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Abstract—Performance of distributed data center applications
can be improved through use of FPGA-based SmartNICs, which
provide additional functionality and enable higher bandwidth
communication and lower latency. Until lately, however, the
lack of a simple approach for customizing SmartNICs to ap-
plication requirements has limited the potential benefits. Intel’s
Configurable Network Protocol Accelerator (COPA) provides a
customizable FPGA framework that integrates both hardware
and software development to improve computation and commu-
nication performance. In this first case study, we demonstrate
the capabilities of the COPA framework with an application
from cryptography - secure Multi-Party Computation (MPC)
— that utilizes hardware accelerators connected directly to host
memory and the COPA network. We find that using the COPA
framework gives significant improvements to both computation
and communication as compared to traditional implementations
of MPC that use CPUs and NICs. A single MPC accelerator
running on COPA enables more than 17Gb/s of communication
bandwidth while using only 3% of Stratix 10 resources. We
show that utilizing the COPA framework enables multiple MPC
accelerators running in parallel to fully saturate a 100Gbps link
enabling higher performance compared to traditional NICs.

I. INTRODUCTION

In recent years, one of the biggest technological advance-
ments has come from the growth of public datacenters. These
distributed computing environments enable us to continuously
surpass previous hardware limitations. Due to the increasing
demand for access to datacenter resources, cloud providers
strive to find new ways of increasing the overall datacenter
performance. The introduction of SmartNICs [1]-[6] has im-
proved the performance of datacenters by enabling intelligent
and optimized networks. Microsoft has demonstrated [7]-
[9] the use of dedicated FPGAs in SmartNICs for network
function offload and cloud management services. Adoption
of FPGA SmartNICs continues to increase as a means to
accelerate network functions and offload packet processing
tasks away from CPU resources [10]-[18].

SmartNICs can be implemented with ASICs providing the
primary packet processing, which results in highly efficiency.
But the drawback is that ASIC-based SmartNICs cannot
be reconfigured or programmed to implement new network
functionalities. To address this limitation, there is a growing
trend to leverage FPGA-based SmartNICs in datacenters. The
reconfigurability of FPGAs provides users with various options

for network acceleration. However, FPGA SmartNIC adoption
generally relies on vendor support in the form of intellectual
property (IP) and software development kits. Even so, FPGAs
remain more complex to program and integrated compared to
traditional network solutions. The FPGA programmability hur-
dle and lack of an agnostic production environment between
hardware and software has limited the use of FPGA-based
SmartNICs to a few large datacenter service providers.

To address the above issues, Intel’s Configurable Network
Protocol Accelerator (COPA) [19], [20] was developed. COPA
utilizes the open source software library, OpenFabric interface
(OFI) libfabric [21], for platform-agnostic development and
a standard for networking and acceleration invocation. In
addition, the COPA hardware framework provides two options
to reconfigurable accelerators, inline and lookaside, both of
which are directly accessible from the libfabric API. COPA
uses the on-board high speed transceivers, e.g., of the Intel
Stratix 10 GX, and a uniquely designed architecture to enable
high speed remote direct memory access (RDMA) between
nodes at 100Gb/s line rate. Unique features include the ability
for remote invocation of accelerators and headless operations
for host free integration into a distributed data center envi-
ronment. So far, however, there has been no published work
demonstrating or evaluating COPA with respect to a distributed
application; that is our goal here.

As a candidate application we have selected Multi-Party
Computation (MPC), which would greatly benefit from the
features available through the COPA framework. MPC is the
cryptographic process of performing calculations on confiden-
tial data between multiple organizations while maintaining
a level of confidentiality, integrity, and assurance of one’s
own private data. Parties encode and share their own private
data between organizations while maintaining an agreed upon
level of security guarantee. This form of joint computation
is especially important for industries such as healthcare and
finance, as user data is typically under protection through laws
and regulations. FPGA accelerated Multi-Party Computation
continues to be a progressive research topic [22]-[34] as
significant performance improvements can be obtained from
hardware acceleration.

This paper argues that combining the COPA tool-set with
state of the art MPC algorithms can achieve a lower com-



munication bottleneck for high performance computation in-
side a datacenter environment. We show that utilizing the
COPA system enables a method of performing low-level
MPC operations with minimal CPU interaction while enabling
improved performance compared to traditional CPU and NIC
implementations.

In summary, our contributions are as follows:

« Examine the performance available utilizing the 100Gbps
network and configurable lookaside accelerator option of
the COPA FPGA framework.

o Adapt hardware accelerated MPC operations to the COPA
infrastructure utilizing the configurable FPGA lookaside
accelerator enabling significant performance improve-
ments compared against CPU and NICs.

o Using only 3% of the FPGA fabric for secure joint
computation, we show that having multiple accelerators
running in parallel can saturate the potential 100Gb/s
link available through COPA while performing over 6000
MPC operations per second.

II. BACKGROUND
A. Configurable Network Protocol Accelerator

The COPA FPGA works by using the libfabric software
layer with included extensions to queue commands for pro-
cessing by the hardware. These commands include both
RDMA functionality and accelerator specific commands. The
RDMA functions use the COPA network TX and RX data
paths to perform memory read and write functions without
host involvement. Previous work has shown the COPA network
can achieve up to 100Gb/S bandwidth with zero-copy direct
memory access.

The accelerator specific commands include the use of a
number of inline accelerators alongside the RDMA functions.
Inline functions operate on packets during transit in a Bump-
in-the-Wire method, allowing for data manipulation of packets
during egress or ingress of edge nodes. Two examples of inline
acceleration are checksum calculation on data in transit or
encode/decode functions with pre-shared key pairs.

Additionally, commands can be constructed to trigger the
lookaside accelerator functions both locally and on remote
COPA nodes. Lookaside functions operate on data at rest, in
host memory, and have direct communication with the COPA
network to perform additional RDMA functions. This enables
the lookaside accelerator to perform data transfer tasks without
requiring the host to initiate network operations. Both inline
and lookaside accelerator options can be reconfigured by users
for application specific functions.

B. Secure Multi-Party Computation

Secret sharing-based multi party computation (MPC) is a
method of secure joint computation that allows any number
of party members N to work together to obtain a final output
[35]-[37]. Confidential data is distributed to all party members
in the form of shares, where each individual share does not
contain enough information to learn anything about the secret
data but all shares collectively can be used to decode the data.
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Fig. 1. Initial construction of four party secret shares

Each party member is considered an equal to another, and
computation is performed synchronously between all members
to maintain accurate share representations of the final value
between all members. Specific operations requires members
to communicate partial share information among all parties. A
large number of communication dependent operations leads to
a requirement for high bandwidth and low latency networks.
As a consequence, the rate of computation in MPC is bot-
tlenecked by network performance, making this application a
prime target for COPA.

Secret sharing MPC is broken down into local and joint
computation operations. With FPGAs secret sharing MPC can
obtain performance improvements on both forms of computa-
tion tasks [33], [34]. Prior research shows that a single FPGA
can fully saturate a standard 10GigE NIC while only utilizing
a fraction of the available resources of the FPGA hardware. In
addition, co-located party members in a datacenter provides an
optimal environment to reduce communication latency further
improving the performance of communication-dependent MPC
operations.

To the best of our knowledge, we are the first to inte-
grate Multi-Party Computation and SmartNIC functionality
to improve upon communication bottlenecks. We believe
the combination of MPC and COPA lookaside acceleration
enables a significant improvement to both computation and
communication performance thus eliminating previous net-
work limitations. Utilizing the many unique features of the
COPA framework, including remote accelerator triggering and
payload processing, allow for headless behavior of many
MPC operations between party members. This enables less
CPU dependence during concurrent operations between party
members and reduces the need for explicit synchronization by
each host system.

We focus on the throughput and resource utilization of the
multiply operation for a 4-party semi-honest majority MPC
algorithm [37]. Our chosen algorithm requires each party
member to hold 3-out-of-4 shares of each data element and
communicate between all parties equally during calculation. In
particular, the key is performing multiplication operations on
shares of 128-bit integer data types which generates three /128-
bit integers for communication to the other party members.



1) Share construction: Our initial experiment setup as-
sumes each party member has control of a single FPGA in a
Bump-in-the-Wire scenario tied to a host process under their
control. Utilizing this hardware setup, we envision that all
confidential data is in the node’s possession and the FPGA
exclusively interacts with only data in share format. As all
confidential data remains tied to the host, this maintains full
privacy of confidential data as any data passing through the
COPA network is obfuscated in the form of shares.

Shares are generated into four pieces: three uniformly
random values, and one value calculated with the input data.
We denote each share as x; and v as our confidential data being
shared among the party. Shares are generated and distributed
based on the agreed upon computation being performed,
either arithmetic or Boolean logic. Shares are generated using
uniformly random values x1,x2,xs which follow the rule
stated in Equation 1. Based on the protocol form, values for z;
are created using either Equation 2 or Equation 3. The process
of generating four unique shares for the confidential value v
is visualized in Figure 1.
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2) Gate Operations - Computation phase: We focus on
arithmetic MPC operations which consist of addition and
multiplication. Shares are formed using /28-bit values and all
operations are based around modular arithmetic with a ring
module of 2128, Functionality for Boolean shares is similar to
arithmetic and our implementation allows for these additional
operations with a simple selector input to change gate function.

To perform any operation two shares are passed to each
party, one for each data value ‘vi,vs’. We denote an input for
v1 as x, vg as y and the output of the operation as z. For our
algorithm of choice, MPC addition consists of local compu-
tation only and doesn’t require interaction between members.
Shown in Equation 4, shares can be added in parallel and
only require local computation done synchronously between
all party members.

Addition:
Z1 =21+

Zo = X2 + Y2 @

23 =23+ Y3
24 = X4+ Y4

The base multiplication algorithm requires both local com-
putation of shares and a single round of communication
between party members; we thus focus on the performance ob-
tained through improvement of these communication rounds.
Each multiplication operation is broken down into the accu-
mulation of share multiplications as seen in Equation 5. Since
each party member only contains 3-out-of-4 share information,

TABLE I
PARTY ‘3-1° MISSING INFORMATION

Share  Party 1  Party 2 Party 3  Party 4
24 z1Y1 T1Y1 z1Y1
25 Z2Y2 T2y2 Z2y2
24 T3Y3 T3Y3 T3Y3
2z Z4Y4 T4y4 T4Y4

TABLE II

PARTY ‘2-2’ MISSING INFORMATION

Party 1 Party 2 Party 3 Party 4

T1Y2 + T2y1  T1Y2 + T2Y1

T1Y3 + Z3Y1 T1Y3 + 3Y1

T1Y4a + T4yl  T1Y4 + T4yl

T2Y3 + T3Y2 T2Y3 + T3Y2

T2Y4 + T4Y2 T2Ya + Tay2

T3Y4 + Tays  XT3Y4 + T4Y3

multiplication cannot be done locally due to the missing share
information. There are two scenarios in which the distribution
of share information creates unique situations during multipli-
cation operation.

Multiplication:

T*Y=2T1Y1 + T1Y2 + T1Y3 + T1Ya
= X2Y1 + T2Y2 + T2Y3 + T2Y4
= T3Yy1 + T3Y2 + T3Ys + T3Ys

= T4Y1 T T4Y2 + T4Y3 + T4Y4

(&)

The first case occurs when performing the individual share
multiplication of two of the same shares z; and y;, shown
in Table I. Three of the four party members contain enough
information to perform the local computation. In this scenario,
no communication occurs as the party members which need
the result 2 contain all the necessary information. Local com-
putation is performed and is included in the final multiplication
result.

The second case is unique due to party members missing
exactly half of their required information to fully complete the
computation. As we demonstrate in Table II, only two party
members contain enough information to perform the complete
computation and the remaining two party members only have
half of the necessary information. We will refer to this step
as the ‘2-2’ computation. To perform an accurate and secure
2-2° computation, the process involves usage of a correlated
random value between the knowledgeable party members and
one communication round with the remaining members.

To generate correlated random values, each party member
maintains hold of a shared key with one other party member.
The ‘2-2’ calculation involves exactly two computations be-
tween a pair of party members, therefore six random numbers
will be generated two for each shared key.
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Fig. 3. Four Party Complete Multiply Operation

Parties with full knowledge of sub-calculations in ‘2-2’
perform the local computation with their information. Directly
sharing this information with the other two parties would result
in a convergence in knowledge and thus reduce the security
of the operation. Instead the correlated random number is
used to create a new sharing pair with the completed local
computation shown in Figure 2. These values will be shared
with the remaining party members to complete the operation.

Prior to the communication round, each party member
combines the earlier computed x; * y; result and two selected
splits from each pair of the local computations in 2-2’
per share. This pre-communication requirement is shown in
Figure 3. They store this value in local memory awaiting the
values shared by the other party members to fully complete
the multiplication operation.

3) Communication phase: Each pair of party members
perform individual 2-2° and jointly choose which piece should
be sent to the remaining parties. For base protocol function-
ality, only a single value must be obtained from each other
party member to have an accurate and complete multiplication
operation. Since the ‘2-2° computation involves two party
members jointly computing the same information a unique
opportunity is created to add additional malicious security.
Malicious security is done with the second party member
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Fig. 4. COPA architecture connected to host system through PCIe. The COPA
FPGA contains a lookaside accelerator implementation directly connected to
the COPA network allowing for network functions without host interaction.
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Fig. 5. Two-stage MPC implementation as single lookaside accelerator.

sharing additional information to the same destination as the
first. The second round of communication typically involves
creating a hashed value of completed share information and
performing another round of communication upon completion
of the above steps. Hashes of reduced size are typically
used to minimize the total amount of communication bits
in the overall process, which reduces the overall bandwidth
requirement of the added malicious security step. The locally
generated hashed value and transmitted value over the network
are compared and a mismatch in calculated hashes would
indicate computation has either failed or altered by a party
member. The party members can then abort future computation
to avoid the risk of data leakage in the case of a malicious
actor. Since all intermediate data is in the form of shares, no
additional information would be available by a single party
member, and trusted members will not share any data after
aborting the current process.



III. ARCHITECTURE IMPLEMENTATION
A. Initial Protocol Requirements

Our initial design uses the host to generate, and COPA
unidirectional PUT functions to distribute, shares of private
data to the other parties. Each share is generated through
of the use of a random number generator and a specific
calculation following the agreed upon algorithm protocol. In
our implementation, we use the 4-party MPC protocol of
Dalskov, et al. [37]; we discuss algorithm specifics in Section
IV-A. As all confidential data remains tied to the host, this
maintains full privacy of confidential data as any data passing
through the COPA network is obfuscated in the form of shares.

In addition to distributing shares between parties, a set
of keys are also allocated for further computation when
pseudorandom generated numbers must be known by two
or more parties. Each party member uses a set of unique
keys to generate random numbers concurrently with other
party members; however, each party member does not contain
knowledge of all keys. This concurrent behavior is important
to maintain protocol accuracy between party members during
operation and can help avoid additional communication.

B. Lookaside Accelerator

The COPA lookaside architecture uses separate accelerator
logic outside of the COPA network as seen in Figure 4. Accel-
eration is initially controlled by the host through a unique com-
mand containing the source data location, destination location,
length of data, and type of operation. A global control unit
manages incoming commands in the queue and assigns them to
appropriate accelerators. This feature enables a single host to
issue commands to different accelerators for added parallelism
or unique functions. We use only a single MPC accelerator for
our initial tests, but discuss the improvements available with
additional accelerators. Each accelerator initially collects the
source data through a DMA operation from the host memory.
If source data is unavailable locally, i.e., found on a remote
COPA node, then a COPA network command is generated
and used to obtain data from the remote node prior to DMA
operation. Following the local DMA completion, acceleration
is performed and final calculations are sent back to host
memory through a second DMA operation. If the destination
memory location is for a remote node, then the COPA network
is again used to send the final completed values to another
COPA node on the network.

1) MPC Accelerator Core: To fully utilize the COPA
lookaside accelerator we split up the multiplication operations
into the local computation stage and a post communication
accumulation stage as seen in Figure 5. Data is first obtained
by the DMA logic and stored into two sets of on-chip memory,
Data A and Data B. Data in these two on-chip memory regions
are based on the stage of computation being performed. First
stage computation takes two lists of values in share form,
while the second stage contains the intermediate share data
and communication data received from other party members.
The local computation stage uses a pseudo random number
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Fig. 6. Throughput comparison between base MPC accelerator and MPC with
malicious security running at 275 MHz with varying batch sizes of multiply
operations. Malicious security requires an additional collision resistant hash
value to be transferred. Saturation of the base accelerator is over 17.5Gb/s
and with malicious security is over 26.3Gb/s.

TABLE III
SINGLE MPC LOOKASIDE FPGA UTILIZATION

[ Stratix 10 FPGA [ Raw (Total Percentage) |

Freq 250MHz - 275MHz

ALM 10667 (1%)
Memory bits 5,156,500 (2%)
RAM blocks 668 (6%)
DSP blocks 150 (3%)

generator and on-chip resources to perform the initial MPC
calculations and save the intermediate share information back
to host memory. Addition operations only require the use of
the first stage accelerator to perform calculation on input data
and generate complete shares.

Multiplication operations use the first stage to prepare
partial local shares and data for communication to other party
members. Stage 1 hardware implementation is fully pipelined
with the help of parallel random number generators working in
unison to produce the six necessary random values per cycle
of input data. This results in local computation being available
every cycle after the initial startup delay.

On completion of the first stage, party members prepare
data for the communication phase to pass along via the COPA
network. The lookaside accelerator uses dedicate hardware
command queues to create PUT commands which simultane-
ously transmit the prepared data to each correct party member
and signal the host system for stage 2 operation on data
transmission completion. This process both prepares the data
for processing in the second stage of the multiply operation
and enables the host to trigger second stage operation. Stage 2
performs a simple accumulation of the locally generated inter-
mediate shares and ingress data from party members, saving
the result back into host memory for future computation.

IV. RESULTS

A. Experiment Setup

We implement our hardware design on the COPA frame-
work using Intel Stratix 10 FPGAs interconnected with



100GigE high speed transceivers. Each party maintains own-
ership of a single FPGA connected to a host system using the
COPA framework for communication between party members.
Acceleration is performed through the use of unique lookaside
accelerator commands sent from each host system to the FPGA
lookaside accelerator through a dedicated accelerator queue.
The lookaside command format allows for batch operations
on a stream of data from a specified source and saves local
computation back to host memory while preparing the network
data for transfer to each party member.

Each party member is directly connected with every other
party member. We focus on the bandwidth requirements of a
single party member, thus do not consider additional latency
of switching hardware and any additional control flow com-
mands in our data collection. Both simulation of accelerator
throughput and real world bandwidth results are used for final
verification of results.

B. Analysis

Resource utilization for a single MPC lookaside accelerator
can be found in Table III. This shows the implementation
uses minimal resources which allows for the inclusion of
more accelerators into each COPA FPGA; these additional
accelerators may include multiple instances of the MPC core
operations or additional functionality for High Performance
Computing applications such as collectives. With the inclusion
of a single MPC accelerator, Figure 6 shows how much data
is available for communication based on the input length of
the lookaside accelerator source data.

The pipeline implementation of the accelerator allows for
data to be processed and ready for communication every cycle,
after an initial startup delay accessing host memory. Using
a single accelerator and batching multiplication operations
over a stream of source data, the accelerator performs enough
computation to saturate a traditional 10Gb/s link. These results
are similar to past implementations [33], [34] and show that
integration with the COPA system is beneficial to improve the
total throughput possible with these hardware implemented
MPC operations.

Examining the throughput of large batches of multiplication
operations, Figure 6 shows a single accelerator performing the
basic algorithm (without abort) can saturate a 17.5Gb/s con-
nection, while the inclusion of additional malicious security
for abort requires larger than 26.3Gb/s connection to avoid
saturation. We can therefore include up to 6 MPC accelerators
without abort, or 4 MPC accelerators with abort, to saturate
the COPA network.

In addition to the communication improvements, the COPA
system enables a set-and-forget method for acceleration and
communication which frees up each host processor to perform
additional non-MPC functions. Queuing operations into the
lookaside accelerator, with knowledge that data will be shared
appropriately, allows for final completion of each operation
without the need to block the process on each step.

V. CONCLUSION

The COPA framework enables hardware acceleration and
improved network functions for, potentially, many different
applications. We show how an MPC implementation fits into
the COPA framework and enables improvements to both com-
putation and communication by using the lookaside accelerator
features and improved network data transfer. In addition, MPC
running on the COPA system enables the use of the an open-
source software library, OFI, as an alternative to specialized
MPC software used by each party member. We aim to in-
crease the size of our tests with additional MPC algorithms
aiming for two party, three party, and four party computation
alternatives. We also aim to enable more accelerator options
to improve on secure joint computation through the means
of memory operations such as scatter/gather. This will enable
additional improvements to both MPC throughput and network
communication.

Our future work will include a full end-to-end method
of MPC using the COPA hardware/software infrastructure
for cloud/data centers, MPC-as-a-Service. Fully utilizing the
COPA features, we aim to create a fully autonomous MPC
system allowing for any host to perform trusted operations
on the collective data. With COPA remote invocation of
target accelerator nodes, we aim to enable complete MPC
applications to run with only a single host triggering the
operation and each additional party member acting like a
headless target node. By using all of these features MPC-
as-a-Service can be a viable method of trusted secure joint
computation with a minimal barrier to entry.
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