
DRBANET: A LIGHTWEIGHT DUAL-RESOLUTION NETWORK FOR SEMANTIC
SEGMENTATION WITH BOUNDARY AUXILIARY

Linjie Wang1 , Quan Zhou1,∗ , Chenfeng Jiang1, Xiaofu Wu1, and Longin Jan Latecki2

1National Engineering Research Center of Communications and Networking,
Nanjing University of Posts & Telecommunications, P.R. China.

2Department of Computer and Information Sciences, Temple University, Philadelphia, USA.

ABSTRACT
Due to the powerful ability to encode image details and se-
mantics, many lightweight dual-resolution networks have been
proposed in recent years. However, most of them ignore the
benefit of boundary information. This paper introduces a
lightweight dual-resolution network, called DRBANet, aiming
to refine semantic segmentation results with the aid of bound-
ary information. DRBANet adopts dual parallel architecture,
including: high resolution branch (HRB) and low resolution
branch (LRB). Specifically, HRB mainly consists of a set of
Efficient Inverted Bottleneck Modules (EIBMs), which learn
feature representations with larger receptive fields. LRB is
composed of a series of EIBMs and an Extremely Lightweight
Pyramid Pooling Module (ELPPM), where ELPPM is utilized
to capture multi-scale context through hierarchical residual
connections. Finally, a boundary supervision head is designed
to capture object boundaries in HRB. Extensive experiments on
Cityscapes and CamVid datasets demonstrate that our method
achieves promising trade-off between segmentation accuracy
and running efficiency.

Index Terms— Lightweight network, Semantic segmen-
tation, Boundary supervision, Dual-resolution network

1. INTRODUCTION

Semantic segmentation plays a significant role in some real-
world applications, such as augmented reality, robot sensing,
autonomous driving, and so on. The goal of semantic segmen-
tation is to assign a unique semantic category label to each
pixel in image. With the development of convolutional neural
networks (CNNs), some accurate networks [1–5] have been
proposed for semantic segmentation, which have hundreds
even thousands of convolutional layers and feature channels.
Due to their complicated network architecture, it is difficult to
deploy them into resource-constrained edge devices.

To achieve online estimation in timely fashion, many re-
searchers prefer to design lightweight semantic segmentation

Corresponding author: Quan Zhou, quan.zhou@njupt.edu.cn,This work
is partly supported by NSFC (No. 61876093), NSFJS (No. BK20181393),
and NSF (No. IIS-1302164).

networks [6–16], which can be roughly classified into two
categories: single path networks [7–11] and dual-resolution
networks [12–14]. The first category often designs lightweight
backbone to extract features. For example, ERFNet [9] utilizes
decomposition convolution to remain accuracy and reduce
model size. ESPNetV2 [8] proposes extremely efficient spa-
tial pyramid unit to enlarge receptive fields. DABNet [10]
employs depthwise asymmetric bottleneck to capture local
context. STDCNet [11] designs short-term dense concate-
nate module to obtain scale-variant receptive fields. On the
other hand, the second category usually employs compact
dual-resolution architecture for semantic segmentation, where
low resolution is used to capture high-level semantics, while
high resolution is designed to remain fine image details. For
instance, BiSeNet [12] divides the network into spatial and con-
text paths separately, where both of them involve lightweight
architecture. BiSeNetV2 [13], as an extension of [12], pro-
poses a finer way to fuse features from two branches, leading
to great reduction of model size. In [15], an 1 × 1 convo-
lution is replaced by cross-resolution weighting module in
HRNet [17]. In spite of achieving impressive performance,
both categories neglect the benefit of boundary information,
which provides additional cues to boost performance. More-
over, most of these networks merely capture context cues in
one single scale, which is always not enough to make final
discrimination for each individual pixel.

To deal with these shortcomings, this paper designs a
lightweight dual-resolution network, named DRBANet, for
semantic segmentation with boundary auxiliary. DRBANet
adopts dual parallel architecture, including: high resolution
branch (HRB) and low resolution branch (LRB). Specifically,
HRB is designed for remaining high resolution spatial details,
while LRB is used to capture high level semantic features via
fast downsampling strategy. As shown in Fig. 1, DRBANet
includes four components: stem, Efficient Inverted Bottleneck
Module (EIBM), Extremely Lightweight Pyramid Pooling
Module (ELPPM), and Bilateral Fusion Module (BFM). As
the main unit of DRBANet, EIBM employs inverted bottleneck
structure [18] with multiple depthwise convolution layers to
enlarge receptive fields. ELPPM is designed at the end of LRB

ar
X

iv
:2

11
1.

00
50

9v
1

 [c
s.C

V
]

31
 O

ct
 2

02
1

ELPPM

EIBM

EIBM 1/64EIBM
1/32

EIBMEIBM
EIBM

1/16

s
t
e
m EIBM

1/4
EIBM EIBM

1/8
EIBM sum ×8

up

×8
up

×32
up

EIBM

1/8
EIBM

EIBM
1/8

EIBM

BFMBFM

conv1×1

High Resolution Branch

Low Resolution Branch

Fig. 1. The overall architecture of DRBANet. HRB and LRB are denoted by blue and red dash bounding boxes, respectively.
Green and purple arrows indicate integrated information flow in two branches. (Best viewed in color)

to further capture multi-scale semantic context. Unlike pre-
vious methods [12, 13] that only extract convolution features
in two branches independently, BFM integrates features with
different resolutions to enhance information communication
between HRB and LRB. To fully explore the detail cues in
HRB, a boundary supervision head is used at the top of DR-
BANet to extract object boundary cues. Finally, the features,
calculated from dual-resolution branches and boundary head,
are fused together to predict final semantic outputs. In sum-
mary, the contributions of this paper are three-fold: (1) The
dual-resolution structure of DRBANet leverages network size
and feature representation. (2) ELPPM extracts multi-scale se-
mantic context without considerable increase of computational
complexity. (3) Boundary information is used as additional
auxiliary to improve semantic segmentation.

2. OUR METHOD

2.1. Network Architecture

DRBANet follows a dual-branch architecture [12, 13], where
HRB produces image detail features, while LRB captures im-
age semantic cues. DRBANet is built mainly based on EIBM
unit, which enables us to explore larger receptive fields, but
with very smaller computational overhead. To enhance repre-
sentation capability, BFMs are also repeatedly used as bridges
to enable communications between HRB and LRB. The main
network architecture is depicted in Tab. 1. The HRB consists
of layers from 1 to 12, where the first layer is a stem, and the
rests are EIBMs. The stem layer utilizes stride 3× 3 convolu-
tion to reduce feature resolution. Thereafter, the feature size
is reduced twice, resulting in the resolution of 1

4 and 1
8 with

respect to input image. On the other hand, layers from 6 to 13
form LRB, composed by EIBMs and ELPPM. In this path, the
feature size is sequentially downsampled via EIBM, leading to
the resolution of 1

16 , 1
32 , and 1

64 of input image. At the end of
LRB, ELPPM encodes multi-scale context and recovers equal
feature dimensions to the output of HRB. A boundary super-

Table 1. The architecture of DRBANet. “Size” denotes the
dimension of output feature maps, s denotes stride 2.

Layer Size DRBANet

1 512× 512× 32 stem (3× 3, s)

2− 3
4− 5

256× 256× 32
128× 128× 64

[
EIBM, s
EIBM

]
× 2

6− 8
9− 11

64× 64× 128, 128× 128× 64
32× 32× 256, 128× 128× 64

 EIBM, s EIBM
EIBM EIBM

BFM

× 2

12
13

16 × 16× 512, 128× 128× 128
128× 128× 128, −

EIBM, s EIBM
ELPPM −

vision head is added at layer 5, where the associated features
undergo an 1× 1 convolution, resulting in equal resolutions
with the outputs of HRB and LRB for following fusion. At the
top of DRBANet, we have one estimated boundary map, and
two predicted semantic maps (upsampled 8×, 8×, and 32×,
from layer 5, fused features, and layer 12 of LRB), receiving
their supervisions from the corresponding ground truth.

2.2. EIBM and BFM

As shown in Fig. 2(a), EIBM is designed based on inverted
bottleneck block. At the beginning of EIBM, the channel
number of input is expanded 2× via an 1× 1 convolution. To
enlarge receptive fields, two convolution layers are involved
using 3×3 depthwise convolution, resulting in the independent
filtering responses among all feature channels. Thereafter, an
1 × 1 convolution is used to recover channel dependencies
using a linear combination. Finally, a skipped-connection
is employed to leverage lightweight convolution and end-to-
end training. Note EIBM can be also used to reduce feature
resolutions, accomplished using stride depthwise separable
convolution, as shown in Tab. 1.

As shown in Fig. 2(b), BFM is used to enhance fea-

dwconv3×3

add

up

conv1×1

conv1×1

dwconv3×3

conv1×1 conv3×3
s=2

add add

(a) EIBM (b) BFM

Fig. 2. The detail of EIBM (a) and BFM (b). The arrows
with different colors denote corresponding information flow
in Fig. 1. Note second BFM utilizes two successive 3 × 3
convolutions with stride 2 to reduce resolution. (Best viewed
in color)

ture communication between HRB and LRB. Let Fl
i ∈

RH×W×C and Fh
i ∈ RH′×W ′×C′

be inputs of BFM, and
Fl
o ∈ RH×W×C and Fh

o ∈ RH′×W ′×C′
be outputs of BFM,

respectively. Fl
i first passes through an 1×1 convolution f1×1,

and then upsampled with equal dimensions for following
feature fusion with Fh

i . On the other hand, to produce Fl
o, Fh

i

is directly fed into a 3× 3 stride convolution f3×3, and then
integrated with Fl

i. Actually, two types of convolutions can be
considered as a cross-resolution residual function, which is
helpful to train BFM in an end-to-end manner.

Fh
o = Fh

i ⊕ U(Fl
i ∗ f1×1) Fl

o = Fl
i ⊕ (Fh

i ∗ f3×3) (1)

where ∗ indicates convolution operation, ⊕ denotes element-
wise addition, and U(·) stands for upsampling.

2.3. ELPPM

As illustrated in Fig. 3, this section introduces ELPPM that
captures multi-scale context of LRB. Motivated from [19],
ELPPM utilizes hierarchical residual-like connections to blend
information from different receptive fields, but with more
lightweight structure. The input is first fed into five parallel
paths Fi

in ∈ RH×W×C , i ∈ {0, 1, ..4}. Except F4
in that per-

forms global average pooling Pg(·), other three paths employ
adaptive stride pooling Pi(·), i ∈ {1, 2, 3} with kernel size {5,
9, 17}, resulting in the fact that the size of pooling features are
sequentially reduced. Thereafter, an 1 × 1 convolution f1×1

is used to reduce channel numbers from C to C/4. Finally,
except F0

in, upsampling operation U(·) is utilized in each path
to produce Fi

mid ∈ RH×W×C/4 for following fusion.

Fi
mid =

f1×1 ∗ Fi

in, i = 0;

U(f1×1 ∗ Pi(Fi
in)), 0 < i < 4;

U(f1×1 ∗ Pg(Fi
in)), i = 4.

(2)

To obtain the output Fi
out ∈ RH×W×C/4 in ith path, Fi

mid

and Fi−1
out are combined by addition. Then, a depthwise convo-

lution and an 1×1 point convolution are employed to integrate

co
nc

at

co
nv

1×
1

conv1×1
dwconv3×3 a

d
d

conv1×1
upsample

conv1×1

adapt pool
k=5, s=2

adapt pool
k=9, s=4

adapt pool
k=17, s=8

avgpool

conv1×1
dwconv3×3

conv1×1
dwconv3×3

conv1×1
dwconv3×3

conv1×1
upsample

conv1×1
upsample

conv1×1
upsample

conv1×1

Fig. 3. The detail of ELPPM. (Best viewed in color)

information in neighbor paths. Note there is no convolution
in the first path, since F0

mid is directly used as F0
out. In spite

of having very lightweight structure, the parallel paths can
be considered as a group convolution [20], as there are no
relationship among all paths. To recover channel dependencies
and reduce dimension, output features Fi

out in all paths are
stacked together, and fed into an 1× 1 convolution, producing
fused features Ff ∈ RH×W×C/4.

Finally, ELPPM leverages multi-path convolution and
residual connections in an end-to-end training manner. Specif-
ically, the input Fin firstly undergoes an 1× 1 convolution to
compress channel numbers, and then added with Ff , gener-
ating output Fout of ELPPM. Note the size of Fout has to be
enlarged 8 × for integration with other parts of DRBANet.

2.4. BSH

This section designs a boundary supervision head to refine se-
mantic segmentation results. Give the ground truth of semantic
segmentation, we adopt Laplacian kernel to obtain boundary
ground truth. Specifically, a series of binary boundary features
are produced by Laplacian operator with different strides on
semantic segmentation ground truth. Then the features are
upsampled to original size and fed into a trainable 1× 1 con-
volution for fusing multi-scale boundary information. Finally,
a threshold 0.1 was utilized to convert the fused feature into
boundary ground truth. Considering the class imbalance prob-
lem between boundary and non-boundary pixels, we use the
binary cross-entropy loss Lbce and the dice loss Ldice together,
where the final boundary loss Lbound can be written as:

Lbound(p, g) = Lbce(p, g) + Ldice(p, g) (3)

where p and g stand for boundary predictions and produced
ground truth, respectively.

3. EXPERIMENTS

3.1. Implementation Details

Dataset. We evaluate our network on Cityscapes [21] and
CamVid [22] datasets. Cityscapes contains 5,000 pixel-wise
annotated images with 2048× 1024 image resolution, where

(a) (b)
Fig. 4. Comparison of some visual examples of semantic segmentation on Cityscapes validation set (a) and CamVid test set
(b). In (a), from left to right are images, ground truth, segmentation outputs from DRBANet, DABNet [10], ESPNetV2 [8], and
ERFNet [9]. In (b), from top to down are images, ground truth, and outputs of DRBANet. (Best viewed in color)

2,975 for train, 500 for val and 1,525 for test. CamVid con-
sists of 701 densely annotated frames with 960× 720 image
resolution, in which 367 for train, 101 for val and 233 for test.
Parameter settings. DRBANet is implemented in the hard-
ware platform of the deep learning server with RTX 2080Ti
GPU. We use SGD algorithm to optimize DRBANet, where
momentum and weight decay are set to 0.9 and 5 × e−4.
The batch size is set as 16 and 4 for Cityscapes and CamVid
datasets, respectively. The initial learning rate is set to 10−2

and 10−3, and the cosine learning policy [23] is adopted to
train our model within 120k, 20k iterations for Cityscapes
and CamVid datasets, respectively. Additionally, images are
randomly cropped into 1024× 1024 for Cityscapes.
Loss settings. In Fig. 1, there are three supervisions: auxiliary
boundary loss Lbound, auxiliary segmentation loss Lauseg, and
segmentation loss Lseg . Except first one, the rests adopt cross-
entropy loss [1–5], thus the total loss Ltotal is defined as:

Ltotal = Lseg + λ1 × Lauseg + λ2 × Lbound (4)
where Lbound is defined in Eqn. (3), and the non-negative
parameters λ1 and λ2 are set to 0.2 and 0.1, empirically.

3.2. Evaluation Results

Results on Cityscapes. Tab. 2 reports comparison results
with selected state-of-the-art networks, demonstrating that our
DRBANet achieves the best trade-off between accuracy and ef-
ficiency. From Tab. 2, DRBANet achieves 75.1% mIoU on test
set, with only 11.9 GFLOPs and 2.3M model size. Moreover,
our network has nearly 2× less parameters and 2.3× smaller
GFlops than FasterSeg [24], and improves segmentation ac-
curacy with 3.6% mIoU. Although BiSeNetV1 [12], another
efficient network, is nearly 4× efficient, but has 2.5× larger
model size and delivers poor segmentation accuracy of 6.7%
mIoU drop than DRBANet on Cityscapes test set. Fig. 4(a)
shows some visual examples of segmentation outputs on the
Cityscapes val set. It is demonstrated that DRBANet produces
more consistent visual outputs with accurate and delineated
object boundaries (denoted by yellow bounding boxes).
Results on CamVid. We also evaluate our method on CamVid
dataset. As shown in Tab. 2, DRBANet obtains 73.9% mIoU,

Table 2. Comparison with other approaches. ‘-/-’ represents
the results on test set of Cityscapes and CamVid datasets,
respectively. ‘∗’ means trained by train and val set together.

Method Flops
(G)

Params
(M)

mIoU(%)
val test

ERFNet [9] 27.7 20 70.0 68.0/ -
BiSeNetV1 [12] 2.9 5.8 69.0 68.4/65.6
ESPNetV2 [8] 2.7 - 66.4 66.2/ -
DABNet [10] - 0.8 - 70.1/66.4
FasterSeg [24] 28.2 4.4 73.1 71.5/71.1
BiSeNetV2 [13] 21.2 - 73.4 72.6/76.7
STDCNet [11] - - 74.2 73.4/73.9

Ours 11.9 2.3 76.6 74.3/72.6
Ours∗ 11.9 2.3 - 75.1/73.9

achieving a good trade-off between performance and efficiency.
Compared with BiSeNetV2 [13], DRBANet has 2.8% mIoU
drop, yet it only requires nearly half GFLOPs with respect
to [13]. To further demonstrate the superior performance of our
method, several visual examples of qualitative segmentation
outputs are shown in Fig. 4(b). DRBANet is able to accurately
segment tiny object such as “pole”, and correctly identify
object within different scales, such as “pedestrian”.

4. CONCLUSION REMARKS AND FUTURE WORK

This paper has designed a lightweight DRBANet for semantic
segmentation with boundary auxiliary. DRBANet leverages
segmentation accuracy and implementing efficiency mainly
from EIBM and ELPPM. EIBM utilizes two sequential depth-
wise convolution layers to enlarge receptive fields but at a
smaller computational budgets. Moreover, ELPPM has a pow-
erful ability to capture multi-scale context using pyramid pool-
ing architecture. Finally, the boundary supervision provides
additional cues to boost performance. The experimental re-
sults show DRBANet achieves available trade-off in terms of

segmentation accuracy and implementing efficiency. In the
future, we are interested in transferring our model to the tasks
of object detection [25, 26] and image classification [17, 27].

5. REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in CVPR,
pp. 3431–3440, 2015.

[2] Y. Yuan, X. Chen, and J. Wang, “Object-contextual repre-
sentations for semantic segmentation,” in ECCV, pp. 173–
190, 2020.

[3] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille, “Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected crfs,” TPAMI, vol. 40, no. 4, pp. 834–
848, 2018.

[4] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid
scene parsing network,” in CVPR, pp. 6230–6239, 2017.

[5] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and
W. Liu, “Ccnet: Criss-cross attention for semantic seg-
mentation,” in ICCV, pp. 603–612, 2019.

[6] Y. Nirkin, L. Wolf, and T. Hassner, “Hyperseg: Patch-
wise hypernetwork for real-time semantic segmentation,”
in CVPR, pp. 4061–4070, 2021.

[7] S. Mehta, M. Rastegari, A. Caspi, L. G. Shapiro, and
H. Hajishirzi, “Espnet: Efficient spatial pyramid of di-
lated convolutions for semantic segmentation,” in ECCV,
pp. 561–580, 2018.

[8] S. Mehta, M. Rastegari, L. G. Shapiro, and H. Hajishirzi,
“Espnetv2: A light-weight, power efficient, and gen-
eral purpose convolutional neural network,” in CVPR,
pp. 9190–9200, 2019.

[9] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo,
“Erfnet: Efficient residual factorized convnet for real-time
semantic segmentation,” TITS, vol. 19, no. 1, pp. 263–
272, 2018.

[10] G. Li and J. Kim, “Dabnet: Depth-wise asymmetric bot-
tleneck for real-time semantic segmentation,” in BMVC,
p. 259, 2019.

[11] M. Fan, S. Lai, J. Huang, X. Wei, Z. Chai, J. Luo, and
X. Wei, “Rethinking bisenet for real-time semantic seg-
mentation,” in CVPR, pp. 9716–9725, 2021.

[12] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang,
“Bisenet: Bilateral segmentation network for real-time
semantic segmentation,” in ECCV, pp. 334–349, 2018.

[13] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang,
“Bisenet v2: Bilateral network with guided aggregation
for real-time semantic segmentation,” IJCV, pp. 1–18,
2021.

[14] R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn:
Fast semantic segmentation network,” in BMVC, p. 289,
2019.

[15] C. Yu, B. Xiao, C. Gao, L. Yuan, L. Zhang, N. Sang,
and J. Wang, “Lite-hrnet: A lightweight high-resolution
network,” in CVPR, pp. 10440–10450, 2021.

[16] P. Lin, P. Sun, G. Cheng, S. Xie, X. Li, and J. Shi, “Graph-
guided architecture search for real-time semantic segmen-
tation,” in CVPR, pp. 4202–4211, 2020.

[17] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao,
D. Liu, Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao,
“Deep high-resolution representation learning for visual
recognition,” TPAMI, vol. 43, no. 10, pp. 3349–3364,
2021.

[18] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in CVPR, pp. 4510–4520, 2018.

[19] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and
P. H. S. Torr, “Res2net: A new multi-scale backbone
architecture,” TPAMI, vol. 43, no. 2, pp. 652–662, 2021.

[20] S. N. Xie, R. Girshick, P. Dollar, Z. W. Tu, and K. M.
He, “Aggregated residual transformations for deep neural
networks,” in CVPR, pp. 5987–5995, 2017.

[21] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele,
“The cityscapes dataset for semantic urban scene under-
standing,” in CVPR, pp. 3213–3223, 2016.

[22] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla,
“Segmentation and recognition using structure from mo-
tion point clouds,” in ECCV, pp. 44–57, 2008.

[23] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient
descent with warm restarts,” in ICLR, 2017.

[24] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang,
“Fasterseg: Searching for faster real-time semantic seg-
mentation,” in ICLR, 2020.

[25] Z. Qin, Z. Li, Z. Zhang, Y. Bao, G. Yu, Y. Peng, and
J. Sun, “Thundernet: Towards real-time generic object
detection on mobile devices,” in ICCV, pp. 6718–6727,
2019.

[26] Y. Xiong, H. Liu, S. Gupta, B. Akin, G. Bender, Y. Wang,
P.-J. Kindermans, M. Tan, V. Singh, and B. Chen, “Mo-
biledets: Searching for object detection architectures for
mobile accelerators,” in CVPR, pp. 3825–3834, 2021.

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet
v2: Practical guidelines for efficient cnn architecture
design,” in ECCV, pp. 116–131, 2018.

	1 Introduction
	2 OUR METHOD
	2.1 Network Architecture
	2.2 EIBM and BFM
	2.3 ELPPM
	2.4 BSH

	3 EXPERIMENTS
	3.1 Implementation Details
	3.2 Evaluation Results

	4 CONCLUSION Remarks AND FUTURE WORK
	5 References

