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Interactionsin many-body physical systems, from condensed matter to high-energy
physics, lead to the emergence of exotic particles. Examples are mesons in quantum
chromodynamics and composite fermionsin fractional quantum Hall systems, which
arise from the dynamical coupling between matter and gauge fields** The challenge of

understanding the complexity of matter-gauge interaction canbe aided by

quantum simulations, for which ultracold atoms offer a versatile platform via the
creation of artificial gauge fields. Animportant step towards simulating the physics of
exoticemergent particlesis the synthesis of artificial gauge fields whose state depends
dynamically on the presence of matter. Here we demonstrate deterministic formation of
domainwallsinastable Bose-Einstein condensate with a gauge field that is determined
by the atomic density. The density-dependent gauge field is created by simultaneous
modulations of an optical lattice potential and interatomicinteractions, and resultsin
domains of atoms condensed into two different momenta. Modelling the domain walls
as elementary excitations, we find that the domain walls respond to synthetic electric
field witha charge-to-mass ratio larger than and opposite to that of the bare atoms. Our
work offers promising prospects to simulate the dynamics and interactions of previously
undescribed excitations in quantum systems with dynamical gauge fields.

Gauge theories form a cornerstone in our understanding of
condensed-matter systems® and fundamental particles*. A complete
theoretical understanding of many-body systems subject to gauge fields,
however, faces major analytical and numerical challenges*®. Experiments
withultracold atoms offer an alternative approach by quantum simulating
gauge theory models, where gauge fields can beartificially synthesized” .
Much progress has been made in the past few years on creating static
artificial gauge fields in atomic quantumgases', enabling the realization
of, for instance, the iconic Haldane" and Hofstadter models'",

Fundamentally, gauge fields are dynamical, with quantum degrees
of freedom that interact with matter™*8, An intriguing consequence
of the dynamical feedback between the matter and the gauge field is
the formation of previously undescribed particle-like excitations with
emergent properties, for example, mesonsin the standard model* and
composite fermions in the fractional quantum Hall effect?. Recently,
several experiment groups have realized density-dependent gauge
fields” 2, where the strength of the field depends on the density of
matter?, as well as lattice gauge theory models® %,

Inthis work, we quantum simulate a Bose-Einstein condensate (BEC)
subject to a density-dependent gauge field, which is described by the
energy density functional
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where @is the condensate wavefunction, p is the momentum operator,
m*is the mass of the particle, Ais the density-dependent gauge field

and gis the interaction strength. We engineer a gauge field that takes
one of two values according to the density n = |¢p|?,

A=hk’sign(n-n.)x, 2)

where k* > O is a constant, sign(x) = x/|x| is the sign function and ais the
reduced Planck constant. The gauge field is along the +X direction when
the density exceeds the critical value n.and along —x at lower densities
(seeFig.1). We observe the formation of stable domain walls in the BEC,
whichare topological defects?, and extract an effective charge-to-mass
ratio from their dynamical response to the gauge field.

Inthe BEC described by equation (1), thelocal phase gradient of the
ground-state wavefunction follows the gauge field, 0, ¢ = k'sign(n—n,),
tominimize the kinetic energy. The condensate can support two types
of domains with momentum k = +k* for density nexceeding the critical
value n, and momentum k =-k* for lower density n<n. The
density-dependent magnetic field B=V x A=-2hk"6(n-n)o,nz is
concentrated on domain walls parallel to the gauge field, and 6(x) is
the Dirac delta function. On the other hand, dynamics of the density
generates anelectricfieldE=-0,4=-2hk"6(n - n.)9,nx.The electro-
magneticfields Eand B caninduce Lorentz force on the atoms, simulat-
ing charged particles in the gauge field.

In our experiment, we load a nearly pure BEC of around 40,000
33Cs atoms into a1D optical lattice along the x direction, with an addi-
tional weak harmonic confinement in the x-y plane at the radial trap
frequency 21t x 8 Hz and a tight vertical confinement at the trap fre-
quency 21 x 223 Hz. The condensate remains in the 3D regime, with a
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Fig.1|Illustration of aBose-Einstein condensate withadensity-dependent
gaugefield. A condensate withinhomogeneous density profileis subjecttoa
density-dependent gauge field A, which changes sign when the density n
exceeds a critical value n.. The high-density (red) and low-density (blue) regions
ofthe condensate form domains with distinct momentak=k*and -k*in thex
direction (white arrows), respectively. Along the domain wall (white) parallel to
the gaugefield, anarray of vortices formas a consequence of phase continuity,
whichis amanifestation of the effective magneticfield B« d,n(green arrows).
Onthe other hand, dynamics of the condensate density caninduce an effective
electricfield £« d,n(yellow arrows). In this work, we observe the formation and
dynamics of domain walls perpendicular to the gauge field.

chemical potential 2t x 170 Hz. Using Floquet engineering”, we real-
ize the gauge field in equation (2) by generating a tilted double-well
dispersion €, along the lattice direction, where the energy offset of
the two wells depends on the density of the sample. The dispersion
canbe modelled by

Lattice modulation

ex=a(k’- k*2)2 R . 3)
m

Here kisthe wavenumber, @ and k* can be controlled by lattice shaking
alongthexdirection, m*is the effective mass near k = +k*and the gauge
field A = A, + A4(n) contains the static and density-dependent contribu-
tions A;and A4(n), respectively, which we generate from synchronous
modulations of the lattice potential and the interatomic interaction,
respectively” (see Fig. 2). The presence of the gauge field A shifts the
local minima of the dispersion to k = +tk* + A to leading order.

We modulate the lattice position éx in time t at two frequencies
according to 6x(t) = X; sinwt + X, sin2wt (see Fig.2a), where the mod-
ulationamplitude X; determines a and k* of the double-well dispersion,
and the amplitude X, imbalances the two minima?. The fundamental
frequency wis red detuned to the second excited band of the lattice at
zero momentum (see Fig. 2b and Methods). The shaking induces a
direct single-photon coupling at frequency w and coupling strength
Q,, as well as a Raman coupling involving both an w photon and a 2w
photon with coupling strength Q,. The direct coupling Q, has an odd
parity that only mixes states with non-zero momentum k # O, essential
for the creation of the double-well dispersion (see Fig.2c). On the other
hand, the Raman coupling Q, has an even parity. The interference of
the two couplings Q, and Q, with opposite parities results in the imbal-
ance of the two dispersion minima. We control the imbalance in our
experiment with the amplitude of the second harmonic modulation
X,, whichresultsinastatic gauge field A, < - X,.See Methods for details.

The static gauge field A, manifests in the momentum distribution of
the BEC. Based on the focused time-of-flight method®, we see that the
condensate momentumindeed takes on values k = +k*, depending on
the sign of X, (see Fig. 2d). For the remainder of this work, we choose
X,=23nm, whichimbalances the two wells by h x 3 Hz.

Lattice + interaction modulation
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Fig.2|Creation of static and density-dependent gauge fields. Static gauge
fieldsare shownin panels a-d and density-dependent gauge fields are shownin
panelse-h.a, We periodically translate the 1D optical lattice by

6x =X sinwt + X, sin2wt with X; =21nmand variable X,.b, The frequency wis
slightly red detuned from the transition between the ground band (red) and the
second excited band (blue). The first excited band (green) is only weakly
coupled. Here k;=1/(532 nm). The shakingintroduces adirect coupling Q,
(orange arrow) and aRaman coupling Q, (blue arrows). ¢, Inthe Floquet picture,
the two couplings destructively (constructively) interfere for positive
(negative) kwhen X, > 0. The couplings hybridize the bare bands (dashed lines)
and theresulting ground band (red line) forms atilted double well with minima

e h
k= +k*
=3 a
E_::“ -*-ac \ n>n
21V AVAV o/
§9 }
0 t
f 44—k
<
c 30
52 M\
= c —_
ISVV
0 0.4
Kik,
k =-k*
/
e n<n

at k= +k*=+0.15k.d, Time-of-flightimages show a jump of the BEC momentum
when X, flips sign. Seeillustrations for the dispersions with X, >0 and X, < 0.
The 1D momentumdistribution n(k) is normalized over the first Brillouin zone.
e, Thescatteringlength ais modulated at frequency w. f, The micromotion of
theatomic density (n)at k= k" oscillatesinand out of phase with the
scattering-length modulation. This resultsinahigherinteraction energy for
k=-k*thanfor k = +k*.g, Combining both modulations yields a dispersion
whose minimum position depends on the density as k = k*sign(n - n.).h, The
momentum distribution of the BEC shows ajump when a,. exceeds 14(2)a;. See
illustrations for the dispersionswithn>n.andn<n..
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Fig.3|Domains and domainwallsinthe presence of adensity-dependent
gaugefield. a, Insituimage of the BEC ina harmonic trap shows anon-uniform
density profile. Thescale bar applies toallimagesin panelsa-d.b, The BECis
Bragg diffracted by the lattice after a 6-ms time-of-flight expansion. Atomic
populationsin k = tk*states are transferred to different Bragg orders. Here a
single-shotimage is shown. ¢, From the image, we reconstruct the density
profiles n,(r) of the tk* domains. The difference An = n, — n_reveals the domain
structureand An = O indicates the domain wall (white dashed line).d, Examples

The density-dependent part of the gauge field A, is created by
modulating the scattering length a with an external magnetic
field"” at the same fundamental frequency as the lattice shaking
alt)=ay.~ %aac coswt (seeFig.2e), where ay. = 50a; and a,. are the
mean scattering length and the amplitude of the modulation, respec-
tively, and agis the Bohr radius. To understand the density dependence
of the gauge field, we note that the atoms in the k = +k* states acquire
atime-dependent micromotion from thelattice shaking. WithinaFlo-
quet cycle, the atomic density of the two states k = +k* oscillates at
frequency w with opposite phase” (see Fig. 2f). We modulate the scat-
teringlengthin phase with the atomic density in the state k = —k*, which
raises the time-averaged interaction energy for k = —-k*and lowers that
for k = +k*. This results in a coupling between the density and the
momentum, favouring the k = +k* state. The coupling gives the density-
dependent part of the gauge field A, = ng,.n, where g, = 4Tth2aac/m0
is the AC coupling constant, m, is the mass of the caesium atomand n
can be calculated from the micromotion (see Methods).

Combining the lattice and interaction modulations, we can write
the resulting gauge field as

A=A +Aq(n)=ng, (n—ny), (4)

where the critical density n,, at which the gauge field switches sign,
is given by

n.=€/g, &)

ande=-A/n.Whenthe atomic density exceeds the critical density n., the
dispersion minimum switches from k =-k*to +k*. For aBEC residing at
thelowest energy state, itsmomentumalso changes sign when the density
exceedsthecritical value (see Fig. 2g). Therefore the BEC can be effectively
described by the energy functional equation (1) with the gauge field .Ain
equation (2), which has a step-function dependence on the density.
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Critical density n, (103 cm=3)

ofthe domain structure are shown at various modulation amplitudes a,.. Each
imageisanaverage over 15realizations. e, The magnetization M near the centre
ofthe cloudis compared for different critical density n.and atomic density n.
Thedottedlineindicates the predicted location for M =0, withn=n.=¢/g,.and
€=hx21.5Hz. Theexperimental fit (solid line) yields €., = h x 23(1) Hz. See
Methods for details. Each data pointis an average of 15samples. Error bars
denote one standard deviation.

Todemonstrate the effect of the density-dependent gauge field, we
measure the condensate momentum in the presence of both lattice
andinteraction modulations. We find that the condensate momentum
indeed changes sign from k = —k*to +k* at a,. = 14(2)ag, where the critical
density n_is comparable with the density of the sample (see Fig. 2h).
Our observationis consistent with the dispersion e, in equation (3) with
the density-dependent gauge field A(n) in equation (4).

In a trapped gas, where the condensate has non-uniform density
(seeFig.3a), we expect the condensate momentum to develop spatial
structuresin the presence of the density-dependent gaugefield. Inthe
following, we investigate the formation and dynamics of domains with
different momentum in the condensate.

Starting witharegular BECinastationary 1D lattice, we slowly ramp
up the lattice and interaction modulations over 300 ms. At the end of
the ramp, the dispersion has two minima at k = +k*, around which the
effective massis m* = 0.7m,. The BEC has al/elifetime of 700 ms under
the driving. We measure the spatial distribution n.(r) of the atoms in
the k = k* states by first transferring the population in the two states
to different Brillouin zones, followed by a short time of flight, which
maps the population to different Bragg orders® (see Fig. 3b, cand
Methods). Domain structures of the condensate are revealed by the
density difference An(r) = n,(r) — n_(r).

For moderate interaction modulation amplitudes 14a; < a,. < 25a;,
we observe regions of atoms in the same momentum state separated
by a domain wall in over 90% of the samples (see Fig. 3d). The sepa-
ration of domains results from effective ferromagnetic interactions
between the +k* and —k* states®. The domain wall forms perpendicular
to the lattice direction. We do not observe parallel domain walls with
the predicted vortex arrays, probably because of their higher energy
costunder our conditions. Inaddition, we see that the left (right) side
of the condensate tends to occupy rightward (leftward) momentum
(see Fig.3d), which we attribute to the shrinkage of the cloud during the
ramp that preferentially pulls atoms towards the centre. See Methods
for details. The position of the domain wall depends on the density
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Fig.4|Dynamics ofthe domain wallinresponse to asynthetic electricfield
£ .a, After forming the domains at modulation strength a,. = 15a,, we ramp to
a,.=0ag (black), 15a; (magenta), 30a; (red) or 45a; (blue) over 66 ms and hold
for132 ms. The rampinducesanelectric field £« a,. (greenshaded area).

b, Example images for theramp to a,. = 45a;. The white dashed lines mark the
positions of the domain walls. Eachimage is the average of 15samples. ¢, The
domain-walldynamics; dashed lines are fits based on equation (8). The black
datapointsareexcluded from the fit because the domain wall moves out of the
cloud.d, The acceleration x extracted from the fit shows alinear dependence
ontheramprated, andtheelectricfield £. Thelinear fit X = fa,. (black line)
gives B=-26(6) ms™. The prediction for bare atoms gives B, = 13 ms™ (dashed
line). Error barsindicate one standard deviation.

and the interaction modulation amplitude a,, providing a test of the
strength of the density-dependent gauge field.

We analyse the momentum distributionin the condensate through
the local magnetization defined as

_n(r)-n(r)
M(r) = n(r)+n(r)’

(6)

Avalue of M= +1lindicates that all atoms condense in the +k* state,
M=-1indicates the condensate in the —-k* state and M = O indicates a
domain wall.

We perform the experiment with different atom numbers and modu-
lationamplitudes a,.. We extract the magnetization M near the centre of
the condensate for various atomic density n=n, + n_and critical density
n.=¢€/g,.(seeFig.3e). We find that the localmomentumindeed settles to
+k*for densities exceeding n.and to —k* for n < n.. Fromthe experimen-
tal data, we also extract the coefficient eand the resulte,,, = h x 23(1) Hz
isingood agreement with the prediction e = h x 21.5Hz.

The deterministic formation of domains offers an opportunity to
study the domain walls as elementary objects, whichis of fundamental
interest to condensed-matter physics®, high-energy physics® and
cosmology**. We introduce a phenomenological model that describes
the domain wall as an elementary excitation with charge Q and mass M*
interacting with the same gauge field A experienced by the underlying
atoms, with energy

(P-QA)*

o 7

E=0A+

where P = M*v + QA and v are the canonical momentum and velocity
of the domain wall, respectively, A is the area of the domain wall, the

surface tension o= gsn/k‘ is calculated in ref. ?¢ and € is the barrier
height of the double-well dispersion. For our parameters, e = h x4 Hz
and the rest energy of the domain wall oA = k; x 1 nK per atom in the
domain wall.

For our observed domain walls perpendicular to the lattice along
thexaxis, their motionisrestricted to the same direction. The dynam-
icsis driven by the Lorentz force with only the electric field in the x
direction £=- 0,4, with A given in equation (4). We derive

Q
e
_on(g,.n-e)
T e

X=—=¢

(8)

To study the dynamical response of the domain wall to the electric
field £, we ramp the density-dependent gauge field and monitor the
motion of the domain wall. After preparing one domainwallinthe BEC
at the modulation strength a,. = 15a;, we ramp a,. to different values
over 66 ms, whichinducesanelectricfield £. We then hold for another
132 ms, during which the domain wall can freely propagate (see Fig. 4a).

We observe that the domain wall moves in the lattice direction in
response to the ramp (see Fig. 4b, ¢), consistent with the direction of
the electric field. The motion persists in the same direction after the
ramp stops. From equation (8), we expect that the domain wall accel-
eratesduring theramp X = fa,., where < Q/M*, and maintains a con-
stant velocity during the hold time. (The atomic density n remains
almost constant to within 20% during the dynamics, and p and € are
constants.) We fit the domain-wall trajectories to extract the accelera-
tion X, which indeed shows a linear dependence on the ramp rate d,
(seeFig.4d).Fromthelinear fit, we extract the charge-to-mass ratio of
the domain wall to be Q/M*=-2.8(7) m,™, where m, is the mass of a
caesiumatom.

Our measurements present aninteresting result where the topologi-
caldefectinthe BEC withadensity-dependent gauge field behaves very
differently from the bare atoms. A bare atom residing near alocal mini-
mum ofthe double-well dispersion describedin equation (3) also accel-
erates under the electric field £ because the gauge field A shifts the
minima to k=+k*+ A. To leading order in the electric field &, the
charge-to-massratio of anatomis1/m* =1.4 m,™. This suggests that the
electricfield propels the domainwallin the opposite direction compared
withthe bare atoms at 2.0(5) times the acceleration. Notably, the direc-
tion of domain-wall motion is consistent with the condensate relaxing
tothe momentum state with lower energy. A quantitative understanding
of the different responses between the domainwalland the bare atoms
demands further theoretical and experimental investigation.

In summary, we demonstrate deterministic creation of domain
wallsinaBEC with adensity-dependent gauge field, created by simul-
taneous modulations of the lattice potential and the interaction
strength. The domain walls remain stable in the BEC and behave like
elementary excitations. Their dynamical response to the gauge field
isobserved to be drastically different from the bare atoms. Our work
offers promising prospects of Floquet engineering of optical lattices
and atomicinteractions as a powerful tool to simulate the dynamics
and interactions of topological defects such as domain walls and
vortex lines. Synthesis of dynamical gauge fields that respect local
gauge symmetry can also be realized with Floquet engineering of
spin-dependent optical lattices®.
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Methods

Floquet engineering of the gauge fieldsA,and A,
Anatom in our shaken optical lattice evolves according to the follow-
ing Hamiltonian,

p?

H= m + % cosky(x—6x),

where p is the 3D momentum of the atom, Uis the lattice depth, k, is
thelattice wavenumber and 6x = X; sinwt + X, sin2wt is the lattice dis-
placement. On the single-particle level, the dynamicsin the yand z
directions are decoupled and we focus on the x direction. The time-
dependent Hamiltonian has discrete translational symmetry of the
lattice and the Hamiltonian separates for different quasi-momentum
quantum numbers k as H = ®, H(k).We numerically calculate the dis-
persion oftThe Floquet bands by diagonalizing the Floquet operator
U (k) = e o "%t iy momentum space, including the first 15 bands in
the Hilbert space, and Trotterizing the time evolution into 100 steps.

The operator is diagonalized asUg (k) = ¥, e‘ief(k”/"lgl&(k))((pj(k)|.The
eigenvalues €;(k) are the quasi-energies, giving the effective dispersion
of the hybridized bands. The eigenvectors contain the micromotion

of the Floquet eigenstates|W;(k, ) = efo ”(")dfhpj(k)), from which we

calculate the micromotion of the density (n(¢)) :I W;(x, t)|*dx shown
inFig. 2f.

The scattering length is modulated as a(t) =a 4.~ %aac coswt.
The time-azveraged interaction energy (chemical potential) is
Einc= %%4:7’; I<n(t)>a(t)dt,forNatoms involume V, corresponding to
experimentally measured atomic density N/V, which is averaged over
length scales large than the lattice constant.

Comparingtheinteraction energy E;, for k = +k* states, we obtain the
factor nin the expression of the density-dependent gauge field A4 in
equation (4). Thisapproachtreatstheinteraction effects tothe zeroth
order in perturbation, as we neglect the deviation in density profile
from the single-particle eigenstates owing to interactions.

Analytically, we can obtain a qualitative understanding of the crea-
tion of the tilted double-well dispersion from perturbation theory.
Performing the Jacobi-Anger expansion on the lattice potential, we
arrive at

., U
H=—ﬁax+5 coskyx+H,=Hy+H,

where H, describes the static lattice and H, describes the driving,

H1: %(eikOXf+ e*ikOXf* ),
1 2 2 . .
f:—Z(a +B )+2|a sinwt-2af coswt.

Here a = kX, B = koX,and we keep terms up to the second orderin a
and fand up to win frequency.

The eigenstates of H, are the Bloch waves. Consider the states|0, k)
and|2, k)inthe ground and second excited bands at quasi-momentum
k. Under rotating-wave approximation, the effective Hamiltonian is

(B0
eff — o EO+A'

where E, = (0, k|Hy|O, k)is the energy of the ground band, Ais the detun-
ing and the coupling is

Q=aQ_-apQ,.

HereQ, =0, kle'*o* + e *0X|2, k)From here, we cansee that the coupling
hastwo contributions: oneis the direct coupling Q, = Q_and the other
is the Raman coupling Q, = -aBQ,. The parity of Q_is odd and that of
Q, is even, because the ground and second excited bands both have
even-parity wavefunctions.

Near k=0, to the first order, the matrix elements depend on
quasi-momentumk as Q = awk — afw,, E, = €,k*and A = €,k + A,. Then
the hybridized ground band dispersionis

1 2
E,=ek’+ 2[elk2+ Ao~ J4(aa)0k— aBwy)’ + (ek?+Ao) ]

The dispersion has the shape of adouble well because the coupling
has a zero crossing near k= 0. As the fundamental shaking frequency
isred detuned, the coupling pushes down the ground-band energy.
The tiltis a result of the constructive and destructive interference of
Q, and Q, at positive and negative quasi-momentum, which pushes
down the ground-band energy more on one side than the other.
To the lowest order, this tilt is given by a linear term in the dispersion
ZaZﬁwoa)lk// l4(a/3w1)2 + A(z) ,which effectively generates a static gauge
field A, < 8=k X,. The sign of the gauge field depends on the phase
between the X; and X, lattice modulation components.

The numerical Floquet calculation indicates that the modulation
weakly couples the ground band to the first excited band inaddition to
the second excited band. The coupling to the first excited band mostly
contributes to a constant energy shift and does not qualitatively change
the shape of the dispersion.

System preparation

In our experiment, the optical lattice is formed by a pair of
counter-propagating 1,064-nm lasers, with lattice constant 532 nm.
We use parameters lattice depth U= 8.9E;, where Ey = h x 1.3 kHzis the
recoil energy, and w = 21t x 9,091 Hz. Under our conditions, the factor
ninequation (4)is n=0.07m*/hk",where m*= 0.7myand k* = 0.15k;.

After loading the atoms into the 1D optical lattice with harmonic
confinement formed by 1,064-nm lasers, we prepare the BEC under a
density-dependent gauge field by slowly ramping up the modulation
amplitudes. Weramp up the amplitude X; to 7 nm over 11 ms (100 oscil-
lation periods). As the critical shaking amplitude for the formation of
double-well dispersion is 14 nm (obtained from the Floquet calcula-
tion of dispersion), the effective dispersion changes very little during
this time, and we ramp quickly to reduce particle loss. We then ramp
up the amplitude X; to 21 nm over another 289.3 ms (2,630 oscillation
periods), which gives a ramp rate slow enough to suppress fluctua-
tions from the Kibble-Zurek mechanism® and allow for deterministic
evolution of the system. The amplitudes X, and a,. are ramped to the
final value over the first 11 ms. Thisramp procedure turns on the gauge
field slowly over time and resultsin a roughly constant critical density
n.throughout the ramp.

InFig. 2h, the modulation amplitude at which the BEC momentum
changessignis estimated to be 14(2)a;. To obtain this value, we fit the
momentum-space distribution with two Gaussians and extract the
population imbalance between the +k* states. We plot the imbalance
against themodulationamplitude a,. and fit with ahyperbolic tangent
curve (see Extended Data Fig. 1). From the fitted position of the zero
crossing, we obtain the value 14(2)a;.

Although the dynamics during the ramp on of the gauge is determin-
istic, it is not quite adiabatic, as the two momentum minima are only
offset by h x 3 Hz, comparable with the ramp time 300 ms, and we do not
arrive atthe ground state. During the ramp fields, the cloud systemati-
cally shrinks, in part because of particle loss that reduces the chemical
potential and in part because of the reduction of quantum pressure as
the dispersion crosses the critical point from parabolic to double well,
during which the effective mass diverges and the quantum pressure
drops to zero. As we are in the Thomas-Fermi regime, the quantum
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pressureis usually negligible, but—inthis case—itsreductionis substan-
tial enough to bias the domain formation because a slow ramp across
the critical point is very susceptible to any bias. We have confirmed
this effect in experiments with no gauge field (balanced double-well
dispersion) and in numerical simulations without particle loss.

InFig. 3e, we repeat the experiment at three different total particle
numbers, 4.8 x10* 3.6 x10*and 2.5 x 10*. The data shown in Fig. 3a-d
are from the dataset with particle number 4.8 x 10*.

Extracting the domain densities from Bragg peaks

We extract the spatial distribution of the atomsin the k = +k* states fol-
lowing the techniqueinref.°. At the time of detection, we switch off X,
and a,.and ramp the modulation amplitude X; to 140 nm over 0.8 ms.
This pulse of lattice shaking excites the atoms from the ground band to
superposition states of excited bands at the same quasi-momentum,
whichhave oscillating projections to each Brillouin zone. Atoms in dif-
ferent quasi-momentum states have different oscillations. We image the
atoms at the time when the projections of k = +k* states are maximally
different. We perform a 6-ms time of flight to map the Brillouin zones
to Bragg diffraction orders.

The densities in the Bragg diffraction orders

n(x, y) = (n-4(x, ), no(x, ), (X, y))

is the sum of the contributions from atoms in the k = +k* states,

n=né,+neé.,

where the basis vectors é, describe the distribution over the three Bragg
diffraction orders of atoms in the k = +k* states. We calibrate the basis
vectors é, by biasing the entire condensate into k = +k* and performing
the same time-of-flight measurement. The basis vectors é, are L' nor-
malized suchthat the components sumto 1. We determine the densities
n, by fitting under the positivity constraint n, > 0.

The Bragg peaks of atoms in the k = +k* states are shifted relative
to each other during the time of flight, because of the difference in
quasi-momentum. We take this shift into account when reconstruct-
ing the domain densities. Additionally, this shift may cause originally
disjoint domains to overlap during the time of flight. The coherent
domainsinterferein the overlapping region, forming density waves at
wavenumber 2k*. This effect does not greatly alter the extracted domain
structure or domain-wall position, and we neglect it in our analysis.

Analysis of the domain structures
Because we observe that the domain walls are mostly perpendicular
tothelattice direction, in our analysis, we treat the domain structures
as 1D. For the analysis in Fig. 3e, we integrate the mean and difference
ofthedomaindensities,n=n, + n_and An=n, — n_,over theydirection
and then select the central 10% of the cloud. Effectively, we select a
central vertical strip of the cloud. We have checked that our results are
not sensitive to the chosen strip width. From each experimental reali-
zation, we calculate the magnetization M = An/n and we plot the aver-
age of nand M for each set of modulation amplitude a,. and particle
number N. We convert the 1D density to 3D density by dividing by the
length scales inthe y and zdirections, /,and [,. As the chemical poten-
tial is not larger than the trap frequency in the z direction, we use the
length scale of the harmonic oscilzlator ground state [, = \/h/mw . We
obta.ln thelengthscale l,= U"dy) /jnzdy from the measured density
profiles n.

Fromthe experiment datain Fig. 3e, we extractavalue of ¢, in equa-
tion (5) by fitting to the expression

M tanh Inn- In(eexp/gac),

C
with each data pointin Fig. 3e corresponding to a magnetization M, a
density nand amodulation strength g,.. This expression represents the
relation M = sign(n — €.,/8,.), but smoothes the step function by awidth
parameter C. We present our fit to the experiment data in Extended
DataFig. 2.

For the analysisin Fig. 4c, weintegrate the difference of the domain
densities An over the y direction. We then extract the position of the
zero crossing of the integrated 1D domain density by fitting a straight
line to the six data points (each corresponding to a pixel in the image)
around the numerical zero crossing, to improve accuracy. The error
bars shownin Fig. 4c are 68% confidence intervals of this fit. With this
procedure, we determine the domain-wall position with an uncertainty
ofaround 0.3 microns.

We fit the domain-wall trajectories in Fig. 4c by assuming acommon
initial velocity for all ramp rates, a constant acceleration during the
ramp thatis independently varied for each ramp rate and a constant
velocity after the ramp stops. Thefitted initial velocity is —17(10) pm s™,
whichwe attribute to residual dynamics during the domain-formation
process.

The conversion of the ramp rate @, to the electric field £ is derived
fromequation (4). We have

_ A’
mgy

£

n’ldac'

with density n=2.8 x 10" cm™ from the experiment. The prediction
of parameter B for bare atoms is obtained from this relation and the
charge-to-mass ratio 1/m*.
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Extended DataFig.1|Estimation ofthe zero-crossing position. The
populationimbalance between the +k*statesin Fig. 2his fitted to extract the
zero-crossing position.



Article

1.5

-1 -0.5 0 0.5 1
Magnetization M

Extended DataFig. 2| Extraction of ¢, from magnetization M. Experiment
datainFig.3earefitted to extract the value of ..
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