
Beyond BatchNorm: Towards a Unified

Understanding of Normalization in Deep Learning

Ekdeep Singh Lubana1∗, Robert P. Dick1, Hidenori Tanaka2,3

1EECS Department, University of Michigan
2Department of Applied Physics, Stanford University

3Physics & Informatics Laboratories, NTT Research, Inc.

Abstract

Inspired by BatchNorm, there has been an explosion of normalization layers in
deep learning. Recent works have identified a multitude of beneficial properties
in BatchNorm to explain its success. However, given the pursuit of alternative
normalization layers, these properties need to be generalized so that any given
layer’s success/failure can be accurately predicted. In this work, we take a first
step towards this goal by extending known properties of BatchNorm in randomly
initialized deep neural networks (DNNs) to several recently proposed normalization
layers. Our primary findings follow: (i) similar to BatchNorm, activations-based
normalization layers can prevent exponential growth of activations in ResNets, but
parametric techniques require explicit remedies; (ii) use of GroupNorm can ensure
an informative forward propagation, with different samples being assigned dissimi-
lar activations, but increasing group size results in increasingly indistinguishable
activations for different samples, explaining slow convergence speed in models
with LayerNorm; and (iii) small group sizes result in large gradient norm in earlier
layers, hence explaining training instability issues in Instance Normalization and
illustrating a speed-stability tradeoff in GroupNorm. Overall, our analysis reveals
a unified set of mechanisms that underpin the success of normalization methods
in deep learning, providing us with a compass to systematically explore the vast
design space of DNN normalization layers.

1 Introduction

Normalization techniques are often necessary to effectively train deep neural networks (DNNs) [1, 2,
3]. Arguably, the most popular of these is BatchNorm [1], whose success can be attributed to several
beneficial properties that allow it to stabilize a DNN’s training dynamics: for example, ability to
propagate informative activation patterns in deeper layers [4, 5]; reduced dependence on initializa-
tion [6, 7, 8]; faster convergence via removal of outlier eigenvalues [9, 10]; auto-tuning of learning
rates [11], equivalent to modern adaptive optimizers [12]; and smoothing of loss landscape [13, 14].
However, depending on the application scenario, BatchNorm’s use can be of limited benefit or even
a hindrance: for example, BatchNorm struggles when training with small batch-sizes [3, 15]; in
settings with train-test distribution shifts, BatchNorm can undermine a model’s accuracy [16, 17]; in
meta-learning, it can lead to transductive inference [18]; and in adversarial training, it can hamper
accuracy on both clean and adversarial examples by estimating incorrect statistics [19, 20].

To either address specific shortcomings or to replace BatchNorm in general, several recent works
propose alternative normalization layers (interchangeably called normalizers in this paper). For
example, Brock et al. [23] propose to match BatchNorm’s forward propagation behavior in Residual

Email: {eslubana, dickrp}@umich.edu, and hidenori.tanaka@ntt-research.com
*Work partially performed during an internship at Physics & Informatics Laboratories, NTT Research.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

GroupNorm with group size equal to 1) is most likely and LayerNorm [2] (viz., GroupNorm with
group size equal to layer width) is least likely to produce informative activations.

• Stable Backward Propagation: In Section 5, we show normalization techniques that rely on
individual sample and/or channel statistics (e.g., Instance Normalization [22]) suffer from an
exacerbated case of gradient explosion [29], often witnessing unstable backward propagation. We
show this behavior is mitigated by grouping of channels in GroupNorm, thus demonstrating a
speed–stability trade-off characterized by group size.

Related Work: Due to its ubiquity, past work has generally focused on understanding BatchNorm [5,
4, 6, 9, 10, 7, 13, 29, 30, 31]. A few works have studied LayerNorm [32, 33], due to its relevance in
natural language processing. In contrast, we try to analyze normalization methods in deep learning in a
general manner. As we show, we can identify properties in BatchNorm that readily generalize to other
normalizers and are often predictive of the normalizer’s impact on training. Our analysis is inspired
by a rich body of work focused on understanding randomly initialized DNNs [34, 35, 36, 37, 38].
Most related to us is the contemporary work by Labatie et al. [39], who analyze the impact of different
normalization layers on expressivity of activations and conclude LayerNorm leads to high similarity
of activations in deeper layers. As we discuss, this result is in fact a special case of our Claim 3.

2 Preliminaries: Normalization Layers for DNNs

Activations-Based Layers
µ{d} = µ{d}(A); σ{d} = σ{d}(A)

BN [1]
A−µ{b,x}

σ{b,x}

LN [2]
A−µ{c,x}

σ{c,x}

IN [22]
A−µ{x}

σ{x}

GN [3]
A−µ{c/g,x}

σ{c/g,x}

FRN [40] A
RMS{x}

VN [4] A
σ{b,x}

EvoBO [27] A
max{σ{b,x},v⊙A+σ{x}}

EvoSO [27] Aρ(v⊙A)
σ{c/g,x}

Parametric Layers
µ{d} = µ{d}(W); σ{d} = σ{d}(W)

WN [28] g W
||W||

SWS [23] g
W−µ{c,h,w}

σ{c,x}

Table 1: Operations performed by dif-
ferent normalizers. A denotes layer in-
put; W denotes incoming neuron weights
to a neuron.

We first clarify the notations and operations used by the
normalizers discussed in this work. Specifically, we de-
fine operators µ{d}(T) and σ{d}(T), which calculate the
mean and standard deviation of a tensor T along the di-
mensions specified by set {d}. ‖T ‖ denotes the ℓ2 norm
of T . RMS{d}(T) denotes the root mean square of T
along dimensions specified by set {d}. For example, for

a vector v ∈ R
n, we have RMS{1}(v) =

√∑
i v

2
i/n. We

assume the outputs of these operators broadcast as per
requirements. ρ(.) denotes the sigmoid function. We de-
fine symbols b, c, x to denote the batch, channel, and
spatial dimensions. For feature maps in a CNN, x will
include both the height and the width dimensions. The
notation c/g denotes division of c neurons (or channels)
into groups of size g. When grouping is performed, each
group is normalized independently.

Normalization Layers: We analyze ten normalization
layers in this work. These layers were chosen to cover a
broad range of ideas: e.g., activations-based layers [1, 40],
parametric layers [23, 28], hand-engineered layers [3],
AutoML designed layers [27], and layers [22, 2, 4] that
form building blocks of recent techniques [41].

1. Activations-Based Layers: BatchNorm (BN) [1], Layer-
Norm (LN) [2], Instance Normalization (IN) [22], GroupNorm (GN) [3], Filter Response Normaliza-
tion (FRN) [40], Variance Normalization (VN) [4], EvoNormBO [27], and EvoNoRMSO [27] fall in
this category. These layers function in the activation space. Note that Variance Normalization is an ab-
lation of BatchNorm that does not use the mean-centering operation. Typically, given activations AL

at layer L, these layers use an operation of the form Anorm = φ
(

γ
σ{d}(AL) (AL − µ{d}(AL)) + β

)

).

Here, γ and β are learned affine parameters used for controlling quantities affected by the normaliza-
tion operations (such as mean, standard deviation, and RMS) and φ is a non-linearity, such as ReLU.
The exact operations for these layers, minus the affine parameters, are shown in Table 1.

2. Parametric Layers: Weight Normalization (WN) [28] and Scaled Weight Standardization
(SWS) [23] fall in this category. Table 1 shows the exact operations. These layers function in
the parameter space and act on a filter’s weights (W) to generate normalized weights (Wnorm). The
normalized weights Wnorm are used for processing the input: AL+1 = φ(Wnorm ∗ AL).

3

3 Stable Forward Propagation

Stable forward propagation is a necessary condition for successful DNN training [36]. In this
section, we identify and demystify the role of normalization layers in preventing the problem of
exploding or vanishing activations during forward propagation. These problems can result in training
instability due to exploding or vanishing gradients during backward propagation [36, 38]. Building
on a previous study on BatchNorm, we first show that activations-based normalizers provably
avoid exponential growth of variance in ResNets1, ensuring training stability. Thereafter, we show
parametric normalizers do not share this property and ensuring stable training requires explicit
remedies.

3.1 Activations-Based Normalizers and Exponential Variance in Residual Networks

Hanin and Rolnick [38] show that for stable forward propagation in ResNets, the average variance of
activations should not grow exponentially (i.e., should not explode). Interestingly, Figure 1 shows
that all activations-based normalizers are able to train the standard ResNet [24] architecture stably.
For BatchNorm, this behavior is provably expected. Specifically, De and Smith [6] find that to ensure
variance along the batch-dimension is 1, BatchNorm rescales the Lth layer’s residual path output by a
factor of O (1/

√
L). This causes the growth of variance in a Batch-Normalized ResNet to be linear in

depth, hence avoiding exponential growth of variance in and ensuring effective training. We now
show this result can be extended to other normalization techniques too.

Claim 1. Similar to BatchNorm [6], GroupNorm [3] avoids exponential growth of variance in
ResNets, ensuring stable training.

Proof. We follow the same setup as De and Smith [6]. Assume the Lth residual path (fL) is
processed by a normalization layer N , after which it combines with the skip connection to
generate the next output: yL = yL−1 + N (fL(yL−1)). The covariance of layer input and
Residual path’s output is assumed to be zero. Hence, the output’s variance is: Var(yL) =
Var(yL−1) + Var(N (fL(yL−1))). Now, assume GroupNorm with group size G is used for nor-
malizing the D-dimensional activation signal, i.e., N = GN(.). This implies for the gth group,
σg,x(GN(fL(yL−1))) = 1. Then, for a batch of size N , denoting the ith sample activations as

y
(i)
L , and using (y

(i)
L)j to index the activations, we note the residual output’s variance averaged

along the spatial dimension is: 〈Var(N (fL(yL−1))〉 =
1
D

∑D
j=1(

1
N

∑N
i=1(GN(fL(y

(i)
L−1))

j)2) =
1
N

∑N
i=1(

1
D

∑D
j=1(GN(fL(yL−1)

(i))j)2) = 1
N

∑N
i=1

G
D (

∑D/G
g=1(σg,x(GN(fL(yL−1)

(i))))2) = 1.

Overall, this implies 〈Var(yL)〉 = 〈Var(yL−1)〉 + 1. Recursively applying this relationship for
a bounded variance input, we see average variance at the Lth layer is in O(L). Thus, similar to
BatchNorm, use of GroupNorm will enable stable forward propagation in ResNets by ensuring signal
variance grows linearly with depth.

Figure 2: Activations-based normaliz-
ers ensure linear and stable forward
propagation, verifying Claim 1. Ac-
tivation Variance (Activ. Var.) as a
function of layer number in a ResNet-
56 [24] processing CIFAR-100 samples.

To understand the relevance of the above result, note that
for G = 1, GroupNorm is equal to Instance Normaliza-
tion [22] and for G = D, GroupNorm is equal to Lay-
erNorm [2]. Further, since the mean of the signal is as-
sumed to be zero, the average variance along the spatial
dimension is equal to the RMSx operation used by Filter
Response Normalization [40]. Thus, by proving the above
result for GroupNorm, we are able to show alternative
activations-based normalizers listed in Table 1 also avoid
the exponential growth of activation variance in ResNets.

We show empirical demonstrations of Claim 1 in Fig-
ure 2, where the average activation variance is plotted for
a ResNet-56. As can be seen, for all activations-based nor-
malizers, the growth of variance is linear in the number of
layers. At the end of a Residual module, which spatially
downsamples the signal, the variance plummets. However,

the remaining layers follow a pattern of linear growth, as expected by our result. We note our

1The case of non-residual networks is discussed in appendix. In brief, most normalizers help avoid explod-
ing/vanishing activations by enforcing unit activation variance in the batch, channel, or spatial dimensions.

4

(a) Standard ResNet (b) SkipInit (c) Non-Linearity on Residual Path

Figure 3: Parametric normalizers witness exponentially growing variance, verifying Claim 2,
but we can stabilize it by modifying the residual-path. We plot log activation variance as a function
of layer number in a randomly initialized ResNet-56 [24], using CIFAR-100 samples, with Scaled
Weight Standardization (SWS) [23] and Weight Normalization (WN) [28] for different architectures
(simplified illustrations provided on top). (a) Standard ResNet: Both SWS and WN witness variance
explosion in a standard ResNet model, as claimed in Claim 2. (b) SkipInit: SkipInit [6] multiplies
the residual signal with a scalar α initialized as zero, thus preventing variance explosion in an SWS
model at initialization. Meanwhile, by scaling the non-linearity after addition, a WN model continues
to witness exploding variance. (c) Non-Linearity on Residual Path: Shifting the non-linearity to the
residual path prevents variance explosion in both WN and SWS models.

theory does not apply to EvoNorms, which are designed via AutoML. However, empirically, we
see EvoNorms also avoid exponential growth of variance in ResNets. Thus, our analysis shows,
all activations-based normalizers in Table 1 share the beneficial property of stabilizing forward
propagation in ResNets, similar to BatchNorm.

3.2 Parametric Normalizers and Exploding Variance in Residual Networks

By default, parametric normalizers such as Weight Normalization [28] and Scaled Weight Standard-
ization [23] do not preserve the variance of a signal during forward propagation, often witnessing
vanishing activations. To address this limitation, properly designed output scale and bias corrections
are needed. Specifically, for Weight Normalization and ReLU non-linearity, Arpit et al. [42] show

the output should be modified as follows: AL+1 =
√

2π/π−1(φ(Wnorm ∗ AL)−
√

1/2π). For Scaled

Weight Standardization, only output scaling is needed [23]: AL+1 = φ(
√

2π/π−1Wnorm ∗ AL).

In Figure 1, ResNet training curves for Weight Normalization [28] and Scaled Weight Standardiza-
tion [23] were not reported as the loss diverges to infinity. As we explain in the following, this is a
result of using correction factors designed to enable variance preservation in non-residual networks.

Claim 2. Unlike BatchNorm [6], Weight Normalization [28] and Scaled Weight Standardization [23]
witness unstable training due to exponential growth of variance in standard ResNets [24].

Proof. Using the correction factors above, both Weight Normalization and Scaled Weight Standardiza-
tion will ensure signal variance is preserved on the residual path: Var(N (f(yL−1))) = Var(yL−1).
Thus, using these methods, the output variance at layer L becomes: Var(yL) = Var(yL−1) +
Var(N (f(yL−1))) = 2Var(yL−1). Recursively applying this relationship for a bounded variance
input, we see signal variance at the Lth layer is in O(2L). Thus, Weight Normalization and Scaled
Weight Standardization witness exponential growth in variance.

More generally, the above result shows if the residual path is variance preserving, ResNets will
witness exploding variance with growing depth. Prior works [43, 5, 8, 6, 7, 44] have noted this result
in the context of designing effective ResNet initializations. Here, we extended this result to show why
Weight Normalized and Scaled Weight Standardized ResNets undergo unstable forward propagation.
Empirical demonstration is provided in Figure 3a.

In their work introducing Scaled Weight Standardization [23], Brock et al. are able to circumvent
exponential growth in variance by using SkipInit [6]. Specifically, inspired by the fact that BatchNorm
biases Residual paths to identity functions, De and Smith [6] propose SkipInit, which multiplies the
output of the residual path by a learned scalar α that is initialized to zero. This suppresses the Residual
path’s contribution, hence avoiding exponential growth in variance (see Figure 3b). Interestingly, even

5

results demonstrates that the group size in GroupNorm ensues a trade-off between high similarity
of activations (influences training speed) and gradient explosion (influences training stability). To
illustrate this trade-off, we can estimate training instability by fitting an exponential curve to layerwise
gradient norms (measures degree of gradient explosion) and estimate training speed by calculating
cosine similarity of activations at the penultimate layer at initialization (highly correlated with training
speed; see Figure 6). Results are shown in Figure 9. We see increasing group size clearly trades-off
the two properties related to training speed and stability, with a moderately large group size resulting
in best performance. In fact, we see test accuracy is highest exactly at this point of intersection in
the trade-off. This explains the success of channel grouping in GroupNorm and other successful
batch-independent normalization layers like EvoNormSO [27]. Interestingly, these results also help
explain why in comparison to BatchNorm, which suffers from gradient explosion and exacerbates the
problem of high gradient variance in non-IID Federated learning setups [52, 53], use of GroupNorm
with a properly tuned group-size helps achieve better performance [52, 54].

6 Discussion and Limitations

Discussion: As the number of deep learning architectures continues to explode, the use of normaliza-
tion layers is becoming increasingly common. However, past works provide minimal insight into
what makes normalization layers beyond BatchNorm (un)successful. Our work acts as a starting
point to bridge this gap. Specifically, we extend known results on benefits/limitations of BatchNorm
to recently proposed normalization layers and provide a thorough characterization of their behavior
at initialization. This generalized analysis provides a compass that can help systematically infer
which normalization layer is most appealing under the constraints imposed by a given application,
reducing reliance on empirical benchmarking. Moreover, since our results show phenomenon used
to explain BatchNorm’s success exist in alternative normalizers as well, we argue the success of
BatchNorm requires further characterization. Our work also opens avenues for several new fronts of
research. For example, in Section 4 we demonstrated that a normalization layer’s impact on similarity
of activations accurately predicts resulting optimization speed. As shown in a contemporary work by
Boopathy and Fiete [55], the weight update dynamics of a neural network are in fact guided by the
matrix defining similarity of activations. Beyond providing grounding to our observation, their results
indicate that relating design choices in neural network development with similarity of activations can
help optimize their values. Indeed, a recent method for neural architecture search directly utilizes the
similarity of activations to design “good” architectures [56].

Limitations: In this work, we limit our focus to discriminative vision applications. We highlight that
nine out of ten normalizers studied in this work were specifically designed for this setting and we
indeed find that all our analyzed properties show predictive control over the final performance of a
model in discriminative vision tasks, generalizing across multiple network architectures. However,
extending our work to develop similar analyses in other contexts such as NLP will be very useful.
The primary hurdle is that for different data modalities, the standard architecture families and their
corresponding optimization difficulties vary widely. For example, in both LSTM and transformer
architectures, an often noted training difficulty arises from large gradient norms, which can result in
divergent training or training restarts [57, 58]. In fact, optimizers in existing NLP frameworks have
gradient clipping enabled by default to avoid this problem [59]. Beyond large gradients, unbalanced
gradients are also known to be a training difficulty in NLP architectures [60]. We think a thorough
treatment of the role of normalization layers in addressing these problems will be very valuable and
leave it for future work.

Acknowledgements

We thank Hadi Daneshmand and anonymous reviewers for several helpful discussions that helped
improve this paper. This work was partly supported by NSF under award CNS-2008151.

References

[1] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proc. Int. Conf. on Machine Learning (ICML), Jul
2015.

10

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv,
abs/1607.08022, 2016.

[3] Yuxin Wu and Kaiming He. Group Normalization. In Proc. European Conf. on Computer
Vision (ECCV), 2018.

[4] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. In Proc.
Adv. in Neural Information Processing Systems (NeurIPS), 2020.

[5] David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The Shattered Gradients Problem: If resnets are the answer, then what is the
question? In Proc. Int. Conf. on Machine Learning (ICML), Aug 2017.

[6] Soham De and Samuel L. Smith. Batch Normalization Biases Residual Blocks Towards the
Identity Function in Deep Networks. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2020.

[7] Jie Shao, Kai Hu, Changhu Wang, Xiangyang Xue, and Bhiksha Raj. Is normalization indis-
pensable for training deep neural network? In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2020.

[8] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual Learning Without Normalization
via Better Initialization. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[9] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization method for alleviating
pathological sharpness in wide neural networks. In Proc. Adv. in Neural Information Processing
Systems (NeurIPS), 2019.

[10] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding Batch
Normalization. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2018.

[11] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical Analysis of Auto Rate-Tuning by
Batch Normalization. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[12] Hidenori Tanaka and Daniel Kunin. Noether’s Learning Dynamics: The Role of Kinetic
Symmetry Breaking in Deep Learning. arXiv preprint arXiv:2105.02716, 2021.

[13] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Mądry. How Does Batch
Normalization Help Optimization? In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2018.

[14] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient Centralization: A
New Optimization Technique for Deep Neural Networks. In Proc. European Conf. on Computer
Vision (ECCV), 2020.

[15] Sergey Ioffe. Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-
Normalized Models. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2017.

[16] Cecilia Summers and Michael J. Dinneen. Four Things Everyone Should Know to Improve
Batch Normalization. In Proc. Int. Conf. on Learning Representations (ICLR), 2020.

[17] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. Transferable
Normalization: Towards Improving Transferability of Deep Neural Networks. In Proc. Adv. in
Neural Information Processing Systems (NeurIPS), 2020.

[18] John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and Richard E. Turner.
TaskNorm: Rethinking Batch Normalization for Meta-Learning. In Proc. Int. Conf. on Machine
Learning (ICML), Jul 2020.

[19] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W. Taylor.
Batch Normalization is a Cause of Adversarial Vulnerability. arXiv, abs/1905.02161, 2019.

11

[20] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le.
Adversarial Examples Improve Image Recognition. In Proc. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour. In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2018.

[22] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. arXiv, abs/1607.08022, 2016.

[23] Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized ResNets. In Proc. Int. Conf. on Learning Representations
(ICLR), 2021.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-Batch Training with
Batch-Channel Normalization and Weight Standardization. arXiv, abs/1903.10520, 2019.

[26] Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered Weight Normaliza-
tion in Accelerating Training of Deep Neural Networks. In Proc. Int. Conference on Computer
Vision (ICCV), 2017.

[27] Hanxiao Liu, Andrew Brock, Karen Simonyan, and Quoc V. Le. Evolving Normalization-
Activation Layers. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2020.

[28] Tim Salimans and Diederik P. Kingma. Weight Normalization: A Simple Reparameterization to
Accelerate Training of Deep Neural Networks. In Proc. Int. Conf. on Learning Representations
(ICLR), 2016.

[29] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz.
A Mean Field Theory of Batch Normalization. In Int. Conf. on Learning Representations
(ICLR), 2019.

[30] Yuxin Wu and Justin Johnson. Rethinking “Batch” in BatchNorm. arXiv preprint
arXiv:2105.07576, 2021.

[31] Vinay Rao and Jascha Sohl-Dickstein. Is Batch Norm unique? An empirical investigation and
prescription to emulate the best properties of common normalizers without batch dependence.
arXiv, abs/2010.10687, 2020.

[32] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding
and Improving Layer Normalization. In Proc. Adv. in Neural Information Processing Systems
(NeurIPS), 2019.

[33] Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Powernorm:
Rethinking batch normalization in transformers. In ICML, 2020.

[34] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proc. Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2010.

[35] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid
in deep learning through dynamical isometry: theory and practice. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2017.

[36] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Infor-
mation Propagation. In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[37] Antoine Labatie. Characterizing Well-Behaved vs. Pathological Deep Neural Networks. In
Proc. Int. Conf. on Machine Learning (ICML), Jul 2019.

12

[38] Boris Hanin and David Rolnick. How to Start Training: The Effect of Initialization and
Architecture. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2018.

[39] Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, and Carlo Luschi. Proxy-Normalizing
Activations to Match Batch Normalization while Removing Batch Dependence. arXiv preprint
arXiv:2106.03743, 2021.

[40] Saurabh Singh and Shankar Krishnan. Filter Response Normalization Layer: Eliminating Batch
Dependence in the Training of Deep Neural Networks. In Proc. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[41] Ping Luo, Peng Zhanglin, Shao Wenqi, Zhang Ruimao, Ren Jiamin, and Wu Lingyun. Dif-
ferentiable Dynamic Normalization for Learning Deep Representation. In Proc. Int. Conf. on
Machine Learning (ICML), June 2019.

[42] Devansh Arpit, Yingbo Zhou, Bhargava Kota, and Venu Govindaraju. Normalization Propa-
gation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks. In
Proc. Int. Conf. on Machine Learning (ICML), Jul 2016.

[43] Masato Taki. Deep Residual Networks and Weight Initialization. arXiv, abs/1709.02956, 2017.

[44] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep Isometric Learning
for Visual Recognition. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2020.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep Residual
Networks. In Proc. European Conf. on Computer Vision (ECCV), 2016.

[46] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2020.

[47] Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch Normalization Orthogonalizes
Representations in Deep Random Networks. arXiv preprint arXiv:2106.03970, 2021.

[48] Joel A. Tropp. An Introduction to Matrix Concentration Inequalities. arXiv, abs/1501.01571,
2015.

[49] Pierre Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Florian Strub, Andrew
Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal Valko. BYOL works
even without batch statistics. arXiv preprint arXiv:2010.10241, 2020.

[50] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. arXiv
preprint arXiv:2011.10566, 2020.

[51] Kyle Luther. Why Batch Norm Causes Exploding Gradients. https://kyleluther.github.
io/2020/02/18/batchnorm-exploding-gradients.html, 2020. Blogpost.

[52] Zhengming Zhang, Yaoqing Yang, Zhewei Yao, Yujun Yan, Joseph Gonzalez, and Michael
Mahoney. Improving Semi-supervised Federated Learning by Reducing the Gradient Diversity
of Models. arXiv preprint arXiv:2008.11364, 2020.

[53] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera
y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh
Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis,
Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman,
Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny,
Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik,
Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh,
Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X.
Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and
Wennan Zhu. A Field Guide to Federated Optimization. arXiv preprint arXiv:2107.06917,
2021.

[54] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The Non-IID Data Quagmire
of Decentralized Machine Learning. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2020.

13

[55] Akhilan Boopathy and Ila Fiete. Gradient-trained Weights in Wide Neural Networks Align
Layerwise to Error-scaled Input Correlations. arXiv preprint arXiv:2106.08453, 2021.

[56] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot Crowley. Neural Architecture Search
without Training. In Proc. Int. Conf. on Machine Learning (ICML), Jul 2021.

[57] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accel-
erates training: A theoretical justification for adaptivity. In Proc. Int. Conf. on Learning
Representations (ICLR), 2020.

[58] Xinlei Chen, Saining Xie, and Kaiming He. An Empirical Study of Training Self-Supervised
Vision Transformers. In Proc. Int. Conf. on Computer Vision (ICCV), 2021.

[59] HuggingFace. Why is grad norm clipping done during train-
ing by default? https://discuss.huggingface.co/t/
why-is-grad-norm-clipping-done-during-training-by-default/1866, 2020.
Discussion forum.

[60] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
Difficulty of Training Transformers. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), April 2020.

14

