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ABSTRACT

The remanufacturing workforce can benefit from the
capabilities of robotic technology, where robots can
alleviate the labor-intensive nature of disassembly
operations and help with handling toxic and hazardous
materials. However, operators’ safety is an important
aspect of human-robot collaboration in disassembly
operations. This study focuses on predicting human hand
motion to provide advanced information to disassembly
robots when collaborating with humans. A prediction
framework is proposed, which consists of two deep learning
models, including convolutional long short-term memory
(ConvLSTM) and You Only Look Once (YOLO). ConvLSTM
forecasts the next-frame image using images from the
disassembly process, and then the YOLO model identifies
the human hand object on the predicted image resulting
from ConvLSTM. The disassembly images collected from
four desktop computers are used to train the ConvLSTM and

YOLO. The results reveal that the combined framework of

ConvLSTM and YOLO performs well in predicting human
hand motion and locating the hand object. The outcomes
highlight the need for developing deep learning models
capable of recognizing human motion when working with
different designs as often remanufacturing workforce have
to deal with a wide range of products from different brands,
models, and conditions.

Keywords: human motion prediction, end-of-use
products, disassembly, ConvLSTM, YOLO, human-robot
collaboration

Minghui Zheng
Assistant Professor
Mechanical and Aerospace Engineering
University at Buffalo, Buffalo, NY, 14260
mhzheng@buffalo.edu

Sara Behdad*

Associate Professor
Environmental Engineering Sciences
University of Florida, Gainesville, FL, 32611
sarabehdad@ufl.edu

1. INTRODUCTION

Human-robot collaboration for disassembly processes
is receiving attention in recent years. Predicting human
motions and enhancing product design are among the
strategies for improving the operator’s safety when
interacting with robots [1][2][3].

The human motion prediction is helpful in different
applications such as self-driving cars, human-computer
interaction, and robotics; however, since human motion is
often a complicated stochastic process involving
uncertainties, it is still challenging to describe it accurately
[4]. This is particularly important in disassembly operations,
where human-robot collaboration is still an emerging field.

Recently, a considerable number of studies have
conducted human motion prediction utilizing different
methods. To name a few, Martinez et al. [5] built a recurrent
neural network to forecast human motion. Ding et al. [6]
constructed a hidden Markov model on long-term human
motion prediction for safe human-robot interaction. Wang et
al. [7] applied the Gaussian process to model human
motions. Butepage et al. [8] built deep representation
learning by comparing different structure neural networks
for human motion prediction and classification. Mainprice
et al. [9] created a prediction model based on a gaussian
mixture model. Cui et al. [10] built a temporal convolutional
generative adversarial network on human motion prediction
such as walking, smoking, eating, and discussion.

While previous studies have addressed human motion
prediction, there remain limitations as the area of
disassembly operations has not been explored well.
Moreover, many of the previous studies have been focused
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on using data collected from wearable sensors [11]. Gril et
al. [12] built a linear tensor regression model for human
motion prediction in assembly and disassembly operations.
Zhang et al. [13] applied the recurrent neural network to
predict motion in human-robot collaboration for assembly
actions. Liu et al. [14] combined a convolutional neural
network (CNN) and long short-term memory network
(LSTM) to categorize human motion tasks on assembly by
videos. Still, the literature on human motion prediction in
disassembly operations is limited. The application of deep
learning models for human motion prediction in
disassembly operations needs further attention.

Varied from previous studies, this study targets the
disassembly operations without using sensor data and
relying on the scene images. The human motion prediction
is based on (1) predicting the next-frame image and (2)
detecting hands using object detection. First, the
convolutional long short-term memory (ConvLSTM) model
is used to forecast the next-frame image based on previous
image frames. Then, the You Only Look Once (YOLO)
model detects human hands in the image predicted by
ConvLSTM. The prediction duration is 1,000 ms to be
considered long-term prediction [15]. To the best of our
knowledge, no study combines the ConvLSTM and YOLO
model to predict the next-frame image and object detection
for human motion prediction.

Human motion prediction is essential for robot
awareness and safety. When human workers and robots are
disassembling parts simultaneously, it is necessary to avoid
any collision. With enhanced prediction, robots predict the
next moment and prevent any danger.

In this study, we aim to use deep learning models to
identify different models of desktops, each representing a
unique design, and further use deep learning to forecast the
next-frame image and identify human hand objects.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the proposed framework.
Section 3 introduces the dataset used for training the deep
learning models. Section 4 discusses the results, and Section
5 concludes the paper.

2. METHODOLOGY
The proposed framework consists of two deep learning
models: ConvLSTM and YOLO.

2.1 ConvLSTM to predict the next-frame image

Predicting the next frame of an image sequence is a
popular topic in artificial intelligence. To name a few
studies, Itagi et al. [16] built generative adversarial networks
to forecast the next frame of videos. Liu et al. [17] discussed
latent space for video prediction. Fujitake et al. [18] trained
representation learning for video prediction and online
object detection.

Among many available deep learning models, several
recent studies have used ConvLSTM. The ConvLSTM is
proposed by Shi et al. [19] in 2015 to address the issues of a

spatiotemporal sequence forecasting problem for rainfall
prediction and is considered spatiotemporal predictive
learning [20]. Lotter et al. [21] used ConvLSTM for video
prediction along with unsupervised learning. Finn et al. [22]
also used ConvLSTM and video prediction for physical
interaction with robot arms.

In this study, the ConvLSTM is built with three layers
for resized images of 64x64 pixels with one channel of
grayscale images. Each pixel value is divided by 255 to be
restricted between 0 and 1. The kernel size is 3 by 3, and the
ReLU activation function is implemented. The binary cross-
entropy is used for loss function with Adam optimizer with
0.0001 learning rate.

2.2 YOLOv3 for hand object detection

The YOLO model was proposed by Redmon et al. [23]
in 2016. YOLO is a popular object detection model in
various applications. Lan et al. [24] used YOLO for
pedestrian detection. Buri¢ et al. [25] adopted YOLO for the
ball and player detection. YOLO has evolved with different
versions, where the latest version is YOLOv6. This study
uses YOLOvV3 to identify hand objects. YOLOv3 uses
Darknet-53 network as the backbone [26], and has 106
layers [27]. The details of YOLOv3 loss function can be
found in Ref. [28].

2.3 The proposed framework for human hand
motion prediction

Figure 1 shows the overview of the proposed
framework. We use the existing ConvLSTM [29] and YOLO
[30] models in this study. The ConvLSTM uses a sequence
of disassembly images extracted from videos to forecast the
next-frame image. Prior studies used the last 10 frames as
input [20]. Thus, in this study, the input is images from time
t-10 to t, and the output is the next-frame image for time t+1.
The interval between each disassembly image is 1,000 ms.
We only consider the 1,000 ms for a long-term prediction
[15]. The optimal time length suitable for providing the
safety is not discussed in this study. The study only applies
the 2D images, which have less information than the
kinematics and kinetic data. In future research, the
kinematics and kinetic data can supplement the 2D images
to increase the prediction accuracy. After predicting the
next-frame image by ConvLSTM, the YOLOv3 model will
be used to identify the hand object.

The YOLO model is implemented from [30]. The
dataset is wrapped up together before shuffling. The default
proportion of training and testing is set to 90% and 10%
[30]. After splitting into the training and testing phase from
the shuffling samples, YOLOv3 will be trained and tested.
Different designs of desktops have different layouts and
require complex hand movements. When disassembling
different brands of desktops, hands will block the status of
each component. If the component states occlude the hands,
the YOLOV3 cannot detect hands.
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FIGURE 1: The proposed framework consisting of ConvLSTM and YOLOv3

We assume the operator’s hands are not occluded in the
disassembly process. Further research is needed on
identifying overlapping objects and considering hand
occlusion covered by component states.

3. BACKGROUND OF DATASET

Four models of desktop computers have been used for
data collection and video recording; each desktop is
disassembled once. 242, 150, 185, and 200 images have
been collected from the disassembly process of Dell XPS,
Dell OptiPlex 780, Dell OptiPlex 960, and Dell OptiPlex
990, respectively. The camera resolution on video
recordings is 1280 x 720 pixels with 30 fps. The obtained
image type is RGB. The distance between the camera and
the operator’s hand is around 2 ft. The videos are transferred
to images. The frame is selected every 30 frames to ensure
the interval between each disassembly image is 1,000 ms.
The four desktop models have different layouts and
positions of components, as shown in Figure 2.

The order of removing components of each desktop is
randomly implemented to increase the challenges of model
training. The total number of images is 777, and the size of
each image is 64 by 64 pixels. Figure 3 shows an example
of the disassembly process of Dell OptiPlex 990. The
interval between each image is 1,000 ms to reflect the long-
term prediction. To make the model training faster,
grayscale images have been used.

The images from Dell XPS, Dell OptiPlex 780, and Dell
OptiPlex 960 have been used for training and testing. The
training and testing proportion is 90% and 10% (519 images
for training and 58 for testing).

The images from the three desktops were shuffled
before splitting into training and testing. The OptiPlex 990
is used as an unseen dataset to check the model performance.
Unlike most studies that combine all datasets to do shuffling

before splitting for training models, we want to evaluate if
the models can identify an unseen design. Each desktop
reflects a different design. The proposed framework should
be capable of identifying an unseen design as it is very
common in remanufacturing production lines that operators
must handle products with different models and conditions.

4. THE RESULTS OF HUMAN HAND MOTION
PREDICTION
This section describes the outcomes and elaborates on
the limitations of the study.

4.1 Human hand motion prediction

Table 1 shows the loss function values for the training,
testing phase, and unseen dataset. To avoid overfitting, the
trained parameters are selected such that the training loss
and testing loss are close to each other. The result of
ConvLSTM is the average loss between the predicted pixel
values and ground truth pixel values for a 64x64 image.
Considering only 1 pixel for testing, the average loss is 0.60
(2472/64/64). The YOLOV3 combines three types of error:
coordinate error, IOU, and classification error to be the loss
function [28]. The results of YOLOvV3 loss consider all
images in contrast to the average loss of an image in
ConvLSTM.

To evaluate the prediction errors for ConvLSTM, the
mean square error (MSE) is used to calculate the average
errors for each pixel. The value of each pixel is between 0
to 255 in the grayscale, and the size of each image is 64 by
64. For example, each image has 4,096 (64x64) pixels, and
each pixel is greater than or equal to 0 and less than 255. The
MSE for predicted and ground truth images is the
summation of square errors for 4,096 pixels divided by
4,096.



FIGURE 2: The four models of desktops used in the data collection: (A) Dell XPS, (B) Dell OptiPlex 780, (C) Dell OptiPlex
960, and (D) OptiPlex 990.
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FIGURE 3: Examples of images of the disassembly process of Dell OptiPlex 990.



FIGURE 4: Results of OptiPlex 990 as an unseen dataset for the proposed framework on (A) human hand detection in
forecasting images and (B) human hand detection on actual images

The training MSE is 0.40, the testing MSE is 0.49, and
the MSE of the unseen dataset is 0.41. The maximum MSE
is 65,025 (255x255) when the maximum pixel difference
value between the predicted and ground truth pixel is 255.
The MSE of less than 1 reflects that the predicted images are
close to the actual ones.

The overall Intersection over Union (IoU) is used to
evaluate the YOLOV3 performance. The IoU of the training
and testing phase is 0.79. The IoU greater than 0.5 reflects a
reasonable prediction [31]. Figure 4 shows the human hand
motion detection for the OptiPlex 990 desktop. Figure 4 (A)
is the human hand motion prediction by applying
ConvLSTM and YOLOvV3, and Figure 4 (B) is only the
object detection by YOLOv3 on the actual images.

In Figure 4 (A), although OptiPlex 990 is an unseen
dataset, the proposed framework can forecast the next-frame
images and locate the hands’ position. When both hands are
close to each other, YOLOV3 detects them together. When
hands are far, YOLOV3 identifies hands separately.

In addition, YOLOvV3 has reasonable capabilities to
identify hands even though the forecasting images are
blurred, as shown in Figure 4 (A)-3.

TABLE 1: The training and testing results of loss function

for ConvLSTM and YOLOvV3
Phase ConvLSTM YOLOv3
Training 2461 15.3
Testing 2472 15.5
Unseen dataset 2538 22.8

4.2 Network structure discussion

The ConvLSTM combines CNN and LSTM. CNN is
used for spatial prediction, and LSTM is applied to temporal
prediction. The ConvLSTM possesses the above two
characteristics for Spatio-temporal prediction. In this study,
the disassembly of the different design desktops is a
sequence process. The images of the disassembly process
have spatial information such as the position of hands and
desktop’s components and temporal information like the
movement of hands. The ConvLSTM has the feature of long
short-term memory to remember the historical sequence
information and analyze the pictures by the CNN feature.
The pattern of human hand motion is regular. Thus, the
ConvLSTM structure is suitable for predicting the next
frame of images.

The YOLOV3 applies the Darknet-53 network as the
backbone for object detection. Except for convolutional
layers, the YOLOv3 also has residual neural network
(ResNet) layers. The ResNet layers reduce the vanishing
gradient problem. The architectures of ConvLSTM and
YOLOV3 influence the performance of accuracy and results.

4.3 Limitations of the current study

The proposed framework has several limitations. If the
hands' movement is too fast or complicated, the ConvLSTM
will produce blurred images, and consequently, YOLOV3
cannot detect the human hands. In addition, the proposed
framework is limited in forecasting a larger timescale.
Currently, the time interval between each image is 1,000 ms.



The framework cannot predict the motion with a larger
timescale, such as the next 10 seconds. The larger the time
length gets, the uncertainties of human hand motion
prediction increase.

5. CONCLUSION

The study proposes a framework for combining
ConvLSTM with YOLOV3 to forecast the human hand
motion during disassembly operations. The proposed
framework applies deep learning models for enhancing
human-robot collaborations in disassembly tasks where
remanufacturing operators handle a stream of unknown
designs. A dataset of four desktop computers, including Dell
XPS, Dell OptiPlex 780, Dell OptiPlex 960, and Dell
OptiPlex 990, have been used to evaluate the capabilities of
the proposed framework. The results reveal that the
proposed framework performs well even with an unseen
design, as shown in Figure 4.

The study can be extended in several ways. Other object
detection models can be applied for comparison. The
resolution and the timescale of prediction can be extended.
The uncertainty and complexity of movements can be
considered. The current study only considers the next 1,000
ms prediction. Other time lengths can be discussed in further
research. Also, other data formats such as kinematic data can
be applied. Moreover, further research can apply the active
learning approach to other brands and products with more
complex miniaturized structures, such as smartphones and
medical devices. In addition, the outcomes of the study can
be evaluated further by conducting human-robot
collaboration experiments.
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