
The Viability of Using Online Prediction to Perform

Extra Work while Executing BSP Applications

Po Hao Chen∗§ Pouya Haghi∗§ Jae Yoon Chung∗ Tong Geng‡

Richard West∗ Anthony Skjellum† Martin C. Herbordt∗

∗Department of Electrical and Computer Engineering, Boston University
†SimCenter & Department of Computer Science and Engineering, University of Tennessee at Chattanooga

‡Department of Electrical and Computer Engineering, University of Rochester

Abstract—A fundamental problem in parallel processing is
efficiently partitioning work; often much of a parallel program’s
execution time is often spent idle or performing overhead
operations. We propose to improve the efficiency of system
resource utilization by having idle processes execute extra work.
We develop a method whereby the execution of extra work is
optimized through performance prediction and the setting of
limits (a deadline) on the duration of the extra work execution.
In our preliminary experiments of proxy BSP applications on
a production supercomputer we find that this approach is
promising with all five applications benefiting from this approach.

Index Terms—Workload Imbalance, High Performance Com-
puting, BSP, Online Prediction

I. INTRODUCTION

The fundamental problem of parallel processing is deter-

mining which process should do what work. The most basic

method of partitioning (i.e., decomposition into tasks and

assignment of tasks to processes [1]) is the set of methods

known as load balancing. Depending on the application, par-

titioning may be obvious, as in, say, many BSP applications;

or it may require some run-time updates (semistatic and

dynamic methods). In all cases, however, there are limits

to the quality of partitioning with the result that, frequently,

much of a parallel program’s execution time is spent idle or

performing overhead operations [2]–[4]. Workload imbalance

can originate from different sources. One type is inherent to

the application itself (i.e. some processes have more work to

do). Another type is due to external noise coming, e.g., from

the operating system, network, checkpointing, or mapping [5]–

[7].

One possible solution is to spend some of this idle time

performing ever more frequent and complex dynamic load

balancing; the gain, however, is limited by new overhead for

extra work, synchronization, communication, and scheduling.

An alternative is to reduce the cost of the idle compute

resources—the slack time of the leader processes waiting for

laggards—e.g., by slowing down the leader processes [8], [9].

Another alternative is for the leader processes to do extra

work while waiting for the laggards. The most general form

here is simply time sharing: the leader processes block while

waiting and turn over their resources to the operating system.

§The first two authors have equal contribution to the paper.

This is generally not useful in HPC, however, due both to the

immense amount of OS overhead and the way that processes

are scheduled. A different way to execute extra work, and the

focus of our study here, is to allocate the excess computing

resources to predefined, user-space tasks. For now we leave the

extra work undefined, but postulate either work that is useful

for the current program, or some generic or fungible other

work (e.g., SETI at home or bitcoin mining). The value of the

extra work is likely to be less than that of the real work; the

ratio of their values can be a parameter used in optimization.

Determining whether the extra work method (EWM) is

viable is the focus of this study and requires several research

questions to be answered. First, is there sufficient slack time to

make EWM worth the overhead? Second, is it predictable that

certain processes will be leaders or laggards? If so, then tra-

ditional semistatic load balancing might be preferable. Third,

which method should be used to implement EWM? There are

at least two possibilities. In asynchronous EWM, extra work

is performed until the final laggard process completes (reaches

the soft barrier) and messages sent to the other processes.

In synchronous EWM, the execution time of the laggard

process is predicted. Then, when any process completes its

real work, it checks whether it has exceeded the predicted

time and, if not, executes extra work until then. Questions

arising in synchronous EWM include: how variable is the

execution time (is prediction viable)? How can it be predicted?

How accurate are the predictions? What is the cost/benefit of

missing a prediction? Should the prediction be guaranteed?

How often should the prediction be updated? For simplicity,

in this preliminary study, we concentrate on Bulk Synchronous

Parallel (BSP) applications, which often consist of a series of

similar iterations.

To obtain results with respect to several of these questions

we use Stampede 2 cluster [10] with up to 1536 processes

(32 nodes) and a set of five BSP proxy applications from

Exascale Computing Project (ECP) [11]. We find that two of

these applications benefit significantly from EWM and that

this benefit is likely to increase with production applications

on realistic problem sizes. We summarize our contributions:

• We propose a new method of improving the efficiency of

BSP programs in HPC through the use of extra work;

• We demonstrate an optimization method for EWM based

on predicting the time interval during which the extra



work should be executed;

• We evaluate the workload imbalance of time intervals

for BSP supersteps on Stampede2 compute cluster in

different HPC applications;

• We present experimental results showing predictability,

the characteristics of the extra work deadline, and the

overall benefit of the approach for a preliminary set of

BSP proxy HPC applications.

II. APPLICATION SPACE

A. The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [12] was

developed as a theoretical augmentation of the PRAM model,

but is now commonly used to refer to parallel programs that

execute in well-defined iterations (supersteps), each terminated

by a global barrier. In each superstep, processes perform

local computation, communication, and, finally, synchroniza-

tion. A large fraction of HPC applications fall generally into

this model. For instance, in stencil computations, processes

communicate with neighbors and perform computation; this

happens for a number of iterations [13]. Iterative solvers op-

erate by having each process perform part of the computation;

processes are synchronized and convergence checked at the

end of each superstep [14].

B. Applications

Our study adopted five selected applications from the ECP

Proxy Applications Suite [11]. The proxies are designed to be

lightweight and simplified while encapsulating the essence of

large applications. The simplicity offers the ideal subjects for

our evaluation. We described the following applications that

implement BSP algorithms.

MINIVITE is an iterative graph proxy implementation based

on MPI+OpenMP. It performs the first phase of Louvain’s

method, a community detection algorithm [15]. In real-world

large networks, the vertices exhibit densely connected clusters

(communities) with considerably more edges than the connec-

tions outside. The notion of modularity serves as a metric to re-

flect the density of the edges within the community relative to

the ones outside, and it is optimized as the iterations progress.

The algorithm converges in a non-deterministic number of

iterations.

MINIFE is a proxy application that approximates unstructured

implicit finite element by solving a sparse linear system of

equations [16]. The kernels exhibit patterns that are similar

to many HPC applications. Specifically, the element-operator

computations (diffusion matrix and vector); communications

via scattering to sparse matrix and vector; sparse linear alge-

bra operations (conjugate gradient solver); and scalar-vector

operations.

HPCCG is a conjugate gradient solver for a 3D chimney

domain [17]. Similar to MiniFE, the main kernels involve gen-

erating finite difference matrix, sparse linear algebra operation

(matrix-vector multiplication) and scalar-vector operations. In

addition, the implementation allows for configurable sub-block

size for each processor.

COMD is a proxy application for molecular dynamics simula-

tions. The performance depends on the efficiency of evaluating

of all forces between atom pairs within some short distance

[18]. The program can be broken down into three main

stages: inter-node computation, each node computes forces and

evolving positions of the atoms within its domain; intra-node

computation, assignment of atoms to link cells and checking

for interactions; inter-node communication, exchanging infor-

mation of kinetic and potential energy.

LULESH is a proxy application that approximates hydrody-

namics equations by partitioning the Sedov blasts problem into

a collection of volumetric elements simulated by a mesh [19].

In addition to following BSP model, the program allows for

control over load balance in each set of elements.

III. THE SYNCHRONOUS EXTRA WORK METHOD

A. Overview of the EW method

The purpose of EWM is to increase the utilization of

compute resources during execution of HPC applications. The

basic idea is that, rather than idling, waiting processes perform

extra work (EW). In this study for exploring the viability of

the EWM we make certain assumptions.

Assumption 1: There is a global distributed clock sufficiently

accurate so that the skew is small in comparison to the time

scales critical to EWM, say, on the order of microseconds.

Although current leadership class systems do not have such

a capability [20], [21], there are no technological hurdles to

their introduction (see, e.g., [22]).

Assumption 2: EW exists that is useful and whose execution

is predictable, i.e., it can be tokenized. Ideally the EW is useful

to the running application, but we do not want to restrict

EW to just that. There are many fungible applications whose

executions have non-zero value.

Assumption 3: EW is not as useful as the application work.

Further, the user (or system administrator) can specify the

utility of the EW as some fraction of the utility of the

application work.

Assumption 4: There does not exist an efficient mechanism

to preempt a process. While these mechanisms can be imple-

mented, they are not a standard feature of current large scale

systems. We therefore concentrate on synchronous EWM and

leave asynchronous EWM to a further study.

Assumption 5: The cost of starting up and tearing down EW

is small. Since we are constraining EW this is reasonable for

at least some types of EW, but will be investigated further in

another study.

We now sketch EWM for a generic BSP application.

∗ There is a start-up phase of some number of iterations during

which data is collected so that a prediction can be made as

to the iteration time and also to determine the distribution,



over the processes executing the application, of the amount of

application work (and idling) performed by the processes.

∗ This prediction is used to create a deadline, which is used

to optimize EWM. Note that this deadline is unrelated to

the use of this term in various types of real time systems.

Also, that the prediction is completely empirical (a posteriori)

and not related to any “hard deadline” of the type found in

real-time operating system (RTOS) and often determined a

priori. In particular, violation is only an inconvenience and

not comparable to a violation in a hard RTOS.

∗ Using this deadline we have the following pseudocode for

each process in EWM.

Algorithm 1: Extra Work Method (EWM)

1 do

2 DO ApplicationWork // for this iteration

3 if T < TDL then

4 // beat deadline?

5 do

6 ExtraWork

7 while T != TDL;

8 BARRIER()

9 while Termination Condition = False;

B. Definitions

Before continuing with details of EWM we summarize the

definitions in use.

Iteration := a.k.a. superstep. This is the fundamental unit of

BSP and the unit of prediction in this study.

AW and EW are the application and extra work, respectively.

Tglobal := or simply T , is the current time on the (postulated)

accurate distributed clock.

Tlag := is the time it takes the last (laggard) process to finish

its work during an iteration and defines the iteration time in

non-EWM.

TAW := for each process, the amount of time during an

iteration spent working on the application.

Tslack := Tlag−TAW . Without EW, this is the amount of slack

time the process spends idling while waiting for the laggard

process.

TDL := A timestamp (roughly, a soft deadline) from the

beginning of the iteration. It is used to optimize EWM. Like

T , this is a global value.

TEW := max(0, TDL−TAW ). EW is executed in the interval

between the time when the application work is completed and

the deadline. If the process misses the deadline, then there is

no EW.

Tidle := Without EW, this is Tslack. With EW, there can also be

idle time, but only if the laggard process misses the deadline

(Tlag > TDL). In that case, for processes that meet the

deadline (TAW < TDL), Tidle = Tlag−TDL . For non-laggard

processes that also miss the deadline, Tidle = Tlag − TAW .

Titer := max(Tlag ,TDL) is the execution time for a particular

iteration (superstep). See Figure 1: Since in EWM TDL can

be longer than Tlag , Titer is the greater of the two.

U := The coefficient of utility of the EW. This is the assigned

fraction of utility of EW with respect to AW.

C. Scenarios

We assume a timestamp mechanism based on the predicted

time per iteration (Tlag). The timestamp, or deadline (as we

call it here), can be either safe or not. By safe we mean that all

processes are guaranteed (with high probability) to complete

by the deadline TDL. As we see in the next section, there

is substantial variation in iteration time Titer which would

make the safe very inefficient. In this study we assume that

TDL is set to maximize overall performance. In this version,

the laggard process, which sets the non-EWM iteration time,

can finish its AW either before the deadline (Tlag < TDL) or

after (Tlag > TDL); the implications of both are discussed in

Section IV.

For non-laggard process execution there are three scenarios

as shown in Figure 1; execution of the laggard process follows

immediately. In (a), Tlag < TDL. All processes finish their

AW before the deadline and execute EW until the deadline. In

(b) and (c), Tlag > TDL. In (b), the process finishes its AW

before the deadline, executes EW until the deadline, but then

is idle until Tlag . In (c), the process executes AW beyond the

deadline and then is (again) idle until Tlag .

Time

TAW

Tlaggard Tdeadline

TEW

Time

TAW

Tdeadline Tlaggard

TEW Twait

Time

TAW

Tdeadline Tlaggard

Twait

(a)

(b)

(c)

Fig. 1: The three cases for non-laggard process execution.

IV. EVALUATION

A. Experimental Setup

For these preliminary experimental results, we executed

the applications described in Section II on the Stampede 2

cluster [10]. We picked five BSP-based proxy applications

inspired from the work [23] with the configuration shown in

Table I. We used up to 32 nodes each with 48 processes (1536

processes in total) but we used fewer processes for some of



TABLE I: Experimental Configuration for Proxy Applications

Application Small Input Medium Input Large Input # Processes

miniVite -p 3 -l -n 131072 -p 3 -l -n 262144 -p 3 -l -n 524288 128

miniFE -nx 20 -ny 20 -nz 20 -nx 40 -ny 40 -nz 40 -nx 60 -ny 60 -nz 60 1536

HPCCG 64 64 64 100 100 100 200 200 200 1536

CoMD -e -i 16 -j 8 -k 8 -x 128 -y 128 -z 128 -e -i 16 -j 8 -k 8 -x 256 -y 256 -z 256 -e -i 16 -j 8 -k 8 -x 512 -y 512 -z 512 1024

LULESH -s 30 -p -i 500 -s 40 -p -i 500 -s 50 -p -i 500 512

the applications due to their requirements. Figure 2 shows an

example (LULESH) of our measurement. The figure shows

TAW for laggard and leader processes in addition to their

deviation across the iterations. As evident from the figure, the

deviation is comparable to TAW itself. Due to limited space,

we show a sample of results selected from configurations per

application (bolded in Table I), which covers small, medium,

and large inputs. This sample is largest possible inputs for

which runs completed, which is also the most commonly run

in HPC environments.

Fig. 2: time measurement (application work) of LULESH per

iteration for laggard and leader processes and the deviation.

B. Are Processes Systematically Laggard?

If we are able to identify processes as being systematically

laggard, then the issue may be originated from the underlying

hardware (e.g., slow clock) or mapping (e.g., remote node). In

that case, non-EWM methods are preferred.

Figure 3 is a series of histograms, one for each application.

The bins are the processes sorted by frequency of being lag-

gard. The counts are normalized with the expected frequency

of laggardness (#-of-iterations/#-of-processes) being set to 1.

Fig. 3: Laggard process occurrences sorted by the frequency.

If the laggard processes were chosen by chance we would

expect a Poisson distribution and a maximum value of roughly

the log of the # of processes. This is what we observe in

Figure 3 indicating that—for these runs—the selection of

the process that is laggard is indistinguishable from random

selection.

C. What is the potential benefit of EWM?

We find here whether EWM is sufficiently promising to

warrant further investigation. The maximum potential benefit

of EWM is shown by the behavior of applications under

normal execution (without executing EW), i.e., through the

proportion of slack time with respect to total time (Tslack /

Titer) for all processes over all iterations. Table II shows, for

each application, the proportion of idle time. Also shown is

the average wall-clock idle time per process per iteration.

TABLE II: Fraction of execution time that a process is idle

and average idle time per iteration in miliseconds.

Application Avg Idle Ratio Avg Idle Time

miniVite 0.25% 0.03
HPCCG 16.93% 526.72
CoMD 0.01% 0.06
LULESH 5.92% 19.58
miniFE 0.17% 1.4

We observe that the potential benefit is there is a bimodal

distribution with two applications, LULESH and HPCCG,

indicating substantial potential benefit and the others little.

We observe further that overhead time, e.g., to initiate EW,

is likely to be small in comparison to the average idle time

per process per iteration especially for LULESH and HPCCG.

D. Is optimizing TDL beneficial?

We begin this subsection by continuing our examination of

the various EWM scenarios (e.g., Figure 1) with the goal of

finding whether it is beneficial to predict a deadline with the

potential to be violated. If so, then the further question is how

TDL should be optimized.

We note that EW is not as valuable as AW. Without

knowing the details of EW we postulate that, for any run,

it is worth some fixed fraction of AW which we denote as U
for coefficient of utility. We also note that idle/waiting time

has U = 0. We therefore create as our metric Average Work

Rate AWR:

AWR =
Taw + U ∗ Tew

Titer

(1)

The iteration time is divided into three parts: AW, EW, and

idling. AW is weighted at 1, EW at U, and idling at 0.

Returning to Figure 1 we see that there are a number of cases.

Baseline: In the baseline case, with no EW, AWR is simply

Taw/Titer



EWM: In this case, there are three possibilities:

a): In the case where Tlag < TDL, all of the idle time has

been replaced EW. We observe that the interval TEW during

which EW executes has two parts, before and after Tlag . The

EW during the first interval is entirely positive (U > 0), while

the excess TEW , which continues execution after the normal

termination of the iteration, is negative (U < 1).

b): Where TDL < Tlag , in the first case the particular process

itself has “beat” the deadline, although some other processes

have not. In this case its EW is purely beneficial in that it

replaces idling (U > 0), but its idling is not because it replaces

EW (0 < U ).

c): Where TDL ≤ Tlag , in the second case the particular

process itself has not beat the deadline. For these processes

there is no EW and the AWR is the same as that of the

baseline.

To summarize, setting the deadline either too safely or too

aggressively both have their detriments. If the deadline is too

safe, then Titer is extended unnecessarily and some AW is

replaced with EW. If the deadline is too aggressive, then some

EW is unnecessarily replaced with idling.

We predict an optimal deadline based on some number of

iterations during which TAW (for each process) and Tlag (for

the entire iteration) are recorded (see Figures 2 and 5). Since

the Tlag probability distribution function (Figure 5) may not

lend themselves to a simple expression we estimate the optimal

TDL as the following.

Algorithm 2: Parameter Search to optimize TDL

Input: U ← Utility Coefficient

1 MaxIterTime = max(Titer)

2 for T ∈ [0,MaxIterTime] do

3 TEW =max(0, T − TAW )
4 foreach iteration i do

5 foreach process p do

6 WorkRatei,p =(TAW + U ∗ TEW )/Titer

7 end

8 end

9 AWRT = AVG(WorkRate)
10 end

11 return TDL = argmax
T

AWR

Note that, despite the several cases, the computation reduces

to simply maximizing AWR, which is itself a simple calcula-

tion. Figure 4 shows the optimal TDL for various U from 0.1

to 1 in tenth increments. We note the variety of ranges and

shapes of the curves: these are being investigated further.

E. The benefit of EWM

In this section we examine the benefit of synchronous EWM

with optimal deadlines under the current workloads. To do so

we find the AWRs for selected Us (0.5 and 0.9) and compare

with the AWRs of the baseline (average of Taw/Titer for all

processes and all iterations with no deadline or EW).

TABLE III: Average work rates AWR for baseline and EWM

for two extra work utility coefficients U

AWR
Application baseline U = 0.5 U = 0.9

miniVite 99.7% 99.7% 99.7%
miniFE 99.8% 99.8% 99.9%
HPCCG 83% 90% 97.71%
CoMD 99.9% 99.9% 99.9%

LULESH 94% 96.59% 99.9%

F. Discussion

With the current preliminary results we have found that, for

two applications, EWM gives sufficient benefit to make this an

approach worth examining further. Part of the promise is that

the slack time we observed is much less than indicated by the

results in [2]. In that study, however, there were larger problem

sizes, which led to higher imbalance (1024*512*192 versus

60*60*60), and also a higher number of processes. Moreover,

in [2] OpenMP parallelism was used in addition to MPI. So,

for example, for miniFE there were 128 nodes with 24 MPI

processes per node and 48 OpenMP threads for each MPI

process. All of these are more realistic configurations for HPC.

A further question is how often TDL should be recom-

puted. The calculation is simple, which indicates frequent

computation; however, the limited range of optimal TDL (in

Figure 4) indicates that this may not be necessary. This must

be investigated further.

V. RELATED WORK

We first emphasize that, despite use of deadlines and

prediction, that EWM is very different from most real time

methods. For example, the prediction is a posteriori and

the deadlines purely for optimization. Over EWM is more

resembles autotuning than RTOS.

A different approach addresses idle time by slowing down

leader processes to reduce power and energy consumption. For

instance, [8] presents a new power management mechanism

based on a timeout algorithm which makes it possible to

achieve performance-neutral power saving in MPI applications

without requiring application source code modifications. The

work [9] presents a system to exploit slack time spent by nodes

at synchronization points by reducing the energy gear on those

nodes.

Application-aware optimizations are also possible as

demonstrated by, e.g, Zhao et al. [24], who optimize perfor-

mance with online decision. This determines the best time to

impose the synchronization barriers for the training phase of

deep learning applications. The authors in [25] present a BSP-

based aggressive synchronization model for iterative machine

learning jobs. More specifically, in their model, the authors

terminate the iteration job corresponding to the slowest task

as soon as the fastest tasks have completed their jobs. The

remaining data of the terminated job of the slowest worker is

prioritized in the next iteration.

VI. CONCLUSION

In this paper we present a new method, called extra work

method (EWM), to exploit the time wasted by processes idling



Fig. 4: Deadline Prediction with different Coefficient U

Fig. 5: Probability Density Function (PDF) of Tlag for different applications

while running bulk synchronous parallel (BSP) applications.

This idling is a result of many factors including workload

imbalance and various forms of system noise. EWM is based

on, first, using the idle time for extra work, and, second, by

optimizing the method by predicting a deadline for supersteps

of BSP. In this preliminary study we run proxy applications on

a production supercomputer and find that there is benefit for

all five of the applications with three applications benefiting

by roughly 10% or more. Since these proxy applications are

drastically simplified versions of their production versions, and

since we were only (so far) able to run small scale samples,

we believe there is a good possibility that EWM will have

real-world applicability.

There is much work in progress, beginning with running

larger problem sizes, then using openMP parallelism in ad-

dition to MPI, also using more nodes, finally using other

applications, including miniAMR and production codes, e.g.,

OpenMM instead of CoMD.

ACKNOWLEDGEMENTS

This work was supported, in part, by the NSF through award

CCF-1919130; and by the NIH through award R44GM128533.



REFERENCES

[1] D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A

Hardware/Software Approach. San Francisco, CA: Morgan-Kaufmann,
1999.

[2] P. Haghi, A. Guo, T. Geng, A. Skjellum, and M. Herbordt, “Workload
Imbalance in HPC Applications: Effect on Performance of In-Network
Processing,” in IEEE High Performance Extreme Computing Confer-

ence, 2021, doi: 10.1109/HPEC49654.2021.9622847.

[3] P. Haghi, A. Guo, Q. Xiong, R. Patel, C. Yang, T. Geng, J. Broaddus,
R. Marshall, A. Skjellum, and M. Herbordt, “FPGAs in the Network
and Novel Communicator Support Accelerate MPI Collectives,” in IEEE

High Performance Extreme Computing Conference, 2020.

[4] P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J. Broaddus, R. Marshall,
D. Schafer, A. Skjellum, and M. Herbordt, “Reconfigurable switches
for high performance and flexible mpi collectives,” Concurrency and

Computation: Practice and Experience, vol. 34, no. 2, 2022, doi:
10.1002/cpe.6769.

[5] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC

’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomput-

ing, 2008, pp. 1–12.

[6] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of asci q,” in SC ’03: Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing, 2003, pp. 55–55.

[7] P. Widener, K. B. Ferreira, S. Levy, and T. Hoefler, “Exploring
the effect of noise on the performance benefit of nonblocking
allreduce,” in Proceedings of the 21st European MPI Users’ Group

Meeting, ser. EuroMPI/ASIA ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 77–82. [Online]. Available:
https://doi.org/10.1145/2642769.2642786

[8] D. Cesarini, A. Bartolini, A. Borghesi, C. Cavazzoni, M. Luisier, and
L. Benini, “Countdown slack: A run-time library to reduce energy
footprint in large-scale mpi applications,” IEEE Transactions on Parallel

and Distributed Systems, vol. 31, no. 11, pp. 2696–2709, 2020.

[9] N. Kappiah, V. Freeh, and D. Lowenthal, “Just in time dynamic voltage
scaling: Exploiting inter-node slack to save energy in mpi programs,” in
SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercom-

puting, 2005, pp. 33–33.

[10] D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller, “Stampede
2: The Evolution of an XSEDE Supercomputer,” in Practice and

Experience in Advanced Research Computing on Sustainability, Success

and Impact, 2017.

[11] “ECP Proxy Applications,” https://proxyapps.exascaleproject.org/ecp-
proxy-apps-suite/.

[12] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, Bulk

Synchronous Parallel Computing — A Paradigm for Transportable

Software. Boston, MA: Springer US, 1996, pp. 61–76. [Online].
Available: https://doi.org/10.1007/978-1-4615-4123-3 4

[13] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization
of stencil computations,” in Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 235–244. [Online]. Available:
https://doi.org/10.1145/1250734.1250761

[14] P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in 28th IEEE International Symposium on Field-Programmable Custom

Computing Machines, 2020, dOI: 10.1109/ FCCM48280.2020.00028.

[15] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarrià-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in 2018 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),
2018, pp. 885–895.

[16] “ECP Proxy Applications, miniFE Catalog,”
https://github.com/Mantevo/miniFE.

[17] “HPCCG Benchmark,” https://github.com/Mantevo/HPCCG.

[18] “CoMD proxy application,” http://www.exmatex.org/comd.html.

[19] “Livermore unstructured lagrangian explicit shock hydrodynamics,”
https://asc.llnl.gov/codes/proxy-apps/lulesh.

[20] T. Jones, G. Ostrouchov, G. A. Koenig, O. H. Mondragon, and P. G.
Bridges, “An evaluation of the state of time synchronization on lead-
ership class supercomputers,” Concurrency and Computation: Practice

and Experience, vol. 30, no. 4, p. e4341, 2018, e4341 cpe.4341. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4341

[21] C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. S. Sharkawi,
B. Rosenburg, and G. A. Chochia, “The high-speed networks of the
summit and sierra supercomputers,” IBM Journal of Research and

Development, vol. 64, no. 3/4, pp. 3:1–3:10, 2020.
[22] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum,

and A. Vahdat, “Exploiting a natural network effect for scalable,
fine-grained clock synchronization,” in 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 81–94. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/geng

[23] A. Guo, “Mapping applications onto fpga-centric clusters,” Master’s
thesis, Department of Electrical and Computer Engineering, Boston
University, 2020, proQuest Number: 27963166. [Online]. Available:
https://open.bu.edu/handle/2144/40943

[24] X. Zhao, M. Papagelis, A. An, B. X. Chen, J. Liu, and Y. Hu, “Elastic
bulk synchronous parallel model for distributed deep learning,” in 2019

IEEE International Conference on Data Mining (ICDM), 2019, pp.
1504–1509.

[25] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization
with partial processing for iterative ml jobs on clusters,” in Proceedings

of the 19th International Middleware Conference, ser. Middleware ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
253–265. [Online]. Available: https://doi.org/10.1145/3274808.3274828


