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Domain-wall dynamics in Bose–Einstein 
condensates with synthetic gauge fields

Kai-Xuan Yao1,2,3, Zhendong Zhang1,2,3 & Cheng Chin1,2,3 ✉

Interactions in many-body physical systems, from condensed matter to high-energy 
physics, lead to the emergence of exotic particles. Examples are mesons in quantum 
chromodynamics and composite fermions in fractional quantum Hall systems, which 
arise from the dynamical coupling between matter and gauge fields1,2. The challenge of 
understanding the complexity of matter–gauge interaction can be aided by 
quantum simulations, for which ultracold atoms offer a versatile platform via the 
creation of artificial gauge fields. An important step towards simulating the physics of 
exotic emergent particles is the synthesis of artificial gauge fields whose state depends 
dynamically on the presence of matter. Here we demonstrate deterministic formation of 
domain walls in a stable Bose–Einstein condensate with a gauge field that is determined 
by the atomic density. The density-dependent gauge field is created by simultaneous 
modulations of an optical lattice potential and interatomic interactions, and results in 
domains of atoms condensed into two different momenta. Modelling the domain walls 
as elementary excitations, we find that the domain walls respond to synthetic electric 
field with a charge-to-mass ratio larger than and opposite to that of the bare atoms. Our 
work offers promising prospects to simulate the dynamics and interactions of previously 
undescribed excitations in quantum systems with dynamical gauge fields.

Gauge theories form a cornerstone in our understanding of 
condensed-matter systems3 and fundamental particles4. A complete 
theoretical understanding of many-body systems subject to gauge fields, 
however, faces major analytical and numerical challenges5,6. Experiments 
with ultracold atoms offer an alternative approach by quantum simulating 
gauge theory models, where gauge fields can be artificially synthesized7–9. 
Much progress has been made in the past few years on creating static 
artificial gauge fields in atomic quantum gases10, enabling the realization 
of, for instance, the iconic Haldane11 and Hofstadter models12,13.

Fundamentally, gauge fields are dynamical, with quantum degrees 
of freedom that interact with matter14–18. An intriguing consequence 
of the dynamical feedback between the matter and the gauge field is 
the formation of previously undescribed particle-like excitations with 
emergent properties, for example, mesons in the standard model1 and 
composite fermions in the fractional quantum Hall effect2. Recently, 
several experiment groups have realized density-dependent gauge 
fields19–21, where the strength of the field depends on the density of 
matter22, as well as lattice gauge theory models23–25.

In this work, we quantum simulate a Bose–Einstein condensate (BEC) 
subject to a density-dependent gauge field, which is described by the 
energy density functional
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where ψ is the condensate wavefunction, p is the momentum operator, 
m* is the mass of the particle, A is the density-dependent gauge field 

and g is the interaction strength. We engineer a gauge field that takes 
one of two values according to the density n = |ψ|2,

ħk n n x= sign( − ) ˆ, (2)⁎
cA

where k* > 0 is a constant, sign(x) = x/|x| is the sign function and ħ is the 
reduced Planck constant. The gauge field is along the x+  ̂direction when 
the density exceeds the critical value nc and along x−  ̂at lower densities 
(see Fig. 1). We observe the formation of stable domain walls in the BEC, 
which are topological defects26, and extract an effective charge-to-mass 
ratio from their dynamical response to the gauge field.

In the BEC described by equation (1), the local phase gradient of the 
ground-state wavefunction follows the gauge field, ϕ k n n∂ = sign( − ),x

⁎
c  

to minimize the kinetic energy. The condensate can support two types 
of domains with momentum k = +k* for density n exceeding the critical 
value nc and momentum k = −k* for lower density n < nc. The 
density-dependent magnetic field ħk δ n n nz= ∇ × = − 2 ( − )∂ ˆy

⁎
cAB  is 

concentrated on domain walls parallel to the gauge field, and δ(x) is 
the Dirac delta function. On the other hand, dynamics of the density 
generates an electric field AE ħk δ n n nx= − ∂ = − 2 ( − )∂ ˆ.t t

⁎
c  The electro-

magnetic fields E and B can induce Lorentz force on the atoms, simulat-
ing charged particles in the gauge field.

In our experiment, we load a nearly pure BEC of around 40,000 
133Cs atoms into a 1D optical lattice along the x direction, with an addi-
tional weak harmonic confinement in the x–y plane at the radial trap 
frequency 2π × 8 Hz and a tight vertical confinement at the trap fre-
quency 2π × 223 Hz. The condensate remains in the 3D regime, with a 
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chemical potential 2π × 170 Hz. Using Floquet engineering27, we real-
ize the gauge field in equation (2) by generating a tilted double-well 
dispersion ϵk along the lattice direction, where the energy offset of 
the two wells depends on the density of the sample. The dispersion 
can be modelled by

( )ϵ α k k
ħ
m

kA n= − − ( ). (3)k
2 ⁎2 2

⁎

Here k is the wavenumber, α and k* can be controlled by lattice shaking  
along the x direction, m* is the effective mass near k = ±k* and the gauge 
field A = As + Ad(n) contains the static and density-dependent contribu-
tions As and Ad(n), respectively, which we generate from synchronous 
modulations of the lattice potential and the interatomic interaction, 
respectively19 (see Fig. 2). The presence of the gauge field A shifts the 
local minima of the dispersion to k = ±k* + A to leading order.

We modulate the lattice position δx in time t at two frequencies 
according to δx t X ωt X ωt( ) = sin + sin 21 2  (see Fig. 2a), where the mod-
ulation amplitude X1 determines α and k* of the double-well dispersion, 
and the amplitude X2 imbalances the two minima28. The fundamental 
frequency ω is red detuned to the second excited band of the lattice at 
zero momentum (see Fig. 2b and Methods). The shaking induces a 
direct single-photon coupling at frequency ω and coupling strength 
Ω1, as well as a Raman coupling involving both an ω photon and a 2ω 
photon with coupling strength Ω2. The direct coupling Ω1 has an odd 
parity that only mixes states with non-zero momentum k ≠ 0, essential 
for the creation of the double-well dispersion (see Fig. 2c). On the other 
hand, the Raman coupling Ω2 has an even parity. The interference of 
the two couplings Ω1 and Ω2 with opposite parities results in the imbal-
ance of the two dispersion minima. We control the imbalance in our 
experiment with the amplitude of the second harmonic modulation 
X2, which results in a static gauge field A X∝ − .s 2  See Methods for details.

The static gauge field As manifests in the momentum distribution of 
the BEC. Based on the focused time-of-flight method29, we see that the 
condensate momentum indeed takes on values k = ±k*, depending on 
the sign of X2 (see Fig. 2d). For the remainder of this work, we choose 
X2 = 23 nm, which imbalances the two wells by h × 3 Hz.
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Fig. 1 | Illustration of a Bose–Einstein condensate with a density-dependent 
gauge field. A condensate with inhomogeneous density profile is subject to a 
density-dependent gauge field A, which changes sign when the density n 
exceeds a critical value nc. The high-density (red) and low-density (blue) regions 
of the condensate form domains with distinct momenta k = k* and −k* in the x 
direction (white arrows), respectively. Along the domain wall (white) parallel to 
the gauge field, an array of vortices form as a consequence of phase continuity, 
which is a manifestation of the effective magnetic field B n∝ ∂y  (green arrows). 
On the other hand, dynamics of the condensate density can induce an effective 
electric field E n∝ ∂t  (yellow arrows). In this work, we observe the formation and 
dynamics of domain walls perpendicular to the gauge field.
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Fig. 2 | Creation of static and density-dependent gauge fields. Static gauge 
fields are shown in panels a–d and density-dependent gauge fields are shown in 
panels e–h. a, We periodically translate the 1D optical lattice by 
δx X ωt X ωt= sin + sin21 2  with X1 = 21 nm and variable X2. b, The frequency ω is 
slightly red detuned from the transition between the ground band (red) and the 
second excited band (blue). The first excited band (green) is only weakly 
coupled. Here kl = π/(532 nm). The shaking introduces a direct coupling Ω1 
(orange arrow) and a Raman coupling Ω2 (blue arrows). c, In the Floquet picture, 
the two couplings destructively (constructively) interfere for positive 
(negative) k when X2 > 0. The couplings hybridize the bare bands (dashed lines) 
and the resulting ground band (red line) forms a tilted double well with minima 

at k ≈ ±k* = ±0.15kl. d, Time-of-flight images show a jump of the BEC momentum 
when X2 flips sign. See illustrations for the dispersions with X2 > 0 and X2 < 0. 
The 1D momentum distribution n(k) is normalized over the first Brillouin zone. 
e, The scattering length a is modulated at frequency ω. f, The micromotion of 
the atomic density n  at k k= ⁎∓  oscillates in and out of phase with the 
scattering-length modulation. This results in a higher interaction energy for 
k = −k* than for k = +k*. g, Combining both modulations yields a dispersion 
whose minimum position depends on the density as k = k*sign(n − nc). h, The 
momentum distribution of the BEC shows a jump when aac exceeds 14(2)aB. See 
illustrations for the dispersions with n > nc and n < nc.
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The density-dependent part of the gauge field Ad is created by  
modulating the scattering length a with an external magnetic  
field19 at the same fundamental frequency as the lattice shaking 
a t a a ωt( ) = − cosdc

1
2 ac  (see Fig. 2e), where adc = 50aB and aac are the 

mean scattering length and the amplitude of the modulation, respec-
tively, and aB is the Bohr radius. To understand the density dependence 
of the gauge field, we note that the atoms in the k = ±k* states acquire 
a time-dependent micromotion from the lattice shaking. Within a Flo-
quet cycle, the atomic density of the two states k = ±k* oscillates at 
frequency ω with opposite phase19 (see Fig. 2f). We modulate the scat-
tering length in phase with the atomic density in the state k = −k*, which 
raises the time-averaged interaction energy for k = −k* and lowers that 
for k = +k*. This results in a coupling between the density and the 
momentum, favouring the k = +k* state. The coupling gives the density-
dependent part of the gauge field Ad = ηgacn, where g ħ a m= 4π /ac

2
ac 0 

is the AC coupling constant, m0 is the mass of the caesium atom and η 
can be calculated from the micromotion (see Methods).

Combining the lattice and interaction modulations, we can write 
the resulting gauge field as

A A A n ηg n n= + ( ) = ( − ), (4)s d ac c

where the critical density nc, at which the gauge field switches sign, 
is given by

n ϵ g= / (5)c ac

and ϵ = −As/η. When the atomic density exceeds the critical density nc, the 
dispersion minimum switches from k = −k* to +k*. For a BEC residing at 
the lowest energy state, its momentum also changes sign when the density 
exceeds the critical value (see Fig. 2g). Therefore the BEC can be effectively 
described by the energy functional equation (1) with the gauge field A in 
equation (2), which has a step-function dependence on the density.

To demonstrate the effect of the density-dependent gauge field, we 
measure the condensate momentum in the presence of both lattice 
and interaction modulations. We find that the condensate momentum 
indeed changes sign from k = −k* to +k* at aac = 14(2)aB, where the critical 
density nc is comparable with the density of the sample (see Fig. 2h). 
Our observation is consistent with the dispersion ϵk in equation (3) with 
the density-dependent gauge field A(n) in equation (4).

In a trapped gas, where the condensate has non-uniform density 
(see Fig. 3a), we expect the condensate momentum to develop spatial 
structures in the presence of the density-dependent gauge field. In the 
following, we investigate the formation and dynamics of domains with 
different momentum in the condensate.

Starting with a regular BEC in a stationary 1D lattice, we slowly ramp 
up the lattice and interaction modulations over 300 ms. At the end of 
the ramp, the dispersion has two minima at k = ±k*, around which the 
effective mass is m* = 0.7m0. The BEC has a 1/e lifetime of 700 ms under 
the driving. We measure the spatial distribution n±(r) of the atoms in 
the k = ±k* states by first transferring the population in the two states 
to different Brillouin zones, followed by a short time of flight, which 
maps the population to different Bragg orders30 (see Fig. 3b, c and 
Methods). Domain structures of the condensate are revealed by the 
density difference Δn(r) = n+(r) − n−(r).

For moderate interaction modulation amplitudes 14aB < aac < 25aB, 
we observe regions of atoms in the same momentum state separated 
by a domain wall in over 90% of the samples (see Fig. 3d). The sepa-
ration of domains results from effective ferromagnetic interactions 
between the +k* and −k* states31. The domain wall forms perpendicular 
to the lattice direction. We do not observe parallel domain walls with 
the predicted vortex arrays, probably because of their higher energy 
cost under our conditions. In addition, we see that the left (right) side 
of the condensate tends to occupy rightward (leftward) momentum 
(see Fig. 3d), which we attribute to the shrinkage of the cloud during the 
ramp that preferentially pulls atoms towards the centre. See Methods 
for details. The position of the domain wall depends on the density 

50

–50

0

Δn
(μ

m
–2

)
e

700
Density (μm–2)

a
x

y

c n+ n–
10 μm

–1 0 +1

b

d
aac = 5aB 14.5aB

24.5aB 34aB

D
en

si
ty

 n
 (1

013
 c

m
–3

)

–1

0

1
M

agnetization M

Critical density nc (1013 cm–3)

+k*

1
1

2

3

2 3 4

30 20 10

–k*

aac (aB)

50–50 0

k = +k* k = –k*

Bragg order Δn (μm–2)

Δn

Fig. 3 | Domains and domain walls in the presence of a density-dependent 
gauge field. a, In situ image of the BEC in a harmonic trap shows a non-uniform 
density profile. The scale bar applies to all images in panels a–d. b, The BEC is 
Bragg diffracted by the lattice after a 6-ms time-of-flight expansion. Atomic 
populations in k = ±k* states are transferred to different Bragg orders. Here a 
single-shot image is shown. c, From the image, we reconstruct the density 
profiles n±(r) of the ±k* domains. The difference Δn = n+ − n− reveals the domain 
structure and Δn = 0 indicates the domain wall (white dashed line). d, Examples 

of the domain structure are shown at various modulation amplitudes aac. Each 
image is an average over 15 realizations. e, The magnetization M near the centre 
of the cloud is compared for different critical density nc and atomic density n. 
The dotted line indicates the predicted location for M = 0, with n = nc = ϵ/gac and 
ϵ = h × 21.5 Hz. The experimental fit (solid line) yields ϵexp = h × 23(1) Hz. See 
Methods for details. Each data point is an average of 15 samples. Error bars 
denote one standard deviation.
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and the interaction modulation amplitude aac, providing a test of the 
strength of the density-dependent gauge field.

We analyse the momentum distribution in the condensate through 
the local magnetization defined as

r
r r
r r

M
n n
n n

( ) =
( ) − ( )
( ) + ( )

. (6)+ −

+ −

A value of M = +1 indicates that all atoms condense in the +k* state, 
M = −1 indicates the condensate in the −k* state and M = 0 indicates a 
domain wall.

We perform the experiment with different atom numbers and modu-
lation amplitudes aac. We extract the magnetization M near the centre of 
the condensate for various atomic density n = n+ + n− and critical density 
nc = ϵ/gac (see Fig. 3e). We find that the local momentum indeed settles to 
+k* for densities exceeding nc and to −k* for n < nc. From the experimen-
tal data, we also extract the coefficient ϵ and the result ϵexp = h × 23(1) Hz 
is in good agreement with the prediction ϵ = h × 21.5 Hz.

The deterministic formation of domains offers an opportunity to 
study the domain walls as elementary objects, which is of fundamental 
interest to condensed-matter physics32, high-energy physics33 and 
cosmology34. We introduce a phenomenological model that describes 
the domain wall as an elementary excitation with charge Q and mass M* 
interacting with the same gauge field A experienced by the underlying 
atoms, with energy

∗E σ
Q
M

= Λ +
( − )

2
, (7)

2P A

where P = M*v + QA and v are the canonical momentum and velocity 
of the domain wall, respectively, Λ is the area of the domain wall, the 

surface tension σ εn k= /8
3

⁎  is calculated in ref. 26 and ε is the barrier 
height of the double-well dispersion. For our parameters, ε = h × 4 Hz 
and the rest energy of the domain wall σΛ ≈ kB × 1 nK per atom in the 
domain wall.

For our observed domain walls perpendicular to the lattice along 
the x axis, their motion is restricted to the same direction. The dynam-
ics is driven by the Lorentz force with only the electric field in the x 
direction A= − ∂tE , with A given in equation (4). We derive

E

E

∗x
Q
M

η g n

t

¨ =

= −
∂ ( − ϵ)

∂
.

(8)
ac

To study the dynamical response of the domain wall to the electric 
field E, we ramp the density-dependent gauge field and monitor the 
motion of the domain wall. After preparing one domain wall in the BEC 
at the modulation strength aac = 15aB, we ramp aac to different values 
over 66 ms, which induces an electric field E. We then hold for another 
132 ms, during which the domain wall can freely propagate (see Fig. 4a).

We observe that the domain wall moves in the lattice direction in 
response to the ramp (see Fig. 4b, c), consistent with the direction of 
the electric field. The motion persists in the same direction after the 
ramp stops. From equation (8), we expect that the domain wall accel-
erates during the ramp ̈ ̇x βa= ac, where β Q M∝ / ∗, and maintains a con-
stant velocity during the hold time. (The atomic density n remains 
almost constant to within 20% during the dynamics, and η and ϵ are 
constants.) We fit the domain-wall trajectories to extract the accelera-
tion x,̈ which indeed shows a linear dependence on the ramp rate aaċ  
(see Fig. 4d). From the linear fit, we extract the charge-to-mass ratio of 
the domain wall to be Q/M* = −2.8(7) m0

−1, where m0 is the mass of a 
caesium atom.

Our measurements present an interesting result where the topologi-
cal defect in the BEC with a density-dependent gauge field behaves very 
differently from the bare atoms. A bare atom residing near a local mini-
mum of the double-well dispersion described in equation (3) also accel-
erates under the electric field E  because the gauge field A shifts the 
minima to k = ±k* + A. To leading order in the electric field E , the 
charge-to-mass ratio of an atom is 1/m* = 1.4 m0

−1. This suggests that the 
electric field propels the domain wall in the opposite direction compared 
with the bare atoms at 2.0(5) times the acceleration. Notably, the direc-
tion of domain-wall motion is consistent with the condensate relaxing 
to the momentum state with lower energy. A quantitative understanding 
of the different responses between the domain wall and the bare atoms 
demands further theoretical and experimental investigation.

In summary, we demonstrate deterministic creation of domain 
walls in a BEC with a density-dependent gauge field, created by simul-
taneous modulations of the lattice potential and the interaction 
strength. The domain walls remain stable in the BEC and behave like 
elementary excitations. Their dynamical response to the gauge field 
is observed to be drastically different from the bare atoms. Our work 
offers promising prospects of Floquet engineering of optical lattices 
and atomic interactions as a powerful tool to simulate the dynamics 
and interactions of topological defects such as domain walls and 
vortex lines. Synthesis of dynamical gauge fields that respect local 
gauge symmetry can also be realized with Floquet engineering of 
spin-dependent optical lattices35.
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Methods

Floquet engineering of the gauge fields As and Ad

An atom in our shaken optical lattice evolves according to the follow-
ing Hamiltonian,

H
p
m

U
k x δx=

2
+

2
cos ( − ),

2

0

where p is the 3D momentum of the atom, U is the lattice depth, k0 is 
the lattice wavenumber and δx X ωt X ωt= sin + sin 21 2  is the lattice dis-
placement. On the single-particle level, the dynamics in the y and z 
directions are decoupled and we focus on the x direction. The time-
dependent Hamiltonian has discrete translational symmetry of the 
lattice and the Hamiltonian separates for different quasi-momentum 
quantum numbers k as H H k= ⊗ ( ).k  We numerically calculate the dis-
persion of the Floquet bands by diagonalizing the Floquet operator 
U k( ) = e ∫ H k t

F
−i ( )d

T

0  in momentum space, including the first 15 bands in 
the Hilbert space, and Trotterizing the time evolution into 100 steps.

The operator is diagonalized as U k ψ k ψ k( ) = ∑ e | ( )⟩⟨ ( )|.j
ϵ k T ħ

j jF
−i ( ) /j  The 

eigenvalues ϵj(k) are the quasi-energies, giving the effective dispersion 
of the hybridized bands. The eigenvectors contain the micromotion 
of the Floquet eigenstates k t ψ k|Ψ ( , )⟩ = e | ( )⟩,∫

j
H k τ

j
−i ( )d

T

0  from which we 

calculate the micromotion of the density ∫n t x t x⟨ ( )⟩ = |Ψ ( , )| dj
4  shown 

in Fig. 2f.
The scattering length is modulated as a t a a ωt( ) = − cos .dc

1
2 ac   

The time-averaged interaction energy (chemical potential) is 
∫E n t a t t= ( ) ( )d ,N

V T
ħ

mint
1 4π 2

0
 for N atoms in volume V, corresponding to 

experimentally measured atomic density N/V, which is averaged over 
length scales large than the lattice constant.

Comparing the interaction energy Eint for k = ±k* states, we obtain the 
factor η in the expression of the density-dependent gauge field Ad in 
equation (4). This approach treats the interaction effects to the zeroth 
order in perturbation, as we neglect the deviation in density profile 
from the single-particle eigenstates owing to interactions.

Analytically, we can obtain a qualitative understanding of the crea-
tion of the tilted double-well dispersion from perturbation theory. 
Performing the Jacobi–Anger expansion on the lattice potential, we 
arrive at

H
ħ
m

U
k x H H H= −

2
∂ +

2
cos + = + ,x

2
2

0 1 0 1

where H0 describes the static lattice and H1 describes the driving,

H
U

f f=
4 (e + e ),k x k x

1
i −i ⁎0 0

( )f α β α ωt αβ ωt= −
1
4

+ + 2i sin − 2 cos .2 2

Here α = k0X1, β = k0X2 and we keep terms up to the second order in α 
and β and up to ω in frequency.

The eigenstates of H0 are the Bloch waves. Consider the states k0,  
and k2,  in the ground and second excited bands at quasi-momentum 
k. Under rotating-wave approximation, the effective Hamiltonian is

H
E

E
=

Ω
Ω + Δ

,eff
0
⁎

0











where E k H k= 0, 0,0 0  is the energy of the ground band, Δ is the detun-
ing and the coupling is

α αβΩ = Ω − Ω .− +

Here k kΩ = 0, e ± e 2, .k x k x
±

i −i0 0  From here, we can see that the coupling 
has two contributions: one is the direct coupling Ω1 = αΩ− and the other 
is the Raman coupling Ω2 = −αβΩ+. The parity of Ω− is odd and that of 
Ω+ is even, because the ground and second excited bands both have 
even-parity wavefunctions.

Near k = 0, to the first order, the matrix elements depend on 
quasi-momentum k as Ω = αω0k − αβω1, E0 = ϵ0k

2 and Δ = ϵ1k
2 + Δ0. Then 

the hybridized ground band dispersion is









( )E ϵ k ϵ k αω k αβω ϵ k= +

1
2

+ Δ − 4( − ) + + Δ .g 0
2

1
2

0 0 1
2

1
2

0

2

The dispersion has the shape of a double well because the coupling 
has a zero crossing near k = 0. As the fundamental shaking frequency 
is red detuned, the coupling pushes down the ground-band energy. 
The tilt is a result of the constructive and destructive interference of 
Ω1 and Ω2 at positive and negative quasi-momentum, which pushes 
down the ground-band energy more on one side than the other.  
To the lowest order, this tilt is given by a linear term in the dispersion 
α βω ω k αβω2 / 4( ) + Δ ,2

0 1 1
2

0
2  which effectively generates a static gauge 

field A β k X∝ = .s 0 2  The sign of the gauge field depends on the phase 
between the X1 and X2 lattice modulation components.

The numerical Floquet calculation indicates that the modulation 
weakly couples the ground band to the first excited band in addition to 
the second excited band. The coupling to the first excited band mostly 
contributes to a constant energy shift and does not qualitatively change 
the shape of the dispersion.

System preparation
In our experiment, the optical lattice is formed by a pair of 
counter-propagating 1,064-nm lasers, with lattice constant 532 nm. 
We use parameters lattice depth U = 8.9ER, where ER = h × 1.3 kHz is the 
recoil energy, and ω = 2π × 9,091 Hz. Under our conditions, the factor 
η in equation (4) is η m ħk= 0.07 / ,⁎ ⁎  where m* = 0.7m0 and k* = 0.15kl.

After loading the atoms into the 1D optical lattice with harmonic 
confinement formed by 1,064-nm lasers, we prepare the BEC under a 
density-dependent gauge field by slowly ramping up the modulation 
amplitudes. We ramp up the amplitude X1 to 7 nm over 11 ms (100 oscil-
lation periods). As the critical shaking amplitude for the formation of 
double-well dispersion is 14 nm (obtained from the Floquet calcula-
tion of dispersion), the effective dispersion changes very little during 
this time, and we ramp quickly to reduce particle loss. We then ramp 
up the amplitude X1 to 21 nm over another 289.3 ms (2,630 oscillation 
periods), which gives a ramp rate slow enough to suppress fluctua-
tions from the Kibble–Zurek mechanism30 and allow for deterministic 
evolution of the system. The amplitudes X2 and aac are ramped to the 
final value over the first 11 ms. This ramp procedure turns on the gauge 
field slowly over time and results in a roughly constant critical density 
nc throughout the ramp.

In Fig. 2h, the modulation amplitude at which the BEC momentum 
changes sign is estimated to be 14(2)aB. To obtain this value, we fit the 
momentum-space distribution with two Gaussians and extract the 
population imbalance between the ±k* states. We plot the imbalance 
against the modulation amplitude aac and fit with a hyperbolic tangent 
curve (see Extended Data Fig. 1). From the fitted position of the zero 
crossing, we obtain the value 14(2)aB.

Although the dynamics during the ramp on of the gauge is determin-
istic, it is not quite adiabatic, as the two momentum minima are only 
offset by h × 3 Hz, comparable with the ramp time 300 ms, and we do not 
arrive at the ground state. During the ramp fields, the cloud systemati-
cally shrinks, in part because of particle loss that reduces the chemical 
potential and in part because of the reduction of quantum pressure as 
the dispersion crosses the critical point from parabolic to double well, 
during which the effective mass diverges and the quantum pressure 
drops to zero. As we are in the Thomas–Fermi regime, the quantum 
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pressure is usually negligible, but—in this case—its reduction is substan-
tial enough to bias the domain formation because a slow ramp across 
the critical point is very susceptible to any bias. We have confirmed 
this effect in experiments with no gauge field (balanced double-well 
dispersion) and in numerical simulations without particle loss.

In Fig. 3e, we repeat the experiment at three different total particle 
numbers, 4.8 × 104, 3.6 × 104 and 2.5 × 104. The data shown in Fig. 3a–d 
are from the dataset with particle number 4.8 × 104.

Extracting the domain densities from Bragg peaks
We extract the spatial distribution of the atoms in the k = ±k* states fol-
lowing the technique in ref. 30. At the time of detection, we switch off X2 
and aac and ramp the modulation amplitude X1 to 140 nm over 0.8 ms. 
This pulse of lattice shaking excites the atoms from the ground band to 
superposition states of excited bands at the same quasi-momentum, 
which have oscillating projections to each Brillouin zone. Atoms in dif-
ferent quasi-momentum states have different oscillations. We image the 
atoms at the time when the projections of k = ±k* states are maximally 
different. We perform a 6-ms time of flight to map the Brillouin zones 
to Bragg diffraction orders.

The densities in the Bragg diffraction orders

x y n x y n x y n x y( , ) = ( ( , ), ( , ), ( , ))−1 0 1n

is the sum of the contributions from atoms in the k = ±k* states,

n n e n e= ˆ + ˆ ,+ + − −

where the basis vectors ê± describe the distribution over the three Bragg 
diffraction orders of atoms in the k = ±k* states. We calibrate the basis 
vectors ê± by biasing the entire condensate into k = ±k* and performing 
the same time-of-flight measurement. The basis vectors ê± are L1 nor-
malized such that the components sum to 1. We determine the densities 
n± by fitting under the positivity constraint n± > 0.

The Bragg peaks of atoms in the k = ±k* states are shifted relative 
to each other during the time of flight, because of the difference in 
quasi-momentum. We take this shift into account when reconstruct-
ing the domain densities. Additionally, this shift may cause originally 
disjoint domains to overlap during the time of flight. The coherent 
domains interfere in the overlapping region, forming density waves at 
wavenumber 2k*. This effect does not greatly alter the extracted domain 
structure or domain-wall position, and we neglect it in our analysis.

Analysis of the domain structures
Because we observe that the domain walls are mostly perpendicular 
to the lattice direction, in our analysis, we treat the domain structures 
as 1D. For the analysis in Fig. 3e, we integrate the mean and difference 
of the domain densities, n = n+ + n− and Δn = n+ − n−, over the y direction 
and then select the central 10% of the cloud. Effectively, we select a 
central vertical strip of the cloud. We have checked that our results are 
not sensitive to the chosen strip width. From each experimental reali-
zation, we calculate the magnetization M = Δn/n and we plot the aver-
age of n and M for each set of modulation amplitude aac and particle 
number N. We convert the 1D density to 3D density by dividing by the 
length scales in the y and z directions, ly and lz. As the chemical poten-
tial is not larger than the trap frequency in the z direction, we use the 
length scale of the harmonic oscillator ground state l h mω= / .z  We 
obtain the length scale ( )∫ ∫l n y n y= d / dy

2 2  from the measured density 
profiles n.

From the experiment data in Fig. 3e, we extract a value of ϵexp in equa-
tion (5) by fitting to the expression

( )
M

n ϵ g

C
= tanh

ln − ln /
,

exp ac

with each data point in Fig. 3e corresponding to a magnetization M, a 
density n and a modulation strength gac. This expression represents the 
relation M = sign(n − ϵexp/gac), but smoothes the step function by a width 
parameter C. We present our fit to the experiment data in Extended 
Data Fig. 2.

For the analysis in Fig. 4c, we integrate the difference of the domain 
densities Δn over the y direction. We then extract the position of the 
zero crossing of the integrated 1D domain density by fitting a straight 
line to the six data points (each corresponding to a pixel in the image) 
around the numerical zero crossing, to improve accuracy. The error 
bars shown in Fig. 4c are 68% confidence intervals of this fit. With this 
procedure, we determine the domain-wall position with an uncertainty 
of around 0.3 microns.

We fit the domain-wall trajectories in Fig. 4c by assuming a common 
initial velocity for all ramp rates, a constant acceleration during the 
ramp that is independently varied for each ramp rate and a constant 
velocity after the ramp stops. The fitted initial velocity is −17(10) μm s−1, 
which we attribute to residual dynamics during the domain-formation 
process.

The conversion of the ramp rate aaċ  to the electric field E  is derived 
from equation (4). We have

E ̇ħ
m

nηa=
4π

,
2

0
ac

with density n = 2.8 × 1013 cm−3 from the experiment. The prediction 
of parameter β for bare atoms is obtained from this relation and the 
charge-to-mass ratio 1/m*.
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Extended Data Fig. 1 | Estimation of the zero-crossing position. The 
population imbalance between the ±k* states in Fig. 2h is fitted to extract the 
zero-crossing position.
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Extended Data Fig. 2 | Extraction of ϵexp from magnetization M. Experiment 
data in Fig. 3e are fitted to extract the value of ϵexp.
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