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ABSTRACT 
The remanufacturing workforce can benefit from the 

capabilities of robotic technology, where robots can 
alleviate the labor-intensive nature of disassembly 
operations and help with handling toxic and hazardous 
materials. However, operators’ safety is an important 
aspect of human-robot collaboration in disassembly 
operations. This study focuses on predicting human hand 
motion to provide advanced information to disassembly 
robots when collaborating with humans. A prediction 
framework is proposed, which consists of two deep learning 
models, including convolutional long short-term memory 
(ConvLSTM) and You Only Look Once (YOLO). ConvLSTM 
forecasts the next-frame image using images from the 
disassembly process, and then the YOLO model identifies 
the human hand object on the predicted image resulting 
from ConvLSTM. The disassembly images collected from 
four desktop computers are used to train the ConvLSTM and 
YOLO. The results reveal that the combined framework of 
ConvLSTM and YOLO performs well in predicting human 
hand motion and locating the hand object. The outcomes 
highlight the need for developing deep learning models 
capable of recognizing human motion when working with 
different designs as often remanufacturing workforce have 
to deal with a wide range of products from different brands, 
models, and conditions.   

 
Keywords: human motion prediction, end-of-use 

products, disassembly, ConvLSTM, YOLO, human-robot 
collaboration 

1. INTRODUCTION 
Human-robot collaboration for disassembly processes 

is receiving attention in recent years. Predicting human 
motions and enhancing product design are among the 
strategies for improving the operator’s safety when 
interacting with robots [1][2][3]. 

The human motion prediction is helpful in different 
applications such as self-driving cars, human-computer 
interaction, and robotics; however, since human motion is 
often a complicated stochastic process involving 
uncertainties, it is still challenging to describe it accurately 
[4]. This is particularly important in disassembly operations, 
where human-robot collaboration is still an emerging field. 

Recently, a considerable number of studies have 
conducted human motion prediction utilizing different 
methods. To name a few, Martinez et al. [5] built a recurrent 
neural network to forecast human motion. Ding et al. [6] 
constructed a hidden Markov model on long-term human 
motion prediction for safe human-robot interaction. Wang et 
al. [7] applied the Gaussian process to model human 
motions. Butepage et al. [8] built deep representation 
learning by comparing different structure neural networks 
for human motion prediction and classification. Mainprice 
et al. [9] created a prediction model based on a gaussian 
mixture model. Cui et al. [10] built a temporal convolutional 
generative adversarial network on human motion prediction 
such as walking, smoking, eating, and discussion. 

While previous studies have addressed human motion 
prediction, there remain limitations as the area of 
disassembly operations has not been explored well. 
Moreover, many of the previous studies have been focused 
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on using data collected from wearable sensors [11]. Gril et 
al. [12] built a linear tensor regression model for human 
motion prediction in assembly and disassembly operations. 
Zhang et al. [13] applied the recurrent neural network to 
predict motion in human-robot collaboration for assembly 
actions. Liu et al. [14] combined a convolutional neural 
network (CNN) and long short-term memory network 
(LSTM) to categorize human motion tasks on assembly by 
videos. Still, the literature on human motion prediction in 
disassembly operations is limited. The application of deep 
learning models for human motion prediction in 
disassembly operations needs further attention. 

Varied from previous studies, this study targets the 
disassembly operations without using sensor data and 
relying on the scene images. The human motion prediction 
is based on (1) predicting the next-frame image and (2) 
detecting hands using object detection. First, the 
convolutional long short-term memory (ConvLSTM) model 
is used to forecast the next-frame image based on previous 
image frames. Then, the You Only Look Once (YOLO) 
model detects human hands in the image predicted by 
ConvLSTM. The prediction duration is 1,000 ms to be 
considered long-term prediction [15]. To the best of our 
knowledge, no study combines the ConvLSTM and YOLO 
model to predict the next-frame image and object detection 
for human motion prediction. 

Human motion prediction is essential for robot 
awareness and safety. When human workers and robots are 
disassembling parts simultaneously, it is necessary to avoid 
any collision. With enhanced prediction, robots predict the 
next moment and prevent any danger. 

In this study, we aim to use deep learning models to 
identify different models of desktops, each representing a 
unique design, and further use deep learning to forecast the 
next-frame image and identify human hand objects.  

The remainder of this paper is organized as follows. 
Section 2 provides an overview of the proposed framework. 
Section 3 introduces the dataset used for training the deep 
learning models. Section 4 discusses the results, and Section 
5 concludes the paper. 
 
2. METHODOLOGY  

The proposed framework consists of two deep learning 
models: ConvLSTM and YOLO.  

 
2.1 ConvLSTM to predict the next-frame image 

Predicting the next frame of an image sequence is a 
popular topic in artificial intelligence. To name a few 
studies, Itagi et al. [16] built generative adversarial networks 
to forecast the next frame of videos. Liu et al. [17] discussed 
latent space for video prediction. Fujitake et al. [18] trained 
representation learning for video prediction and online 
object detection.  

Among many available deep learning models, several 
recent studies have used ConvLSTM. The ConvLSTM is 
proposed by Shi et al. [19] in 2015 to address the issues of a 

spatiotemporal sequence forecasting problem for rainfall 
prediction and is considered spatiotemporal predictive 
learning [20]. Lotter et al. [21] used ConvLSTM for video 
prediction along with unsupervised learning. Finn et al. [22] 
also used ConvLSTM and video prediction for physical 
interaction with robot arms.  

In this study, the ConvLSTM is built with three layers 
for resized images of 64x64 pixels with one channel of 
grayscale images. Each pixel value is divided by 255 to be 
restricted between 0 and 1. The kernel size is 3 by 3, and the 
ReLU activation function is implemented. The binary cross-
entropy is used for loss function with Adam optimizer with 
0.0001 learning rate. 
 
2.2 YOLOv3 for hand object detection 

The YOLO model was proposed by Redmon et al. [23] 
in 2016. YOLO is a popular object detection model in 
various applications. Lan et al. [24] used YOLO for 
pedestrian detection. Burić et al. [25] adopted YOLO for the 
ball and player detection. YOLO has evolved with different 
versions, where the latest version is YOLOv6. This study 
uses YOLOv3 to identify hand objects. YOLOv3 uses 
Darknet-53 network as the backbone [26], and has 106 
layers [27]. The details of YOLOv3 loss function can be 
found in Ref. [28]. 
 
2.3 The proposed framework for human hand 

motion prediction 
Figure 1 shows the overview of the proposed 

framework. We use the existing ConvLSTM [29] and YOLO 
[30] models in this study. The ConvLSTM uses a sequence 
of disassembly images extracted from videos to forecast the 
next-frame image. Prior studies used the last 10 frames as 
input [20]. Thus, in this study, the input is images from time 
t-10 to t, and the output is the next-frame image for time t+1. 
The interval between each disassembly image is 1,000 ms. 
We only consider the 1,000 ms for a long-term prediction 
[15]. The optimal time length suitable for providing the 
safety is not discussed in this study. The study only applies 
the 2D images, which have less information than the 
kinematics and kinetic data. In future research, the 
kinematics and kinetic data can supplement the 2D images 
to increase the prediction accuracy. After predicting the 
next-frame image by ConvLSTM, the YOLOv3 model will 
be used to identify the hand object. 

The YOLO model is implemented from [30]. The 
dataset is wrapped up together before shuffling. The default 
proportion of training and testing is set to 90% and 10% 
[30]. After splitting into the training and testing phase from 
the shuffling samples, YOLOv3 will be trained and tested. 
Different designs of desktops have different layouts and 
require complex hand movements. When disassembling 
different brands of desktops, hands will block the status of 
each component. If the component states occlude the hands, 
the YOLOv3 cannot detect hands.  
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FIGURE 1: The proposed framework consisting of ConvLSTM and YOLOv3  

 
We assume the operator’s hands are not occluded in the 

disassembly process. Further research is needed on 
identifying overlapping objects and considering hand 
occlusion covered by component states. 

 
3. BACKGROUND OF DATASET 

Four models of desktop computers have been used for 
data collection and video recording; each desktop is 
disassembled once. 242, 150, 185, and 200 images have 
been collected from the disassembly process of Dell XPS, 
Dell OptiPlex 780, Dell OptiPlex 960, and Dell OptiPlex 
990, respectively. The camera resolution on video 
recordings is 1280 x 720 pixels with 30 fps. The obtained 
image type is RGB. The distance between the camera and 
the operator’s hand is around 2 ft. The videos are transferred 
to images. The frame is selected every 30 frames to ensure 
the interval between each disassembly image is 1,000 ms. 
The four desktop models have different layouts and 
positions of components, as shown in Figure 2.  

The order of removing components of each desktop is 
randomly implemented to increase the challenges of model 
training. The total number of images is 777, and the size of 
each image is 64 by 64 pixels. Figure 3 shows an example 
of the disassembly process of Dell OptiPlex 990. The 
interval between each image is 1,000 ms to reflect the long-
term prediction. To make the model training faster, 
grayscale images have been used. 

The images from Dell XPS, Dell OptiPlex 780, and Dell 
OptiPlex 960 have been used for training and testing. The 
training and testing proportion is 90% and 10% (519 images 
for training and 58 for testing).  

The images from the three desktops were shuffled 
before splitting into training and testing. The OptiPlex 990 
is used as an unseen dataset to check the model performance. 
Unlike most studies that combine all datasets to do shuffling 

before splitting for training models, we want to evaluate if 
the models can identify an unseen design. Each desktop 
reflects a different design. The proposed framework should 
be capable of identifying an unseen design as it is very 
common in remanufacturing production lines that operators 
must handle products with different models and conditions. 

 
4. THE RESULTS OF HUMAN HAND MOTION 

PREDICTION 
This section describes the outcomes and elaborates on 

the limitations of the study.  
 

4.1 Human hand motion prediction 
 Table 1 shows the loss function values for the training, 

testing phase, and unseen dataset. To avoid overfitting, the 
trained parameters are selected such that the training loss 
and testing loss are close to each other. The result of 
ConvLSTM is the average loss between the predicted pixel 
values and ground truth pixel values for a 64x64 image. 
Considering only 1 pixel for testing, the average loss is 0.60 
(2472/64/64). The YOLOv3 combines three types of error: 
coordinate error, IOU, and classification error to be the loss 
function [28]. The results of YOLOv3 loss consider all 
images in contrast to the average loss of an image in 
ConvLSTM.  

To evaluate the prediction errors for ConvLSTM, the 
mean square error (MSE) is used to calculate the average 
errors for each pixel. The value of each pixel is between 0 
to 255 in the grayscale, and the size of each image is 64 by 
64. For example, each image has 4,096 (64x64) pixels, and 
each pixel is greater than or equal to 0 and less than 255. The 
MSE for predicted and ground truth images is the 
summation of square errors for 4,096 pixels divided by 
4,096.  
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FIGURE 2: The four models of desktops used in the data collection: (A) Dell XPS, (B) Dell OptiPlex 780, (C) Dell OptiPlex 
960, and (D) OptiPlex 990. 

 
 

 

 
 

FIGURE 3: Examples of images of the disassembly process of Dell OptiPlex 990. 
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FIGURE 4: Results of OptiPlex 990 as an unseen dataset for the proposed framework on (A) human hand detection in 

forecasting images and (B) human hand detection on actual images 
 

 
The training MSE is 0.40, the testing MSE is 0.49, and 

the MSE of the unseen dataset is 0.41. The maximum MSE 
is 65,025 (255x255) when the maximum pixel difference 
value between the predicted and ground truth pixel is 255. 
The MSE of less than 1 reflects that the predicted images are 
close to the actual ones.  

The overall Intersection over Union (IoU) is used to 
evaluate the YOLOv3 performance. The IoU of the training 
and testing phase is 0.79. The IoU greater than 0.5 reflects a 
reasonable prediction [31]. Figure 4 shows the human hand 
motion detection for the OptiPlex 990 desktop. Figure 4 (A) 
is the human hand motion prediction by applying 
ConvLSTM and YOLOv3, and Figure 4 (B) is only the 
object detection by YOLOv3 on the actual images. 

In Figure 4 (A), although OptiPlex 990 is an unseen 
dataset, the proposed framework can forecast the next-frame 
images and locate the hands’ position. When both hands are 
close to each other, YOLOv3 detects them together. When 
hands are far, YOLOv3 identifies hands separately.  

In addition, YOLOv3 has reasonable capabilities to 
identify hands even though the forecasting images are 
blurred, as shown in Figure 4 (A)-3.  

TABLE 1: The training and testing results of loss function 
for ConvLSTM and YOLOv3 

Phase ConvLSTM  YOLOv3 
Training 2461 15.3 
Testing 2472 15.5 
Unseen dataset 2538 22.8 

 

 
4.2 Network structure discussion  

The ConvLSTM combines CNN and LSTM. CNN is 
used for spatial prediction, and LSTM is applied to temporal 
prediction. The ConvLSTM possesses the above two 
characteristics for Spatio-temporal prediction. In this study, 
the disassembly of the different design desktops is a 
sequence process. The images of the disassembly process 
have spatial information such as the position of hands and 
desktop’s components and temporal information like the 
movement of hands. The ConvLSTM has the feature of long 
short-term memory to remember the historical sequence 
information and analyze the pictures by the CNN feature. 
The pattern of human hand motion is regular. Thus, the 
ConvLSTM structure is suitable for predicting the next 
frame of images. 

The YOLOv3 applies the Darknet-53 network as the 
backbone for object detection. Except for convolutional 
layers, the YOLOv3 also has residual neural network 
(ResNet) layers. The ResNet layers reduce the vanishing 
gradient problem. The architectures of ConvLSTM and 
YOLOv3 influence the performance of accuracy and results. 

 
4.3 Limitations of the current study 

The proposed framework has several limitations. If the 
hands' movement is too fast or complicated, the ConvLSTM 
will produce blurred images, and consequently, YOLOv3 
cannot detect the human hands. In addition, the proposed 
framework is limited in forecasting a larger timescale. 
Currently, the time interval between each image is 1,000 ms. 
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The framework cannot predict the motion with a larger 
timescale, such as the next 10 seconds. The larger the time 
length gets, the uncertainties of human hand motion 
prediction increase.  

 
5. CONCLUSION 

The study proposes a framework for combining 
ConvLSTM with YOLOv3 to forecast the human hand 
motion during disassembly operations. The proposed 
framework applies deep learning models for enhancing 
human-robot collaborations in disassembly tasks where 
remanufacturing operators handle a stream of unknown 
designs. A dataset of four desktop computers, including Dell 
XPS, Dell OptiPlex 780, Dell OptiPlex 960, and Dell 
OptiPlex 990, have been used to evaluate the capabilities of 
the proposed framework. The results reveal that the 
proposed framework performs well even with an unseen 
design, as shown in Figure 4.  

The study can be extended in several ways. Other object 
detection models can be applied for comparison. The 
resolution and the timescale of prediction can be extended. 
The uncertainty and complexity of movements can be 
considered. The current study only considers the next 1,000 
ms prediction. Other time lengths can be discussed in further 
research. Also, other data formats such as kinematic data can 
be applied. Moreover, further research can apply the active 
learning approach to other brands and products with more 
complex miniaturized structures, such as smartphones and 
medical devices. In addition, the outcomes of the study can 
be evaluated further by conducting human-robot 
collaboration experiments.  
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