The Viability of Using Online Prediction to Perform
Extra Work while Executing BSP Applications

Po Hao Chen*? Pouya Haghi*®
Richard West*

Anthony Skjellum!

Jae Yoon Chung* Tong Geng!
Martin C. Herbordt*

*Department of Electrical and Computer Engineering, Boston University
fSimCenter & Department of Computer Science and Engineering, University of Tennessee at Chattanooga
iDepartment of Electrical and Computer Engineering, University of Rochester

Abstract—A fundamental problem in parallel processing is
efficiently partitioning work; often much of a parallel program’s
execution time is often spent idle or performing overhead
operations. We propose to improve the efficiency of system
resource utilization by having idle processes execute extra work.
We develop a method whereby the execution of extra work is
optimized through performance prediction and the setting of
limits (a deadline) on the duration of the extra work execution.
In our preliminary experiments of proxy BSP applications on
a production supercomputer we find that this approach is
promising with all five applications benefiting from this approach.

Index Terms—Workload Imbalance, High Performance Com-
puting, BSP, Online Prediction

I. INTRODUCTION

The fundamental problem of parallel processing is deter-
mining which process should do what work. The most basic
method of partitioning (i.e., decomposition into tasks and
assignment of tasks to processes [1]) is the set of methods
known as load balancing. Depending on the application, par-
titioning may be obvious, as in, say, many BSP applications;
or it may require some run-time updates (semistatic and
dynamic methods). In all cases, however, there are limits
to the quality of partitioning with the result that, frequently,
much of a parallel program’s execution time is spent idle or
performing overhead operations [2]-[4]. Workload imbalance
can originate from different sources. One type is inherent to
the application itself (i.e. some processes have more work to
do). Another type is due to external noise coming, e.g., from
the operating system, network, checkpointing, or mapping [5]-
[7].

One possible solution is to spend some of this idle time
performing ever more frequent and complex dynamic load
balancing; the gain, however, is limited by new overhead for
extra work, synchronization, communication, and scheduling.
An alternative is to reduce the cost of the idle compute
resources—the slack time of the leader processes waiting for
laggards—e.g., by slowing down the leader processes [8], [9].
Another alternative is for the leader processes to do extra
work while waiting for the laggards. The most general form
here is simply time sharing: the leader processes block while
waiting and turn over their resources to the operating system.

$The first two authors have equal contribution to the paper.

This is generally not useful in HPC, however, due both to the
immense amount of OS overhead and the way that processes
are scheduled. A different way to execute extra work, and the
focus of our study here, is to allocate the excess computing
resources to predefined, user-space tasks. For now we leave the
extra work undefined, but postulate either work that is useful
for the current program, or some generic or fungible other
work (e.g., SETI at home or bitcoin mining). The value of the
extra work is likely to be less than that of the real work; the
ratio of their values can be a parameter used in optimization.

Determining whether the extra work method (EWM) is
viable is the focus of this study and requires several research
questions to be answered. First, is there sufficient slack time to
make EWM worth the overhead? Second, is it predictable that
certain processes will be leaders or laggards? If so, then tra-
ditional semistatic load balancing might be preferable. Third,
which method should be used to implement EWM? There are
at least two possibilities. In asynchronous EWM, extra work
is performed until the final laggard process completes (reaches
the soft barrier) and messages sent to the other processes.
In synchronous EWM, the execution time of the laggard
process is predicted. Then, when any process completes its
real work, it checks whether it has exceeded the predicted
time and, if not, executes extra work until then. Questions
arising in synchronous EWM include: how variable is the
execution time (is prediction viable)? How can it be predicted?
How accurate are the predictions? What is the cost/benefit of
missing a prediction? Should the prediction be guaranteed?
How often should the prediction be updated? For simplicity,
in this preliminary study, we concentrate on Bulk Synchronous
Parallel (BSP) applications, which often consist of a series of
similar iterations.

To obtain results with respect to several of these questions
we use Stampede 2 cluster [10] with up to 1536 processes
(32 nodes) and a set of five BSP proxy applications from
Exascale Computing Project (ECP) [11]. We find that two of
these applications benefit significantly from EWM and that
this benefit is likely to increase with production applications
on realistic problem sizes. We summarize our contributions:

o We propose a new method of improving the efficiency of

BSP programs in HPC through the use of extra work;

¢ We demonstrate an optimization method for EWM based

on predicting the time interval during which the extra

work should be executed;

o We evaluate the workload imbalance of time intervals
for BSP supersteps on Stampede2 compute cluster in
different HPC applications;

o We present experimental results showing predictability,
the characteristics of the extra work deadline, and the
overall benefit of the approach for a preliminary set of
BSP proxy HPC applications.

II. APPLICATION SPACE

A. The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [12] was
developed as a theoretical augmentation of the PRAM model,
but is now commonly used to refer to parallel programs that
execute in well-defined iterations (supersteps), each terminated
by a global barrier. In each superstep, processes perform
local computation, communication, and, finally, synchroniza-
tion. A large fraction of HPC applications fall generally into
this model. For instance, in stencil computations, processes
communicate with neighbors and perform computation; this
happens for a number of iterations [13]. Iterative solvers op-
erate by having each process perform part of the computation;
processes are synchronized and convergence checked at the
end of each superstep [14].

B. Applications

Our study adopted five selected applications from the ECP
Proxy Applications Suite [11]. The proxies are designed to be
lightweight and simplified while encapsulating the essence of
large applications. The simplicity offers the ideal subjects for
our evaluation. We described the following applications that
implement BSP algorithms.

MINIVITE is an iterative graph proxy implementation based
on MPI+OpenMP. It performs the first phase of Louvain’s
method, a community detection algorithm [15]. In real-world
large networks, the vertices exhibit densely connected clusters
(communities) with considerably more edges than the connec-
tions outside. The notion of modularity serves as a metric to re-
flect the density of the edges within the community relative to
the ones outside, and it is optimized as the iterations progress.
The algorithm converges in a non-deterministic number of
iterations.

MINIFE is a proxy application that approximates unstructured
implicit finite element by solving a sparse linear system of
equations [16]. The kernels exhibit patterns that are similar
to many HPC applications. Specifically, the element-operator
computations (diffusion matrix and vector); communications
via scattering to sparse matrix and vector; sparse linear alge-
bra operations (conjugate gradient solver); and scalar-vector
operations.

HPCCG is a conjugate gradient solver for a 3D chimney
domain [17]. Similar to MiniFE, the main kernels involve gen-
erating finite difference matrix, sparse linear algebra operation
(matrix-vector multiplication) and scalar-vector operations. In

addition, the implementation allows for configurable sub-block
size for each processor.

CoMD is a proxy application for molecular dynamics simula-
tions. The performance depends on the efficiency of evaluating
of all forces between atom pairs within some short distance
[18]. The program can be broken down into three main
stages: inter-node computation, each node computes forces and
evolving positions of the atoms within its domain; intra-node
computation, assignment of atoms to link cells and checking
for interactions; inter-node communication, exchanging infor-
mation of kinetic and potential energy.

LULESH is a proxy application that approximates hydrody-
namics equations by partitioning the Sedov blasts problem into
a collection of volumetric elements simulated by a mesh [19].
In addition to following BSP model, the program allows for
control over load balance in each set of elements.

ITII. THE SYNCHRONOUS EXTRA WORK METHOD

A. Overview of the EW method

The purpose of EWM is to increase the utilization of
compute resources during execution of HPC applications. The
basic idea is that, rather than idling, waiting processes perform
extra work (EW). In this study for exploring the viability of
the EWM we make certain assumptions.

Assumption 1: There is a global distributed clock sufficiently
accurate so that the skew is small in comparison to the time
scales critical to EWM, say, on the order of microseconds.
Although current leadership class systems do not have such
a capability [20], [21], there are no technological hurdles to
their introduction (see, e.g., [22]).

Assumption 2: EW exists that is useful and whose execution
is predictable, i.e., it can be fokenized. Ideally the EW is useful
to the running application, but we do not want to restrict
EW to just that. There are many fungible applications whose
executions have non-zero value.

Assumption 3: EW is not as useful as the application work.
Further, the user (or system administrator) can specify the
utility of the EW as some fraction of the utility of the
application work.

Assumption 4: There does not exist an efficient mechanism
to preempt a process. While these mechanisms can be imple-
mented, they are not a standard feature of current large scale
systems. We therefore concentrate on synchronous EWM and
leave asynchronous EWM to a further study.

Assumption 5: The cost of starting up and tearing down EW
is small. Since we are constraining EW this is reasonable for
at least some types of EW, but will be investigated further in
another study.

We now sketch EWM for a generic BSP application.

* There is a start-up phase of some number of iterations during
which data is collected so that a prediction can be made as
to the iteration time and also to determine the distribution,

over the processes executing the application, of the amount of
application work (and idling) performed by the processes.

* This prediction is used to create a deadline, which is used
to optimize EWM. Note that this deadline is unrelated to
the use of this term in various types of real time systems.
Also, that the prediction is completely empirical (a posteriori)
and not related to any “hard deadline” of the type found in
real-time operating system (RTOS) and often determined a
priori. In particular, violation is only an inconvenience and
not comparable to a violation in a hard RTOS.

* Using this deadline we have the following pseudocode for
each process in EWM.

Algorithm 1: Extra Work Method (EWM)
1 do

2 DO ApplicationWork /I for this iteration
3 if T < Tp;, then

4 // beat deadline?

5 do

6 ‘ ExtraWork

7 while T /= Tpr;

8 BARRIER()

9

while Termination Condition = False;

B. Definitions

Before continuing with details of EWM we summarize the
definitions in use.

Iteration := ak.a. superstep. This is the fundamental unit of
BSP and the unit of prediction in this study.

AW and EW are the application and extra work, respectively.

Tyi0ba1 = or simply T, is the current time on the (postulated)
accurate distributed clock.

Tjqg = 1is the time it takes the last (laggard) process to finish
its work during an iteration and defines the iteration time in
non-EWM.

Taw = for each process, the amount of time during an
iteration spent working on the application.

Torack = Tiag—Taw. Without EW, this is the amount of slack
time the process spends idling while waiting for the laggard
process.

Tpr := A timestamp (roughly, a soft deadline) from the
beginning of the iteration. It is used to optimize EWM. Like
T, this is a global value.

Tew = max(0,Tpr, — Taw). EW is executed in the interval
between the time when the application work is completed and
the deadline. If the process misses the deadline, then there is
no EW.

Tiaie := Without EW, this is T5;4... With EW, there can also be
idle time, but only if the laggard process misses the deadline
(T4ug > Tpr). In that case, for processes that meet the

deadline (Taw < Tpr), Tidgie = Tiag—Tpr . For non-laggard
processes that also miss the deadline, T;qe = Tiqg — Taw .

Titer := maz(Ti44.Tpr) is the execution time for a particular
iteration (superstep). See Figure 1: Since in EWM Tp;, can
be longer than T},g, Tj., is the greater of the two.

U := The coefficient of utility of the EW. This is the assigned
fraction of utility of EW with respect to AW.

C. Scenarios

We assume a timestamp mechanism based on the predicted
time per iteration (1},4). The timestamp, or deadline (as we
call it here), can be either safe or not. By safe we mean that all
processes are guaranteed (with high probability) to complete
by the deadline Tpr. As we see in the next section, there
is substantial variation in iteration time 7}, Which would
make the safe very inefficient. In this study we assume that
Tpy is set to maximize overall performance. In this version,
the laggard process, which sets the non-EWM iteration time,
can finish its AW either before the deadline (7},, < Tpy) or
after (1},4 > T'pr); the implications of both are discussed in
Section IV.

For non-laggard process execution there are three scenarios
as shown in Figure 1; execution of the laggard process follows
immediately. In (a), Tj,q < Tpr. All processes finish their
AW before the deadline and execute EW until the deadline. In
(b) and (c), Tiqy > Tpr. In (b), the process finishes its AW
before the deadline, executes EW until the deadline, but then
is idle until Tj44. In (c), the process executes AW beyond the
deadline and then is (again) idle until Tjg.

@ 1, CiTew

« » < . V:

Time :
Tlaggard Tdeadline

(Ab) TAW o TEW __‘ Twait &

- »r W Ol V.

Time : :
Tdeadline TIaggard

A(C) TAW . R ‘Twait K

L

Time : :
T . T.:
deadline laggard

Fig. 1: The three cases for non-laggard process execution.

1V. EVALUATION
A. Experimental Setup

For these preliminary experimental results, we executed
the applications described in Section II on the Stampede 2
cluster [10]. We picked five BSP-based proxy applications
inspired from the work [23] with the configuration shown in
Table I. We used up to 32 nodes each with 48 processes (1536
processes in total) but we used fewer processes for some of

TABLE I: Experimental Configuration for Proxy Applications

Application Small Input Medium Input Large Input # Processes
miniVite -p 3 -1 -n 131072 -p 3 -1 -n 262144 -p 3 -1 -n 524288 128
miniFE -nx 20 -ny 20 -nz 20 -nx 40 -ny 40 -nz 40 -nx 60 -ny 60 -nz 60 1536
HPCCG 64 64 64 100 100 100 200 200 200 1536
CoMD -e-116-j8-k8-x 128 -y 128 -z 128 | -e -1 16 -j 8 -k 8 -x 256 -y 256 -z 256 | -e -i 16 -j 8 -k 8 -x 512 -y 512 -z 512 1024
LULESH -s 30 -p -i 500 -s 40 -p -i 500 -s 50 -p -i 500 512

the applications due to their requirements. Figure 2 shows an
example (LULESH) of our measurement. The figure shows
Taw for laggard and leader processes in addition to their
deviation across the iterations. As evident from the figure, the
deviation is comparable to T4y itself. Due to limited space,
we show a sample of results selected from configurations per
application (bolded in Table I), which covers small, medium,
and large inputs. This sample is largest possible inputs for
which runs completed, which is also the most commonly run
in HPC environments.

Laggard Process Leader Process Deviation of Leaders and Laggards

0.40

0.32 1 0.10

)
*

0.08

036 030

0.06

0
r

0.28

RealWorkTime (sec)
RealWorkTime (sec)
RealWorkTime (sec)

0.04
0.32

0 200400 0 200 400 0 200400
Iteration Iteration Iteration
Fig. 2: time measurement (application work) of LULESH per
iteration for laggard and leader processes and the deviation.

B. Are Processes Systematically Laggard?

If we are able to identify processes as being systematically
laggard, then the issue may be originated from the underlying
hardware (e.g., slow clock) or mapping (e.g., remote node). In
that case, non-EWM methods are preferred.

Figure 3 is a series of histograms, one for each application.
The bins are the processes sorted by frequency of being lag-
gard. The counts are normalized with the expected frequency
of laggardness (#-of-iterations/#-of-processes) being set to 1.

T

LULESH

30 F —

F === miniVite
250 CoMD
0L —-— HPCCG

t —— miniFE

Normalized Expected Occurences
O
T

Laggard Process
Fig. 3: Laggard process occurrences sorted by the frequency.

If the laggard processes were chosen by chance we would
expect a Poisson distribution and a maximum value of roughly

the log of the # of processes. This is what we observe in
Figure 3 indicating that—for these runs—the selection of
the process that is laggard is indistinguishable from random
selection.

C. What is the potential benefit of EWM?

We find here whether EWM is sufficiently promising to
warrant further investigation. The maximum potential benefit
of EWM is shown by the behavior of applications under
normal execution (without executing EW), i.e., through the
proportion of slack time with respect to total time (Ts;qck /
Titer) for all processes over all iterations. Table II shows, for
each application, the proportion of idle time. Also shown is
the average wall-clock idle time per process per iteration.

TABLE II: Fraction of execution time that a process is idle
and average idle time per iteration in miliseconds.

Application | Avg Idle Ratio | Avg Idle Time
miniVite 0.25% 0.03
HPCCG 16.93% 526.72
CoMD 0.01% 0.06
LULESH 5.92% 19.58
miniFE 0.17% 1.4

We observe that the potential benefit is there is a bimodal
distribution with two applications, LULESH and HPCCQG,
indicating substantial potential benefit and the others little.
We observe further that overhead time, e.g., to initiate EW,
is likely to be small in comparison to the average idle time
per process per iteration especially for LULESH and HPCCG.

D. Is optimizing Tpy, beneficial?

We begin this subsection by continuing our examination of
the various EWM scenarios (e.g., Figure 1) with the goal of
finding whether it is beneficial to predict a deadline with the
potential to be violated. If so, then the further question is how
Tpr, should be optimized.

We note that EW is not as valuable as AW. Without
knowing the details of EW we postulate that, for any run,
it is worth some fixed fraction of AW which we denote as U
for coefficient of utility. We also note that idle/waiting time
has U = 0. We therefore create as our metric Average Work

Rate AWR:
Taw + U * Tew

1
Titer ()
The iteration time is divided into three parts: AW, EW, and

idling. AW is weighted at 1, EW at U, and idling at 0.
Returning to Figure 1 we see that there are a number of cases.

AWR =

Baseline: In the baseline case, with no EW, AWR is simply
Taw/Titer

EWM: In this case, there are three possibilities:

a): In the case where Tj,;, < Tpy, all of the idle time has
been replaced EW. We observe that the interval Tgyy during
which EW executes has two parts, before and after 7j,4. The
EW during the first interval is entirely positive (U > 0), while
the excess T'gyy, which continues execution after the normal
termination of the iteration, is negative (U < 1).

b): Where Tpy, < Tjq4, in the first case the particular process
itself has “beat” the deadline, although some other processes
have not. In this case its EW is purely beneficial in that it
replaces idling (U > 0), but its idling is not because it replaces
EW (0 < U).

¢): Where Tp;, < Tj4g, in the second case the particular
process itself has not beat the deadline. For these processes
there is no EW and the AWR is the same as that of the
baseline.

To summarize, setting the deadline either too safely or too
aggressively both have their detriments. If the deadline is too
safe, then Tj.., is extended unnecessarily and some AW is
replaced with EW. If the deadline is too aggressive, then some
EW is unnecessarily replaced with idling.

We predict an optimal deadline based on some number of
iterations during which T4y (for each process) and Tj,4 (for
the entire iteration) are recorded (see Figures 2 and 5). Since
the Tj,, probability distribution function (Figure 5) may not
lend themselves to a simple expression we estimate the optimal
Tpr as the following.

Algorithm 2: Parameter Search to optimize Ty,
Input: U < Utility Coefficient

1 MaxIterTime = max(7T;s,)

2 for T € [0, MaxlterTime] do

3 TEW :max(O, T— TAW)
4 foreach iteration i do
5 foreach process p do
6 | WorkRate; , =(Taw + U * Tew)/ Titer
7 end
8 end
9 AWRy = AVG(WorkRate)
10 end

11 return Tp; = argmax AWR
T

Note that, despite the several cases, the computation reduces
to simply maximizing AWR, which is itself a simple calcula-
tion. Figure 4 shows the optimal T'p, for various U from 0.1
to 1 in tenth increments. We note the variety of ranges and
shapes of the curves: these are being investigated further.

E. The benefit of EWM

In this section we examine the benefit of synchronous EWM
with optimal deadlines under the current workloads. To do so
we find the AWRs for selected Us (0.5 and 0.9) and compare
with the AWRs of the baseline (average of Ty, /Titer for all
processes and all iterations with no deadline or EW).

TABLE III: Average work rates AWR for baseline and EWM
for two extra work utility coefficients U

AWR
Application | baseline | U =05 | U=0.9
miniVite 99.7% 99.7% 99.7%
miniFE 99.8% 99.8% 99.9%
HPCCG 83% 90% 97.711%
CoMD 99.9% 99.9% 99.9%
LULESH 94% 96.59% 99.9%

F. Discussion

With the current preliminary results we have found that, for
two applications, EWM gives sufficient benefit to make this an
approach worth examining further. Part of the promise is that
the slack time we observed is much less than indicated by the
results in [2]. In that study, however, there were larger problem
sizes, which led to higher imbalance (1024*512%192 versus
60*60*60), and also a higher number of processes. Moreover,
in [2] OpenMP parallelism was used in addition to MPI. So,
for example, for miniFE there were 128 nodes with 24 MPI
processes per node and 48 OpenMP threads for each MPI
process. All of these are more realistic configurations for HPC.

A further question is how often Tpz should be recom-
puted. The calculation is simple, which indicates frequent
computation; however, the limited range of optimal T (in
Figure 4) indicates that this may not be necessary. This must
be investigated further.

V. RELATED WORK

We first emphasize that, despite use of deadlines and
prediction, that EWM is very different from most real time
methods. For example, the prediction is a posteriori and
the deadlines purely for optimization. Over EWM is more
resembles autotuning than RTOS.

A different approach addresses idle time by slowing down
leader processes to reduce power and energy consumption. For
instance, [8] presents a new power management mechanism
based on a timeout algorithm which makes it possible to
achieve performance-neutral power saving in MPI applications
without requiring application source code modifications. The
work [9] presents a system to exploit slack time spent by nodes
at synchronization points by reducing the energy gear on those
nodes.

Application-aware optimizations are also possible as
demonstrated by, e.g, Zhao et al. [24], who optimize perfor-
mance with online decision. This determines the best time to
impose the synchronization barriers for the training phase of
deep learning applications. The authors in [25] present a BSP-
based aggressive synchronization model for iterative machine
learning jobs. More specifically, in their model, the authors
terminate the iteration job corresponding to the slowest task
as soon as the fastest tasks have completed their jobs. The
remaining data of the terminated job of the slowest worker is
prioritized in the next iteration.

VI. CONCLUSION

In this paper we present a new method, called extra work
method (EWM), to exploit the time wasted by processes idling

CoMD HPCCG LULESH
1.74 | 34+] 040f
2 2 g
S1.72F 15 = 0.38
81.70- -53'2’ _E 0.36
Q Q Q
S 1.68 - 13 3
£ £ £034
1.66 301 1
02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
Coefficient U miniFE Coefficient U miniVite Coefficient U
1.6f ' ' ‘ ' ' '
2 g
g la4r 15 0.020¢
g g
Bl s
ks B
2 2
S0l 1.2 0015}
£ £
0.8
02 04 06 08 10 OO0 08 o
Coefficient U Coefficient U
Fig. 4: Deadline Prediction with different Coefficient U
CoMD HPCCG LULESH
__40F ‘ : : :
s 2 2
£ 2 2
() L
)]2t A 100
220t s 2
i) Bl T 50!l
<
< 2 2
£ e e
0 & 0 o 0 L ‘
1.675 1.700 1.725 25 3.0 0.35 0.40
Laggard Time (sec .. ; R]
&g (sec) miniFE Laggard Time (sec) miniVite Laggard Time (sec)
%150 ' > 400f ‘ ']
A 100 ¢ A
=y £200}
2 50/ 2
o fa)
2 2
~ 0 " L ~
0.8 0.9 1.0 (?.010 0.015 0.020

Laggard Time (sec)

Laggard Time (sec)

Fig. 5: Probability Density Function (PDF) of T}, for different applications

while running bulk synchronous parallel (BSP) applications.
This idling is a result of many factors including workload
imbalance and various forms of system noise. EWM is based
on, first, using the idle time for extra work, and, second, by
optimizing the method by predicting a deadline for supersteps
of BSP. In this preliminary study we run proxy applications on
a production supercomputer and find that there is benefit for
all five of the applications with three applications benefiting
by roughly 10% or more. Since these proxy applications are
drastically simplified versions of their production versions, and
since we were only (so far) able to run small scale samples,

we believe there is a good possibility that EWM will have
real-world applicability.

There is much work in progress, beginning with running
larger problem sizes, then using openMP parallelism in ad-
dition to MPI, also using more nodes, finally using other
applications, including miniAMR and production codes, e.g.,
OpenMM instead of CoMD.

ACKNOWLEDGEMENTS

This work was supported, in part, by the NSF through award
CCF-1919130; and by the NIH through award R44GM128533.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

REFERENCES

D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach. San Francisco, CA: Morgan-Kaufmann,
1999.

P. Haghi, A. Guo, T. Geng, A. Skjellum, and M. Herbordt, “Workload
Imbalance in HPC Applications: Effect on Performance of In-Network
Processing,” in IEEE High Performance Extreme Computing Confer-
ence, 2021, doi: 10.1109/HPEC49654.2021.9622847.

P. Haghi, A. Guo, Q. Xiong, R. Patel, C. Yang, T. Geng, J. Broaddus,
R. Marshall, A. Skjellum, and M. Herbordt, “FPGAs in the Network
and Novel Communicator Support Accelerate MPI Collectives,” in [EEE
High Performance Extreme Computing Conference, 2020.

P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J. Broaddus, R. Marshall,
D. Schafer, A. Skjellum, and M. Herbordt, “Reconfigurable switches
for high performance and flexible mpi collectives,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 2, 2022, doi:
10.1002/cpe.6769.

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC
'08: Proceedings of the 2008 ACM/IEEE Conference on Supercomput-
ing, 2008, pp. 1-12.

F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of asci q,” in SC ’03: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, 2003, pp. 55-55.

P. Widener, K. B. Ferreira, S. Levy, and T. Hoefler, “Exploring
the effect of noise on the performance benefit of nonblocking
allreduce,” in Proceedings of the 21st European MPI Users’ Group
Meeting, ser. EuroMPI/ASIA ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 77-82. [Online]. Available:
https://doi.org/10.1145/2642769.2642786

D. Cesarini, A. Bartolini, A. Borghesi, C. Cavazzoni, M. Luisier, and
L. Benini, “Countdown slack: A run-time library to reduce energy
footprint in large-scale mpi applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 11, pp. 26962709, 2020.

N. Kappiah, V. Freeh, and D. Lowenthal, “Just in time dynamic voltage
scaling: Exploiting inter-node slack to save energy in mpi programs,” in
SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercom-
puting, 2005, pp. 33-33.

D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede
2: The Evolution of an XSEDE Supercomputer,” in Practice and
Experience in Advanced Research Computing on Sustainability, Success
and Impact, 2017.

“ECP Proxy Applications,” https://proxyapps.exascaleproject.org/ecp-
proxy-apps-suite/.

T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, Bulk
Synchronous Parallel Computing — A Paradigm for Transportable
Software. Boston, MA: Springer US, 1996, pp. 61-76. [Online].
Available: https://doi.org/10.1007/978-1-4615-4123-3_4

S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization
of stencil computations,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 235-244. [Online]. Available:
https://doi.org/10.1145/1250734.1250761

P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in 28th IEEE International Symposium on Field-Programmable Custom
Computing Machines, 2020, dOI: 10.1109/ FCCM48280.2020.00028.
S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarria-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2018, pp. 885-895.

“ECP Proxy Applications,
https://github.com/Mantevo/miniFE.
“HPCCG Benchmark,” https://github.com/Mantevo/HPCCG.

“CoMD proxy application,” http://www.exmatex.org/comd.html.
“Livermore unstructured lagrangian explicit shock hydrodynamics,”
https://asc.lInl.gov/codes/proxy-apps/lulesh.

miniFE Catalog,”

[20]

(21]

[22]

[23]

[24]

[25]

T. Jones, G. Ostrouchov, G. A. Koenig, O. H. Mondragon, and P. G.
Bridges, “An evaluation of the state of time synchronization on lead-
ership class supercomputers,” Concurrency and Computation: Practice
and Experience, vol. 30, no. 4, p. e4341, 2018, e4341 cpe.4341. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4341

C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. S. Sharkawi,
B. Rosenburg, and G. A. Chochia, “The high-speed networks of the
summit and sierra supercomputers,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 3:1-3:10, 2020.

Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,
and A. Vahdat, “Exploiting a natural network effect for scalable,
fine-grained clock synchronization,” in /5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 81-94. [Online]. Available:
https://www.usenix.org/conference/nsdil8/presentation/geng

A. Guo, “Mapping applications onto fpga-centric clusters,” Master’s
thesis, Department of Electrical and Computer Engineering, Boston
University, 2020, proQuest Number: 27963166. [Online]. Available:
https://open.bu.edu/handle/2144/40943

X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “Elastic
bulk synchronous parallel model for distributed deep learning,” in 2019
IEEE International Conference on Data Mining (ICDM), 2019, pp.
1504-1509.

S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization
with partial processing for iterative ml jobs on clusters,” in Proceedings
of the 19th International Middleware Conference, ser. Middleware ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
253-265. [Online]. Available: https://doi.org/10.1145/3274808.3274828

