reader to Section 7.4.

Remark 10. Let us introduce some terminology to streamline the upcoming discussion. In the rest of
this paper, we will refer to the variables xv, ye, and ze as the spatial variables, as they live in the space
Rd underlying our SPP. A constraint of the form (13) enforces two conditions: Mva'v + bxv = 0 and
a>'v + b = 0. With the term spatial constraint we refer to the former, since it is the one involving the
spatial variables. We use the same name for the condition Mva+ bxv 2 (a>'v + b)Xv that is enforced
in (14).

When Lemma 1 is applied to a homogeneous flow constraint (i.e. a constraint with b = 0), the
resulting convex constraint (either of the form (13) or (14)) does not directly involve the decision
variable xv. Since most of the constraints defining the polytopes �v are homogeneous, the vertex
positions xv appear only in a handful of the convex constraints we derived in the previous subsection.
More specifically, we notice the following:

• For a vertex v /2 {s, t}, the variable xv appears only in the spatial degree constraint in (17), which
reads xv �

P
e2Eout

v
ye 2 (1 �

P
e2Eout

v
'e)Xv. Letting ✓v be any point in Xv, this constraint can

be used to express xv as a function of the other decision variables:

xv :=
X

e2Eout
v

ye +

0

@1�
X

e2Eout
v

'e

1

A ✓v, 8v 2 V � {s, t}. (19)

The spatial degree constraint and the variable xv can then be removed from our program.

• The spatial degree constraints in (17) are redundant also for v 2 {s, t}. In fact, for the source s, the
flow polytope �s ensures that

P
e2Eout

s
'e = 1 and the spatial conservation of flow in (16) reads

xs =
P

e2Eout
s

ye. Under these two conditions, the spatial degree constraint becomes 0 2 0Xs,
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which is trivially redundant. For the target t, we have 'e = 0 and ye = 0 for all e 2 Eout
t . Again,

the spatial degree constraint becomes 0 2 0Xt.

• After having removed the spatial degree constraints, the vertex positions xs and xt appear only
in the spatial conservation of flow in (16) for v 2 {s, t}. Again, we solve these two equalities out
of our MICP by defining

xs :=
X

e2Eout
s

ye, xt :=
X

e2Ein
t

ze. (20)

These observations lead to a reduced MICP where the decision variables xv are dropped, together
with the spatial degree constraints in (17) and the spatial conservation of flow in (16) for v 2 {s, t}.
Expanding all the constraints, our conclusive MICP formulation of the SPP (1) reads

minimize
X

e2E

˜̀
e(ye, ze,'e) (21a)

subject to (ye,'e) 2 X̃u, (ze,'e) 2 X̃v, 8e = (u, v) 2 E, (21b)
X

e2Ein
v

'e + �sv =
X

e2Eout
v

'e + �tv  1, 8v 2 V, (21c)

X

e2Ein
v

ze =
X

e2Eout
v

ye, 8v 2 V � {s, t}, (21d)

'e 2 {0, 1}, 8e 2 E. (21e)

After having solved this program, an optimal location of the vertices is recovered using (19) and (20).
The reduced MICP (21) has |E| binary variables and 2d|E| continuous variables. Assuming the

number of constraints defining the sets X̃v to be h(d), its convex relaxation (obtained by dropping (21e))
has a total of 2|V |+ d(|V |� 2) + 2h(d)|E| constraints. As shown in the next section, h(d) is typically
constant or linear, and the size of our MICP scales bilinearly with the size of the graph G and the
dimension d of the space in which the sets Xv live.

6 Perspective-Function Toolbox

In order to actually solve our MICP with a computer, we need implementable descriptions of the
perspective functions ˜̀

e in the objective (21a) and the sets X̃v in the constraint (21b). In this section
we provide explicit expressions for these components of our program in case of commonly-used edge
lengths `e and convex sets Xv. In addition, we show that when the former are constants or the latter are
singletons, our MICP simplifies to the LP formulation (5) of the classical SPP and hence, in accordance
with Remark 4, it has zero relaxation gap.

6.1 Common Choices for the Edge Lengths `e

We give explicit expressions for the perspectives ˜̀e in the objective (21a) in case of commonly-used edge
lengths `e.
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6.1.1 When the Edge Lengths `e are Constants

We start by showing that, when the edge lengths are finite nonnegative constants, the MICP (21) is
equivalent to the LP formulation (5) of the classical SPP and hence it has zero relaxation gap.

Assume `e(xu, xv) := ce � 0 for all e 2 E. Using Definition 1, the addends ˜̀
e(ye, ze,'e) in our

objective are easily verified to coincide with ce'e for 'e � 0. For all e = (u, v) 2 E, we can then define
ye := 'e✓u and ze := 'e✓v for some ✓u 2 Xu and ✓v 2 Xv. The spatial constraints in (21b) are verified.
The spatial conservation of flow (21d) simplifies to

P
e2Ein

v
'e✓v =

P
e2Eout

v
'e✓v, and it is implied by

the regular conservation of flow in (21c). The MICP is then reduced to the LP (5) with the additional
integrality requirement (21e), which we know is redundant in this case (see Remark 4).

6.1.2 When the Edge Lengths `e are Positively Homogeneous

Assume the edge length `e to be positively homogeneous, i.e., `e(cxu, cxv) = c`e(xu, xv) for all xu, xv,
and c > 0. An example of such a function is `e(xu, xv) := kAexu + Bexvk, from which the Euclidean
length (2) is recovered when the norm is the 2-norm and Be := �Ae := I. As shown in Example 1,
in this special case we have ˜̀

e(ye, ze,'e) = `e(ye, ze) for 'e � 0. In case of a p-norm, using slack
variables, this is implementable as a linear objective subject to linear constraints if p 2 {1,1} or to a
Second-Order Cone Constraint (SOCC) if p = 2.

6.1.3 When the Edge Lengths `e are Positive-Semidefinite Quadratic Forms

Let the edge length be defined as `e(xu, xv) := kAexu + Bexvk22. Notice that the Euclidean length
squared (3) is recovered as a special case for Be := �Ae := I. Proceeding as in Example 2, in this case
we have

˜̀
e(ye, ze,'e) =

8
><

>:

kAeye +Bezek22/'e if 'e > 0

0 if 'e = 0 and Aeye +Beze = 0

1 otherwise

. (22)

The three cases in this equation are easily modeled via a SOCC. We introduce a nonnegative slack
variable le that takes the place of the edge length `e in our objective. We then add the rotated SOCC

'ele � kAeye +Bezek22. (23)

For 'e > 0, the slack le is forced by the cost to coincide with kAeye + Bezek22/'e, as required by (22).
For 'e = 0, the variable le is pushed to zero which, recalling that 'e = 0 implies ye = ze = 0 by (21b),
also agrees with (22). We conclude that the SOCC (23) models the above perspective correctly.

6.1.4 When the Edge Lengths `e Enforce Hard Constraints

Imagine we want to couple the position of the two endpoints xu and xv of the edge e = (u, v) via a
constraint of the form (xu, xv) 2 Xe, with Xe nonempty, closed, and convex. Without loss of generality,
we can also assume the set Xe to be bounded; if not, we can just replace it with the equivalent bounded
set Xe \ (Xu ⇥Xv). Our goal can be achieved by defining the edge length

`e(xu, xv) :=

(
`0e(xu, xv) if (xu, xv) 2 Xe

1 otherwise
,
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for some suitable function `0e. After a few manipulations of Definition 1, the perspective of this edge
length is found to be

˜̀
e(ye, ze,'e) :=

(
˜̀0
e(ye, ze,'e) if (ye, ze,'e) 2 X̃e

1 otherwise
.

Therefore, in practice, the requirement (xu, xv) 2 Xe simply results in the hard constraint (ye, ze,'e) 2
X̃e, which can be implemented using the results from the next subsection.

6.2 Common Choices for the Convex Sets Xv

We now consider common choices for the convex sets Xv and we give descriptions of their perspectives
X̃v that are readily amenable to standard solvers. The next lemma draws a parallel between function
and set perspectives similar to the one discussed in Remark 7. It shows how a functional description of
a convex set can be translated into a functional description of its perspective.

Lemma 2. Let the functions fi verify the conditions in Definition 1 for all i in some index set I.
Assume the convex set S := {x : fi(x)  0 for all i 2 I} to be bounded. We have

S̃ = {(x,�) : f̃i(x,�)  0 for all i 2 I}.

Proof. We verify that the two sets are equal when sliced for di↵erent values of �. If � > 0, the condition
f̃i(x,�)  0 is equivalent to fi(x/�)  0. Enforcing this for all i is, in turn, equivalent to x 2 �S. If
� = 0, the conditions f̃i(x, 0)  0 read lim⌧#0 ⌧fi(x̄ + x/⌧)  0. These are recognized to force x to lie
in the recession cone of S. Since S is bounded, its recession cone is {0}. This agrees with �S = {0}.
Finally, both slices are empty when � < 0.

Remark 11. In Lemma 2 the boundedness of S is necessary for the perspective function to drive x
to the origin as � goes to zero. This is the main reason why we assume the sets Xv to be bounded:
otherwise, we would not have a practical way to drive the variables ye and ze to the origin as 'e goes
to zero, as required by constraint (21b).

6.2.1 When the Sets Xv are Singletons

As in the case of constant edge lengths from Section 6.1.1, when the sets Xv are singletons our MICP
simplifies to the LP (5) and has zero relaxation gap.

When Xv := {✓v} for all v 2 V , the spatial constraints in (21b) simply become linear equalities:
ye = 'e✓u and ze = 'e✓v for all e = (u, v) 2 E. The conservation of flow in (21c) implies its spatial
counterpart (21d). The auxiliary variables ye and ze can be then plugged in the objective and eliminated
from the problem. The eth cost addend becomes

˜̀
e('e✓u,'e✓v,'e) =

(
'e`e(✓u, ✓v) if 'e > 0

0 if 'e = 0
.

Assuming each constant edge length ce := `e(✓u, ✓v) to be finite (otherwise we can just remove the edge
e from the problem), the latter equals ce'e. This reduces our MICP to the LP (5).
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6.2.2 When the Sets Xv are Polytopes

Assume the sets Xv to be polytopes with halfspace representation {x : Avx  bv}. Let Av,i be the ith
row of Av and bv,i the ith entry of bv. Using Definition 1, the perspective of the function Av,ix� bv,i is
easily found to be Av,ix� bv,i� for � � 0. Using Lemma 2 we then have X̃v = {(x,�) : Avx  bv�}. In
this case, the convex constraints (21b) are enforced as linear inequalities.

6.2.3 When the Sets Xv are A�ne Transformations of the Unit Ball

We conclude with a generalization of Example 3. We let Xv := {x : kAvx+ bvk  1}. Using Lemma 2
and Definition 1, it can be seen that X̃v = {(x,�) : kAvx + bv�k  �}. For a p-norm with p 2 {1,1}
the convex constraints (21b) are then linear, and for p = 2 they are SOCCs.

7 Analysis of the Mixed-Integer Convex Formulation

In this section we analyze in greater depth the properties of the MICP we designed in Section 5. The
starting point, in Section 7.1, will be to describe in abstract terms how Lemma 1 operates on the sets
�v and Xv to relax the feasible set of the bilinear program (10). This abstraction will shed light on
multiple issues that the derivation in Section 5 left open:

• In Section 7.2.1 we will certify that, unless further assumptions on the problem structure are
made, no other strengthening constraint for our MICP can be generated using Lemma 1.

• Theorem 3 showed that the convex constraints we designed for the MICP (18) are, in fact, a
mixed-integer convex formulation of the feasible set of the bilinear program. In Section 7.2.2 we
will explain this result through a simple geometric argument.

• Section 7.3 concerns the strength of our MICP. Using Lemma 1 we have relaxed the constraints
corresponding to each vertex in our graph independently (see Remark 9). Ideally, we would like
these relaxations to be as tight as possible and coincide with the convex hull of the corresponding
bilinear constraints. We will see that this is not the case (if it was, we would have P = NP).
Compared to an exact characterization of the convex hull, our formulation results in a limited loss
of strength but in a considerable reduction in size.

• Finally, in Section 7.4, we will isolate the geometric properties of our problem that in Section 5.3
allowed us to reduce the size of the proposed MICP.

The upcoming analysis will highlight multiple similarities between our convexification method and
the RLT [86, 85], which, in turn, has its roots in the Sherali-Adams [84] and the Lovász-Schrijver [57]
hierarchies for 0-1 optimization problems. (See also [87] for a concise overview of RLTs and [51] for a
comparison of these classical hierarchies.) Except for Section 10, the remaining of this paper does not
depend on the technical results presented in this section.

7.1 Generalization of the Mixed-Integer Convex Formulation

Let us restate in a more concise form the bilinear program (10). As in Section 5.2, we stack the auxiliary
variables (ze)e2Ein

v
and (ye)e2Eout

v
in the matrix Mv which, using the bilinear constraints (10c), is seen

18



to coincide with the outer product = xv'>
v . Defining the nonconvex sets ⌦v := {(', x,M) : ' 2 �v, x 2

Xv,M = x'>} for all v 2 V , problem (10) is compactly stated as

minimize
X

e2E

˜̀
e(ye, ze,'e) (24a)

subject to ('v, xv,Mv) 2 ⌦v, 8v 2 V. (24b)

In this subsection we retrace the steps from Section 5.2 and we show that Lemma 1 is, in fact, a general-
purpose tool to construct convex relaxations ⌦0

v for sets of the form of ⌦v. The MICP (18) will be then
stated as

minimize
X

e2E

˜̀
e(ye, ze,'e) (25a)

subject to ('v, xv,Mv) 2 ⌦0
v, 8v 2 V, (25b)

'e 2 {0, 1}, 8e 2 E, (25c)

and multiple properties of this program will be inferred by analyzing the relationship between the sets
⌦v and ⌦0

v.
As seen in Section 5.2, valid inequalities play a central role in our convexification method. Let us

then start with a formal definition.

Definition 3. For a set S ✓ Rn, we define the set of valid linear inequalities as

S� := {(a, b) 2 Rn+1 : a>x+ b � 0 for all x 2 S}.

Using the definition, it is immediately verified that S� is a convex cone, even if S is nonconvex. The
next lemma describes the set S and its perspective S̃ in terms of the valid inequalities S�.

Lemma 3. Let S ✓ Rn be a closed convex set.

(a) We have S = {x : a>x+ b � 0 for all (a, b) 2 S�}.

(b) Assume, in addition, S to be bounded. We have S̃ = {(x,�) : a>x+ b� � 0 for all (a, b) 2 S�}.

Note that, essentially, Lemma 3(b) states that, for a compact convex set S, the cones S̃ and S� are
dual.

Proof of Lemma 3. Point (a) is verified by checking mutual inclusion: one direction follows from the
definition of S�, the contrapositive of the other direction is easily proven using the separating-hyperplane
theorem in its strict version (see, e.g., [9, Example 2.20]). Point (b) is simply Lemma 2 applied to the
description of S from point (a). (Note that in this description of S̃ the condition � � 0 needs not to be
stated explicitly since (0, 1) 2 S�.)

We go back to the analysis of the bilinear program (24). Let us drop the dependence on the vertex v
from our notation, and momentarily extend the discussion to two generic compact convex sets � ⇢ Rn

and X ⇢ Rd. We consider the following nonconvex set:

⌦ := {(', x,M) : ' 2 �, x 2 X,M = x'>}. (26)

We generate valid inequalities for ⌦ by multiplying valid inequalities for � and X. Let (a, b) 2 �� and
(c, d) 2 X�. For any point (', x,M) 2 ⌦, we have

0  (a>'+ b)(c>x+ d) = c>Ma+ da>'+ bc>x+ bd. (27)

Since the expression on the right-hand side is linear in ', x, and M , we have the following lemma.
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Lemma 4. The following set is convex and contains ⌦:

⌦0 := {(', x,M) : c>Ma+ da>'+ bc>x+ bd � 0 for all (a, b) 2 �� and (c, d) 2 X�}. (28)

Depending on whether describing the valid inequalities of one of the sets � and X is simpler than
for the other, the following descriptions of ⌦0 can be more convenient.

Lemma 5. The following are equivalent descriptions of the set ⌦0:

⇢
(', x,M) :


Ma+ bx
a>'+ b

�
2 X̃ for all (a, b) 2 ��

�
, (29a)

⇢
(', x,M) :


M>c+ d'
c>x+ d

�
2 �̃ for all (c, d) 2 X�

�
. (29b)

Proof. Consider the first set. Using Lemma 3(b), we rewrite the condition (Ma+ bx, a>'+ b) 2 X̃ as
c>(Ma + bx) + d(a>' + b) � 0 for all (c, d) 2 X�. Expanding the products we get back the definition
of ⌦0 in (28). The equivalence of (29b) and (28) is shown the same way.

We notice the following parallels between Lemma 5 and the results from Section 5.2:

• The description of ⌦0 in (29a) uses exactly the procedure from Lemma 1(b). There we arrived
to this result via a direct argument, i.e., by multiplying in (12) the valid inequalities for �v by
the corresponding vertex position xv. The path taken here is longer, but it shows that the other
classes of constraints that we could derive using the same principle, namely (28) and (29b), would
not tighten our relaxation.

• In Lemma 1(a) we analyzed the case of a valid linear equality a>'+b = 0 separately, and we noticed
that such a constraint leads to a spatial equality constraintMa+bx = 0. This distinction was done
for clarity, but it is unnecessary. Rewriting the valid equality as two inequalities (a, b) 2 �� and
�(a, b) 2 ��, we notice that among the conditions in (29a) we have both (Ma+ bx, a>'+ b) 2 X̃
and �(Ma + bx, a>' + b) 2 X̃. Since X̃ is a pointed cone, these imply (Ma + bx, a>' + b) = 0
as in (13).

Remark 12. The step in (27), of multiplying linear inequalities on the decision variables ' and x
to generate linear inequalities on the product variables M , is a common paradigm in optimization; it
represents the building block of RLTs [86, 85]. It is Lemma 5 that di↵erentiates our approach from
these classical techniques: the perspective operations in (29) allow us to treat one of the two convex
sets � and X as a black box, and to summarize all the valid inequalities for this set via a convex cone
constraint.

7.2 The Case of a Polytopic Set �

We restrict the analysis to a polytopic set �, and we illustrate two important properties that our
convexification technique enjoys under this assumption. Note that, given the symmetric roles played by
the sets � and X, results analogous to the ones below hold in case of a polytopic X.
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7.2.1 Finitely-Generated Convex Relaxations ⌦0

Though convex, the relaxation ⌦0 is inoperable in its current form since, in each of its descriptions,
it involves infinitely many constraints. As one might expect, the first advantage of working with a
polytopic set � is that only a finite subset of the conditions in (29a) is actually needed. We already
took advantage of this observation in Section 5.2, where we applied Lemma 1 only to the constraints
defining a facet of �v. Our next step is to formally show that this omission was lossless.

Let � be a polytope with halfspace representation {' : a>i ' + bi � 0 for all i 2 I}, where I is a
finite index set. We claim that the following is an equivalent description of the convex set ⌦0:

⌦0 =

⇢
(', x,M) :


Mai + bix
a>i '+ bi

�
2 X̃ for all i 2 I

�
. (30)

Here the conditions in (29a) are only enforced for the inequalities (ai, bi) 2 �� defining the polytope �.
The next proposition proves this claim by showing that redundant inequalities for the set � are mapped
to redundant constraints in (29a).

Lemma 6. Let (a, b) 2 ��. There exist scalars ↵i � 0 such that a =
P

i2I ↵iai and b �
P

i2I ↵ibi.

Proof. Since (a, b) 2 ��, the minimum of a>' + b over all ' 2 � is nonnegative. The dual of this
minimization requires maximizing b�

P
i2I ↵ibi over all nonnegative ↵i such that a =

P
i2I ↵iai. The

thesis follows from LP strong duality.

Proposition 2. Let (a, b) 2 ��. The constraint (Ma + bx, a>' + b) 2 X̃ is redundant for the set on
the right-hand side in (30).

Proof. Let (', x,M) be a point in the set from (30). Define the scalars ↵i as in Lemma 6, and let
� := b�

P
i2I ↵ibi � 0. We take a linear combination with coe�cients ↵i of the conditions in (30). On

the left-hand side we get the vector
P

i2I ↵i(Mai + bix, a>i '+ bi) = (Ma+ (b� �)x, a>'+ b� �). On

the right-hand side, recalling that X̃ is a convex cone, we obtain the set
P

i2I(↵iX̃) =
P

i2I X̃ = X̃.

The thesis is verified by summing the inclusion we just derived with �(x, 1) 2 X̃.

Coming back to the SPP, the last proposition certifies that a redundant linear inequality for the
polytope �v cannot be used to strengthen our MICP via Lemma 1. On the other hand, as long as
we agree not to leverage couplings between nonincident flows as mentioned in Remark 9, there are no
further linear inequalities that we can add to our program to cut a portion of �v either. In fact, as seen
in Section 4.1, any such inequality would cut out a potentially-optimal integer flow 'v. We conclude
that our use of Lemma 1 in Section 5.2 has been exhaustive.

Remark 13. Proposition 2 gives us a simple proof of the claim made in Remark 8, by which the convex
constraints (18b)–(18d) imply the condition xv 2 Xv. Specializing Proposition 2 to the valid inequality
(0, 1) 2 ��, we see that the constraint (x, 1) 2 X̃, which is equivalent to x 2 X, is verified by any point
in ⌦0.

7.2.2 Tightness of the Envelope ⌦0
at the Extreme Points of �

Narrowing the class of convex sets � to polytopes has allowed us to describe the convex relaxation ⌦0

through a finite number of conditions in (30). There is another, less obvious, advantage of working
with a polytopic set � that yields a simpler and more insightful argument for the validity of our MICP
formulation in Theorem 3. Let us analyze the tightness of the inclusion ⌦ ✓ ⌦0, zooming in on any of
the extreme points ext(�) of the polytope �.
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Lemma 7. For any extreme point '̂ 2 ext(�), define L := {(', x,M) : ' = '̂}. We have ⌦\L = ⌦0\L.

Proof. The inclusion ⌦\L ✓ ⌦0 \L follows from ⌦ ✓ ⌦0. Let x and M be such that ('̂, x,M) 2 ⌦0, to
prove the reverse inclusion we need to show that M = x'̂>. Since '̂ is an extreme point of �, we can
always identify n linearly-independent inequalities defining � that are active at '̂. Let Â 2 Rn⇥n be the
invertible matrix whose rows are the vectors ai corresponding to these active inequalities, and let the
vector b̂ 2 Rn be constructed analogously from the scalars bi. We have '̂ = �Â�1b̂. Evaluated at ' = '̂,
the spatial constraints in (30) corresponding to these inequalities read Mai + bix 2 (a>i '̂+ bi)X = {0},
and can be stacked in the matrix equality MÂ> + xb> = 0. We conclude that M = �xb>Â�> =
�x(Â�1b)> = x'̂>.

In words, this lemma states that, if we restrict our attention to the extreme points of �, the convex
relaxation ⌦0 of the set ⌦ is perfectly tight. Having noticed this, the validity of our MICP formulation
is immediately established.

Alternative proof of Theorem 3. The constraints of the MICP (25) enforce both 'v 2 �v and 'v 2
{0, 1}|Ev |. As seen in Remark 6, the flows in �v \ {0, 1}|Ev | are the extreme points ext(�v) of the local
flow polytope. Thus, by Lemma 7, the constraint sets ⌦v and ⌦0

v are interchangeable in (25b). The
feasible set of the bilinear program (24), subject to the extra constraints 'e 2 {0, 1} for all e 2 E, is
then equal to the feasible set of the MICP (25).

7.3 Tightness of the Convex Relaxation

In this subsection we analyze the tightness of the inclusion conv(⌦) ✓ ⌦0. Ideally, we would like our
convex relaxation to be as tight as possible and this inclusion to be an equality. We will see that, for
generic convex sets � and X, this is not the case (if it was, we would have P = NP). In the special
case of a polytopic set �, we will see that an explicit description of conv(⌦) can be derived using
disjunctive-programming techniques, and that the size of this description is proportional to the number
of extreme points of �. Since the local flow polytopes �v in our SPP have a small number of extreme
points, |ext(�v)| = O(|Ein

v ||Eout
v |), this will yield a tractable description of the sets conv(⌦v). However,

this description will be substantially larger than the one of ⌦0
v and, in practice, its higher strength will

not be worth the increase in size.
Let us start by illustrating a simple example where the equality conv(⌦) = ⌦0 does hold.

Example 4. Let � and X be intervals in the real line: � := ['min,'max] and X := [xmin, xmax]. A
halfspace representation of � is given by a1 := 1, a2 := �1, b1 := �'min, b2 := 'max, and I := {1, 2}.
Expanding the conditions in (30), we get the following description of ⌦0:

' � 'min, M � 'minx 2 ('� 'min)[xmin, xmax], (31a)

'  'max, 'maxx�M 2 ('max � ')[xmin, xmax]. (31b)

These linear inequalities are recognized to define the classical McCormick envelope [65] of the bilinear
surface M = 'x, which is depicted in Figure 2 for 'min = 0 and 'max = xmax = �xmin = 1. The
McCormick envelope is known to coincide with the convex hull of this surface: thus, in this case, we
have ⌦0 = conv(⌦).

As a side note, notice that Lemma 7 applies to the case depicted in Figure 2: at the extreme points
ext(�) = {0, 1} of � the envelope ⌦0 adheres perfectly to ⌦.

The next example shows that, in general, the containment of conv(⌦) in ⌦0 can be loose.
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Figure 2: The nonconvex set ⌦ and its convex relaxation ⌦0 from Example 4, depicted for 'min = 0 and
'max = xmax = �xmin = 1. In the simple case where the sets � and X are intervals in the real line, the
set ⌦0 coincides with the classical McCormick envelope [65], i.e., the convex hull of ⌦.

Example 5. Let � := X := [�1, 1]2. Consider the problem of maximizing M11 + M12 + M21 � M22

subject to the constraint (', x,M) 2 ⌦. The optimal value of this program is 2, and it is achieved for

' = x =


1
1

�
, M =


1 1
1 1

�
.

Since the objective is linear, by substituting the constraint set ⌦ with its convex hull we do not alter
the optimal value. On the other hand, substituting ⌦ with its convex relaxation ⌦0 the optimal value
increases to 4, with maximizers

' = x =


0
0

�
, M =


1 1
1 �1

�
.

Therefore, in this case, the convex hull of ⌦ is strictly smaller than ⌦0.

Remark 14. The existence of a counterexample as the one just illustrated should not surprise. In fact,
any bilinear program of the form

maximize p>'+ q>x+ '>Rx

subject to ' 2 �, x 2 X,

with � and X convex, is easily rewritten as the maximization of a linear function of (', x,M) over
the nonconvex set ⌦. Optimizations of this kind have been deeply studied in the global optimization
literature (see [45, Sections I.2.4 and IX.1] and the references therein) and they belong to the class of
NP-hard problems. Since, for tractable convex sets � and X, optimizing a linear function over ⌦0 takes
polynomial time, the equality ⌦0 = conv(⌦) would imply P = NP.

As in Section 7.2, in the last part of this subsection we focus on the case of a polytopic set �. The
following proposition shows that the shape of the convex hull of ⌦ is a↵ected only by the points in ⌦
that correspond to an extreme point of �.
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Proposition 3. We have conv(⌦) = conv(⌦ \ C), where C := {(', x,M) : ' 2 ext(�)}.

Proof. See Appendix B.3.

Proposition 3 allows us to derive an actionable description of the set conv(⌦). In fact, the set ⌦\C
can be expressed as the union of a convex set per extreme point of �,

⌦ \ C =
[

'̂2ext(�)

{'̂}⇥ {(x,M) : x 2 X,M = x'̂>},

and the convex hull of this disjunctive convex set can be explicitly described using disjunctive-programming
techniques [13, 3]. The resulting representation of conv(⌦) involves a number of convex conditions pro-
portional to |ext(�)|. In general, this number can be exponential in the dimension n of space where
� lives, however, as seen in Section 4.1, our local flow polytopes �v have a small number of extreme
points that is (at most) bilinear in the indegree |Ein

v | and the outdegree |Eout
v | of vertex v. Therefore,

for our SPP, the route just described leads to a polynomial-size MICP that is stronger than our formu-
lation (21). This MICP is described in detail in Appendix A.2 and tested numerically in Appendix A.3.
Here we only mention that, though polynomial, in our numerical experience, the size of this MICP is
generally prohibitive. With a little sacrifice in strength, the MICP (21) scales linearly with the size of
the graph G and performs much better in practice.

7.4 Orthogonal Projection of the Set ⌦0

The last part of this analysis is devoted to the reduced MICP (21). In Section 5.3 we observed that each
vertex position xv appears in only one of the constraints of the MICP (18). This allowed us to drop the
decision variables xv from our program, together with all the constraints involving them. Geometrically,
this operation corresponds to projecting the feasible set of the MICP (18) onto the space of the variables
{'e, ye, ze}e2E . With the notation of this section, the reduced MICP takes then the form

minimize
X

e2E

˜̀
e(ye, ze,'e) (32a)

subject to ('v,Mv) 2 proj(',M)(⌦
0
v), 8v 2 V, (32b)

'e 2 {0, 1}, 8e 2 E, (32c)

where the vertex positions xv are projected out the constraint sets ⌦0
v. Problem (32) is immediately

verified to be equivalent to (25), since our objective function does not depend on the variables xv.
In general, projecting the set ⌦0 is a complicated operation: in case of polytopic sets � and X, for

example, the set ⌦0 is also a polytope and its projection can be delimited by a number of halfspaces
exponential in d. However, sets � with particular geometry can make this operation very simple.

Let us consider the case depicted in Figure 3a, where � is the intersection of a convex cone K
and a halfspace H := {' : a>' + 1 � 0}. For simplicity, let us also assume K to be polyhedral:
K := {' : a>i ' � 0 for all i 2 I}. In this case, the constraints defining the convex set ⌦0 in (30) are

(Mai, a
>
i ') 2 X̃, 8i 2 I, (33a)

(Ma+ x, a>'+ 1) 2 X̃. (33b)

Among these conditions, only the spatial constraint Ma+x 2 (a>'+1)X in (33b) involves the variable
x. Removing this from our description of ⌦0, we get an explicit representation of the set proj(',M)(⌦

0).
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(a) Intersection of a cone K and a halfspace H. (b) Intersection of a cone K and an a�ne subspace A.

Figure 3: The two kinds of polytopes � for which we compute the orthogonal projection of set ⌦0 onto
the space of the variables ' and M .

To get a lifting function that maps any point in the projection to a point in ⌦0, we simply define x so
that the constraint we removed is always verified:

x := �Ma+ (a>'+ 1)✓, (34)

where ✓ is any point in X. Notice that in our SPP the polytopes �v have this structure for all v /2 {s, t}:
the only nonhomogeneous constraint is the degree constraint (4c) and, representing it through the vector
a := (0|Ein

v |,�1|Eout
v |), the lifting formula (34) gives us exactly (19).

The analysis does not change if, as in Figure 3b, we intersect the cone K with an a�ne subspace
A := {' : a>' + 1 = 0}. The spatial constraint in (33b) becomes now Ma + x = 0. Dropping this
equality we obtain an explicit description of proj(',M)(⌦

0), while the lifting

x := �Ma (35)

maps any point in the set proj(',M)(⌦
0) to a point in ⌦0. In our SPP, the polytope �t has this structure,

with the conservation of flow (4b) being the nonhomogeneous constraint. After a small rearrangement
of the equations governing its flow, the same holds for the source polytope �s. The lifting formulas
in (20) are obtained from (35) by letting a := (0|Eout

s |,�1|Ein
s |) and a := (�1|Ein

t |, 0|Eout
t |).

Example 6. We continue with Example 4 using the numeric values from Figure 2. In this case
the polytope � falls into the first category analyzed above, with the halfspace H being defined by
a := �1, and the cone K by a1 := 1 and I := {1}. The conditions (31a) and (31b) defining the
McCormick envelope correspond to (33a) and (33b), respectively. The projection of ⌦0 is then obtained
by dropping spatial constraint in (31b) from the description of the envelope: proj(',M)(⌦

0) = {(',M) :
' 2 [0, 1],M 2 '[�1, 1]}. The correctness of this expression can be visually confirmed from Figure 2.

8 Dual Optimization Problem

In this section we analyze the dual of the convex relaxation of the MICP (21). Additional parallels
between this program and the LP formulation (5) of the classical SPP are drawn in Sections 8.1 and 8.2.
An informative lower bound on the optimal value of our convex relaxation is derived using duality in
Section 8.3.
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8.1 Dual of the Classical Shortest-Path Linear Program

As a reference for the upcoming analysis, the dual of the LP formulation (5) of the classical SPP is

maximize ps � pt (36a)

subject to pu � pv  ce, 8e = (u, v) 2 E, (36b)

where pv denotes the multiplier of the conservation of flow (4b) at vertex v.8 These multipliers are well-
known to be interpretable as potentials: the objective asks to maximize the potential jump between
the source s and the target t, the constraint ensures that the potential jump along each edge does not
exceed the length of the edge itself.

8.2 Dual of the Proposed Mixed-Integer Convex Program

Instead of deriving the dual of the convex relaxation of the MICP (21), we state it directly and we
prove weak duality (i.e. that the optimal value of the dual problem bounds from below the one of the
primal). In fact, this is the only property of the dual program that we use in this paper.

We let the following Lagrange multipliers be the decision variables of the dual program. For each
edge e 2 E, we pair the first nonnegativity constraint in (21b) with the dual variables ae 2 Rd and
be 2 R, and the second with ↵e 2 Rd and �e 2 R. For all v 2 V , we associate pv, qv 2 R to the
conservation of flow and the degree constraint in (21c), respectively. Finally, for v 2 V � {s, t}, we let
rv 2 Rd be the multiplier for the spatial conservation of flow (21d). The dual of the convex relaxation
of the MICP (21) is

maximize ps � pt �
X

v2V�{t}

qv (37a)

subject to pu � pv � qu + be + �e  �`⇤e(ru + ae,�rv + ↵e), 8e = (u, v) 2 E, (37b)

(ae, be) 2 X�
u, (↵e,�e) 2 X�

v , 8e = (u, v) 2 E, (37c)

qv � 0, 8v 2 V, (37d)

rs = rt = 0. (37e)

Here `⇤e denotes the conjugate function9 of `e and X�
v is the set of valid linear inequalities for the set

Xv (as in Definition 3). Note also that rs and rt are auxiliary decision variables whose only role is to
simplify the final expression of the dual problem.

The following proposition shows that weak duality holds for the pair of optimization problems under
analysis.

Proposition 4. The optimal value of program (37) bounds from below the optimal value of the convex
relaxation of the MICP (21).

Proof. See appendix B.4.

Let us briefly comment on the structure of the dual program (37). Comparing it with the LP (36),
we notice that the objective (37a) still maximizes the potential jump ps � pt, but it also includes

8
As discussed in Remark 5, the degree constraints (4c) are redundant for this LP. Hence their multipliers do not appear

in the dual program (36).
9
For a function f : Rn ! R[ {1}, the conjugate function is defined as f⇤

(a) := supx(a
>x� f(x)). Note that, since f⇤

is the pointwise supremum of a�ne functions, it is always convex, even when f is not.
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the multipliers of the degree constraints (which are redundant in the classical SPP). Constraint (37b)
clearly resembles (36b): the potential jump pu � pv, together with an extra term, is upper bounded by
a concave expression associated to the edge length. The connection is even more evident noticing that,
for `e(xu, xv) := ce, we have `⇤e = �ce (together with the constraints ru = �ae and rv = ↵e) and the
right-hand sides of (37b) and (36b) coincide. The constraint (37c), on the other hand, is purely due to
the spatial nature of our problem, as its primal counterpart (21b).

Problem (37) is always feasible and its cost is nonnegative. This is seen by setting all the multipliers
to zero: all the constraints are verified and the cost is zero.

8.3 A Simple Lower Bound on the Optimal Cost

We now take advantage of the dual program (37) to perform a brief “sanity check” on the strength of
our MICP (21). The reduction argument from Theorem 1 suggests a simple lower bound on the optimal
cost of the SPP (1), here we show that the convex relaxation of our MICP always recovers this bound.

Consider a problem setup in which all the edges e = (u, v) 2 E share the same length function

`e(xu, xv) := `(xv � xu), (38)

which only depends on the distance xv � xu, and not on xu and xv independently. Assume also that
`(0) = 0. Momentarily, we focus our attention on the case in which the source and target sets are single
points: Xs := {✓s} and Xt := {✓t}. With the goal of lower bounding the optimal cost of the SPP (1),
we can drop the constraints xv 2 Xv for all v 2 V � {s, t}. Similarly to the proof of Theorem 1, an
optimal solution for this relaxed problem is obtained by first detecting an s-t path ⇡ = (vk)Kk=0 with
maximum number K of edges, and then by arranging the points xvk at equal distance along the line
segment connecting ✓s and ✓t. The cost of this arrangement is

K`

✓
✓t � ✓s
K

◆
=: ˜̀(✓t � ✓s,K). (39)

We cannot ask the convex relaxation of our MICP (21) to always recover this value: as discussed in
Section 3, this would yield a polynomial-time algorithm for the HPP, which is NP-complete. On the
other hand, any s-t path can contain at most K = |V |� 1 edges, therefore a simple lower bound on the
optimal cost of our SPP is ˜̀(✓t � ✓s, |V |� 1).

More generally, when the sets Xs and Xt are full dimensional, we have the following result.

Proposition 5. Assume all the edges to share the common length function (38). The optimal cost of
the convex relaxation of the MICP (21) is not smaller than the optimal cost of

minimize ˜̀(xt � xs, |V |� 1) (40a)

subject to xs 2 Xs, xt 2 Xt. (40b)

Proof. See Appendix B.5.

The proof of this proposition requires an intricate interplay between the dual variables in (37): this
shows that all the constraints in (21) are essential for our formulation to pass this sanity check. In
particular, contrarily to what happens for the LP (5) (see Remark 5), the degree constraint in (21c) is
not redundant for our MICP.
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9 Application to Optimal Control of Hybrid Dynamical Systems

We now show how optimal-control problems for discrete-time hybrid dynamical systems can be for-
mulated as the SPP presented in Section 2. We focus on the broad class of PieceWise-A�ne (PWA)
systems [88], and we analyze both the cases in which the time horizon of the control problem is to be
optimized or it is fixed a priori.

A PWA system has the structure

⇣(k + 1) = Ai⇣(k) +Biw(k) + ci if (⇣(k), w(k)) 2 Di, (41)

where k 2 Z is the discrete time, ⇣ 2 Rd⇣ is the system state, w 2 Rdw is the control input, and i is
the system mode which takes values in a finite index set I. In words, we have a collection of |I| a�ne
dynamics (Ai, Bi, ci)i2I , each of which applies in a di↵erent (convex compact) portion Di of the state
and control space.

Loosely speaking, almost any system whose nonlinearity is exclusively due to discrete logics can be
written in PWA form [42]. In addition, smooth nonlinear dynamics can be approximated arbitrarily well
by using a PWA model [88]. PWA systems have seen a multitude of applications: automotive [8], power
electronics [37], robotics [60, 41], and many more [11]. Also a linear system that navigates through an
environment with obstacles can be seen as a PWA system, where the convex sets Di represent regions
of collision-free space.

9.1 Problems with Free Time Horizon

Given the initial state ⇣(1), our goal is to find a control sequence (w(k))K�1
k=1 that drives the system

final state ⇣(K) to a given target set Z ⇢ Rd⇣ , subject to the PWA dynamics (41) and while optimizing
some function of the states ⇣(k) and the controls w(k). The time K at which the system reaches the
target is not specified a priori.

To transcribe this problem as an SPP (1) we proceed as in Figure 4a. We let the vertices of our graph
be V := {s, t} [ I: the source s and the target t will be used to enforce the initial and final conditions,
while a visit to vertex i 2 I will represent a time step spent in region Di. We let the sets Xv live in the
state and control space Rd with d := d⇣ + dw, and we denote with xv := (⇣v, wv) 2 Xv the position of
vertex v. We pair the source s with the set Xs := {⇣(1)} ⇥ {0dw}, the target t with Xt := Z ⇥ {0dw},
and the remaining vertices i 2 I with the corresponding set Di. The source s is connected by an edge
(s, i) to each of the vertices i 2 I; similarly we also have the edges (i, t) for all i 2 I. We might then
allow transitions between any pair of distinct vertices in I, in which case we proceed as in Figure 4a and
we add all the edges (i, j) 2 I2 with i 6= j to our edge set E. Otherwise, we can prevent an undesired
mode transition by excluding the corresponding edge. To allow the system to spend multiple time steps
in the same region Di we can proceed as in Remark 2 (not shown in Figure 4a).

Notice that the mode i in which the PWA system (41) is at time k = 1 is not uniquely determined by
the initial state ⇣(1), but it depends also on the first control w(1). This is the reason why we introduce
the fictitious vertex s: defining the length of each edge e = (s, i) as

`e(xs, xi) :=

(
0 if ⇣i = ⇣s

1 otherwise
, (42)

we allow the optimal path ⇡ to connect at zero cost the source s to any vertex i 2 I for which there
exists a w such that (⇣(1), w) 2 Di. For all the the remaining edges e = (i, v), where either v 2 I or
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(a) Free time horizon K. Multiple visits to the same
region can be allowed by proceeding as in Remark 2.

(b) Fixed time horizon K.

Figure 4: Graphs G for the optimal control of a PWA system in case of free and fixed time horizon K.
In both cases, transitions are allowed between any pair of modes.

v = t, we define `e so that state transitions that do not agree with the dynamics incur infinite cost:

`e(xi, xv) :=

(
`0e(xi, xv) if ⇣v = Ai⇣i +Biwi + ci

1 otherwise
, (43)

where `0e is a suitable cost function. To derive the perspectives of the edge lengths (42) and (43) we can
proceed as in Section 6.1.4.

For what concerns the transition cost `0e, we can, e.g., define it as `0e(xi, xv) := 1. This yields a
minimum-time problem where the goal is to reach the target set Z as soon as possible. Otherwise, a
popular class of cost functions are positive semidefinite quadratic forms

K�1X

k=1

⇣
⇣>(k)Q⇣(k) + w>(k)Rw(k)

⌘
.

This objective balances the magnitude of the control e↵ort and the distance of the system state from the
origin. In this case, we let `0e(xi, xv) := ⇣>i Q⇣i + w>

i Rwi. When working with finite-horizon problems,
it is also frequently useful to enforce a penalty on the magnitude of the terminal state ⇣(K), e.g.,
⇣>(K)P ⇣(K) with P positive semidefinite. This is a fundamental tool to ensure closed-loop stability of
the control system [64]. In our construction, this can be easily achieved by adding to the lengths `0e of
the edges e = (i, t) the term ⇣>t P ⇣t.

After having solved the MICP (21), and recovered the shortest path ⇡ = (vk)Kk=0, the optimal control
sequence is w(k) = wvk for k = 1, . . . ,K � 1 and the corresponding state trajectory is ⇣(k) = ⇣vk for
k = 1, . . . ,K.

9.2 Problems with fixed time horizon

Choosing a fixed time horizon K for a control problem is a tricky compromise between performance
and computational e�ciency. Furthermore, letting K be a decision variable has also several technical
advantages [66, 83, 80]. Nevertheless, in some cases, we might need the value of K to be fixed. With
some extra e↵ort, also fixed-horizon control problems can be formulated as the SPP (1).

We proceed as in Figure 4b. We include in the vertex set V : the source s, the target t, and a vertex
(k, i) for each time step k = 1, . . . ,K � 1 and each mode i 2 I of the PWA system. The source Xs
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and target Xt sets are defined as before, while we pair each vertex (k, i) with a copy of the convex set
Di. The source s is connected by an edge to each vertex (1, i) for i 2 I in the first layer. Similarly,
the vertices (K � 1, i) are connected to the target t for all i 2 I. For k = 1, . . . ,K � 2, we have an
edge from vertex u = (k, i) to vertex v = (k + 1, j) for all (i, j) 2 I2. This ensures that every state
transition increases the time count by exactly one unit. Since any s-t path in the graph we constructed
has exactly K edges, the time available to reach the target is fixed and equal to K�1. For the remaining
components of problem (1), the discussion from the previous subsection carries over without any major
modification.

Remark 15. Overall, the size of the SPP we construct scales linearly with the time horizon K and
quadratically with the number |I| of modes. Conversely, classical formulations for these problems have
size linear in both K and |I| [61]. However, as we will see in Section 11.3, the higher strength of our
approach is generally worth this price.

10 Extension of Other Classical Graph Problems

As discussed in Section 1.1.1, multiple graph problems with neighborhoods have been studied in the lit-
erature, and exact solution algorithms for these problems typically require using very expensive MINCP
techniques. Examples are the TSP [36] and the MSTP [6]. Here we show that, under standard convex-
ity assumptions [36, 6], the techniques we described in Section 7 can also be applied to derive strong
MICP formulations of these problems. This novel perspective leads to substantially easier optimization
problems, and it has the potential to strongly outperform existing formulations. A thorough numerical
comparison of these formulations is under completion.

Given a graph G := (V,E), which we assume for simplicity to be directed, many combinatorial
optimization problems require identifying a subset E? of the edge set E that verifies given feasibility
conditions and which is optimal according to some criterion. Typically, these are formulated as an
Integer Linear Program (ILP) of the form

minimize
X

e2E
ce'e (44a)

subject to ' 2 � \ {0, 1}|E|, (44b)

where ' := ('e)e2E . The edge set E? is parameterized by the binary variables 'e as E? = {e 2 E :
'e = 1}, the polytope � embodies the feasibility conditions, and the optimality criterion is described
by a linear function of the variables ', which assigns a finite nonnegative cost ce to each edge e 2 E.

We extend the graph problem modeled by the ILP (44) to its version in graphs of convex sets (or
with neighborhoods) as done for the SPP. We let the position xv of vertex v 2 V be a decision variable,
constrained in the set Xv, and we let the length of the edge e = (u, v) 2 E be `e(xu, xv). The sets
Xv and the functions `e are subject to the assumptions listed in Section 2. To formulate this graph
problem as an MICP, we follow the steps in Section 5.1. We define the auxiliary variables ye := 'exu
and ze := 'exv for each edge e = (u, v) 2 E, and we express our generalized problem as a mixed-integer
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program with bilinear constraints:

minimize
X

e2E

˜̀
e(ye, ze,'e) (45a)

subject to xv 2 Xv, 8v 2 V, (45b)

ye = 'exu, ze = 'exv, 8e = (u, v) 2 E, (45c)

' 2 � \ {0, 1}|E|. (45d)

Arrived at this point, in the case of the SPP, we used the fact that the flow constraint 'v 2 �v in (10b)
couples only the flow variables incident with vertex v. This very convenient structure of the SPP allowed
us to express the constraints in problem (10) in terms of the nonconvex sets ⌦v as in Section 7.1, and
then to convexify the problem as in (25). On the other hand, condition (45d) might involve coupling
constraints between flows of nonincident edges (e.g., the subtour-elimination constraints for the TSP
by Dantzig, Fulkerson, and Johnson [18]). There are two way in which this issue can be addressed.

One option is just to separate the constraints that involve flows with a common vertex from the ones
that couple nonincident flows. Including only the first in the description of the polytopes �v, we can
then proceed as for the SPP and derive a convex constraint of the form (13) or (14) for each constraint
in the first group. Assuming without loss of generality that �v ✓ [0, 1]|Ev |, the MICP we get is a valid
problem formulation: in fact, this assumption ensures that any point 'v 2 �v \ {0, 1}|Ev | is an extreme
point of �v and, by Lemma 7, our convex relaxation is exact in these points. The formulation resulting
from this approach is compact but it might be weak.

Similarly to Remark 9, the second option is to introduce extra auxiliary variables that represent the
product of each flow 'e and each vertex position xv, even if edge e is not incident with vertex v. This
gives us a total of d|V ||E| auxiliary continuous variables M = x'>, where the vector x := (xv)v2V lives
in the Cartesian product X :=

Q
v2V Xv. Defining the set ⌦ as in (26), problem (45) becomes

minimize
X

e2E

˜̀
e(ye, ze,'e) (46a)

subject to (', x,M) 2 ⌦, (46b)

' 2 {0, 1}|E|, (46c)

where the vectors ye and ze can be selected from the entries of M . To obtain an MICP formulation of
this mixed-integer nonconvex program, we relax constraint (46b) as (', x,M) 2 ⌦0, where the set ⌦0

is defined as in (30). The validity of the resulting formulation is again ensured under the assumption
� ✓ [0, 1]|E|. This second option yields larger but stronger optimization problems.

Remark 16. In some cases, an explicit description of the halfspaces defining the polytope � might not
be available, and the set � might be given as the projection onto the space of the variables ' of a higher-
dimensional polytope. Because of the need of auxiliary projection variables, in these cases problem (44)
is called an extended formulation [17]. Examples are the Miller, Tucker, and Zemlin formulation of the
TSP [67], or the MSTP formulation from [17, Section 6.1]. In these cases, we have a decision identical
to the one just described: either we exclude the constraints involving the projection variables from the
convexification process, or we include them at the price of introducing extra variables that represent
the product of the projection variables and the vertex positions xv. The first route yields a smaller
formulation, the second a stronger one.
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Figure 5: Graph G and setsXv for the example in Section 11.1. The blue dashed (red dash-dotted) line is
the shortest path in case the edge length is the Euclidean distance (2) (Euclidean distance squared (3)).

11 Numerical Results

In this section we collect multiple numerical examples. We start in Section 11.1 with a two-dimensional
problem. Section 11.2 contains a statistical analysis of the performance of our formulation in case of
large-scale random instances of the SPP (1). In Section 11.3 we demonstrate the applicability of our
problem formulation to optimal control of PWA systems. We conclude in Section 11.4 presenting two
SPP instances that are adversarially designed to exhibit two weaknesses of our MICP.

The code necessary to reproduce all the results presented in this section can be found at [59]. It
uses Drake [90] as an interface to the commercial solver Mosek 9.2.33 [69]. The solution times we
report are retrieved through Mosek’s attribute MSK DINF OPTIMIZER TIME, and they are obtained with
default options on a machine with processor 2.4 GHz 8-Core Intel Core i9 and memory 64 GB 2667
MHz DDR4.

11.1 Two-Dimensional Example

The first example we consider is the two-dimensional SPP depicted in Figure 5. We have a graph G
with |V | = 9 vertices, |E| = 22 edges, and multiple cycles. The source Xs = {✓s} and target Xt = {✓t}
sets are single points, while the remaining regions are full dimensional. The geometry of the sets Xv and
the edge set E can be deduced from Figure 5. We consider two edge-length functions: the Euclidean
distance (2) and the Euclidean distance squared (3). In both cases the resulting optimization problem is
a Mixed-Integer Second-Order-Cone Program (MISOCP). The corresponding shortest paths are shown
in Figure 5 as a blue dashed line and a red dash-dotted line. As expected, the first path is almost
straight while the length of the segments in the second is better balanced.

In Section 3 we have seen that the size of the sets Xv can have dramatic e↵ects on the hardness
of the SPP (1): the SPP is easily solvable when the sets collapse to singletons, while the combination
of large sets Xv, cycles, and non-homogeneous edge lengths can make the SPP very hard. Motivated
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(a) Edge length is the Euclidean distance (2). (b) Edge length is the Euclidean distance squared (3).

Figure 6: Numerical results from Section 11.1. Optimal cost of the MICP (18) and of its convex
relaxation as functions of the size r of the sets Xv.

by this observation, in Figure 6 we compare the cost of the MICP (21) and of its convex relaxation
as functions of the size of the regions Xv. We control the size of these sets via the scalar r > 0. The
nominal case (r = 1) is depicted in Figure 5. For r 6= 1 each set Xv is shrunk or enlarged via a uniform
scaling, with scale factor r, that fixes the Chebyshev center of the set (center of the largest inscribed
ball).

When the edge length is the Euclidean distance (2), Figure 6a shows that the convex relaxation is
tight for all values of r. This agrees with the results from Section 6.2.1, according to which our MICP
is tight when the sets are small. On the other hand, that the relaxation gap is zero even for nonzero r
is not an obvious result.

In light of what we said and noticing that the graph in Figure 5 is not Hamiltonian, we do not
expect our formulation to perform equally well in case of the non-homogeneous edge length (3). In this
case, Figure 6b shows that the convex relaxation is not always tight, even though the relaxation gap is
small even in the worst case. For small scales r, the results from Section 6.2.1 imply once again that the
relaxation gap must be zero. For larger r, approximately r > 1, the convex relaxation becomes slightly
loose. Equation (39) can be used to predict the asymptotic cost of the MICP: k✓t�✓sk22/K = 11.6, where
K = 7 is the maximum number of edges traversed by an s-t path in the graph from Figure 5. A closer
inspection of Figure 6b reveals that the curve of the convex relaxation converges to k✓t�✓sk22/(|V |�1) =
10.1, which corresponds to the lower bound derived in Proposition 5.

In many circumstances the convex relaxation of our MICP yields tighter lower bounds than the one
from Proposition 5. As an example, the removal of the edge connecting the top-left set to the bottom set
in Figure 5 does not make the graph Hamiltonian, but it is su�cient to close the asymptotic relaxation
gap in Figure 6b.

11.2 Large-Scale Random Instances

In the previous example we have tested our MICP on a small-scale SPP and we have analyzed its
strength only as a function of the size of the sets Xv. We now move to problems of larger scale, and
we analyze the impact of multiple parameters on the e�ciency of our formulation. We generate a large
number of random problem instances and we illustrate the resulting solution statistics.

Remark 17. Generating random graphs representative of the “typical” SPP on convex sets we might
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Figure 7: Projection onto two dimensions of a random instance of the SPP from Section 11.2 for a
nominal value of the problem parameters.

encounter in practice is a di�cult operation. Restrictions such as requiring the source s to be connected
to all the vertices in the graph introduce strong biases in the topology of the graph. Inevitably, the
instances we describe below are not completely representative, and our algorithm might perform worse
or better on di↵erent classes of random graphs. With the following results we do not want to make any
claim regarding, e.g., the average strength of our formulation. Our purpose is instead to show that the
applicability of our formulation is not limited to small-scale problems.

We construct a random instance of problem (1) as follows. We set Xs := {0 2 Rd} and Xt := {1 2
Rd}. Each of the remaining |V |� 2 sets Xv is an axis-aligned cube of volume ⇤ with center drawn from
the uniform distribution over [0, 1]d. Given a number of edges |E|, we construct the edge set E in two
steps. First we generate multiple s-t paths such that each vertex in V � {s, t} is traversed exactly by
one path. These are determined via a random partition of the set V � {s, t}: the number of sets in the
partition (number of paths) is drawn uniformly from the interval [1, |V | � 2], and also the number of
vertices in each set (length of each path) is a uniform random variable. Secondly, we expand the edge set
E by drawing edges uniformly at random from the set {(u, v) 2 V 2 : u 6= v} until the desired cardinality
|E| is reached. We use the following nominal parameters: d = 4 dimensions, |E| = 100 edges, |V | = 50
regions, and a volume ⇤ = 0.01 for the regions Xv. To give an idea of what these problems look like,
the projection onto two dimensions of a random instance generated with these parameters is shown in
Figure 7.

As edge lengths, we consider the Euclidean distance (2) and the Euclidean distance squared (3). For
each edge length, first we solve 100 random instances with nominal parameters. Then we consider four
subgroups of the parameters: for each subgroup, we multiply the value of the parameters in it by 5, and
we solve another 100 random instances. Table 1 shows the statistics of these trials: the two groups of
columns report the median and maximum relaxation gap and MICP solution time. In support of the
analysis below, we recall that both the edge lengths (2) and (3) lead to an MISOCP, and that these
problems have |E| binaries, O(d|E|) continuous variables, and O(d(|V |+ |E|)) constraints.

Overall, the Euclidean edge length (2) results in easier optimizations: the relaxation gaps never
exceed 1.24% and computation times are relatively low.

The squared edge length (3) leads to more challenging problems even though, in the nominal case,
the average relaxation gap is still very low and the computation times are always within 0.6 s. The
growth of the space dimension to d = 20 increases the size of our programs, and also deteriorates
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Relaxation gap (%) MICP solve time (s)
Eucl. Eucl. sq. Eucl. Eucl. sq.

Increased parameters med max med max med max med max
None (nominal) 0.00 0.34 0.0 2.1 0.08 0.43 0.1 0.6
Dimensions d 0.00 0.21 7.4 28.9 0.55 5.26 2.3 133.3
Edges |E| 0.00 1.24 14.0 32.9 1.65 12.74 22.5 197.2
Vertices |V |, edges |E| 0.00 0.25 0.00 5.3 1.14 4.32 1.1 5.3
Volume ⇤ 0.00 0.56 0.0 9.1 0.13 0.68 0.1 0.9

Table 1: Relaxation gap and computation times, in the median and worst case, for the random problem
instances described in Section 11.2. First row: solution statistics for 100 problem instances with nominal
parameters (d = 4, |E| = 100, |V | = 50, and ⇤ = 0.01). Remaining rows: solution statistics for 100
problem instances with a subset of the parameters increased by a factor of 5. Two edge-length functions
are considered: the Euclidean distance (2) and the Euclidean distance squared (3). These results show
that our formulation can tackle problems of significant size; however, given the random nature of these
instances, these values might be unrepresentative of the average performance of our MICP.

the tightness of the convex relaxation. In the worst case, we have a relaxation gap of 28.9% and a
solution time greater than 2 min. A similar analysis applies when the number |E| of edges is increased
from 100 to 500: in general, we have found our formulation to struggle with graphs of high density of
edges |E|/|V |. To show this, in the fourth row we keep |E| = 500 edges but we increase the vertices
to |V | = 250: this has the e↵ect of reducing the edge density and, even if the resulting MICPs are
bigger than the ones from the previous case, the relaxation gap and the computation times are strongly
reduced. Finally, we increase the volume of the cubes Xv from ⇤ = 0.01 to ⇤ = 0.05: these sets have now
a total volume of |V |⇤ = 2.5, which is significantly larger than the unit cube containing them. Despite
this, the performance of our formulation does not di↵er significantly from the nominal case. Note that
this does not contradict the previous example, where we were analyzing the regime of extremely large
sets Xv; recall also that the volume of the sets does not a↵ect the size of the MICPs.

Finally, we report that the solution times for the convex (second-order-cone) relaxations of these
programs are of the order of hundredths of second or, at most, a few tenths of second.

11.3 Optimal Control of a Piecewise-A�ne System

This example illustrates the discussion from Section 9 via the optimal-control problem shown in Fig-
ure 8a. We consider a mechanical system with position q 2 R2 and velocity q̇ 2 R2. The force w 2 R2

serves as control input. The system has the dynamics of a double integrator

q(k + 1) = q(k) + q̇(k), q̇(k + 1) = q̇(k) + ⌘w(k), (47)

where ⌘ is a scalar parameter that regulates the controllability of the system. We represent the state
of the system as ⇣ := (q, q̇).

At time k = 1, the system is in position q(1) := (�3.5, 0.5) (bottom-left green plus in Figure 8) with
velocity q̇(1) := (0, 0). At each time step k = 1, . . . ,K � 1, the position vector q(k) is allowed to be
in one of the seven regions depicted in Figure 8, while the velocity and the controls are limited by the
constraints kq̇(k)k1  1 and kw(k)k1  1. The goal is to reach the configuration q(K) := (3.5, 6.5)
(top-right green cross in Figure 8) with zero velocity q̇(K) in K := 30 time steps. In doing this, we
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(a) Optimal solution of the MICP.

(b) Solution of the convex relaxation of the formula-
tion [68, 61]. The relaxation gap is 93%, and the cor-
responding MICP is solved in 218 s.

(c) Solution of the convex relaxation of the proposed
formulation. The relaxation gap is 20%, and the cor-
responding MICP is solved in 1.3 s.

Figure 8: Control problem of driving a second-order system from start (green plus) to goal (green cross).
In the light-blue regions the system is highly controllable (⌘ = 1) and in the red regions controllability
is low (⌘ = 0.1). Optimal positions (q(k))Kk=1 are white circles, optimal controls (w(k))K�1

k=1 are blue
arrows. The triangles represent the auxiliary variables qi(k) whose convex combination yields q(k). The
opacity of the triangles equals the optimal value of the indicator variables bi(k) which serve as weights
in this convex combination.

want minimize the quadratic form

K�1X

k=0

✓
1

5
kq̇(k)k22 + kw(k)k22

◆
. (48)

We let the controllability parameter ⌘ vary between the regions. For the regions included in the range
�5  q1  5 (light blue in Figure 8) we set ⌘ = 1, and the system is highly controllable. In the two
remaining two regions (red in Figure 8) we let ⌘ = 0.1, making it very expensive to apply any significant
force. Since the parameter ⌘ varies with the system state, the dynamics in (47) are PWA and the
control problem falls into the class considered in Section 9.2. The graph G beneath this problem (see
Figure 4b) has |V | = 205 vertices and |E| = 1386 edges, the convex sets Xv live in a space of d = 6
dimensions. Because of the quadratic objective (48), the resulting optimization problem is an MISOCP.
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Figure 8a shows the optimal trajectory (q(k))Kk=1 (white circles) and the optimal controls (w(k))K�1
k=1

(blue arrows). Geometrically, the red regions would be shortcuts towards the goal, but the low control-
lability in these areas makes it very expensive not to fall out of the feasible set. The optimal strategy
is then to follow the S-shaped path and incur a cost of 9.74.

As a benchmark for our SPP formulation, we first solve this problem using the strongest formulation
available in the control literature: this also employs perspective functions and has been presented
in [68] and further analyzed in [61, Section 5.2.2]. For each time step k, it uses |I| indicator variables
bi(k) 2 {0, 1} to select which one of the a�ne dynamics in (41) should be applied. This is done by
decomposing the state and the controls at time k into the convex combination of |I| auxiliary variables
(⇣i(k), wi(k)) 2 Di:

(⇣(k), u(k)) =
X

i2I
bi(k)(⇣i(k), wi(k)), (49)

where
P

i2I bi(k) = 1.10 Each copy (⇣i(k), wi(k)) is used to predict the next state according to the ith
dynamics, and the actual state of the system at time k + 1 is recovered as the convex combination of
these predictions:

⇣(k + 1) =
X

i2I
bi(k)(Ai⇣i(k) +Biwi(k) + ci). (50)

When the binaries are relaxed, bi(k) 2 [0, 1], the system evolves according to a convex combination
of the various a�ne dynamics. Also this formulation yields an MISOCP (this is due to a perspective
reformulation of the objective function [68, 61]).

Figure 8b shows the solution of the convex relaxation of the formulation [68, 61]. It reports the
position q(k), the (barely visible) controls w(k), and the auxiliary copies qi(k) of the position vector
whose convex combination yields q(k). The latter have triangle markers with opacity equal to the value
of the indicator bi(k). At each time step k, the solver is allowed to select the best convex combination of
the |I| a�ne dynamics: it decides to reach the goal with a perfectly-straight trajectory and incur a cost
of 0.70, which is only 7% of the MICP cost (93% relaxation gap). Note that this behavior is completely
insensitive to the geometry of the problem. The auxiliary variables are also uninformative: given the
wide variety of convex combinations of the a�ne dynamics that yield a straight trajectory, the values
of qi(k) and bi(k) make it impossible to guess in which region the system should be at a given time.
The solver does not even realize that stepping in the regions of low controllability is suboptimal, and it
assigns nonzero weights bi(k) to these regions (visible triangle markers in the red regions). The MICP
resulting from this problem formulation requires 218 s to be solved to global optimality.

The convex relaxation of our formulation is much tighter: its optimal value is 7.84, which is 80% of
the MICP cost (20% relaxation gap). This has a dramatic e↵ect on computation times which are now
reduced to 1.3 s.

To make a plot comparable with 8b we leverage the structure of the graph G in Figure 4b. For each
time step k = 1, . . . ,K � 1, this graph has vertices v = (k, i) and the total flow

bi(k) :=
X

e2Eout
v

'e (51)

traversing vertex v takes the role of the binary indicator from the formulation [68, 61].11 In fact, at
optimality of the MICP (21) we have (⇣(k), w(k)) 2 Di if and only if bi(k) = 1, while the conservation of

10
The bilinear constraints (49) and (50) are convexified using the method from [3, 13].

11
By the conservation of flow in (21c) and its spatial version (21d), we could equivalently define bi(k) :=

P
e2Ein

v
'e and

(⇣i(k), wi(k)) :=
P

e2Ein
v
ze/bi(k) in (51) and (52).
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flow in (21c) is easily seen to imply
P

i2I bi(k) = 1. Recalling that the vertex positions xv are obtained
by stacking the state and the controls, and provided that bi(k) > 0, the role of the auxiliary continuous
variables from [68, 61] can be taken by

(⇣i(k), wi(k)) :=
1

bi(k)

X

e2Eout
v

ye 2 Di, (52)

where the inclusion on the right holds even for nonbinary flows and follows directly from the nonnega-
tivity constraint (21b). Reconstructing the system state and controls as in (49), we obtain

(⇣(k), w(k)) =
X

v2{k}⇥I

X

e2Eout
v

ye.

The values just described are depicted in Figure 8c. The system trajectory (q(k))Kk=1 and the
controls (w(k))K�1

k=1 obtained from the proposed convex program resemble the S-shaped optimal solution
in Figure 8a much more closely than the formulation [68, 61]. For the auxiliary variables, we note that
all the markers in the regions with low controllability are invisible, meaning that our convex relaxation
identifies these as regions of high cost, and sets to zero the corresponding indicators bi(k). All the
visible points qi(k) are clustered along the optimal trajectory of the MICP, suggesting that our convex
relaxation contains detailed information on the optimal path to reach the goal.

11.4 Adversarial Instances

We conclude with two examples that illustrate carefully-chosen scenarios in which the convex relaxation
of the MICP (21) is not tight. This first has to do with symmetries in the graph G, the second with
cycles.

11.4.1 Symmetries in the Graph

We consider the SPP problem depicted in Figure 9a. We have a graph G with |V | = 5 vertices and
|E| = 5 edges. All the sets Xv are singletons {✓v}, except for X3 which is a full-dimensional rectangle
(light blue in Figure 9a). The edge lengths penalize the Euclidean distance between the vertices as
in (2). Solving this SPP, we obtain the optimal path ⇡ = (s, 1, 3, t) with length 7.39. The corresponding
vertex positions are connected by a blue dashed line in Figure 9a. Notice that, because of the problem
symmetry, the solution ⇡ = (s, 2, 3, t) is also optimal.

Figure 9b illustrates the solution of the convex relaxation of the MICP. For each edge e 2 E, we
connect the optimal location of the points ȳe := ye/'e and z̄e := ze/'e with a blue dashed line, labelled
in red with the corresponding flow 'e. Note that, for 'e > 0, the points ȳe and z̄e represent the
actual values of xu and xv based on which the cost of the edge e = (u, v) is computed; in fact, we
have ˜̀

e(ye, ze,'e) = `e(ȳe, z̄e)'e. As opposed to the MICP, the convex relaxation splits the unit of flow
injected in the source s into two: half unit is shipped to the target t via the upper path, the other half
via the bottom path. The optimal value of this convex program is 7.00.

The looseness of the convex relaxation can be explained as follows. If we denote with ↵ the flow
traversing edge (1, 3), the conservation of flow in (21c) implies '(2,3) = 1�↵. Similarly, the flow through
the edge (3, t) is always one. For a positive flow, the nonnegativity constraints (21b) give ȳe 2 Xu and
z̄e 2 Xv, and they force the variables ȳ(1,3), ȳ(2,3), and z̄(3,t) to match ✓1 = (0, 2), ✓2 = (0,�2), and
✓t = (5, 0), respectively. The cost terms in (21a) corresponding to the edges (1, 3), (2, 3), and (3, t) are
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(a) Optimal solution of the MICP, with the shortest
path drawn as a blue dashed line.

(b) Optimal solution of the convex relaxation. For each
edge e = (u, v) 2 E, the blue dashed line connects the
auxiliary copies ȳe and z̄e of the vertex positions xu

and xv. The red labels equal the flows 'e.

Figure 9: Example from Section 11.4.1 that describes how symmetries in the graph G can loosen the
convex relaxation of our MICP. For the convex relaxation, the cost contribution of edge e is obtained
by multiplying the flow 'e by the distance between ȳe and z̄e. Because of the symmetry of this SPP,
the constraints in the convex program only require the mean of z̄(1,3) and z̄(2,3) to match ȳ(3,t). The
cost is then reduced by separating the first two points vertically.

then

kz̄(1,3) � ✓1k2↵+ kz̄(2,3) � ✓2k2(1� ↵) + k✓t � ȳ(3,t)k2. (53)

The only constraint that links these variables is the spatial conservation of flow (21d) at vertex 3, which
reads

↵z̄(1,3) + (1� ↵)z̄(2,3) = ȳ(3,t).

When ↵ is set to 0.5, this constraint only requires the mean of z̄(1,3) and z̄(2,3) to match ȳ(3,t), instead
of forcing one of the first two points to match the third, as it would be for ↵ 2 {0, 1}. Therefore, while
keeping their mean equal to ȳ(3,t), the points z̄(1,3) and z̄(2,3) can move vertically to get closer to ✓1 and
✓2, respectively. This minimizes the first two terms in (53), and keeps the third unchanged. (Note that,
if these points were to move horizontally, the variations of the three terms in (53) would cancel, and
the cost would not change.)

To sum up, when in an SPP (1) multiple near-optimal paths merge in a single large region Xv,
the auxiliary copies of xv can scatter to decrease the cost terms in (21a), while verifying the spatial
conservation of flow (21d). Note also that, even thought the relaxation gap for the example we just
analyzed is small (5.2%), a careful redesign of the edge lengths `e and the position of the sets Xv can
make it arbitrarily large.
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(a) Solution of the MICP. (b) Solution of the convex relaxation for the upper half
of the graph (the bottom half is symmetric).

Figure 10: Example from Section 11.4.2 that describes how cycles and nonhomogeneous edge lengths can
make the convex relaxation of our MICP loose. By pushing a nonzero flow in the edge (2, 1), the convex
relaxation divides the three steps from the solution of the MICP in a larger number of smaller steps.
Since the edge length (3) minimizes the squares of the step lengths, this turns out to be advantageous.

11.4.2 Cycles in the Graph

The second case we discuss ties back to the complexity analysis from Section 3, and it shows how cycles
and nonhomogeneous edge lengths can make the convex relaxation of our MICP loose. We analyze the
SPP in Figure 10a: we have a graph G with |V | = 6 vertices, |E| = 8 edges, and two cycles {(1, 2), (2, 1)}
and {(3, 4), (4, 3)}. The source and target sets are singletons, Xs := {✓s} and Xt := {✓t}; the remaining
sets are full dimensional. The edge length is the Euclidean distance squared (3). The path ⇡ = (s, 1, 2, t)
is one of the two optimal solutions of this SPP: it has length 15.38 and it is depicted in Figure 10a. The
solution of the convex relaxation is illustrated in Figure 10b and has cost 14.64 (only the upper half of
the solution is reported, the bottom half is symmetric).

The convex relaxation asks to ship a flow of 0.5 along the edge (2, 1), even though a nonzero flow
'(2,1) is clearly suboptimal for the MICP. This behavior is motivated as follows. If the edge (2, 1) had
zero flow, the spatial conservation of flow (21d) would imply z̄(s,1) = ȳ(1,2) and z̄(1,2) = ȳ(2,t), and the
convex relaxation would be tight. On the other hand, similarly to the previous example, by pushing a
flow of 0.5 along the edge (2, 1), the spatial conservation of flow forces only the mean of the auxiliary
copies of x1 and x2 to coincide:

(z̄(s,1) + z̄(2,1))/2 = ȳ(1,2), z̄(1,2) = (ȳ(2,1) + ȳ(2,t))/2.

By separating the variables z̄(s,1) and z̄(2,1), as well as ȳ(2,1) and ȳ(2,t), the three line segments in the
solution of the MICP from Figure 10a can be divided in a larger number of smaller segments. Since
the objective is to minimize the sum of the squared lengths of these segments, this turns out to be
advantageous. More precisely, the optimal value of the MICP is

kx1 � ✓sk22 + kx2 � x1k22 + k✓t � x2k22 = 5.69 + 4.00 + 5.69 = 15.38, (54)
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while, using the symmetry of the solution, the cost of the convex relaxation can be verified to be

2(0.5kz̄(s,1) � ✓sk22 + kz̄(1,2) � ȳ(1,2)k22 + 0.5kz̄(2,1) � ȳ(2,1)k22 + 0.5k✓t � ȳ(2,t)k22)
= 2(2.21 + 2.72 + 0.18 + 2.21) = 14.64. (55)

The terms in (55) are greater in number but smaller in magnitude than the ones in (54), leading overall
to a nonzero relaxation gap. As in the previous example, this gap can easily be increased, e.g. by
enlarging the full-dimensional sets Xv.

To sum up: in case of nonhomogeneous edge lengths, the convex relaxation of our MICP might find
it convenient to push a nonzero flow along a cycle and fragment the optimal MICP path into a larger
number of smaller segments.

Remark 18. Figure 10b shows that the degree constraints in (21c) actively limit to one the total flow
traversing the vertices 1 and 2 (as well as 3 and 4). If we were to remove these constraints, the cost of the
convex relaxation would drop; showing once again that, even if redundant for the original LP (5), these
constraints strengthen our MICP. The degree constraints are also the reason why, in this example, we
need two s-t paths for the analyzed behavior to emerge: if the graph was limited to the upper half, we
would have only one feasible flow ('(s,1) = '(1,2) = '(2,t) = 1 and '(2,1) = 0) and the convex relaxation
would be tight.

12 Conclusions and Future Works

We have analyzed a generalization of the SPP in which the position of each vertex in the graph is
a continuous decision variable lying in a convex set, and the length of an edge is a convex function
of the position of the vertices it connects. Our main contribution is a strong mixed-integer convex
formulation for the solution of this NP-hard problem. A wide variety of numerical tests show that the
convex relaxation of this MICP is often very tight. We have focused part of our attention on control
systems: many mixed-integer control problems turn out to be interpretable as SPPs and, in our tests,
the proposed MICP outperforms state-of-the-art techniques for their solution.

Currently, we are working on benchmarking the techniques proposed here for the SPP against
existing mathematical-programming formulations of other graph problems with neighborhoods. In the
future, we plan to work on the development of approximation algorithms for the SPP in graphs of convex
sets. To this end, the fact that the proposed MICP shares the same structure as the LP formulation
of the classical SPP might allow us to leverage a massive body of works (see, e.g., [95]). On the other
hand, negative results on the hardness of approximating the longest path in a directed graph [5], a
problem which we have seen being a special case of our SPP, suggest that further assumptions on the
structure of our problem will be needed to progress in this direction. In terms of applications, we
are currently developing high-performance algorithms for robot motion planning that are based on the
results presented in this paper.
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[22] Marc Demange, Jérôme Monnot, Petrica Pop, and Bernard Ries. On the complexity of the selective
graph coloring problem in some special classes of graphs. Theoretical Computer Science, 540:89–102,
2014.

[23] Ashwin Deshpande. Exact geometry algorithms for robotic motion planning. PhD thesis, Mas-
sachusetts Institute of Technology, 2019.

[24] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.
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A Alternative Mixed-Integer Convex Formulations

In Section 5 we have proposed a technique to reformulate the bilinear program (10) as an MICP.
However, multiple alternative approaches could be used to achieve this result. In this appendix we
present two natural alternatives to the proposed formulation, and we provide numerical evidence of
why, in general, the MICP (21) is to be preferred.

A.1 Edge-by-Edge Formulation

The simplest approach to derive an MICP formulation of the SPP (1) is to analyze what the constraints
of the bilinear program (10) imply for each edge independently. This in contrast with Section 5.2 where
we grouped all the edges that share a common vertex v, and we derived our MICP leveraging the
structure of the polytopes �v.

Zooming in on the edge e = (u, v) 2 E, in case of a binary flow 'e 2 {0, 1}, the constraints in (10)
yield a disjunction between two convex sets:

{(xu, xv, ye, ze,'e) : 'e = 0, xu 2 Xu, xv 2 Xv, ye = ze = 0}, (56a)

{(xu, xv, ye, ze,'e) : 'e = 1, ye = xu 2 Xu, ze = xv 2 Xv}. (56b)

This discrete choice could be easily encoded using the big-M method, but this technique is well known
to yield very loose convex relaxations. The strongest possible mixed-integer convex formulation of the
disjunction (56) is obtained via the convex-hull method [13, 3] and, using the set-perspective notation,
it reads

(ye,'e) 2 X̃u, (xu � ye, 1� 'e) 2 X̃u, (57a)

(ze,'e) 2 X̃v, (xv � ze, 1� 'e) 2 X̃v. (57b)

Note that when 'e = 0 these conditions simplify to (56a), while for 'e = 1 they give us back (56b).
The MICP corresponding to this formulation is obtained by substituting the inclusion xv 2 Xv in (10b)
and the bilinear constraint (10c) with (57), and by requiring the flow variables to be binary.

Numerical evidence of the higher performance of the MICP (21) with respect to the one we just
discussed is given in Section A.3. For the moment let us notice that this edge-by-edge formulation can
also be obtained as a special case of the technique we presented in Section 7. If, instead of using the
local flow polytope �v in the definition (26) of the set ⌦v, we just use the trivial bound 'v 2 [0, 1]|Ev |,
the relaxation ⌦0

v from (30) gives us exactly the constraints (57). Therefore, we expect the MICP (21)
to be much stronger than the one obtained here: in fact, as seen in Section 7.2.1, tighter bounds on the
value of 'v yield tighter relaxations ⌦0

v. As a visual example, for a vertex v /2 {s, t} with two incoming
edges and one outgoing edge, Figure 11 compares the polytope �v and the cube [0, 1]|Ev |.

Finally, we notice that this edge-by-edge formulation is slightly larger than the MICP (21); this
because the variables xv cannot be removed from the problem formulation as done in Section 5.3. Here
we have |E| binary variables and d|V | + 2d|E| continuous variables. The number of constraints is
2|V |+ 4h(d)|E|, where h(d) is defined at the bottom of Section (5.3).
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Figure 11: The local flow polytope �v from (4) and the unit cube [0, 1]|Ev | for a vertex v /2 {s, t} with
two incoming edges and one outgoing edge. The flow vector 'v is decomposed as ('in

v ,'
out
v ), where 'in

v

collects the two incoming flows and 'out
v is the outgoing one. Grouping the edges that share a common

vertex v, instead of operating on each edge individually, allows us to exploit much tighter bounds on
the values of the flows (�v instead of [0, 1]|Ev |), and to design a much stronger MICP.

A.2 Convex-Hull Formulation

An alternative mixed-integer convex formulation of the feasible set of problem (10) has been mentioned
at the end of Section 7.3. This consists in a direct computation of the convex hulls of the sets ⌦v \Cv,
where Cv := {(', x,M) : ' 2 ext(�v)}. The derivation of the following families of constraints is a
straightforward but tedious application of the convex-hull method [13, 3], here we only report their final
descriptions.

For the source, the convex hull of ⌦s \ Cs can be described without the introduction of auxiliary
variables via the following constraints:

(xs, 1) =
X

e2Eout
s

(ye,'e), (58a)

'e = 0, ze = 0, 8e 2 Ein
s , (58b)

(ye,'e) 2 X̃s, 8e 2 Eout
s . (58c)

In a specular manner, the convex hull of set ⌦t \ Ct is delimited by the constraints

(xt, 1) =
X

e2Ein
t

(ze,'e), (59a)

(ze,'e) 2 X̃t, 8e 2 Ein
t , (59b)

'e = 0, ye = 0, 8e 2 Eout
t . (59c)

The description of the convex hull of ⌦v \ Cv when v /2 {s, t} is more involved, since we need to
consider all the possible combinations of incoming and outgoing edges. In this regard, we introduce
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(a) Edge length is the Euclidean distance (2). (b) Edge length is the Euclidean distance squared (3).

Figure 12: Application of the formulations from Appendix A to the numerical example from Section 11.1.
The two plots compare the cost of the convex relaxations of these formulations with the optimal value
of the SPP for di↵erent sizes r of the sets Xv. As expected the edge-by-edge formulation is extremely
weak, whereas the convex-hull formulation turns out to be as strong as the proposed MICP (21), despite
its substantially larger size.

the auxiliary variables 'io 2 R and xio 2 Rd for all edges i 2 Ein
v and o 2 Eout

v . The variable 'io can
be interpreted as the units of flow that enter vertex v through the edge i and leave it through o. The
variable xio must match xv when 'io = 1 and collapse to zero when 'io = 0. Applying the convex-hull
method, after several manipulations, we arrive to

"
xv �

P
i2Ein

v ,o2Eout
v

xio
1�

P
i2Ein

v ,o2Eout
v

'io

#
2 X̃v, (60a)

(ze,'e) =
X

o2Eout
v

(xeo,'eo), 8e 2 Ein
v , (60b)

(ye,'e) =
X

i2Ein
v

(xie,'ie), 8e 2 Eout
v , (60c)

(xio,'io) 2 X̃v, 8i 2 Ein
v , o 2 Eout

v . (60d)

The MICP corresponding to this formulation is obtained by minimizing (10a) subject to con-
straints (58), (59), (60) as well as the binary requirements 'e 2 {0, 1} for all e 2 Es[Et and 'io 2 {0, 1}
for all i 2 Ein

v , o 2 Eout
v , v 2 V � {s, t}. Regarding the size of this MICP we only mention that the

number of constraints, binary variables, and continuous variables is now porportional to the sum of the
products of the indegrees and the outdegrees of the vertices in the graph. As we see in the following
subsection, this is a burden that strongly limits the performance of this formulation.

A.3 Numerical Comparison

We present a numerical comparison of the MICP (21) with the two formulations discussed in this
appendix. We start from the two-dimensional example described in Section 11.1. In Figure 12 we
report the curves corresponding to Figure 6 for the two formulations described above. As expected, the
edge-by-edge formulation from Appendix A.1 is extremely weak, and with both the edge lengths (2)
and (3), the optimal value of its convex relaxation converges to zero as the sets Xv grow in size. Notice
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that this formulation does not recover the simple lower bound from Proposition 5. On the other hand,
the performance of the convex-hull formulation from Appendix A.2 is indistinguishable from the one of
the proposed MICP (21), despite the significantly larger programs that this method requires to solve.

We then consider the optimal-control problem described in Section 11.3. The edge-by-edge formula-
tion has a relaxation gap of 91%, and the corresponding MICP is solved in 10.3 s.12 This outperforms
the formulation from [68, 61] but is still an order of magnitude slower than the proposed MICP (21).
The convex-hull formulation has a relaxation gap of 18% which, as expected, is smaller that the one of
the MICP (21). However, the large size of this formulation makes the MICP solution time extremely
high: 588 s.

Finally we report that even the convex-hull formulation does not overcome the issues highlighted in
Section 11.4. For both the examples its convex relaxation gives the same solution as the MICP (21).

B Proofs

We gather in this appendix the proofs whose content is not strictly relevant to the discussion in the
main body of the paper.

B.1 Sketch of Proof of Theorem 2

The construction from [12, Theorem 2.3.2] allows to reduce the 3-SAT problem, whose NP-completeness
is well known [47], to the SPP (1) in polynomial time. The idea is to stack multiple layers of two-
dimensional convex sets Xv in a three-dimensional space. With the source Xs on top of the stack and
the target Xt at the bottom, the sets Xv are designed so that there are exponentially many s-t shortest
paths, one per assignment of the variables in the 3-SAT formula. Paths associates with infeasible
assignments can be then bent and filtered out by forcing them to traverse suitable convex sets.

All the “substructures” needed to construct the three-dimensional environment from [12, Section 2.2]
can be easily described in terms of convex sets Xv instead of “plates,” “slits,” and “barriers.” Impor-
tantly, none of these substructures requires a set Xv to be unbounded. The stacked structure of this
environment guarantees that a shortest path traverses the plates, and hence our convex sets, in a se-
quential manner. This ensures the absence of cycles in our edge set E. As for the Euclidean SPP, the
resulting instance of the SPP (1) has size polynomial in the number of variables and clauses in the
3-SAT formula, and its optimal value equals a known constant if and only if the formula is satisfiable.

B.2 Proof of the Claims from Section 4.1

We verify that the points listed in Section 4.1 are actually the extreme points of the local flow polytopes
�v. For the source vertex s and the target t the claim is verified very easily. Below we focus on the case
v /2 {s, t}.

To show that ext(�v) = {0|Ev |} [ (�|Ein
v | ⇥�|Eout

v |) =: �̂v, we verify that �v = conv(�̂v). Since the

three conditions in (4) are verified by all the points in �̂v, we have conv(�̂v) ✓ �v. For the reverse
inclusion, we explicitly decompose a point 'v 2 �v as a convex combination of the elements in �̂v. The
decomposition is trivial if 'v = 0, we then let 'v 6= 0. To the point in �̂v associated with a unit of
flow traversing the edges i 2 Ein

v and o 2 Eout
v we assign the coe�cient ↵io := 'i'o/

P
e2Ein

v
'e, while

we pair the zero vector in �̂v with ↵0 := 1�
P

i2Ein
v ,o2Eout

v
↵io. These coe�cients define a valid convex

12
The result returned by Mosek with default settings was inaccurate for this problem. This issue was fixed by setting

the parameter MSK IPAR INTPNT SOLVE FORM to MSK SOLVE PRIMAL.
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combination: they sum up to one, the nonnegativity of the flows (4a) implies ↵io � 0, and the degree
constraint (4c) ensures that

↵0 := 1�
P

i2Ein
v ,o2Eout

v
'i'oP

e2Ein
v
'e

= 1�

⇣P
i2Ein

v
'i

⌘⇣P
o2Eout

v
'o

⌘

P
e2Ein

v
'e

= 1�
X

o2Eout
v

'o � 0.

We are left to check that combing with these coe�cients the elements of �̂v we actually get 'v. The
entry corresponding to the edge i 2 Ein

v of this combination is

X

o2Eout
v

↵io =

P
o2Eout

v
'i'oP

e2Ein
v
'e

= 'i

P
o2Eout

v
'oP

e2Ein
v
'e

= 'i,

where the last equality uses the conservation of flow (4b). Similarly, the entry corresponding to the
edge o 2 Eout

v is correctly set to
P

i2Ein
v
↵io = 'o.

B.3 Proof of Proposition 3

We show mutual inclusion. The inclusion ⌦ \ C ✓ ⌦ remains true if we take the convex hull of
the two sets. For the other direction it su�ces to show that ⌦ ✓ conv(⌦ \ C). Let (', x,M) 2 ⌦.
Listing the extreme points of � as ext(�) = {'̂j}j2J , we consider nonnegative scalars ↵j such thatP

j2J ↵j = 1 and
P

j2J ↵j'̂j = '. We define Mj := x'̂>
j and we take a convex combination of the

points ('̂j , x,Mj) with coe�cients ↵j . These coe�cients define a valid convex combination. For all
j 2 J , the inclusion ('̂j , x,Mj) 2 ⌦ \ C follows from '̂j 2 ext(�), x 2 X, and the definition of Mj .
Finally, since

P
j2J ↵jMj =

P
j2J ↵j(x'̂>

j ) = x'̂> = M , we have
P

j2J ↵j('̂j , x,Mj) = (', x,M).
Thus (', x,M) 2 conv(⌦ \ C).

B.4 Proof of Proposition 4

Assume we are given a set of variables {'e, ye, ze}e2E that verify the constraints of the convex relaxation
of the MICP (21). Similarly, let {pv, qv, rv}v2V and {ae, be,↵e,�e}e2E verify the constraints of the
dual program (37). We need to show that di↵erence between the primal and the dual objectives is
nonnegative:

X

e2E

˜̀
e(ye, ze,'e)� ps + pt +

X

v2V�{t}

qv � 0. (61)

We start by using Fenchel-Young inequality: f⇤(a) � a>x � f(x) for all x and a. Applying this
inequality for the function ˜̀

e, with e = (u, v), we have

˜̀
e(ye, ze,'e) � (ru + ae)

>ye + (�rv + ↵e)
>ze + (pu � pv � qu + be + �e)'e

� (˜̀e)
⇤(ru + ae,�rv + ↵e, pu � pv � qu + be + �e). (62)

Following [16, Proposition 2.3(iv)], the conjugate of the perspective of `e is seen to be the indicator
function of the set Te := {(a, b, c) : `⇤e(a, b) + c  0}, i.e.: (˜̀e)⇤ = ◆Te . Evaluating this indicator function
at the point where (˜̀e)⇤ is evaluated in (62) we get zero: in fact, these dual variables are forced by the
constraint (37b) to lie in the set Te. In addition, we notice that the terms a>e ye+ be'e and ↵>

e ze+�e'e

in (62) are nonnegative. To see this for the first term, note that the constraints (21b) and (37c) enforce
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(ye,'e) 2 X̃u and (ae, be) 2 X�
u, and recall that X̃u and X�

u are dual cones by Lemma 3(b). The
nonnegativity of the second term is shown similarly.

The observations above show that the left-hand side in (61) is lower bounded by

X

e=(u,v)2E

⇣
r>u ye � r>v ze + (pu � pv � qu)'e

⌘
� ps + pt +

X

v2V�{t}

qv.

We rearrange the summation over the edges, and we rewrite our lower bound as

X

v2V

0

@
X

e2Eout
v

⇣
r>v ye + (pv � qv)'e

⌘
�

X

e2Ein
v

⇣
r>v ze + pv'e

⌘
1

A� ps + pt +
X

v2V�{t}

qv.

To conclude the proof, we show that the latter expression can be decomposed as the sum of nonnegative
terms. Collecting the terms involving the multipliers pv of the conservations of flow, we have

X

v2V

0

@
X

e2Eout
v

pv'e �
X

e2Ein
v

pv'e

1

A� ps + pt =
X

v2V
pv

0

@
X

e2Eout
v

'e + �tv �
X

e2Ein
v

'e � �sv

1

A = 0,

where the second equality uses the conservation of flow in (21c). We proceed similarly for the terms
involving multipliers qv of the degree constraints:

�
X

v2V

X

e2Eout
v

qv'e +
X

v2V�{t}

qv =
X

v2V
qv

0

@1� �tv �
X

e2Eout
v

'e

1

A � 0,

where the inequality uses the degree constraint in (21c) and the nonnegativity of qv from (37d). Finally,
we are left with the terms involving the multipliers rv of the spatial conservations of flow:

X

v2V

0

@
X

e2Eout
v

r>v ye �
X

e2Ein
v

r>v ze

1

A =
X

v2V
r>v

0

@
X

e2Eout
v

ye �
X

e2Ein
v

ze

1

A = 0,

where the second equality uses the spatial conservation of flow (21d) and the dual constraints (37e).

B.5 Proof of Proposition 5

We start by specializing the dual program (37) to the edge length (38). In this case, the conjugate
function in the dual constraint (37b) becomes

`⇤e(ru + ae,�rv + ce) = sup
xu,xv

⇣
(ru + ae)

>xu + (�rv + ↵e)
>xv � `(xv � xu)

⌘
. (63)

When ru + ae � rv +↵e 6= 0 this supremum is infinite and the dual problem is infeasible (this is seen by
setting xu = xv and recalling that `(0) = 0). We then have a “hidden” dual constraint

ru + ae = rv � ↵e, 8e = (u, v) 2 E. (64)

Using this, the conjugate (63) becomes

sup
xu,xv

⇣
(�rv + ↵e)

>(xv � xu)� `(xv � xu)
⌘
= `⇤(�rv + ↵e),
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and constraint (37b) reads

pu � pv � qu + be + �e  �`⇤(�rv + ↵e), 8e = (u, v) 2 E. (65)

We have now the tools to prove Proposition 5: the plan is to synthesize a dual feasible solution
whose cost coincides with the optimal value of (40). The thesis is then implied by weak duality.

We start by deriving the dual of problem (40). Using the indicator functions ◆Xs and ◆Xt , we
reformulate this program as the minimization of a convex function13 subject to linear constraints only:

minimize (|V |� 1)`(x) + ◆Xs(xs) + ◆Xt(xt)

subject to (|V |� 1)x = xt � xs.

Here the decision variables are x, xs, and xt. The dual of the latter minimization is easily derived using
conjugate functions (see [9, Section 5.1.6]) and it reads

maximize � (|V |� 1)`⇤(�r)� �Xs(�r)� �Xt(r). (66)

Here �Xs and �Xt are support functions14 and the only decision variable is r. Under mild assumptions
on the edge length ` and the convex sets Xs and Xt, strong duality holds for the pair (40) and (66).
The optimal values of these programs are hence equal. The plan is then to find a (partial) feasible
assignment for the variables of the dual (37) that reduces this program to (66).

We set the following values for the dual variables:

• Spatial conservation of flow (21d): rv := (1 � �sv � �tv)r for all v 2 V , where r is a decision
variable.

• Nonnegativity constraint (21b): ae := (�su + �tu)r, be := (�su + �tu)�Xu(�r), ↵e := �(�sv + �tv)r,
and �e := (�sv + �tv)�Xv(r) for all e = (u, v) 2 E.

• Conservation of flow in (21c): pv := (�sv + �tv)�Xv(r) for all v 2 V .

• Degree constraint in (21c): qv := `⇤(�r) + (�sv + �tv)(�Xv(r) + �Xv(�r)) for all v 2 V .

With this assignment the dual objective (37a) simplifies exactly to (66). We are then left to check
that all the dual constraints are verified:

• For the nonnegativity (37d) of qv we note that: the assumption `(0) = 0 implies `⇤ � 0, the
term �sv + �tv is clearly nonnegative, and the term �Xv(r) + �Xv(�r) is equal to supx2Xv

r>x �
infx2Xv r

>x, which is also nonnegative.

• The hidden dual equality (64) and the potential jump (65) are verified substituting the given
multipliers and simplifying.

• The first constraint in (37c) requires that a>e x+ be � 0 for all x 2 Xu. After substituting, we get
the condition (�su + �tu)(r>x + �Xu(�r)) � 0 for all x 2 Xu: the factor �su + �tu is nonnegative
and, using the definition of �Xu , we see that the same is true also for the second factor. Similarly,
the second constraint in (37c) becomes (�sv + �tv)(�r>x + �Xv(r)) � 0 for all x 2 Xv, and it is
easily verified to hold using the definition of �Xv .

13
Recall that the indicator function of a convex set is a convex function.

14
For a set S ✓ Rn

, the support function is defined as �S(a) := supx2S(a
>x). Note that the support function is the

conjugate of the indicator function (�S = ◆⇤S), thus it is always convex.

54


