
JMocker: Refactoring Test-Production Inheritance by Mockito
Xiao Wang

xwang97@stevens.edu
Stevens Institute of Technology

USA

Lu Xiao
lxiao6@stevens.edu

Stevens Institute of Technology
USA

Tingting Yu
tingting.yu@uc.edu

University of Cincinnati
USA

Anne Woepse
anne.woepse@ansys.com
Analytical Graphics, Inc.

USA

Sunny Wong
Sunny@computer.org

Analytical Graphics, Inc.
USA

ABSTRACT
Mocking frameworks are dedicated to creating, manipulating, and
verifying the execution of “faked" objects in unit testing. This helps
developers to overcome the challenge of high inter-dependencies
among software units. Despite the various benefits offered by exist-
ing mocking frameworks, developers often create a subclass of the
dependent class and mock its behavior through method overriding.
However, this requires tedious implementation and compromises
the design quality of unit tests. We contribute a refactoring tool as
an Eclipse Plugin, named JMocker, to automatically identify and
replace the usage of inheritance by using Mockito—a well received
mocking framework for Java projects. We evaluate JMocker on
four open source projects and successfully refactored 214 cases
in total. The evaluation results show that our framework is effi-
cient, applicable to different projects, and preserves test behav-
iors. According to the feedback of six real-life developers, JMocker
improves the design quality of test cases. JMocker is available at
https://github.com/wx930910/JMocker. The tool demo can be found
at https://youtu.be/HFoA2ZKCoxM.

1 INTRODUCTION
A key challenge to unit testing is that software elements are inter-
dependent on each other—as such the testing of software units
depends on each other [4, 11]. This hinders the developers to effi-
ciently test the system as true “units". To overcome this challenge,
practitioners proposed the concept of mocking to achieve test de-
pendency isolating. That is, they isolate the core function under
test (FUT) from its dependencies by replacing the dependencies
as “faked" objects [12, 13]. For instance, the FUT may depend on
an external server that is not deployed. Instead of waiting for the
deployment of the server, developers create a “faked" server that
provides the dummy functions as intended for the testing purposes.

Mocking frameworks, such as easyMock and Mockito provide
powerful functions for easily creating mock objects, controlling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516836

their behavior, and verifying the execution/status of the mock ob-
jects. However, in practice, developers often turn to a “hand-rolled"
approach—inheritance—for mocking [14]. That is, to create a “fake"
object, developers create a subclass of the dependent production
class, and control the subclass’s behavior through method over-
riding. The problem with sub-classing for mocking is that it is
not intended for mocking. Doing so will compromise the design
quality of unit tests. For instance, using inheritance for mocking
may lead to the following drawbacks, compared to using a mock-
ing framework: 1) Implicit test condition and blurred test logic; 2)
Difficult-to-maintain test code that couples with the production
code; and 3) Incohesive test design that separates the mocking be-
havior from the test case that leverages it. Consequently, using
inheritance for mocking may compromises the understandability
and maintainability of test cases in the long run [10, 14].

Prior work developed a variety of techniques that enable unit test
refactoring to improve code readability [5] and code quality [6, 9].
However, no existing work has focused on improving unit test
design by refactoring the usage of inheritance into mocking frame-
works. In this paper, we present an automated refactoring tool as
an Eclipse plugin, named JMocker. It first searches the code base of
a project, and identifies feasible refactoring candidates by filtering
out infeasible sub-classing cases using 11 criteria that we summa-
rize from empirical experience. Next, it automatically performs the
refactoring on certain refactoring candidate(s) or batch process all
refactoring candidates, based on the user’s selection. Finally, the
user may choose to view the generated refactoring solution in a
diff-view, showing the side-by-side comparison of the before and
after refactoring, similar to the diff view provided by Git. This al-
lows the users to review the refactoring solution and make changes
to it, if necessary. As evaluation, we successfully apply JMocker on
four real-life projects, running efficiently. The refactoring solutions
preserve the test behavior, decouple test code from the production
code, and improve the quality of the unit test cases in various as-
pects, such as cohesion/concise, readability/understandability and
maintainability, as well as making test conditions more explicit.

2 A MOTIVATING EXAMPLE
We use an example to illustrate and compare the difference between
mocking through inheritance and through Mockito:

In a course management system, 𝐶𝑜𝑢𝑟𝑠𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒 de-
fines a service, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑟𝑠𝑒 , to register courses for students.
This service depends on another class, 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 , which is

https://github.com/wx930910/JMocker
https://youtu.be/HFoA2ZKCoxM
https://doi.org/10.1145/3510454.3516836

responsible for managing the course database and sending out reg-
istration confirmations. The method, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 , in 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒

first registers a course for the student; once registered, it sends
out the registration confirmation to the student. Another method,
𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛, sends confirmation through an external server.
The FUT is the 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑟𝑠𝑒 in 𝐶𝑜𝑢𝑟𝑠𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒 . The
problem is that the dependency of FUT, 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 , is not
fully implemented yet—neither the database nor the external ser-
vice is available. Thus, we isolate the FUT, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑟𝑠𝑒 , from its
dependency, 𝐶𝑜𝑢𝑟𝑠𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒 , by mocking the latter.

Mocking by Inheritance. In Figure 1a,𝑀𝑜𝑐𝑘𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ex-
tends the𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (line 1). The formermocks the behaviors–
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 and 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛—of the latter throughmethod over-
riding. Two new private attributes, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 (line 2) and 𝑛𝑢𝑚 (line
3), are defined for tracking the execution of the two overridden
methods. That is, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 is set to be true (line 6) when 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
executes; while 𝑛𝑢𝑚 increments (line 10) each time sendConfirma-
tion executes.

The test case, 𝑡𝑒𝑠𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑟𝑠𝑒 , follows the “AAA" (Arrange,
Act, Assert) pattern [7]. First, it arranges the environment for test-
ing. This includes creating an instance of𝑀𝑜𝑐𝑘𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒—
𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒—(line 15), creating an instance of CourseRegistra-
tionService, 𝑐𝑜𝑢𝑟𝑠𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑖𝑐𝑒 , which is the FUT and set
𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 for courseRegistrationService. Of particular note,
since the logic defined in this subclass prepares mocking behaviors
for the unit test case, it is also part of the “Arrange" in the “AAA"
pattern. Next, it acts the FUT (line 18). Lastly, the test case asserts
the value of 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 and 𝑛𝑢𝑚 with𝑀𝑜𝑐𝑘𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (line
19 and 20). They confirm that 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 is true, indicating method
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 is executed; and that 𝑛𝑢𝑚 equals 2, indicating that one
confirmation are sent.

(a) Mocking by Inheritance

(b) Mocking by Mockito

Figure 1: A Motivating Example

Mocking by Mockito. In Figure 1b, Mockito directly creates a
“mock" of the 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (line 27). Mockito offers a light-
weighted method stubbing for controlling the behaviors of the
mock object for testing purposes. The goal is to avoid the real

execution of 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (dependency) and focus on its in-
teractions with 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑢𝑟𝑠𝑒 (the FUT). Thus, in line 28-32, we
stub the mocking behavior of 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 when 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 is
invoked. The 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 should do nothing, since we want
to avoid sending real confirmations. Thus, there is no need to stub
it. Acting the FUT (line 35) remains the same as using inheritance.
Mockito also provides an explicit mechanism for verifying the be-
haviors/status of the mock objects. In line 33 and 34, we directly
verify the execution of 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 and 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛.

Benefits of Mockito Over Inheritance. Mockito has the following
benefits over inheritance for mocking: 1) Mockito enables explicit
and easy to understand testing logic. It allows easy creation of
mock objects for different levels of function isolation. The verify
functions in Mockito provide an explicit mechanism for check-
ing the execution and status of the mock objects. In comparison,
inheritance requires the developer to manually craft additional at-
tributes/features in the subclass for tracking the execution of the
mock objects. The logic behind the attributes is implicit, and may
blur the testing logic. 2) Mockito decouples test and production
code to ease the maintenance of the test code. Renaming meth-
ods/interfaces or reordering parameters in the production code will
not break the test code, since Mockito wires the mock objects at
run-time. In comparison, inheritance relationship increases the cou-
pling between the test and production code. When the production
code changes, its subclasses have to change accordingly. 3) Mock-
ito improves the cohesion of test design by enforcing the “AAA"
pattern of unit test cases. Method stubbing through Mockito cohe-
sively associates with the mock object when it is arranged in the
test case. In comparison, in inheritance, the mock behavior (which
is part of the “Arrange") is defined in a separate subclass through
method overriding. It is detached from where the behavior is used
for testing.

3 JMOCKER APPROACH AND
IMPLEMENTATION

As shown in Figure 2, JMocker works in three steps: 1) identifying
the refactoring candidates, 2) refactoring each candidate, and 3)
displaying the diff view of the before and after refactoring.

3.1 Identifying the Refactoring Candidates
JMocker first identifies cases of test-production inheritance for
mocking, in particular those that are feasible for refactoring by us-
ing Mockito. This step excludes test subclasses that are not feasible
to be replaced by using Mockito. Based on a large-scale empiri-
cal study of 832 test-production inheritance cases from 5 real-life
projects [14], we establish a total of 11 excluding criteria. These
excluding criteria work in three layers: 1) excluding cases that
are not suitable for mocking, i.e. a test subclass inherits multiple
production classes; 2) excluding cases that cannot be refactored
due to limitations of Mockito, i.e. a test subclass contains special
code annotations; and 3) excluding cases with complicated design,
such that they are not appropriate to refactor automatically, i.e. a
test class contains an inner class definition. Due to space limit, the
details of the 11 criteria can be found here [14].

As shown in Figure 3a, after loading a project in Eclipse, a user
first selects the scope, e.g. the entire project, a package, or a group

2

Figure 2: Approach Overview

of files, from which refactoring candidates should be identified.
Here, we select project Cayenne-project and click the “Detect Mock
Refactor Candidates". JMocker will notify users with a list of identi-
fied refactoring candidates (i.e. classes), as shown in Figure 3b. The
user needs to select a candidate to proceed with the refactoring, by
clicking on “Start Refactor".

(a) Detect Refactoring Candidate

(b) Select Refactoring Candidate

Figure 3: Eclipse-Plugin

3.2 Performing the Refactoring
The second step performs the refactoring to replace the usage of in-
heritance by usingMockito. This is a conversion from 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒
before the refactoring to 𝑐𝑜𝑑𝑒 ′

𝑚𝑜𝑐𝑘𝑖𝑛𝑔
after the refactoring.

Before Refactoring. A refactoring candidate 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 can
be denoted as a triad: 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 =< 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠,

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 >.
Here, 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 extends the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 . It further con-

sists of four key elements:
• constructor creates a 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance.
• attribute is for tracking the execution of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .
• overriddenMethod defines dummy implementation of a function
in 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 .

• privateMethod defines additional function in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .
The 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 leverages 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to assist testing. It contains

at least one 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 . A 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 involves a 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 in two
parts for fulfilling the testing goal: 1) construction, which invokes a
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to create an instance; and 2) reference,
which accesses the attributes or call the methods of the instance.

After Refactoring. The 𝑐𝑜𝑑𝑒 ′
𝑚𝑜𝑐𝑘𝑖𝑛𝑔

eliminates 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 and
replaces it by a mock object. As such, 𝑐𝑜𝑑𝑒 ′

𝑚𝑜𝑐𝑘𝑖𝑛𝑔
=< 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝐶𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′ >. Thus 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 becomes 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′, and each
𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 in it becomes 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′. Each refactored 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′ is con-
sisted of 1) 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′ to create a mock object of the produc-
tionClass, which replaces the instance created by 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 in
𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒; 2) 𝑠𝑡𝑢𝑏𝑀𝑒𝑡ℎ𝑜𝑑 , which replaces the 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒𝑛𝑀𝑒𝑡ℎ𝑜𝑑 in
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 ; and 3) 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ′ to the mock object, which replaces
the respective 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 to the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 .

Auto-Refactoring Procedure. The overall rationale of converting
𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 to 𝑐𝑜𝑑𝑒 ′

𝑚𝑜𝑐𝑘𝑖𝑛𝑔
is to eliminate the usage of testSub-

Class, and replace it with a mock object. The key is to preserve the
behaviors of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .

The refactoring process contains five logical parts:
Part 1—CreateMockObject: This step creates a mock object us-

ingMockito to replace the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance. To ensure that the
initial status of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance and the mock object are
equivalent, the following three sub-parts are performed: 1) Replace
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance creation by mock object creation; 2) Extract
the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′. This ensures that the
status of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance is preserved for the mock ob-
ject. And, 3) Extract the constructor logic from 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′. This ensures that the mock object has equivalent
initial status as the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance. Each statement in the
constructor needs to be translated to follow the syntax after the
refactoring. Here, an infrastructure procedure named translate-
ToMocking takes the code body of the constructor as input, and
translates each statement following the mocking syntax.

Part 2—PreserveMocking Behavior: This preserves the mock-
ing behaviors by replacing the overriddenMethods in the testSub-
Class, by the 𝑠𝑡𝑢𝑏𝑀𝑒𝑡ℎ𝑜𝑑 of Mockito which directly associates with
themock object created/used in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′. For example, in Figure 1a,
thenAnswer stub (between line 27 to line 29) is used to replace
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 () (between line 4 to line 8) in Figure 1b. Note that if the
internal logic has reference to the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 attributes/methods,

3

Figure 4: Refactoring Diff View

we need to use translateToMocking procedure to convert the syntax
before moving.

Part 3—Preserve Reference: In a 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 , there could be
references to the attributes and/or methods of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠
instance—as such the instance is executed for facilitating testing.
To ensure that the behavior of 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 and 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′ remains
consistent, we need to preserve these references on the mock ob-
ject. Again, we use the translateToMocking procedure to preserve
𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 to be the respective 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ′ in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′.

Part 4—CreateMockMethod (for Code Reusability): A test-
SubClass could be created and used in multiple 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 . For each
constructor in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 , the refactored code block from Part-1
for mock object creation can be reused whenever this constructor
is called. To prevent code-clone, we encapsulate such block within
a separate MockMethod in the 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 for reuse. Note that the
condition to apply MockMethod includes: 1) the mock object is
reused in multiple 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 ′; and 2) there was no reference to the
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠’s attributes before refactoring.

Part 5—Infrastructure Procedure (translateToMocking): As
mentioned earlier, each previous step relies on the translateToMock-
ing procedure, which takes a certain code body in the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠—
e.g. methods, constructors, reference statements—as input, and con-
verts each statement in the code body following the new syntax
based on Mockito.

The implementation of the above logic parts of the refactoring
rely on the ASTRewrite mechanism of the Eclipse JDT.

3.3 Displaying the Refactoring Diff View
Once the refactoring is accomplished, the user can choose to “Pre-
view" the generated refactoring solution. Here, JMocker will gener-
ate a side-by-side comparison of the candidate before the refactoring
and after the refactoring as shown in Figure 4. JMocker follows
the convention of the Git diff view—highlighting the added and re-
moved lines of code in green and red backgrounds. This allows the
user to inspect the refactoring solution, and implement as necessary
improvements.

Figure 4 shows an example fromDataContextDataChannelEventsIT
in Cayenne, the left side shows the file before refactoring and
the right side shows the file after refactoring. The testSubClass
MockChannelListener is removed after refactoring, the testSubClass
instance is replaced by a mock object created by Mockito. The as-
sertion statements are replaced byMockito.verify() to directly verify
the method execution status and make test conditions clearer.

4 EVALUATION
We evaluated JMocker both quantitatively and qualitatively.

We evaluate JMocker on four open source projects, with a total
of 610 test subclasses. They are: JackRabbit—an open source content
repository for the Java platform [1], Log4J2—a Java-based logging
utility [2], Qpid-Proton-J—a high-performance and lightweight mes-
saging library [3] and Apache Commons—which focuses on all as-
pects of reusable Java Components, with 40 subprojects, including
Commons-Collections, Commons-Lang, Commons-Logging, etc.
Our evaluation focuses on different aspects of JMocker :

Table 1: Evaluation Result

Proj. #SubCl. Identification Refactoring
F-1 F-2 F-3 #Candidates Comp. Discre. Succ.

JackRabbit 71 15 4 9 43 (60%) 3 (4%) 0 (0%) 40 (56%)
Log4J2 100 31 19 17 33 (33%) 5 (5%) 3 (3%) 25 (25%)
Qpid-Proton-J 34 13 0 12 9 (26%) 0 (0%) 0 (0%) 9 (26%)
Commons 405 158 27 48 172 (42%) 19 (5%) 13 (3%) 140 (35%)
Total 610 217 50 86 257 (42%) 27 (4%) 16 (3%) 214 (35%)

Applicability. JMocker is generally applicable to four different
real-life projects. As shown in Table 1, JMocker detects 257 (column
“#Candidates”) refactoring candidates and successfully refactors
214 cases—indicating a 83% success rate over the feasible cases
and 35% success rate over all 610 test subclasses. The remaining
43 (17%) cases associate with special syntax that is not captured in
the filtering and/or refactoring process. 27 test sub-classes lead to
compile errors (column “Comp.”) due to syntax issues that were not

4

captured in the dataset of the empirical study. In addition, 16 test
sub-classes, after the refactoring, lead to test behavior discrepancies
(column “Discre.”) due to special cases. One can keep refining our
approach by incorporating these special cases.

Test Behavior Preservation. The test cases after the refactoring
generally preserve test behaviors in terms of detecting potential
defects in the production code. We inject 51811 mutations[8] to
the production code, and investigate the execution status of each
mutant—the coverage, survived or killed—before and after the refac-
toring. If the execution status of each mutant remains consistent,
it suggests that the test case behaviors remain consistent in terms
of detecting potential defects (i.e. mutants). The results show that
< 0.001% of the generated mutants changed their coverage, and
only 1% of the covered mutants changed survived/killed status. We
sample 30 mutants to investigate the reasons for the change. We
find that, in all 30 cases, the behaviors of the tests become non-
deterministic after injecting the mutants—the status changes even
without refactoring. Thus, the non-determinism is caused by the
mutations instead of the refactoring.

Code Coupling. We found that the refactoring overall decreases
code complexity by removing 24% to 38% of the inheritance and 5%
to 12% of the regular dependencies in the four evaluation projects.

Efficiency. The run-time performance of JMocker ranges from 30
to 250 seconds for detecting all refactoring candidates in a project,
and on average, it takes 1 second to refactor a case.

Feedback From Developers. We conduct a user study involving
six full-time developers to review the representative refactoring
solutions generated by JMocker. The feedback shows: 1) The refac-
toring solutions generated by JMocker are of good quality. 2) The
refactoring solutions generated by JMocker improve the cohesion
and conciseness of test code, make test condition more explicit, and
decouple test code from production code. And 3) the solution gen-
erated by JMocker can serve as an efficient first step in refactoring,
developers can improve the test logic to further enhance unit tests.

5 DISCUSSION OF JMOCKER FOR EDUCATION
We also conducted a user study that leverages JMocker to facilitate
the learning of Mockito for education. We invited five students
majoring in Computer Science. We created a video to illustrate the
auto generated refactoring solutions for three real-life cases based
on the diff view. We provided the students both the video and the
Mockito document as references to 1) implement refactoring for
another real-life case and 2) use Mockito in three simple test cases
for a toy project. Unfortunately, no student successfully finished the
tasks. However, the comments from students suggest that Mockito
is an advance testing technique poses challenges for beginners.
One the one hand, the official document, containing overwhelming
details, is not considered helpful in the process. On the other hand,
our video, a highly appreciated format according to the students,
does not provide sufficient detail to cover the complex syntax re-
quired by the tasks. This motivates us to think about better ways
to facilitate the learning for students as a future research direction.

6 CONCLUSION
Despite the existance of powerful mocking frameworks, develop-
ers often turn to inheritance as a sub-optimal design for mocking.
We presented an Eclipse plugin tool, named JMocker, which can
automatically search for the usage of inheritance and replace it
by Mockito for mocking. We evaluated our framework on four
open-source projects and proved that JMocker is efficient, generally
applicable to real-life projects, and preserves test behaviors. A user
study involving real-life developers highlights the various benefits
of JMocker to replace the usage of inheritance by Mockito. A train-
ing session that helps students to learn how to use Mockito based
on the diff view of JMocker motivates us to think about better ways
to teach this technique as a future research direction.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science Foun-
dation (NSF) under grants CCF-1909085 and CCF-1909763.

REFERENCES
[1] [n. d.]. https://jackrabbit.apache.org/jcr/index.html.
[2] [n. d.]. https://logging.apache.org/log4j/.
[3] [n. d.]. https://qpid.apache.org/.
[4] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,

dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103. https://doi.
org/10.1109/FOSE.2007.25

[5] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. 107–118.

[6] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:
Suggesting repairs for broken unit tests. In 2009 IEEE/ACM International Confer-
ence on Automated Software Engineering. IEEE, 433–444.

[7] Jeff Grigg. 2012. http://wiki.c2.com/?ArrangeActAssert/.
[8] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.
[9] Matias Martinez, Anne Etien, Stéphane Ducasse, and Christopher Fuhrman.

2020. Rtj: a Java framework for detecting and refactoring rotten green test
cases. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings. 69–72.

[10] Gustavo Pereira and Andre Hora. 2020. Assessing Mock Classes: An Empirical
Study. In 2020 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). IEEE, 453–463. https://doi.org/10.1109/ICSME46990.2020.00050

[11] Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22–29. https://doi.org/10.1109/MS.2006.91

[12] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To mock or not to mock? An empirical study on mocking practices. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 402–412. https://doi.org/10.1109/MSR.2017.61

[13] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2019.
Mock objects for testing java systems. Empirical Software Engineering 24, 3 (2019),
1461–1498. https://doi.org/10.1007/s10664-018-9663-0

[14] Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, and Sunny Wong. 2021. An
automatic refactoring framework for replacing test-production inheritance by
mocking mechanism. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 540–552.

5

https://jackrabbit.apache.org/jcr/index.html
https://logging.apache.org/log4j/
https://qpid.apache.org/
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
http://wiki.c2.com/?ArrangeActAssert/
https://doi.org/10.1109/ICSME46990.2020.00050
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1007/s10664-018-9663-0

	Abstract
	1 introduction
	2 A Motivating Example
	3 JMocker Approach and Implementation
	3.1 Identifying the Refactoring Candidates
	3.2 Performing the Refactoring
	3.3 Displaying the Refactoring Diff View

	4 evaluation
	5 Discussion of JMocker for Education
	6 conclusion
	References

