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Abstract

Trajectory optimization offers mature tools for motion planning in high-dimensional spaces
under dynamic constraints. However, when facing complex configuration spaces, cluttered
with obstacles, roboticists typically fall back to sampling-based planners that struggle in very
high dimensions and with continuous differential constraints. Indeed, obstacles are the source
of many textbook examples of problematic nonconvexities in the trajectory-optimization prob-
lem. Here we show that convex optimization can, in fact, be used to reliably plan trajectories
around obstacles. Specifically, we consider planning problems with collision-avoidance con-
straints, as well as cost penalties and hard constraints on the shape, the duration, and the
velocity of the trajectory. Combining the properties of Bézier curves with a recently-proposed
framework for finding shortest paths in Graphs of Convex Sets (GCS), we formulate the
planning problem as a compact mixed-integer optimization. In stark contrast with existing
mixed-integer planners, the convex relaxation of our programs is very tight, and a cheap round-
ing of its solution is typically sufficient to design globally-optimal trajectories. This reduces
the mixed-integer program back to a simple convex optimization, and automatically provides
optimality bounds for the planned trajectories. We name the proposed planner GCS, after
its underlying optimization framework. We demonstrate GCS in simulation on a variety of
robotic platforms, including a quadrotor flying through buildings and a dual-arm manipulator
(with fourteen degrees of freedom) moving in a confined space. Using numerical experiments
on a seven-degree-of-freedom manipulator, we show that GCS can outperform widely-used
sampling-based planners by finding higher-quality trajectories in less time.

1 Introduction

In this paper we consider the problem of designing continuous collision-free trajectories for robots
moving in environments with obstacles. A wide array of techniques can be found in the liter-
ature to tackle this long-standing problem in robotics [14], and selecting the right one requires
compromising between multiple features of the problem at hand: dimensionality and complex-
ity of the environment, dynamic constraints, computation limits, completeness and optimality
requirements.

*Contributed equally to this work.



Methods based on direct trajectory optimization [7}[2][35] [25] [41] can design trajectories in
high-dimensional spaces while taking into account the robot kinematics and dynamics. However,
by transcribing the planning problem as a nonconvex program, and by relying on local opti-
mization, these techniques can fail in finding a collision-free trajectory, especially if the robot
configuration space is cluttered. In these scenarios, roboticists typically fall back to sampling-
based planners [18]122] (see also the more recent review |9]). These algorithms are probabilistically
complete, meaning that, if a feasible path exists, they will eventually find one, regardless of the
complexity of the configuration space |21, Chapter 5]. This guarantee, however, comes at a cost.
Although many sampling-based planners support “kinodynamic” constraints [39] (12} [40], contin-
uous differential constraints are difficult to impose on discrete samples, making the kinodynamic
versions of the classical sampling-based algorithms much less successful in practice. In addition,
even using asymptotically-optimal sampling-based planners [17}[11][16], the trajectories we design
can be considerably suboptimal in practice, where only a finite number of samples can be taken.
For certain classes of dynamical systems, hybrid approaches, where a trajectory-optimization
planner is driven by a higher-level graph search, have been shown to overcome part of these diffi-
culties [29]. Still, these multi-layer architectures do not offer a unified formulation of the planning
problem as a single optimization problem.

The promise of the planners based on Mixed-Integer Convex Programming (MICP) [331[32] 28]
391 (0] is to take the best of the two worlds above: the completeness of sampling-based algorithms,
and the ease with which trajectory optimization handles the robot kinematics and dynamics; with
the added bonus of global optimality and within a single optimization framework. The spread of
MICP techniques, however, is strongly limited by their runtimes: even for small-scale problems,
these methods can require several minutes to design a trajectory. Only recently, collision-free
planners entirely based on convex optimization have been proposed 8|, but their application is
currently limited to purely-geometric path planning in low-dimensional spaces.

In this paper, we focus on a limited but important class of motion-planning problems with
differential constraints, and we present a planner that, although being based on MICP, reliably
solves very high-dimensional problems in a few seconds, through a single convex program.

1.1 Contribution

We consider a formulation of the collision-free planning problem similar to the one from [6]. In
particular, we assume the robot configuration space to be partitioned into a collection of “safe”
convex regions, i.e., regions that do not intersect with any of the obstacles. In the special case
of polygonal obstacles, this partition can be constructed exactly. More generally, approximate
decompositions can be efficiently obtained using existing algorithms |3} 5], as well as newly-
developed techniques tailored to the complex configuration spaces of multi-link kinematic trees [1].
Our goal is then to design a continuous trajectory that is entirely contained in the union of the
safe regions. The optimality criterion and the additional constraints are allowed to depend on
the shape, the duration, and the velocity of the trajectory.

The main technical contribution of this work is showing that the trajectory-design problem
just described can be formulated as a shortest-path problem in Graphs of Convex Sets (GCS): a
recently-studied class of optimizations that lends itself to very efficient mixed-integer program-
ming [26]. Existing MICP planners parameterize a single trajectory and use binary variables to



assign each of its segments to a safe region. Conversely, with the proposed planner, which we
name GCS, the safe regions are connected through an adjacency graph and are each assigned
a trajectory segment. The optimal probabilities of transitioning between the regions are then
computed via an efficient blending of convex and graph optimization. We show that the MICPs
constructed in this way have very tight convex relaxations and, in the great majority of practical
cases, a single convex program, together with a cheap rounding step, is sufficient to identify a
globally-optimal collision-free trajectory. Furthermore, by comparing the costs of the convex re-
laxation and the rounded trajectory, GCS automatically provides a tight bound on the optimality
of the motion plan.

To parameterize trajectories we use Bézier curves: a relatively common tool in motion plan-
ning (see e.g. [10,120//4]) whose properties are very well suited for mixed-integer programming [19].
This parameterization enables simple convex formulations of the collision-avoidance constraints
and, when incorporated in our workflow, leads to very tractable convex optimizations; typically
Second-Order-Cone Programs (SOCPs). This is in contrast with existing MICP planners, which
require expensive semidefinite constraints to design trajectories that are differentiable more than
three times [6]. (Note that the requirement of smooth trajectories is of practical nature: to exploit
the differential-flatness properties of quadrotors, for example, it is necessary to design trajectories
that are differentiable at least four times [27].)

We demonstrate GCS on a variety of planning problems, ranging from an intricate maze to a
quadrotor flying through buildings and a fourteen-dimensional dual-arm manipulation task. The
numerical results show that, besides significantly improving on state-of-the-art MICP planners,
our relatively unoptimized implementation of GCS can also outperform widely-used sampling-
based planners by finding higher-quality trajectories in lower, and consistent, runtimes.

2 Problem Statement

In this section we state the motion-planning problem addressed in this paper in abstract terms, as
an optimization over the infinite-dimensional space of trajectories. It will be the goal of Section
to present our finite-dimensional transcription of this optimization, which will then be tackled
using practical convex programming.

As in [6], we look at the problem of planning around obstacles as the problem of navigating
within a collection of “safe” regions. More precisely, we assume the set @ C R” of collision-free
robot configurations to be decomposed into a family of (possibly overlapping) bounded convex sets
Q; C Q, with 7 in a finite index set Z. For polyhedral obstacles this decomposition can be exact,
ie. Ujer Qi = Q, while more complex configuration spaces can be decomposed approximately
using efficient existing algorithms [5} [1]. Given the regions Q;, our goal is to find a time 7' € R
and a trajectory ¢ : [0,7] — Q that are a solution of the following optimization problemﬂ

minimize aT + bL(q,T) + cE(q,T) (1a)
subject to ¢ € C", (1b)

n Section@we show how penalties on the second and higher derivatives of ¢ can be approximately integrated
in our problem formulation. Further costs and constraints are discussed in Section



cJa vt € [0, T, (1c)

i€l
q(t) € D, vt € [0, T, (1d)
T € [Tinin, Tinax), (Le)
q(0) = qo, ¢(T) = qr, (1f)
4(0) = go, 4(T) = qr- (1g)

The objective is a weighted sum, with user-specified weights a,b,c € R>q, of the trajectory
duration T', the length L(gq,T') of the trajectory, and the energy E(q,T) of the time derivative of
the trajectory. Specifically, the latter two quantities are defined as

T
L(q.T) == /0 li(0)lladt and  B(G,T) = / lat)|3dt. 2)

Constraint asks the trajectory to be continuously differentiable n times. Constraint
ensures that ¢ is contained in the safe sets, and hence is collision free at all times. (Note that
this is a stronger constraint than is usual in sampling-based motion planning, where trajectories
are typically checked to be collision-free only at a finite number of points.) The set D in is
required to be convex and can be used to enforce hard limits on the robot velocity. The bounds
on the trajectory duration in are such that Tinax > Tmin > 0. Finally, the constraints
and enforce the boundary conditions on ¢ and its time derivative.

The coupling between the trajectory g and its duration 7" makes it hard to work with prob-
lem directly. Similarly to [38], we break this coupling by introducing the path coordinate
s € [0, 5], where S has fixed positive value. We relate the coordinate s to the time variable ¢ via
the scaling function ¢ = h(s): the map h is required to be monotonically increasing, and such
that h(0) = 0 and h(S) = T. Expressing the trajectory ¢ as a function of s, we get the curve
r(s) := q(h(s)). Through a few simple manipulations, we restate problem in terms of the
decision variables r and h as

minimize ah(S) + bL(r,S) + cE (7'“/\/%, S) (3a)
subject to roh™! € C", (3b)
clJa, Vs e [0,5], (3¢)
iGI

r(s) € ( )D, h(s) > Vs € [0, 5], (3d)

h(0) =0, h(S) € [TminaTmax]a (3e)

r(0) = qo, 7"( ) = ar, (3f)

#(0) = h(0)do, 7(S) = h(S)dr. (3g)

In particular, we have used the chain rule to substitute ¢(¢) with 7(s)/h(s), and we have changed

integration variable in (2) from ¢ to s. This makes 7/ Vi : [0, S] — R™ the argument of the energy
function in the objective. The symbol o in denotes the composition operator: notice that
the function h is guaranteed to be invertible by the positivity of h from (3d). Finally, again by
the chain rule, the right-hand sides of the velocity constraints in (3d) and (3g) are multiplied by
the derivative h of the time scaling.



3 Background on Bézier Curves

In order to tackle problem numerically, it is necessary to parameterize the functions r and h
through a finite number of decision variables. To this end, in Section |5 we will employ Bézier
curves. The goal of this section is to recall the definition and the basic properties of this family
of curves.

A Bézier curve is constructed using Bernstein polynomials. The kth Bernstein polynomial of
degree d, with k£ =0,...,d, is defined as

Pr.a(s) == (Z) sF(1 — s)d7k,

where s € [0,1]. Note that the Bernstein polynomials of degree d are nonnegative and, by the
binomial theorem, they sum up to one. Therefore, for each fixed s € [0, 1], the scalars {8y q(s) }{_,
can be thought of as the coefficients of a convex combination. Bézier curves are obtained using
these coeflicients to combine a given set of d + 1 control points v, € R™:

d
v(s) = Z Bre,a () k-
k=0

It is easily verified that Bézier curves enjoy the following properties.

e FEndpoint values. The curve v starts at the first control point and ends at the last control
point: ¥(0) = 7o and v(1) = 4.

o Convexr hull. The curve v is entirely contained in the convex hull of its control points:
v(s) € conv({y}¢_,) for all s € [0,1].

e Derivative. The derivative 4 of the curve « is a Bézier curve of degree d — 1 with control
points 4 = d(yg+1 — V) for k=0,...,d — 1.

o Integral of conver function. For a convex function f :R"™ — R, we haveﬂ
1 1 d
ds < —— . 4
[ st < g S s @

4 The Optimization Framework

Our strategy for solving problem is to first transcribe it as a Shortest-Path Problem (SPP) in
GCS, and then use the techniques recently presented in [26] to formulate this SPP as a compact
MICP. As we will see in Section [7] the convex relaxation of this MICP is extremely tight in
practice, up to the point that a cheap rounding of its solution is almost always sufficient to design
a globally-optimal trajectory. In this section, we give a formal statement of the SPP in GCS and
we propose a simple randomized rounding for the convex relaxation of our MICP. The latter will
effectively reduce the computational cost of the MICP to that of a convex program.

2To prove , one uses the convexity of f, which gives f(y(s)) < ZZ:O Br,a(s)f(vx), and the formula
fol Br,a(s)ds =1/(d + 1) for the integration of Bernstein polynomials.



4.1 Shortest Paths in Graphs of Convex Sets

The Shortest-Path Problem (SPP) in GCS generalizes the classical SPP with nonnegative edge
lengths. We are given a directed graph G := (V,&) with vertex set V and edge set £ C V2.
Each vertex v € V is paired with a bounded convex set X, and a point x, contained in it. In
contrast to the classical SPP, where edge lengths are fixed scalars, here the length of an edge
e = (u,v) is determined by the continuous values of z,, and =z, via the expression ¢ (z,x,). The
function ¢, is assumed to be convex and to take nonnegative values. Convex constraints of the
form (xy,x,) € X are allowed to couple the endpoints of edge e := (u,v). A path p in the graph
G is defined as a sequence of distinct vertices that connects the source vertex o € V to the target
vertex 7 € V. Denoting with &, the set of edges traversed by the path p, and with P the family
of all o-7 paths in the graph G, the SPP in graphs of convex sets is stated as

minimize Z le(Ty, Ty) (5a)
e=(u,v)€&p

subject to p € P, (5b)
Ty € Xy, Yv € p, (5¢)
(Ty, Ty) € Xe, Ve := (u,v) € &. (5d)

Here the decision variables are the discrete path p and the continuous values x,,. The objective (5a)
minimizes the length of the path p, defined as the sum of the lengths of its edges. Constraint (5b)
asks p to be a valid path connecting o to 7. Importantly, the convex conditions and (5d)
constrain only the continuous variables paired with the vertices visited by the path p, and do
not apply to the remaining vertices in the graph. Unlike the classical SPP with nonnegative
edge lengths, which is easily solvable in polynomial time, the SPP in GCS can be verified to be
NP-hard [26] Theorem 1].

4.2 Rounding the Convex Relaxation of the Shortest-Path Problem

Using recently-developed techniques, problem is formulated as a compact MICP with very
tight convex relaxation |26, Equation 21]. In this paper, instead of tackling this MICP with an
exact branch-and-bound algorithm, we solve its convex relaxation and we recover an approximate
solution via a cheap randomized rounding, that is tailored to the graph structure beneath prob-
lem . Given the hardness of (5), this approach cannot be guaranteed to work for all instances.
Nevertheless, for our planning problems, this strategy turns out to be extremely effective in prac-
tice. In addition, this workflow automatically provides us with a bound on the optimality of the
approximate solution we identify. In fact, denoting with Cieax the cost of the convex relaxation,
with Copt the optimal value of , and with Clounaq the cost of the rounded solution, we have
Crelax < Copt < Cround- The optimality gap of the rounded solution dgpt := (Cround — Copt)/Copt
can be then overestimated as dyelax := (Cround — Crelax)/Crelax With no additional computation.
For the rounding step we propose a randomized strategy. The MICP from [26] parameterizes
a path p by using a binary variable . per edge e € £, with ¢, = 1 if and only if e € &,. In the
convex relaxation, the binary requirement is relaxed to ¢, € [0, 1] and the optimal value of @, is
naturally interpreted as the probability of the edge e being a part of the shortest path. To round



these probabilities we then run a randomized depth-first search with backtracking. We initialize
our candidate path as p := (0), and we denote with &, the set of edges e := (u,v) that connect
u to a vertex v that the rounding algorithm has not visited yet. At each iteration, calling u the
last vertex in the path p, we traverse the edge e := (u,v) € &, with probability ¢e/ > e @er,
and we append a new vertex v to the path p. If a dead end occurs, i.e. if o, =0 for all e € &,, we
backtrack to the last vertex in p that admits a way out. The algorithm terminates when v = 7
and the target is reached Once a path p is identified, its cost, together with the optimal values
of the continuous variables x,, is recovered by solving a small convex program:

minimize subject to and . (6)

It is easily verified that this rounding strategy always finds a valid path (provided that the convex
relaxation of the MICP is feasible). On the other hand, the cost of the path p we find can in
principle be infinite, since there might not be an assignment for the continuous variables {z }vep
that satisfies the constraints and .

To increase our chances of finding a high-quality approximate solution, we apply the ran-
domized rounding multiple times. First we run the depth-first search until NV distinct paths are
identified, or a maximum number M of trials is reached. Then we evaluate the cost of each
distinct path by solving a convex program of the form @, and we return the rounded solution
of lowest cost Cround We emphasize that this process is extremely cheap: the runtime of a
depth-first search is practically zero (since it is a purely-discrete search in the graph G), while
the convex programs @ are tiny, very sparse, and parallelizable. In this paper we set N := 10
and M := 100. These values lead to rounding times that are negligible with respect to the solu-
tion time of the convex relaxation and, in our experiments, they are typically sufficient to solve
the planning problem to global optimality.

Many more details on the MICP formulation of and its convex relaxation can be found
in [26]. For the scope of this paper, we will treat the framework from [26] as a modeling language
that allows us to formulate, and efficiently solve, an SPP in GCS just by providing the graph G,
the edge lengths /., and the sets X, and X..

5 Collision-Free Motion Planning using Graphs of Convex Sets

We now illustrate how problem can be transcribed as an SPP in GCS. As seen in the previous
section, to formulate an SPP in GCS we need to: define a graph G := (V,€), assign a set X,
to each vertex v € V, and pair each edge e € £ with a constraint set X, and a length function
L.. Below we describe how each of these components is constructed. At a high level, the plan is
to pair each safe region Q; with two Bézier curves: a trajectory segment r;, and a time-scaling

3Making this rounding strategy deterministic by, e.g., selecting at each iteration the edge e € &, with larger
probability . is, in general, a bad idea. To see this, imagine a graph where multiple paths represent the same
underlying decision (e.g. multiple symmetrical solutions). Since the convex relaxation will equally split the proba-
bility of this decision being optimal between the edges of these many paths, a greedy deterministic search might end
up selecting an alternative path, corresponding to a decision that is overall less likely to be optimal. Conversely,
in the same scenario, a randomized rounding correctly weights the two decisions (in expectation).

4This sequence of convex optimizations is stopped early if the cost of a path coincides with the cost of the
convex relaxation Crelax, since this proves the global optimality of the path at hand.



(a) (b) (c) (d)

Figure 1: Formulation of the collision-free motion-planning problem as an SPP in GCS. The red
region is the obstacle to be avoided, the light-blue regions Q; partition the free space. (a) The
collision-free regions Q;, the starting point ¢g, and the ending point gp. (b) The graph G obtained
by connecting intersecting regions, with the source vertex ¢ and the target vertex 7 added to
enforce the initial and terminal conditions, respectively. (c) The Bézier curves 7' associated
with each region (curves in blue, control points r;; in orange). (d) A continuous collision-free
trajectory r corresponding to the path p := (o,1,3,5, 7).

function h; that dictates the speed at which the curve r; is traveled. The functions r and A in
problem will be then reconstructed by sequencing the Bézier curves r; and h; paired with
the regions Q; that are selected by the SPP. Figureprovides a visual support to the upcoming
discussion.

5.1 The Graph G

We let the vertex set V contain a vertex i per safe set Q; in the decomposition of the configuration
spaceﬂ In addition, we introduce a source vertex o and a target vertex 7: these will be used to
enforce the boundary conditions f. Overall, we then have V :=Z U {0, 7}.

We include in the edge set £ all the edges (4, ) such that the intersection of Q; and Q; is
nonempty. Note that, by the symmetry of this condition, (7,j) € £ implies (j,7) € £. Similarly,
we let (0,i) € € and (i,7) € £ if the set Q; contains the points ¢y and gr, respectively. In
symbols,

E={(i,j): N Q; #0}U{(0,4) : qo € L} U{(i,7) 1 qr € Qi}-

Figure shows the graph corresponding to the collision-free regions Q;, the staring point qo,
and the ending point g7 depicted in Figure

5.2 The Convex Sets X,

The source o and the target 7 are auxiliary vertices used to enforce the boundary conditions (3e|)—
; they require no decision variables and can be safely paired with the empty set X, := X, := 0.

5As we will see in Section the safe set Q,; does not coincide with the convex set X; paired with vertex i in
the SPP.



To each of the vertices i € Z, we assign two Bézier curves: r; : [0,1] — Q; (depicted in
Figure and h; : [0,1] — [0, Tmax]. Both these curves have a user-defined degree d > n + 1,
where 7 is the required degree of differentiability of the overall trajectory qﬁ The convex set X;
contains the control points of the two curves, i.e. ; := (ri0,...,7id, Ri0,---,Rid), and is defined
by the following conditions:

rik € Qi, kE=0,...,d, (7a)
Rik > huin, k=0,...,d—1, (7b)
Fik € hixD, k=0,...,d—1, (7¢)
hio >0, h;q < Thax, (7d)

The convex constraint requires all the control points of r; to lie in the collision-free set Q;.
By the convex-hull property of the Bézier curves from Section |3} this implies that the whole
trajectory segment r; is contained in Q;. Again by the properties of Bézier curves, the derivative
h; of the time scaling h; is itself a Bézier curve. Condition (7b]) lower bounds each control point
of this derivative with a small positive constant omin which, unless differently specified, is set to
1076, By the convex-hull property, this implies that h;(s) is positive for all s € [0, 1], and hence
that h; is strictly increasing. Since the control points of h; are linear functions of the ones of
h;, constraint is linear in x;. Using the definition of convexity and the positivity of hzk,
condition can be verified to be convex in 7; ; and h,k this ensures that 7;(s) € hi(s)D for
all s € [0,1], since the (n + 1)-dimensional Bézier curve (i, ;) is a convex combination of the
control points (7; i, h,k) Finally, the constraints in are conservative bounds that ensure the
boundedness of X, as assumed in Section [4.1

We remark that asking the control points of a Bézier curve to be in a convex set is only a
sufficient condition for the containment of the whole curve. Nonetheless, the conservativeness of
the conditions in can be attenuated by increasing the degree of the curves r; and h;.

5.3 The Convex Sets X,

The first role of the edge constraints is to impose the boundary conditions f. To this
end, for all edges e := (0,i) € £, we define X, through the conditions r; 9 = qo, 7,0 = hioqo, and
hio = 0. Given the endpoint property of Bézier curves, these linear constraints on the vector
z; imply r;(0) = qo, 7:(0) = hi(0)do, and hy(0) = 0. Similarly, for all the edges e := (i,7), we
define X via ;4 = qr, Tia-1 = had_qu, and h; g € [Timin, Tmax). For these edges, we then have
’l“i(l) =dqr, 7'“7;(1) = h,;(l)qT, and hz(l) S [TminaTmaX]-

The second role of the edge constraints is to enforce the differentiability of the overall curves
r and h. For all the edges e := (i,j) € £ NZ?, we then define X, through the following linear
equalities:

rl(vld*l - 743({()) and hg,le = hg‘%, I=0,...,m. (8)

5The assumption that the curves r and h have the same degree is without loss of generality. The degree elevation
property of Bézier curves allows us to describe a Bézier curve «y of degree d as a Bézier curve ' of arbitrary degree
d’ > d, with control points that are linear functions of the control points of . Any convex cost or constraint on
the control points of r and h, that takes advantage of the equal degree of these curves, can then be mapped to an
equivalent convex cost or constraint on the control points of curves r and h of different degree.



Here rl(l,z, denotes the kth control point of the Ith derivative of r;. In particular, 7"523 = Tik,

1 . .
7“1( k) = 7k, and so on. The same notation is used for h;.

5.4 The Edge Lengths /.

The edge lengths /. must reproduce the cost in by appropriately weighting the cost of each
transition in the graph G. This is achieved by assigning to each edge (o, ) outgoing the source a
length of zero, and to each edge (i,7) or (i,7) the length

a(hi(1) — hi(0)) + bL(rs, 1) + cE <7'“i/ hi, 1) : (9)

While the first term in this sum is immediately restated as the linear cost a(h; 4 — hi), the other
two terms require more work to be expressed as convex functions of x; that are amenable to
efficient numerical optimization.

One option is to approximate to arbitrary precision the last two terms in @ using numerical
integration. Since both L and E can be verified to be convex in the functions r; and h;, the
resulting expression would be convex in x;, but its numerical implementation would require a
large number of second-order-cone constraints, proportional to the density of the integration
grid. Instead, we prefer to minimize the following upper bounds of the last two terms in @:

d—1 d—1 2
: ; Tik+1 — Tik
L(ri;1) <Y |rigsr — rigll and E (ri/ hi, 1) <> Iriees = iz (10)
k=0 = ikt —hik
The first inequality overestimates the length of r; by summing the distances between its control
points. The validity of this bound can be verified by applying inequality to the Bézier curve
7; and the convex function [|7;[|2. The second inequality does a similar operation with the energy
E, and can be checked by applying to the Bézier curve (7, h;) and the function ||74|3/h;,
which is convex for h; > 0.

5.5 Reconstruction of a Collision-Free Trajectory

Once the SPP is solved, the optimal path p determines the sequence of safe regions Q; that
the robot must traverse. To reconstruct the trajectory r and the time scaling h, we sequence the
Bézier curves r; and h; associated with these regions, as shown in Figure for 1 := 0. Precisely,
if the optimal path is p := (o, 40, ...,i5-1,7), for v =0,...,5 — 1, we define

r(s):=r;,(s—v) and h(s):=h;,(s—r), Vs € [v,v +1].

Let us verify that the functions r and h just defined form an optimal solution of problem ,
up to the conservativeness of the constraints and the cost bounds . The constraints
in imply r,h € C". This, in turn, gives h™ € C" and . That the collision-avoidance
constraint is met, is implied by . The velocity constraint in is verified thanks to ,
while ensures that the function h is monotonically increasing, as required by the second
condition in . The boundary conditions 1D1i are verified because of the constraints on
the edges (o,4) and (i,7) described in Section Finally, summing the edge lengths @ for all
the edges traversed by the path p we get back




5.6 Class of Optimization Problems

Let us conclude this section by highlighting that, by feeding the SPP in GCS we just constructed
to the machinery from [26], we obtain very tractable optimization problems. The framework
in [26] relies on perspective functions [13| Section IV.2.2] to handle the interplay between the
discrete and continuous components of problem . These are used to effectively “turn oft” the
edge costs £, and the convex constraints (x,,x,) € X, and x, € X, corresponding to the edges e
and the vertices v that do not lie along the path p, as required in problem . In case of polytopic
safe sets Q; and a purely-minimum-time objective (a := 1 and b := ¢ := 0), it can be verified that
the perspective operations lead to a mixed-integer Linear Program (LP), which, as discussed in
Section we tackle as a simple LP followed by a rounding stage. More generally, when the
safe sets Q; are quadratics or the cost weights b and ¢ are nonzero, we obtain a mixed-integer
SOCP, which we solve as a single SOCP plus rounding. In both cases, we then have simple
convex optimizations for which very efficient solvers are available (e.g. MOSEK and Gurobi).
Conversely, in order to design trajectories that are differentiable more than three times, existing
MICP planners formulate prohibitive mixed-integer semidefinite programs that cannot be tackled
with common solvers [6].

6 Penalties on the Higher-Order Derivatives of the Trajectory

In many practical applications, we find the need to expand our problem formulation to
include convex penalties on the second and higher time derivatives of the trajectory ¢q. These can
be used, for example, to indirectly limit the control efforts: for a robot manipulator, in fact, the
joint torques needed to execute a trajectory g are proportional to the acceleration § via the inertia
matrix; while for a quadrotor the differential-flatness property makes the thrusts a function of
the snap ¢¥ |27|. Unfortunately, even though convex in ¢, these costs become nonconvex when
in problem we optimize jointly over the shape r and the time scaling h of our trajectories.
While we are currently working on the design of tight convex approximations of these costs, in
this section we show how simple regularization terms can be added to our SPP in GCS to prevent
the higher-order derivatives of ¢ from growing excessively in magnitude.

For simplicity, let us first consider the regularization of the second derivative. Using the chain
rule, we express the acceleration ¢ in terms of the derivatives of r and h:

where ¢(t) = 7(s)/h(s) and s = h~1(t). Using this expression, we see that a convex function of §
does not, in general, translate into a convex function of » and h, and hence it cannot be directly
minimized in our programs. However, provided that we choose a bounded set D to constrain the
velocity ¢, the magnitude of ¢ can be kept under control by increasing the minimum value Bmin Of
h( ) and by penalizing the magnitudes of #* and h. Letting ¢ be a small positive scalar, a simple
way to achieve the latter is the cost term

e(E(#,S) + E(h, ), (11)
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which can be enforced using the ideas from Section

The regularization of the higher-order derivatives of ¢ follows the same logic. Specifically, using
Faa di Bruno’s formula for differentiating composite functions, we see that the magnitude of )
can be regularized by increasing hmin and by penalizing the magnitudes of () and hV, for [ =
2,...,m. The numerical results in the next section show that, even though these regularization
terms are not as tight as the velocity bounds in , they can sensibly smooth the trajectories
we design, while only minimally affecting their cost.

7 Numerical Results

We demonstrate the effectiveness of GCS on a variety of numerical examples. In Section
we analyze a simple two-dimensional problem, and we illustrate how the different components
of problem affect the shape of the trajectories we design. In Section we increase the
environment complexity and we apply our algorithm to design paths across an intricate maze.
In Section we run a statistical analysis of the performance of GCS on the task of planning
the flight of a quadrotor through randomly-generated buildings. In Section we show that,
with respect to widely-used sampling-based algorithms, our algorithm is capable of designing
higher-quality trajectories in less runtime. Finally, in Section we demonstrate the scalability
of GCS with a bimanual manipulation problem in a fourteen-dimensional configuration space.

The code necessary to reproduce all the results presented in this section can be found at https:
//github.com/mpetersen94/gcs. It uses an implementation of the SPP in GCS provided by
Drake [36]. In addition to the techniques presented in [26], the convex optimizations we solve
in this paper feature additional tightening constraints, tailored to the structure of the graphs in
our planning problems, and a pre-processing step that eliminates the redundancies in our graphs.
These are described in detail in Appendix @ The optimization solver used for the numerical
experiments is MOSEK 9.2. All experiments are run on a desktop computer with an Intel Core
i7-6950X processor and 64 GB of memory.

7.1 Two-Dimensional Example

The goal of our first numerical example is to illustrate how the different parameters in problem
affect the shape of the trajectories we design. To this end, we consider the simple two-dimensional
environment depicted in Figure The initial gp := (0.2,0.2) and final g7 := (4.8, 4.8) configura-
tions are marked with a black cross; the obstacles are the red polygons. The convex decomposition
{Q;}iez of the free space Q is depicted in light blue in Figure

The first planning problem we analyze asks to minimize the total Euclidean length of the
trajectory. The weights in the objective are then a := c:=0 and b := 1. The trajectory q is
only required to be continuous (7 := 0), while velocity and time constraints are irrelevant for a
minimum-length problem. We let the degree of the Bézier curves r and h be d :=1 (i.e. straight
lines). Solving the convex relaxation of the SPP in GCS we obtain the cost Chelax = 10.77, while
the rounding step from Section gives us the feasible trajectory depicted in Figurewith cost
Cround = 10.96. By comparing these two numbers, GCS automatically provides the optimality
bound dyelax = (Cround — Crelax)/Crelax = 1.7% for the rounded solution. However, by actually
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Figure 2: Two-dimensional trajectory-design problem from Section (a) Environment with
obstacles in red; the initial ¢p and final g7 configurations are marked with crosses. (b) Free space
decomposed in convex safe regions Q; (in light blue).

running a slightly more expensive mixed-integer solver, it is possible to verify that the rounded
solution is indeed the global minimizer: Ciound = Copt and dopt = (Cround — Copt)/Copt = 0%.

For the second scenario, we consider a minimum-time problem with velocity limits. The
weights in problem are set to @ := 1 and b := ¢ := 0. We look for a continuous trajectory
(n := 0), whose velocity ¢ is contained in the box D := [~1,1]? for all times ¢. The bounds
on the trajectory duration are set to Ty ~ 0 and Ti,ax > 0, so that they do not affect the
optimization problem. For this problem we let the optimizer decide the initial ¢(0) and final ¢(7')
velocities by dropping the boundary conditions . Once again, we use Bézier curves of degree
d := 1. The trajectory generated by GCS is illustrated in Figure The convex relaxation has
cost Clelax = 9.88, while the rounded trajectory has duration Cioung = 10.60 and, therefore, it is
certified to be within dyeax = 7.3% of the global minimum. As before, a mixed-integer solver can
be used to verify that the trajectory generated by GCS is actually globally optimal (dopt = 0%).

In juxtaposition to the minimum-length case, the minimum-time trajectory in Figure
passes below the central obstacle. This is because, although shorter, the trajectory in Figure [3a]
is everywhere almost horizontal or vertical, and in these directions the speed is limited by the
constraint set D to [|¢|2 < 1. The route below the obstacle is slightly longer, but it allows
diagonal motion with speed ||¢||2 < v2. In Figure we report the velocity ¢ corresponding to
the minimum-time trajectory: as expected, the optimal velocity is discontinuous and, at all times
t, either the horizontal or the vertical component of ¢ reaches the upper bound of 1.

Finally, we show the effects of the regularization strategy discussed in Section[6]on the smooth-
ness of the minimum-time trajectory. We require the curve g to be twice continuously differen-
tiable (1 := 2). The initial and final velocities are forced to be zero, ¢o := ¢r := 0, and we set the
degree of the Bézier curves to d := 6. We increase hmin from its default value of 107 to 10!, and
we add the penalty with weight e = 10~!. The resulting trajectory is reported in Figures
and[4b] As can be seen, the regularization smooths the optimal trajectory significantly and even
changes its homotopy class. The costs of the convex relaxation and the rounded solution increase
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Figure 3: Trajectories (blue) designed by GCS for the planning problems in Section
(a) Minimum-length objective. (b) Minimum-time objective with velocity limits ¢ € [—1,1]°.
(c) Minimum-time objective with velocity limits, differentiability constraint ¢ € C2, and regular-
ized acceleration. GCS finds the globally-optimal trajectory (dopt = 0%) for each of these tasks
by rounding the solution of a single convex program. With no additional computation, it also
certifies the following optimality gaps d,elax for the rounded solutions: 1.7% for (a), 7.3% for (b),

and 3.0% for (c).
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Figure 4: (a) Velocity profile for the minimum-time trajectory depicted in Figure with dotted
lines representing discontinuities. (b) Velocity profile for the smoothed trajectory in Figure
The horizontal component of ¢ is blue, the vertical is orange. In both the problems, the velocity

components are constrained to lie in the interval [—1, 1].

to Chelax = 27.29 and Cioung = 28.10, respectively. The optimality gap certified by GCS is hence
Orelax = 3.0%, but, once again, a mixed-integer solver can be used to verify that the rounded
solution is actually globally optimal (dopt = 0%). The duration of the smoothed trajectory is

T =13.65.

14



e T
-
.

(a) (b)

Figure 5: Solutions of the motion-planning problems through a maze from Section
(a) Minimum-length trajectory connecting the start (bottom-left cross) and the goal (top-right
cross). (b) Solution of the minimum-time problem with velocity constraint ¢ € [—1,1]? and
regularized acceleration. The solutions of these two problems bifurcate at the red circle, and
take different paths across the maze. For both problems, GCS identifies the globally-optimal
trajectory via a single SOCP.

7.2 Motion Planning in a Maze

In this example we consider a two-dimensional planning problem of higher complexity than the
one just analyzed: we design trajectories through the maze depicted in Figure [5} The maze has
50 - 50 = 2,500 cells. The starting cell is the one at the bottom left, the goal cell is in the top
right. The graph of convex sets is constructed by making each cell into a safe set Q;. Bidirectional
edges are drawn between cells that are not separated by a wall. The maze is generated using
random depth-first search. Since mazes constructed using this algorithm have all cells connected
to the starting cell by a unique path, to make the planning problem more challenging, we create
multiple paths to the goal by randomly selecting and removing 100 walls from the maze.

As in the previous example, we consider a minimum-length problem and a minimum-time
problem with regularized acceleration. We set the parameters (a, b, ¢, 1, D, Tinin, Tmax; 4o, 47, d) to
the same values we adopted in the corresponding problems in Section The optimal trajectories
across the maze corresponding to the two objective functions are reported in Figuresand As
it can be seen, the two curves visit different sequences of safe sets (cells). In particular, the sharp
turn taken by the minimum-length trajectory, circled in red in Figure would be expensive
for the second problem, where we have a penalty on the magnitude of the acceleration. For the
curve in Figure GCS decides then to take a longer but smoother route to the goal. For both
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the problems under analysis, the convex relaxation returns a solution with binary probabilities
©ve. Rounding is then unnecessary in this case, and the solution of the convex relaxation is
automatically certified to be globally optimal (dyelax = dopt = 0%).

We find this example powerful because it highlights the transparency with which GCS blends
discrete and continuous optimization. Finding a discrete sequence of cells to traverse the maze
in Figure [5|is a trivial graph search. Also finding a path of minimum length, as in Figure
is a relatively simple problem: in fact, in two dimensions, the Euclidean SPP is solvable in
polynomial time by constructing a discrete visibility graph [24]. On the other hand, designing
a trajectory like the minimum-time one in Figure [5b|is a substantially more involved operation.
GCS gives us a unified mathematical framework that can tackle all these problems very efficiently,
while embracing both the higher-level combinatorial structure and the lower-level convexity of
our planning problems.

In conclusion of this example let us illustrate another axis in which GCS significantly im-
proves on existing MICP planners. The worst-case runtime of a mixed-integer solver is typically
exponential in the number of binaries in the optimization problem. Previous MICP planners
parameterize a single trajectory and subdivide it in a fixed number of segments, then they use
a binary variable to assign each segment to each safe region Q; [6]. Given that, in the worst
case, the optimal trajectory might visit all the safe regions Q;, this approach requires a total of
|Z|? binary variables. For the maze in Figure |5, we would then have |Z|> = 2,500% = 6.25 - 105
binaries: a quantity well beyond the capability of today’s solvers. On the contrary, GCS uses
only two binaries per pair of intersecting regions, and it yields an MICP with only 5198 ~ 2|Z|
binaries, which is solved exactly through a single SOCP.

7.3 Statistical Analysis: Quadrotor Flying through Buildings

In this section we present a statistical analysis of the performance of GCS. Taking inspiration
from [6], we test our algorithm on the task of planning the motion of a quadrotor through
randomly-generated buildings. An example of such a task is illustrated in Figure[6} while moving
from the brown to the green block, the quadrotor needs to fly around trees, and through doors
and windows. A brief description of how the buildings are generated can be found in Appendix[B]

Even though the configuration space of a quadrotor is six dimensional, the differential-flatness
property of this system allows us to plan dynamically-feasible trajectories directly in the three-
dimensional Cartesian space. In fact, given a four-times-differentiable trajectory of the position of
the center of mass, the time evolution of the quadrotor’s orientation, together with the necessary
control signals, is uniquely defined and easily computed [27]. The space in which we design
trajectories is then @ C R? and, given that all the obstacles have polyhedral shape (as in Figure@),
the decomposition of this space into convex sets Q; can be done exactly. Appendix |B| provides
more details on this decomposition.

In the formulation of the planning problem , we penalize with equal weight the duration
and the length of the trajectory (a := b:=1 and ¢ := 0). We parameterize the trajectories using
Bézier curves of degree d := 7 and, to take advantage of the differential flatness, we require these
curves to be continuously differentiable n := 4 times. The velocity is constrained to be in the
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Figure 6: One of the randomly-generated environments for the statistical analysis in Section
The trajectory generated by GCS for the center of mass of the quadrotor is depicted in blue.
The robot orientation is reconstructed taking advantage of the differential flatness of the system
dynamics. The snapshots show the starting and ending configurations, as well as the quadrotor
flying close to the obstacles in the environment.

box D := [-10, 10]3 for all times The limits Tiin and Tax on the duration of the trajectory
have values that do not affect the optimal solution. As said, the initial gy and final g7 positions
are above the brown and green boxes, respectively. The boundary values of the velocity are zero
Ggo = gr = 0, as well as the boundary values of the second and the third derivatives of the
trajectoryEl Because of the differential flatness, the latter ensure that the quadrotor starts and
ends the motion with horizontal orientation and zero angular velocity. Finally, to regularize the
acceleration of the quadrotor, as discussed in Section @ we set iy = 1073,

We plan the motion of the quadrotor through 100 random buildings. To assess the quality
of the trajectories generated by GCS, we look at the optimality gaps dopt and drelax. As in

"To contextualize the velocity limits, consider that the random environments are squares with sides of length
25, and the collision geometry of the quadrotor is a sphere of radius 0.2 (see also Appendix.

8For I =2, ..., L, the derivative constraints q(l)(O) = q(l)(T) = 0 in problem map to the conditions r(l)(O) =
RY(0)go and Y (S) = Y (S)¢r in problem . The latter are linear in the decision variables of our SPP in GCS,
and can be easily incorporated among the edge constraints listed in Section
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Figure 7: Histograms of the optimality gaps registered in the statistical analysis in Section
(a) Optimality gap dopt: percentage gap between the cost of the solution returned by GCS and
the global optimum. On 95% of the environments GCS designs a trajectory with optimality gap
smaller than 1%, and, even in the worst case, it finds a solution whose cost is only 2.9% larger
than the global minimum. (b) Optimality gap drelax > dopt automatically certified by GCS. On
68% (respectively 84%) of the problems GCS certifies that the returned solution has optimality
gap smaller than 4% (respectively 7%).

the previous examples, the value of dopy is computed (just for analysis purposes) by solving
the planning problem to global optimality using a mixed-integer algorithm, while &,y is the
upper bound on d,pt that is automatically provided to us by GCS. The histograms of these two
quantities across the 100 experiments are reported in Figure Figure shows that on 95% of
the environments GCS designs a trajectory whose optimality gap dopt is smaller than 1%, and,
even in the worst case, is only 2.9%. From Figure we see that on 68% (respectively 84%)
of the problems GCS certifies that the returned solution is within 4% (respectively 7%) of the
global optimum. The largest optimality gap d,e1ax certified by GCS is 27.1%, and it corresponds
to an environment where we have dopy = 2.3%. Therefore, even for this problem instance, the
moderately-large value of §,e1ax is mostly due to the convex relaxation being slightly loose, rather
than the rounded solution being suboptimal.

We report that, for the statistical analysis in this subsection, we set the MOSEK parameter
MSK_IPAR_INTPNT_SOLVE_FORM = 1, which tells the interior-point solver to interpret our optimiza-
tions in standard primal form [23]. Without this, MOSEK encountered numerical issues in the
solution of the convex relaxations of the motion-planning problems. This parameter choice has
the drawback of sensibly slowing down the planning times: the solve times for the convex relax-
ations of the 100 motion plans have median 3.7 s, mean 6.4 s, and maximum 31.2 s. However, we
are very confident that a deeper analysis of these numerical issues and a tailored pre-solve stage,
can reduce these times by at least one order of magnitude.
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Figure 8: Construction of the GCS for the motion planning of the robot arm in Section
(a) Five seed poses {gx}?_, for the region-inflating algorithm from [5]. These are chosen to fill
the space within the rack and the bins. (b) The remaining three seed poses {gj}}_q, chosen to
approximately fill the free configuration space. (c) The graph G obtained by processing the safe
regions Q;. The light-blue vertices correspond to the seed poses in (a), the light-brown ones to
the additional seeds from (b). Vertices are labeled with the subscripts of the corresponding poses.

7.4 Comparison with PRM: Motion Planning of a Robot Arm

In this subsection we consider the motion planning of a robot arm, and we compare GCS with
commonly-used sampling-based planners. GCS is a multiple-query algorithm, meaning that the
same data structure (the graph of convex sets) can be used to plan the motion of the robot for
many initial and final conditions. Its natural sampling-based comparison is then the Probabilistic-
RoadMap (PRM) algorithm [18]. The robot arm we use in this benchmark is the KUKA LBR
iiwa with n = 7 degrees of freedom: we have chosen a seven-dimensional configuration space Q
since PRM methods can struggle in larger spaces, and both algorithms under analysis can easily
design trajectories in lower dimensions.

The robot arm is depicted in Figure 8| and it is required to move within an environment com-
posed of a rack (in front of the robot) and two bins (on the sides). As opposed to the examples con-
sidered so far, an exact decomposition of the free configuration space @ is not feasible in this appli-
cation. We then adopt the approximate decomposition algorithm, IRIS, from [5]; more precisely,
its extension to configuration spaces with nonconvex obstacles, IrisInConfigurationSpace, im-
plemented in Drake [36]. Given a “seed pose” of the robot, this algorithm inflates a polytope of
robot configurations that are not in collision with the environment. While these polytopes could
be rigorously certified to be collision free [1], for the experiments reported here we use a fast
implementation based on nonconvex optimization that does not provide a rigorous certification,
but that appears to be very reliable in practice.

Automatic seeding of the regions is certainly possible, but we have found that producing seeds
manually via inverse kinematics, together with a simple visualization of the graph G to check
the connectivity between regions Q;, is straightforward and highly effective. We use IRIS to
construct a total of eight safe polytopes Q;, whose corresponding seed poses ¢; are depicted in
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Figures 8] The seed poses {qi}?zl in Figures are chosen to create polytopes O, that cover the
volume of configuration space for which the end effector is in the vicinity of the rack and the bins.
The poses {qi}§:6 in Figures are picked to approximately fill the rest of the free space. The
construction of the safe regions is parallelized, and took us 53 seconds. By processing the safe
regions Q; as described in Section we obtain the graph G depicted in Figure The vertices
Z = {1,...,8} are the subscripts of the poses that we use as seeds for the construction of each
polytope, i.e., vertex i € T is paired with the safe polytope Q; obtained from the seed g;. As can
be seen from the connectivity of the graph, the polytopes O, are sufficiently inflated to connect
all the seed poses ¢;. At runtime, given the initial ¢ and final g7 configuration, the source o
and the target 7 vertices are added to the graph and connected to other vertices as described in
Section [5.1]

In practice, the plans generated by a PRM can be very suboptimal and are rarely commanded
to the robot directly. While asymptotically-optimal versions of the PRM method exist [17], in our
experience, in the relatively high-dimensional space we consider here, the increase in performance
of these variants is not worth their computational cost. A solution commonly used in practice
is then to post-process the plans generated by the PRM with a simple short-cutting algorithm.
This algorithm samples pairs of points along the PRM trajectory and connects them via straight
segments: if a segment is verified to be collision free the trajectory is successfully shortened.
This step can dramatically shorten the PRM trajectories but it requires time-consuming collision
checks: for this reason, here we compare GCS with both the regular PRM and the PRM with
short-cutting. For both the PRM methods we use the implementation from [31]. More implemen-
tation details can be found in Appendix[C} here we only mention that our roadmap is composed
of 15 - 103 sample configurations and its construction took, with our (not fully optimized) setup,
16 minutes.

The tasks require moving the arm between five waypoint configurations p; € Q, while avoiding
collisions with the rack and the bins. Each waypoint p; is obtained from ¢; by perturbing the
position of the robot end-effector as shown in Figure @ We have a total of five tasks: for
1 =1,...,4, task i asks us to move the robot from p; to p;11; task 5 requires moving the robot
from ps back to p;. The objective is to connect the start and the goal configurations with a
continuous (7 := 0) trajectory of minimum Euclidean length (a := ¢ := 0 and b := 1). Velocity
and time constraints are irrelevant given our objective.

As a visual support to the analysis, Figure |§| illustrates the trajectories of the robot end-
effector generated by each planner for each task. The blue curves correspond to GCS, the yellow
to the regular PRM, and the red to the PRM with short-cutting. Let us emphasize, though, that
shorter trajectories in configuration space do not necessarily map to shorter trajectories in task
space. The actual configuration-space lengths of these trajectories are reported in Figure [10a)
with the same color scheme. The runtimes required by each planner can be found in Figure
In all the tasks, GCS designs trajectories that are shorter than both PRM methods. Moreover, the
runtimes of GCS are even smaller than the ones of the regular PRM. The PRM with short-cutting
designs higher-quality trajectories than the regular PRM, but its runtimes are significantly larger.
The pre-processing described in Appendix is the reason why our method is extremely fast in

9The runtimes of GCS are computed by summing the times necessary for the pre-processing described in
Appendix the solution of the convex relaxation of the SPP in GCS, and the rounding step from Section
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Figure 9: The five motion-planning tasks for the comparison in Section End-effector trajec-
tories are depicted in blue for GCS, in yellow for the regular PRM, and in red for the PRM with
short-cutting. (a) Task 1: from end-effector above the rack (configuration p;) to end-effector in
the upper shelf (configuration ps). (b) Task 2: from upper shelf ps to lower shelf ps. (c) Task 3:
from lower shelf p3 to left bin ps. (d) Task 4: from left bin py to right bin ps. (e) Task 5: from
right bin ps to above the rack p;.

solving task 2: in the graph G in Figurethere is only one path that connects vertex 2 to vertex
3, and our pre-processing efficiently eliminates all the edges in the graph but (2,6) and (6, 3).

In conclusion, let us mention that in all the tasks the solution we identify via rounding is the
global optimum of the SPP in GCS (dopt = 0%). The certified optimality gap drelax is 4.1% on
average, and achieves a maximum of 13.0% in the first task.

7.5 Coordinated Planning of Two Robot Arms

In the previous subsection we have compared GCS to widely-used PRM methods, choosing a
robotic arm with n = 7 degrees of freedom because sampling-based algorithms perform poorly
in higher dimensions. Here we demonstrate that GCS can tackle planning problems in much
higher-dimensional spaces. To this end, we consider the dual-arm manipulator shown in Fig-
ure|11} composed of two KUKA LBR iiwa with seven degrees of freedom each, yielding an overall
configuration space @ of n = 14 dimensions. The environment is the same as in the previous
subsection, but this time, besides the collisions with the rack and the bins, GCS must also prevent
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Figure 10: Comparison of GCS with the PRM method and its version with short-cutting.
(a) Length of the trajectories planned by each algorithm for the five tasks depicted in Fig-
ure@ (b) Corresponding runtimes. GCS designs shorter trajectories than the PRM method with
short-cutting, and is faster than the regular PRM.

collisions between the arms themselves.

To decompose the configuration space we proceed as in Section This time we use a total
of 22 seed poses, chosen to approximately cover the workspace around the rack and the bins, as
well as the rest of the free space. Also in this case the seeds are produced manually, using inverse
kinematics and with the visual support provided by the connectivity of the graph G. We analyze
three tasks. In the first task, illustrated in Figure the arms start in a neutral position and
both reach into the top shelf. Task 2, in Figure|11b] asks the arms to cross: the left arm reaches
above the rack on the right, and the right arm moves to the left of the bottom shelf. Finally,
in Figure task 3 requires the two arms to reach inside the bins. To make the problem even
more challenging, this time we do not limit ourselves to the design of purely-geometric shortest
curves as in Section but we plan continuously differentiable (7 := 1) trajectories of degree
d := 3. The weights in the objective (lal) are set to a := b :=1 and ¢ := 0. The constraint set
D in ensures that the joint velocities are no greater than 60% of the robot velocity limits.
The duration bounds Ty, and Tiax are set so that they do not affect the optimal trajectory,
while the boundary values of the velocity are zero (go := ¢r := 0). As described in Section@ we
penalize accelerations via a cost term of the form , with weight ¢ = 1073. With the same
goal, we set hmin =103,

The trajectories synthesized by GCS for each of the three tasks are represented in Figure|11]
with the curves swept by the end-effectors depicted in blue. The optimality gaps d,e1ax certified by
GCS for the three tasks are 3.3%, 2.0%, and 0.6%. Running a mixed-integer solver, we verify that
the first two trajectories are, in fact, globally optimal, while the last trajectory has an optimality
gap of only dopt = 0.3%. As in Section to circumvent numerical issues, we set the MOSEK
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Figure 11: Manipulation tasks from Section End-effector trajectories are in blue. (a) Task 1:
arms from neutral pose to top shelf. (b) Task 2: from top shelf to configuration with crossed arms.
(c) Task 3: from crossed arms to lateral bins. Despite the fourteen-dimensional configuration
space, the potential collisions between the arms, and the confined environment, GCS can reliably
solve the three tasks in a few seconds via convex optimization.

option MSK_IPAR_INTPNT_SOLVE_FORM = 1 in the solution of the convex relaxations. This leads
to the following computation times for the three tasks at hand: 4.0 s, 8.4 s, and 12.9 s. As
already mentioned, we are confident that a tailored pre-solve stage can drastically decrease these
runtimes.

8 Discussion

On the one hand, transcribing the motion-planning problem as an SPP in GCS allows us to
use efficient convex optimization to design trajectories around obstacles. On the other hand,
our convexity requirements restrict the class of planning problems we can tackle, and limit the
families of trajectories we can parameterize. In this section we comment on the strengths and
the limitations of our approach, and we illustrate the pros and the cons of GCS over existing
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planning algorithms.

8.1 Additional Costs and Constraints

Besides the derivative penalties discussed in Section @ there are many additional costs and
constraints that our problem statement does not feature but that are relevant in a variety
of practical applications. Minimum-distance and minimum-time objectives might lead to unsafe
robot trajectories, that do not avoid obstacles with sufficient clearance. A practical workaround
in these cases is to discourage the control points of our trajectories to get too close to certain
boundaries of the safe regions Q;. This can be achieved through convex barrier penalties, that
are easily included among the edge costs in Section Equality constraints that couple the
trajectory ¢ to its time derivatives could be used to enforce continuous-time dynamics. However,
our choice of optimizing over the shape r and the timing h of the trajectory jointly makes
these constraints nonconvex, even for a linear control system. Similarly, the nonlinearity of the
kinematics of a robot manipulator makes task-space constraints not directly suitable for our
framework. To cope with these nonconvexities, in some applications, it may be practical to
post-process the output of GCS with a local nonconvex optimizer.

8.2 Comparison with Existing Mixed-Integer Planners

GCS has three main advantages over existing MICP algorithms for solving problems of the
form :

1. The tightness of the convex relaxation of our MICPs, demonstrated empirically in the
numerical results in Section [7}

2. The reduced number of binary decision variables in our programs, illustrated in the maze
example from Section

3. The simplicity of the class of optimization problems that our method leads to, discussed in
Section[5.6]

The first and the second are achieved by leveraging the optimization framework from [26]. The
third is partly due to the first (since it is the tightness our MICP formulations that allows us to
tackle the motion planning problem as a single convex program, plus rounding), but it is also due
to the parameterization of trajectories as Bézier curves.

In Section we have leveraged the properties of Bézier curves to enforce infinite families
of constraints through a finite number of conditions. For example, in , we have transcribed
the safety requirement r;(s) € Q; for all s € [0,1] as a constraint r;;, € Q; per control point
kE =0,...,d. The MICP planner from [6] achieves the same result by using Sums-Of-Squares
(SOS) polynomials [30], and semidefinite programming. These approaches are interchangeable
and lead to a tradeoff: Bézier curves yield simpler constraints, SOS polynomials parameterize a
richer class of trajectories In the numerical examples analyzed in this paper, we have found
this gap to be relatively narrow, and we have then prioritized simpler optimization problems.

10 Asking a univariate polynomial to be nonnegative by parameterizing it as a Bézier curve with nonnegative
control points is more stringent than asking it to be SOS (which, in the univariate case, is equivalent to nonnega-
tivity).
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Finally, it is worth mentioning that the problem formulation from [6] features costs and
constraints on time derivatives of the trajectory g of any order. These, however, are handled by
fixing the duration of each trajectory segment beforehand. A similar result could be achieved
with GCS by fixing the time that can be spent in each safe set Q;.

8.3 Comparison with Sampling-Based Algorithms

As discussed in Section[7.4] among many sampling-based planners, PRM is the natural comparison
for GCS. In fact, GCS can be thought of as a generalization of the PRM method, where each
collision-free sample is expanded to a collision-free convex region, that is inflated as much as the
obstacles allow; reducing in this way a dense roadmap to a compact GCS. In Sections and
we have shown that GCS can outperform PRM in terms of: runtimes, quality of the designed
trajectories, scalability with the dimensionality n of the configuration space Q, and variety of
objective functions and trajectory constraints. In addition, because of the parallel above, it is
reasonable to imagine that many of the techniques developed for PRM to handle, e.g., changes
in the environments |15 37| can be translated to GCS with relatively low effort.

One of the main reasons why sampling-based methods are widely used in academia and
industry is their simplicity. Conversely, the implementation of GCS is very involved and requires
familiarity with convex-optimization techniques. Nonetheless, we believe that the framework
from [26] lends itself to an intuitive mathematical abstraction, and that the programming interface
of GCS can be made very easy to use. We have provided a mature implementation of the
techniques from [26] within the open-source software Drake [36], and we have developed a simple
GCS interface at https://github.com/mpetersen94/gcs.

8.4 Comparison with Direct Trajectory Optimization

Direct-trajectory-optimization methods transcribe the motion-planning problem into a nonconvex
optimization [7], and can virtually include any sort of cost terms and constraints, including
dynamic and task-space constraints. In practice, however, these nonconvex programs can only be
tackled with local-optimization algorithms that are slow and unreliable. GCS is different in spirit,
as we prioritize low runtimes and the completeness of the planning algorithm over the modelling
power.

9 Conclusions and Future Works

In this paper we have introduced GCS: an algorithm based on convex optimization for efficient
collision-free motion planning. GCS leverages the framework presented in [26] to design a very
tight and lightweight convex relaxation of the planning problem. This convex optimization (typ-
ically an SOCP) is quickly solved using commonly-available software, and a cheap randomized
rounding of its solution is almost always sufficient to identify a globally-optimal trajectory. We
have demonstrated GCS on a variety of scenarios: an intricate maze, a quadrotor flying through
buildings, and a manipulation task in a fourteen-dimensional configuration space. Furthermore,
we have compared GCS to widely-used PRM methods, showing that our method can find higher-
quality trajectories in less time.
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This paper presents the first version of a new algorithm, which already compares favorably
with widely-used planners that have been optimized over decades. The runtimes of GCS can be
drastically reduced (we are currently developing a customized solver for these convex optimiza-
tions). We are also highly optimistic that the class of cost functions and constraints that we can
handle will expand considerably in the future. In particular, we imagine incorporating task-space
constraints, tight penalties on the higher derivatives of the trajectory, as well as dynamic con-
straints arising from input limits. Furthermore, we wish to extend GCS to problems involving
contacts between the robot and the environment. We believe that our planner demonstrates
the value of formulating problems as SPPs in GCS, and it can already find multiple real-world
applications.

A Further Details on the Implementation of GCS

In this appendix we illustrate two techniques that we employed in the numerical results in Sec-
tionto tighten and compress the convex relaxations of our planning problems.

A.1 Two-Cycle-Elimination Constraints

The graph G constructed in Section connects each pair Q; and Q; of overlapping safe regions
with a two-cycle: e := (i,7) and f := (j,4). Since by traversing both the edges e and f we would
visit vertex i twice, and this is not allowed by the definition of a path p, at least one of these
edges must be excluded from the shortest path. In other words, the indicator variables ¢, and
¢ cannot be both equal to one. This observation can be used to tighten our convex relaxations,
and speed up our planner.

More precisely, for each pair of overlapping regions, we can write the linear constraints

e+ <@ and @+ pf < pj, (12)

where ¢; and ¢; represent the total probability flows traversing vertices ¢ and j, respectively.
(Note that, since the total flow through a vertex is at most one, these inequalities imply the looser
condition ¢, + ¢y < 1.) Furthermore, by applying Lemma 1(b) from [26], the two inequalities
in can be translated into a pair of convex constraints that tighten the coupling between the
flow variables . and the continuous variables z, in our convex programs. The number of these
constraints is linear in the size |£| of the edge set, and they can substantially increase the tightness
of the convex relaxations of our planning problems. They are enforced in all the numerical results
presented in Section

A.2 Graph Pre-Processing

The constraints described in Appendix represent only one of the multiple ways in which we
can leverage the knowledge that a path p is allowed to visit a vertex at most once. For example,
consider the graph in Figure [8c|and task 2 from Section of moving the robot arm between
the configurations ps € Qg and p3 € Qs. In this case, after connecting the source o to vertex 2
and vertex 3 to the target 7, we get a graph that admits a single o-7 path: p := (0,2,6,3, 7).
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Therefore, in this particular case, a pre-processing stage capable of making such an inference
would reduce our planning problem to a tiny convex program (exactly).

In general, making the inference just described exactly is infeasible; however, in many practical
scenarios, a cheap approximate pre-processing can eliminate most of the redundancies in our
graphs G. More precisely, checking if an edge e := (u,v) can be traversed by a o-7 path is
equivalent to solving a vertex-disjoint-paths problem. This problem asks to identify a path p;
from o to u and a path pe from v to 7 such that the overall path p := (p1, p2) is a valid path from
o to 7. In other words, the two subpaths p; and ps are not allowed to share any vertex. This
problem is NP-complete [34] Section 70.5], therefore it would not make sense to solve it exactly
as a pre-processing for our planner. Nevertheless, the vertex-disjoint-paths problem admits a
natural LP relaxation as a fractional multiflow problem [34, Section 70.1] that can be solved very
quickly, and can be used as a very-effective sufficient condition to check if an edge is redundant.

We have found this pre-processing to be particularly useful when the graph G is sparse and
has small size, and the convex sets X, associated to its vertices live in high dimensions. In these
cases, the multiflow LPs (which can be tackled in parallel) are solved extremely fast and they can
drastically compress and tighten our convex optimizations. We have employed this pre-processing
strategy in the numerical examples from Sections and the runtimes of GCS reported
in these sections include the time necessary for pre-processing.

B Random Environment (GGeneration for the Quadrotor Example

In this appendix we briefly describe the algorithm we employed for the generation of the random
buildings in Section

The buildings are constructed over a five-by-five grid, where each cell has sides of length 5.
The nine cells at the center of the grid are occupied either by a room, a tree, or obstacle-free
grass. The sixteen cells at the boundary of the grid are always occupied by grass. For all the
environments, the brown start block is in the cell (1,1), while the green goal block is in the cell
(4,3) (see Figure @ To assemble a building we start from the goal cell, which we always require
to be a room. Then we mark each adjacent cell either as inside or outside the building, and we
repeat this process until the nine inner cells are occupied. For the cells that are marked as outside
the building, we decide at random whether to grow a tree or not. Walls divide the rooms from
the outside, and are built with either a doorway, a window, two windows, or no openings at all.
Walls are also used to divide the rooms; in this case we randomly select a doorway, a vertical
half wall, a horizontal half wall, or no wall. The positions of the trees are also drawn at random,
while their sizes are taken to be constant.

Given that the walls and the trees have polygonal shape, the decomposition of the config-
uration space Q can be done exactly. Specifically, we pair rooms or cells that are occupied by
grass with a single box Q; of free space, while the space around a tree is decomposed using four
non-overlapping boxes. Suitable box-shaped regions are added for each (inner or outer) wall that
contains one or more openings. Finally, the safe regions Q; are adequately shrunk to take into
account the collision geometry of the quadrotor, which is taken to be a sphere of radius 0.2.
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C Implementation of the PRM Planner

In this appendix we report the main implementation details for the PRM and the short-cutting
algorithm used in the comparison in Section

We construct the PRM using the implementation simple_prm planner.hpp| from the li-
brary [3I]. Trying to construct a roadmap just by sampling random robot poses turns out
to be infeasible for the application in Section In fact, sampling a robot pose ¢ € R7 for which
the end effector is, e.g., inside one of the shelves in Figure [8]is extremely unlikely: after 3 - 105
samples, and 90 hours of computations, we did not find any such point. As a result, we construct
the roadmap in two steps. In the first step, we connect the seed poses {¢; ?:1 from Figure |§|using
a collection of bidirectional Rapidly-exploring Random Trees (RRTs) (simple_rrt_planner.hpp
from [31]). The role of these trees is to form a skeleton for the PRM, and, to keep this skeleton
reasonably compact, we mimic the connectivity of our graph G in Figure In particular,
we connect via RRT only the pairs of seed poses ¢; and ¢; for which the vertices 7 and j are
connected in G. This process gives us 12 trees, with a total of approximately 2,300 nodes. In
the second step, we fill the rest of the space according to the standard PRM algorithm. We stop
the sampling when we reach a total of 15 - 10? nodes in the PRM, included the ones from the
RRTs. (In our experience, a larger number of PRM samples would have led to an increase in
the runtimes without sensibly improving the quality of the designed trajectories.) During this
construction, the collision checks are handled by Drake [36]. With this setup, generating the
RRTs took a total of 60 seconds, while the remaining PRM samples required 15 minutes. For the
short-cutting algorithm we use the implementation in path_processing.hpp from |31].

The numerical parameters we use for the RRT, the PRM, and the short-cutting algorithm
are chosen to optimize the tradeoff between the quality of the designed paths and the overall
computation times.
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