
Optimized Mappings for Symmetric Range-Limited
Molecular Force Calculations on FPGAs

Chunshu Wu∗, Sahan Bandara∗, Tong Geng∗†, Anqi Guo∗, Pouya Haghi∗,
Vipin Sachdeva‡, Woody Sherman‡, Martin Herbordt∗

∗Dept. of Electrical and Computer Engineering, Boston University
†Dept. of Electrical and Computer Engineering, University of Rochester ‡Roivant Sciences, Boston, MA

Email: ∗{happycwu, sahanb, tgeng, anqiguo, haghi, herbordt}@bu.edu,
†tong.geng@rochester.edu, ‡{vipin.sachdeva, woody.sherman}@roivant.com

Abstract—In N-body applications, the efficient evaluation of
range-limited forces depends on applying certain constraints,
including a cut-off radius and force symmetry (Newton’s Third
Law). When computing the pair-wise forces in parallel, finding
the optimal mapping of particles and computations to memories
and processors is surprisingly challenging, but can result in
greatly reduced data movement and computation. Despite FPGAs
having a distinct compute model (BRAMs/network/pipelines)
from CPUs and ASICs, mappings on FPGAs have not previously
been studied in depth: it was thought that the half-shell method
was preferred.

In this work, we find that the Manhattan method is sur-
prisingly compatible with FPGA hardware. With the cache
overlapping technique proposed in this paper, the ultra-fine-
grained data access demanded by the Manhattan method can
be satisfied, despite the fact that the memory blocks on FPGAs
appear to be insufficiently fine-grained. We further demonstrate
that, compared to the traditional baseline half-shell method,
approximately a half of the filters (preprocessors) can be re-
moved without performance degradation. For communication,
the amount of data transferred can be reduced by 40% - 75%
in the most common multi-FPGA scenarios. Moreover, data
transfers are almost perfectly balanced along all directions, and
the optimization requires only minimal hardware resources. The
practical consequence is that nearly 2× to 4× the workload can
be handled without upgrading the network connections between
FPGAs. This is a critical finding given the relatively limited
bandwidth available in many common accelerator boards and
the strong-scaling applications to which FPGA clusters are being
applied.

I. INTRODUCTION

Exploiting physical symmetries to reduce computation is a
fundamental method in Scientific Computing. In Molecular
Dynamics (MD), Newton’s 3rd law (N3L) results in the
force symmetry that reduces by half the computation in short
range (or range-limited, RL) force evaluation. The theory is
straightforward, but, when coupled with the commonly used
hard cut-off (range limit), the optimal computation-processor-
memory mapping is dependent on the hardware model. N-
body mapping has been the focus of several high-profile
studies [1]–[3], where particle, space, and force partitioning
are justified. However, the models are not hardware-specific
and, in particular, the mapping model for FPGA-based MD
[4]–[11] remains to be established. The problem reduces to the
following: How should particle data be organized with respect

to block RAM (BRAM) configuration to minimize data access
redundancy?

MD is the iterative application of Newtonian mechanics
to ensembles of particles and alternates between force and
motion computations; the latter is responsible for < 1% of
the operations. A particle is defined by position, velocity, and
force applied where each data component is ∼100 bits. The
force computation is partitioned into RL and Long Range (LR)
components. For the models of most interest for FPGA clusters
[11], RL dominates both computation and communication. RL
involves force calculations between particle pairs within a cut-
off radius. N3L dictates that the RL force only needs to be
computed once per particle pair. LR is generally computed
with transform-based methods, such as PME [12], and, while
critical for large system scalability [13]–[19], is not considered
further here.

Unlike application specific integrated circuits (ASICs), FP-
GAs have pre-determined on-chip storage configurations, i.e.,
BRAM sizes, e.g., 20Kb for the M20Ks on an Intel Stratix 10.
Since current BRAMs typically have a depth of 512, a block of
BRAMs (whose number depends on the BRAM configuration)
is used to store up to a few hundred particles, which are
accessed sequentially rather than concurrently. A commonly
used optimization is to group particles geometrically in cells,
namely, with cell-lists [20], [21]. In previous FPGA-based MD
work (since, e.g., [22], [23]), the edge length of a cubic cell is
fixed at the cutoff radius (a criterion to neglect small forces,
see Figure 1(a)); with current practice [24], a cell typically
contains ∼80 particles in a water environment. The particles
from a cell are evaluated in serial with respect to particles
from neighboring cells (see [25] for why this access schedule
is preferred for FPGAs).

Larger or smaller cells are less advantageous. Larger cells
result in redundancy in computation, which directly degrades
performance as a particle only interacts with a smaller portion
of particles in neighboring cells, yet all the neighboring
particles need to be accessed. For smaller cells, more neighbor
cells need to be accessed for a particle, and a cell contains
a smaller number of particles, so more slots in a BRAM are
wasted. Subboxing [26] in Anton 2, for example, is an extreme
case of using small cells for more fine-grained data access,
but not suitable for FPGAs based on the discussion above.

(a) (b) (c) (d) (e)

B

C
A

Rc

Rc
2Rc

dx = Rc

dx+dy =

(+1)Rc

Rc

Fig. 1. Cells, spatial partitioning methods, and filtering. Rc: Cutoff radius.
(a): the cutoff radius of particles. The force A-B is valid, and A-C and B-C
forces are too small and neglected. (b): the import volume of the half-shell
method. (c): the spread layers of (b), where the orange cell at the center
interacts with 13 blue cells and itself; the middle slice also shows the 2-D
import volume. (d): 2-D import volume of the Manhattan method. (e): planar
filtering method. dx and dy are the distance components between two particles;
particles outside the octagon are not paired with the particle at the center.

Note that the advantages of larger boxes accrued in CPU
implementations, where they reduce frequency of neighbor list
recalculation [27], are not applicable to ASICs/FPGAs where
particle filtering [28] is used instead.

The cell size now being set, it is straightforward to evaluate
a cell, with N3L applied, with respect to the surrounding
14 cells (including itself) using the half shell method [10]
(illustrated in Figures 1(b) and 1(c)). The major downside,
however, is the import volume; i.e., 13 external cells need to be
imported. An alternative is the Manhattan method used by the
Anton 3 [29]. Compared to the half-shell method, it demands
a much lower import volume, as Figure 1(d) suggests in 2-D
illustration. In the 3-D case, the import volume is reduced to
the equivalent of about 7 cells.

Applying the Manhattan method to FPGAs, however, ap-
pears to require that cells be further partitioned into fine-
grained subboxes, with the disadvantages just described. To
tackle this problem, we

• propose a position cache overlapping method that maps
our modified Manhattan method onto FPGA hardware
without reducing the size of cells;

• design a complete MD RL architecture with minimal
additional resources cost compared to the baseline half-
shell design on FPGA;

• demonstrate that the Manhattan method used on multi-
FPGA clusters can reduce the data transfer by 40% -
75%, while balancing data transfers along all directions.

The practical consequence is that nearly 2×−4× the workload
can be handled without upgrading the network of FPGA
connections. This is a critical finding given the relatively lim-
ited bandwidth available in many common accelerator boards
and the strong-scaling, communication-bound, applications to
which FPGA clusters are being applied.

II. BACKGROUND

A. Range-Limited Force

The RL force between particle i and j (equation 1) is
derived from the Lennard-Jones potential (equation 2), where
σ is the critical distance of i and j at which the potential is
0, and ϵ is the energy parameter determined by the substance.

FLJ
i =

∑
j ̸=i

ϵij
σ2
ij

[48(
σij

|rji|
)14 − 24(

σij

|rji|
)8]rji (1)

V LJ
ij = 4ϵij [(

σij

rij
)12 − (

σij

rij
)6] (2)

D1

D2

D1

D2

D1

D2

(a) (b) (c)

Fig. 2. The mechanism of the traditional Manhattan method shown in 2-D.
The particle pairs are evaluated by the processor located in orange cells for 3
particle pair scenarios: (a) both in same cell; (b) in neighboring cells sharing
a boundary; (c) in neighboring cells sharing a corner.

From the r6 and r12 terms, it is evident that the RL forces
decay rapidly with r. The cutoff radius (see Figure 1) is
then reasonably applied to remove the negligible interaction
between two distant particles: two particles are only paired
when their distance is smaller than RC . As a result, the O(N2)
complexity becomes O(N).

B. Particle Filtering and approximating RC

Computing the ideal cutoff involves calculating r2 =
dx2 + dy2 + dz2. It has previously been shown [28], [30]
that this computation can be drastically reduced by using
a small number of bits and by avoiding the multiplies by
approximating the sphere with a polyhedron (an octagon in
2-D, see Figure 1(e)).

C. Traditional Manhattan Method

In RL forces are generally computed systematically, one
home particle at a time, with respect to all particles within its
cut-off. Because of N3L, for a particle pair p1, p2, the question
arises whether F1,2 should be computed when p1 is the home
particle or p2. Figure 2 illustrates three scenarios. When both
particles are in the same cell, there is an arbitrary tie-breaker
(shown is “furthest to the right”). Otherwise, the home particle
is the one with the greater Manhattan distance to the boundary
of the two cells.

III. DESIGN

As fine-grained concurrent data access is incompatible with
common FPGA BRAM configurations, we demonstrate that
the use of two sets of position caches (cell caches and corner
caches, see Section III-B) with overlapped contents signifi-
cantly reduces memory accesses, even without fine-grained
space partitioning. To coordinate the two sets of position
caches, the memory misalignment problem of the particles is
also resolved with address and cell indexing methods. The
BRAM allocation, filters, and rings are evolved from the
baseline design described in [31].

A. Logical Topology

The ring-shaped topology is inherited from the baseline
design with minor modifications. To demonstrate the ring
topology, we label each cell in space with a cell ID, which
follows the simple 3-D to 1-D mapping method:

CID = xDyDz + yDz + z (3)

where Dy and Dz are dimensions of the y and z directions. For
example, in Figure 3(a), Dy and Dz are both 2. Each cell is

Motion Update Unit

ac
c

RC 3RC 2

(b)(a) (c) (d)

RC 1RC 0

RC 7

x

yz
RC 6 RC 5 RC 4

Cell Cache
PE

Corner Cache

Position
Router

Force
Router

RouterForce Cache

Velocity
Cache

Migration
Check

Update
Kernel

Motion Update UnitMotion Update Unitx y z RC ID

Motion Update Unit Motion Update Unit

0 0 0 0
0 0 1 1
0 1 0 2
1

0

1

1

4 4
6

5

5

5
7

73

0 0 4

...

1 1 1 7

Fig. 3. The overall layout of the design. (a): cell ID numbers are calculated from their x, y, and z coordinates in space. (b): the topology of 8 ring cores
(RC) and 4 motion update units (MUs) for example. (c): the internals of a ring core. (d): the internals of a MU.

assigned a ring core (RC) to process the interactions between
the local particles in the cell and neighbor particles from other
ring cores. The ring cores possess the same IDs as their local
cells. In Figure 3(b), the RCs are logically connected as a
ring corresponding to their IDs. This 3-D cell to 1-D ring
mapping is both simple and minimizes the data travel time in
the ring. In the case shown in the figure, two adjacent RCs
share one motion update unit, and the motion update units are
connected in a ring to resolve particle migration (i.e., when a
particle travels to another cell).

An RC block diagram is given in Figure 3(c). The position,
velocity, and force data, with respect to the particles in the
local cell, are stored in cell cache, velocity cache, and force
cache, respectively. In distinction from the baseline design,
a duplicate cell cache is now a corner cache. A corner cache
consists of ∼1/8 particles from the local cell and particles from
7 other cells. The corner cache is a key concept in this work
and is discussed further in Section III-B. The position input
ring (i.e., the network of position routers from RCs) and the
force output ring forward data in opposite directions. Since the
computed forces are returned to the RCs where the position
data originates, the effect is to reduce the data travel time.

Figure 3(d) shows the functions of a motion update unit
(MU). A MU gathers particles’ position, velocity, and force
data and computes the particles’ position and velocity after,
say, 2 femtoseconds (2−15s). If a local particle has moved to
another cell, the migration-check function passes the updated
data to the router so the data is forwarded to the target MU
through the motion update ring. The router in the target MU
recognizes that the correct data have arrived and forwards it
to the corresponding RC for update.
B. Corner Caches and Overlapping Position Caches

Figure 4 shows the principle of cell caches (CEC) and
corner caches (COC). The particles in the caches are named
as cell particles (CEP) and corner particles (COP), respec-
tively. Both CECs (yellow) and COCs (green) contain particle
position information (i.e., both, unless otherwise noted, are
position caches, to be distinguished from the caches containing
velocity and force data. There are also velocity and force CECs
with the same spatial layout as position CECs, but there is no
velocity or force COCs.). A COC is overlapped with a quarter
(an eighth in 3-D) of each CEC, and that portion of position
data is duplicated. The COCs cover the entire simulation
space, making the number of COCs equal to the number of
CECs. At runtime, execution proceeds with particles from a
COC successively being broadcast to all adjacent cells to be

evaluated with respect to all of the CEPs.
Position cache duplication is also necessary in the half-

shell baseline method for home CEP caching in the force
computation; otherwise the data locality is lost and all of the
particle position data would need to be stored in the buffers
attached to the filters.

C. The Modified Manhattan Method

In Figure 4, the blue particle is a COP stored in the COC
and is sent to all 4 neighboring cells for pairing. The pairing
is done by local PEs associated with the cells. Now that
the cached positions in the CECs and COCs overlap, the
traditional Manhattan method needs to be modified: because
there’s no clear boundary between a COC and a CEC, we
compare the Manhattan distances to the corner cell boundary
instead of the boundary of two cells.

Figure 4(a) and (b) show the two common particle pair
cases. Both cases indicate that the pair should be evaluated
when the COP has greater Manhattan distance (D2 > D1,
opposite to the traditional), otherwise the pair may not be
evaluated (the bottom-right particle is never sent to the cell
holding the top-left particle).

To better illustrate the handling of the irregularity for the
modified Manhattan method, we define two concepts: shadow
region (SR) and shadow particle (SP). The SRs are the brown
areas in Figure 4(c) and the SPs are the particles located in
SRs. As the figure illustrates, the two particles are within
the cutoff range and form a valid pair. However, the red
particle is outside the yellow cell area. If the blue particle
only interacts with the particles in its four surrounding square
cells (the closest cell to the red particle is the yellow cell), then
the red particle is never evaluated with the blue particle and
vice versa. In other words, the two particles are not mutually
included in each other’s import region. Therefore, we duplicate
the particles from the SRs in other cells to the related CECs.
If a particle is updated into a new SR during motion update,
it is then updated to more than one destination.

D. Cell Cache Partitioning and Corner Particle Pre-checking

Figure 4(d) shows the total accessed area, including the
SRs. Without optimization, 71% more particles are accessed
for a COP in the 3-D scenario, leading to a drastically
decreased particle pairing rate. Although the size of SRs looks
formidable, this situation can be improved.

Fortunately, in Figure 4(d), only the dark brown areas may
be needed for the COC at the center. Therefore the SPs can use
the addressing spaces separated from the normal particles in

D2

D1D2
D1

D2

D1

(a) (b) (c) (d) (e)

Fig. 4. The rules of position cache overlapping and the modified Manhattan
method in 2-D. Yellow cells: CECs. Green: COCs. The red/blue particles are
from COCs/CECs, separately. (a) and (b): the pair is evaluated if the neighbor
particle has greater Manhattan distance. (c): a cell is slightly bigger than a
cube (with the brown SRs), otherwise the two particles will never be paired.
(d): SR overview. Dark brown: the SRs potentially need to be accessed by
COPs. (e): Only the COPs in the dark green region can may be paired with
the SPs in the CEC.

the CEC (e.g. normal particles are located at address 1∼120,
the SR requested by its northeast corner cell is at 121∼140).
The SRs are not accessed if not requested. Furthermore, Figure
4(e) shows that only a small number of COPs (in dark green
regions) may request access to the SR, meaning the access
can be further reduced by checking the COPs before pairing.
In 3-D, ∼50% of the COPs can be exempted from accessing
the SRs by pre-checking their position values.

Although the CECs look highly irregular, the actual op-
erations required are only fixed point number additions and
comparisons, and only the leading bits of the position data
are used for such operations. For the rest of the paper, the
CECs are illustrated as cubic cells for simplicity.

E. Architecture

The design flow is depicted in Figure 5(a) from a different
perspective compared with the overall layout in figure 3.
Here we mainly focus on the behaviors of PEs and abstract
the caches and routing components into block diagrams for
conciseness. The execution of MD RL starts from the COCs.
The particle positions are injected into the position input ring
as sketched in Figure 5(b), and each position has only 8
(instead of 14) destinations corresponding to 8 cells in 3-D.
This also reduces the lifetime of packets in the ring. For each
cycle, a position packet stops at a force processing element
(PE) to check if a destination has been reached. Once there,
the position packet is buffered and dispatched to one of the
filters by the dispatcher.

Before dispatching a COP downstream, the particle is first
pre-checked to determine if any SR needs to be accessed
based on its position. After pre-checking, the requested SR
ID is obtained. The ID is further used in SR access handling
as Figure 5(c) shows. For the left case, COPs 0 and 1 do
not need to access SRs, but 2 and 3 request both SRs be
accessed. As a result, all CEPs, including the SPs, are traversed
for all the COPs. For the right case, SR 1 is not requested,
only the regular CEPs and particles in SR 2 are traversed.
In practice, there are up to 8 SRs corresponding to 8 corner
blocks surrounding a cell block, and the number of COPs
processed simultaneously in a single PE is relatively small.

The filters are originally used to evaluate the distance of two
particles and check if the pair is valid. At runtime, each filter
is mapped to a single COP and vice versa. The Cell BRAM

Motion Update Ring

Filters
and buffers

Force Computation

Position Input Ring

Position
Input Ring

Force Output Ring

Cell Cache
(Position)

To other PEs
From

 other PEs

Force ACC & Output

PE

Cell Caches (Force)

Corner Caches (Position)

Cell Caches (Velocity)

c1

c1
0
1
2

A
C

C, c1, 2
E, c4, 0
B, c1, 0

c2c3

D

c2

c3 c4

Arbitrate

Ctrl

B D
c4 corner

E

PE

(a)

(c)

(e)

PE

PE

PE

Other Cell Caches
(Position) in other PEs

...

...

...

...

(b)

(d)

MU
Motion

Update Ring

MU

... ...

... ...

MU

MU

Pre-check &
Dispatcher

Regular
Particles

COP 0
0 0 1 2
1 2 3

SR
COP 0

0 0 2 2
1 2 3

SR

SR 1

SR 2

Regular
Particles

SR 1

SR 2

A BC

E

D, c4, 0

Fig. 5. The complete design with the Manhattan method. (a): the data flow
with respect to a single PE. (b): the COPs enter the position input ring and are
rotated to several destination PEs (c): two SR handling cases. Red arrow: data
traversal order; left: all SRs are requested; right: SR 1 is not requested and is
skipped. (d): the motion update ring. Each MU on the ring directly updates
several CECs/COCs. (e): corner BRAMs store particle positions, cell IDs and
the particle IDs for force write back and memory misalignment handling. The
same mechanism is applied on SPs.

in the PE is traversed iteratively during force evaluation for
pairing. With the Manhattan method involved, the filters also
check the Manhattan distance between the particles and the
corner block boundary. The good news is, not all the position
bits are evaluated in the filters, but only, say, 8 leading bits are
used. The number of bits is subject to the precision desired.
Compared with the half-shell method, the filter pass rate
increases from ∼17% to ∼30% (disregarding the overhead, the
actual pass rate subjects to the number of filters and is further
discussed in the evaluation section) for uniformly distributed
particles, and the number of filters is therefore effectively
reduced. The resources saved can then contribute to building
more PEs for higher throughput.

The force fragments of COPs and the accumulated SP
forces are then injected to the force output ring, while the
forces of the regular CEPs are directly integrated in the force
caches of the cell. Each force packet in the ring only has

one destination, such that the force data is not duplicated, and
each force cache only covers a cubic volume without SRs. The
SPs are inherently far away from the COPs, and their pairing
chances are slim. Among all the cell-corner pairs, only ∼1% is
contributed by shadow-corner pairs. The extra pressure on the
force output ring caused by SP forces is therefore negligible.

After all forces are evaluated and integrated in force caches,
the MUs start. A MU on the motion update ring inputs all three
types of data (position, velocity, force) and obtain the position
and velocity of particles for the next time step. The packets are
either consumed locally (used to update the directly connected
caches) or injected to a motion update ring (Figure 5(d),
velocity and force caches omitted) to update the corner and
CECs (position and velocity).

The workload of the motion update phase is significantly
smaller than force evaluation, such that a much smaller number
of MUs are equipped compared to the number of cells. Further-
more, with a MU directly connected to multiple CECs/COCs,
the latency of a motion update ring is short compared to other
rings. Moreover, because the force evaluation is not active
during motion update, the position input ring and the force
output ring can be reused to construct the motion update ring
with minor cost in hardware resources.
F. Memory Misalignment

During force evaluation, the particles are easily aligned in
force CECs and position CECs (excluding SRs). That is, a
particle has the same address in both caches. However, the
alignment cannot be preserved for COPs or SPs. For example,
particle B in Figure 5(e) is at address 0 in CEC C1, the force
is also located at address 0 in its corresponding force cache;
therefore B can be directly updated with the force at the same
address. However, B is at address 2 in the COC instead of
0, i.e., memory misalignment. Similarly, the SP D is stored
in the shadow addressing space in cell C4, with its original
location at address 0 in C3. To correctly update the COPs and
SPs, address and cell indexing information is added during
motion update. In Figure 5(e), the COCs and the shadow
addressing spaces in CECs not only contain the position values
of particles, but also the cell IDs and addresses.

When there is no particle migration, a MU first updates
a particle in a directly connected cell, then sends a packet
to the motion update ring to find the destination COC. If a
particle migrates to a cell handled by another MU, the packet is
delivered to the MU and next sent to the destination corner cell
with the updated address. Fortunately, the particle migration
is rare and the latency introduced is negligible.

G. Multi-chip Solution

The advantage of the cache overlapping method is particu-
larly remarkable when applied to multiple FPGA nodes. Figure
6 compares the half-shell method and the cache overlapping
method on 4 FPGA nodes with periodic boundary condition.
For demonstration, each node contains 4x4 2-D cells. If the
data are structured in plain cells, as Figure 6(a) shows, 10 of
16 cells (blue) need to be transferred to other nodes. In the

(a) (b)
Fig. 6. 2-D illustration of the data transfer pattern for 4 FPGA nodes. (a):
half-shell method; (b): the proposed position cache overlapping Manhattan
method. Orange: CECs region; Blue: data to be transferred; Green: COCs
region. The arrows indicate the transfer directions of the position data. For
small data transfers at corners, the arrows are lightened.

new mapping with the cache overlapping, only the equivalent
of 7 cells are transferred as shown in Figure 6(b).

The arrows only represent the position data transfer direc-
tions. The force data are returned to the source nodes along the
arrows in reverse. This feature results in the natural balance
between inbound force data and outbound position data with
direct transceiver connections among FPGAs. However, there
are two-way arrows in (a), potentially leading to heavy and
imbalanced data transfer between the affected nodes compared
to other transfer paths. Typically, each FPGA node provides
∼100 Gbps level bandwidth (2x100 Gbps QSFP28 for Intel
D5005 and Xilinx Alveo U280), making the problem far more
significant. The situation is much relieved in (b), where only
one-way arrows are observed. This implies that data transfer
is almost perfectly balanced along any direction (up, down,
right, left, front in 3-D, back in 3-D) with negligible small
data transfers at corners.

IV. EVALUATION

In this section, we evaluate and compare the efficiency of the
half-shell and the cache overlapping methods in four aspects:
How much more efficient can the filters get with the Manhattan
method? How much latency can be reduced in the position
input ring with reduced number of packet destinations? Can
we hide the latency in the motion update ring with corner
cells involved? How much data transfer can be avoided by
using the cache overlapping method for different simulation
space configurations and node topologies?

Although the design is relatively board-independent, the
evaluations are based on the resources available on resource-
abundant Intel D5005 boards with Stratix 10 SX FPGA chips,
where each chip has 933120 ALMs, 5760 DSPs, and 11721
M20K BRAMs. The designs are implemented with Verilog
and SystemVerilog HDL on Quartus 19.2 and validated on
the D5005 boards. The resource/frequency results are obtained
from reports generated by the Quartus software.

A. Performance

Figure 7 shows both the performance and PE utilization.
For all four geometric cases, four Manhattan filters are almost

0

20k

40k

60k

80k

100k

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3x3x3 4x4x4 5x5x5 6x6x6
Manha�an

Number of Filters Number of Filters Number of Filters Number of FiltersN
um

be
r o

f C
yc

le
s P

er
 It

er
PE U

�liza�on
Half-shell

Fig. 7. The performance and PE utilization versus the number of filters for 4 cell geometries. 3 motion update rings and 3 force rings are used. For consistency,
we assume each cell is processed by 1 PE, and all 4 cases share the same y-axis. Bar: cycle. Curve: utilization

1 2 3 4 5 6 7 8 9 10

Fi
lte

rin
g

Ra
te

Number of Filters

Manha�an Half-shell

0.15

0.20

0.25

0.30

Fig. 8. Filtering rate and the number of cycles required for filtering for the two
methods. For 33, 43, 53 and 63 cell geometries, the filtering rates remain the
same. We assume each cell is only processed by 1 PE for consistency against
the scaling of the simulation space.

as efficient as eight half-shell filters. The PE utilization is
saturated at ∼ 85%, which can be regarded as the utilization
limit of both designs. The Manhattan method reaches the limit
at ∼5 filters, while the half-shell method requires >10 filters
to achieve the same goal.

We also observe that for 6x6x6 cell geometry, the Manhattan
method is bested by the half-shell method in performance.
The reason is, the latency in the motion update rings is
no longer negligible. During motion update, the Manhattan
method updates more particle than half-shell due to the COCs
and the SRs. Moreover, with the up-scaled number of ring
nodes (27 MUs for 6x6x6 cells), the latency situation is
worsened.

B. Filtering Rates

We observe from Figure 8 that the half-shell filtering rate
is stable at ∼17%, yet the Manhattan filtering rate decreases,
starting from ∼28%. This is because the SR handling mech-
anism in Figure 5(c) tends to include more filtering overhead
as more COPs are processed simultaneously. As a result, more
SRs are involved for pairing, but only for some of the COPs.

C. Position Input Ring Latency

Figure 9 shows the latency of the position input ring from
the injection of the first particle to the departure of the last
particle. The latency scales almost linearly with the number of
cells per dimension for both methods and is robust against the
increasing number of cells. The latency also scales linearly
with the number of particles per cell, where a cell usually
contains ∼100 particles in water environment.

The proportion of latency reduction is higher for small
numbers of cells. Up to 13% of latency reduction is observed
for 3x3x3 cells. The latency reduction is important because it
allows more particles be allocated to PEs in a certain amount
of time. 13% less latency means 15% more particles can
be provided for PEs, potentially increasing the number of

3x3x3 4x4x4 5x5x5
Space Geometry of Cells

La
te

nc
y

R
ed

uc
tio

n
(%

) Latency at 200 M
H

z (μs)6x6x6
0

5

10

15

0
10
20
30
40
50
60

HS-80
HS-100
HS-120

CO-80
CO-100
CO-120

Fig. 9. The latency of the position input ring of a single MD iteration. HS:
half-shell; CO: cache overlapping. 80, 100, 120: number of particles per cell.
The line plot indicates the percentage of latency reduced using the cache
overlapping method.

0
5

10
15
20
25
30

3x3x3 4x4x4 5x5x5
Space Geometry of Cells (8 cells per MU)

6x6x6

La
te

nc
y

at
 2

00
 M

H
z

(μ
s)

3 Rings
2 Rings

4 Rings
Ideal

1 Ring

Fig. 10. MU ring latency compared with ideal. Each MU is in charge of
updating 8 CECs and 8 COCs. A cell contains 80 particles.

PEs working on a single cell, and eventually enhancing the
performance for a limited number of cells.

D. Motion Update Ring Latency

As a trade-off, the latency of a motion update ring is
increased. The comparison of the new and ideal latency is
shown in Figure 10, where each cell contains 100 particles.
For balanced resources, throughput, and wiring complexity,
each MU is used to update 8 CECs and 8 COCs.

The ideal latency is obtained assuming all MUs only update
their local cells without communication. The extra latency
introduced is sensitive to the geometry. For smaller numbers
of cells, only 2 or 3 motion update rings (2x or 3x ring
concurrency) are enough to reduce the latency to a negligible
degree. For 6x6x6 cells, 3µs extra latency is introduced even
for 4 rings. Fortunately, the latency is small compared to
the overall latency of an iteration (∼ 100µs for 6x6x6 cells,
200MHz). Furthermore, because the position and force rings
can be reused for the motion update ring, and the number of
MUs is significantly smaller than the number of cells, only a
small amount of hardware resources are required to construct
the extra rings, especially for smaller numbers of cells.

Space Geometry of CellsN
um

be
r o

f C
el

ls
 to

 S
en

d Am
ount R

educed (%
)BW

 D
em

an
d

(G
bp

s)(a) (b1) (b2)

3³0

50

100

150

0

40

20

60

80

100

0

30

60

90

120

150

0

20

40

60

80

100

4³ 5³ 6³ 3³ 4³ 5³ 6³ 3³ 4³ 5³ 6³

Half-Shell Cache Overlapping Amount Reduced (%)
Fig. 11. Data transfer per FPGA using the two methods. Each iteration (from
force evaluation to the next force evaluation phase) takes 100 µs, with 120
bits per packet and 80 particles per cell. (a): the number of cells to be sent
to remote FPGAs. (b1): the estimated ideal bandwidth demand per FPGA for
a 3-D torus FPGA cluster. (b2): the estimated ideal bandwidth demand per
FPGA for 8 FPGAs connected as a ring.

E. Multi-FPGA Data Transfer

The number of cells to be sent to remote FPGAs is reduced
by a considerable amount (∼30%), and scales almost linearly
with the space edge length (Figure 11(a)). In fact, the actual
amount of data transfer is reduced more significantly, as data
forwarding is common in FPGA clusters (e.g., [32]–[36] and
all-to-all connections [37] are not always available.

Figure 11(b) gives the data transfer behavior on two likely
FPGA cluster configurations. We assume each MD RL it-
eration takes 100 µs, each packet is 120 bits and each cell
contains 100 particles as the typical standard. The bandwidth
numbers are ideal without taking imbalanced data transfer
into account. In (b1), the cluster has a 3-D torus topology.
For all listed space geometries, the data transfer reductions
all approach 75%. In the 3-D torus, a packet needs to travel
through at most 3 nodes to reach its destination. With the
cache overlapping method applied, the proportion of data that
require heavy forwarding is further reduced. In (b2), the cluster
is 8 FPGAs in a ring, a likely scenario since many FPGA
boards only have 2 or 4 transceiver ports. In this case, data
may travel with more hops than a 3-D torus, such that the
overall bandwidth requirement is raised. Still, 40%∼50% of
data transfer can be saved.

The significance of these results is found especially in the
most likely FPGA cluster use-cases, which involve strong
scaling challenges (e.g., small molecule docking). With, say,
3x3x3 cells per node, FPGA capacity allows multiple PEs (8 in
our case, 216 PEs in total) to work on the same cell, reducing
the time per iteration to 1/8th the previous. As a result, 8x
bandwidth is required, which is 200 Gbps. On the other hand,
compared to the 6x6x6 case (with one PE per cell), only ∼80
Gbps are required. This is because the ratio of surface area to
volume (SATV) ratio for the 6x6x6 cells is much lower. With
strong-scaling (more PEs and/or fewer particles), the SATV
ratio increases. At that point the computation is completely
compute bound and the performance is proportional to the
amount of data transferred.

F. Hardware Resource Usage

The hardware resources demanded for both designs are
listed in Table I. Each half-shell PE has 6 filters, while

TABLE I
HARDWARE COSTS

Cell Space Design ALM BRAM DSP

3x3x3 M1 112924 (12.1%) 1296 (11.1%) 621 (10.8%)
HS2 116146 (12.4%) 1215 (10.4%) 621 (10.8%)

4x4x4 M 236220 (25.3%) 3072 (26.2%) 1472 (25.6%)
HS 243464 (26.1%) 2880 (24.6%) 1472 (25.6%)

5x5x5 M 429812 (46.1%) 6000 (51.2%) 2875 (49.9%)
HS 443011 (47.5%) 5625 (48.0%) 2875 (49.9%)

6x6x6 M 713675 (76.5%) 10368 (88.5%) 4968 (86.3%)
HS 735274 (78.8%) 9720 (82.9%) 4968 (86.3%)

1 Manhattan 2 half-shell

each Manhattan PE has 4 filters. Both designs are equipped
with 3 force output rings and 3 motion update rings. The
Manhattan filters have higher logic expenses for their higher
complexity compared to half-shell filters, but the overall ALM
consumption is slightly reduced due to the reduction in the
number of filters. The overall BRAM consumption is slightly
higher because with ∼10 more bits included in position caches
for cell indexing (see Figure 5(e)). Originally, the fixed-point
position data and particle type (e.g., oxygen) together are ∼75
bits. With the 10 additional bits, we need 3 BRAMs side-by-
side to satisfy the concurrent access of all 85 bits, where each
BRAM is 40-bit wide, meaning another BRAM is required in
each position cache. The new design requires no extra DSPs.

V. CONCLUSION

In this paper, we compare the baseline half-shell model with
the improved cache overlapping model based on the Manhattan
method and find almost no difference in resource usage. The
findings are as follows.

First, the filters in the Manhattan design are much more
efficient compared to the half-shell filters. The PE utilization
approaches its limit with only 4 Manhattan filters, whereas
8 filters are needed for the same with half-shell. Although
the filtering rate of the Manhattan filters decreases due to
SP handling, it is still considerably higher than that of the
half-shell filters. Second, the latency of the overall position
data input is reduced, especially for smaller numbers of cells
(3x3x3) where 15% more work can be distributed to PEs in
the same amount of time. Third, as the trade-off, the motion
update latency is increased, but can be negligible thanks to the
reusable hardware. Fourth, ∼75% of the data transfer can be
saved with the new method on a 3-D FPGA torus, and 40%
to 50% of the transfer can be saved with 8 FPGAs connected
as a ring. A major benefit is that the pressure in data transfer
is greatly relieved for FPGA-based MD where commercially
available boards have significantly less available bandwidth
than custom ASIC-based systems.

ACKNOWLEDGMENT

This work was supported, in part, by the NSF through award
CCF-1919130; the NIH through award R44GM128533; by a
grant from Red Hat; and by AMD and by Intel both through
donated FPGAs, tools, and IP.

REFERENCES

[1] M. Snir, “A note on N-body computations with cutoffs,” Theory of
Computing Systems, vol. 37, pp. 295–318, 2004.

[2] K. Bowers, R. Dror, and D. Shaw, “Zonal methods for the parallel
execution of range-limited n-body simulations,” Journal Computational
Physics, vol. 221, no. 1, pp. 303–329, 2007.

[3] ——, “The midpoint method for parallelization of particle simulations,”
The Journal of Chemical Physics, vol. 124, no. 18, p. 184109, 2006.

[4] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfig-
urable molecular dynamics simulator,” in IEEE Symposium on Field
Programmable Custom Computing Machines, 2004, pp. 197–206.

[5] Y. Gu, T. VanCourt, and M. Herbordt, “Accelerating molecular dynamics
simulations with configurable circuits,” in IEEE Conference on Field
Programmable Logic and Applications, 2005.

[6] T. Hamada and N. Nakasato, “Massively parallel processors generator
for reconfigurable system,” IEEE Symposium on Field Programmable
Custom Computing Machines, 2005.

[7] V. Kindratenko and D. Pointer, “A case study in porting a production
scientific supercomputing application to a reconfigurable computer,” in
IEEE Symposium on Field Programmable Custom Computing Machines,
2006, pp. 13–22.

[8] S. Alam, P. Agarwal, M. Smith, J. Vetter, and D. Caliga, “Using FPGA
devices to accelerate biomolecular simulations,” Computer, vol. 40,
no. 3, pp. 66–73, 2007.

[9] R. Scrofano, M. Gokhale, F. Trouw, and V. Prasanna, “Accelerat-
ing Molecular Dynamics Simulations with Reconfigurable Computers,”
IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 6, pp. 764–
778, 2008.

[10] M. Chiu and M. Herbordt, “Molecular dynamics simulations on high
performance reconfigurable computing systems,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 3, no. 4, pp. 1–37, 2010.

[11] C. Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Lin,
V. Sachdeva, W. Sherman, and M. Herbordt, “Fully Integrated FPGA
Molecular Dynamics Simulations,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019.

[12] T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald: an
N log(N) method for Ewald sums in large systems,” vol. 98, pp.
10 089–10 092, 1993.

[13] J. Sheng, B. Humphries, H. Zhang, and M. Herbordt, “Design of
3D FFTs with FPGA Clusters,” in IEEE High Performance Extreme
Computing Conference, 2014.

[14] J. Sheng, C. Yang, and M. Herbordt, “Towards Low-Latency Commu-
nication on FPGA Clusters with 3D FFT Case Study,” in International
Symposium on Highly Efficient Accelerators and Reconfigurable Tech-
nologies, 2015.

[15] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt,
“HPC on FPGA Clouds: 3D FFTs and Implications for Molecular
Dynamics,” in 27th International Conference on Field Programmable
Logic and Applications, 2017.

[16] C. Wu, T. Geng, V. Sachdeva, W. Sherman, and M. Herbordt, “A
Communication-Efficient Multi-Chip Design for Range-Limited Molec-
ular Dynamics,” in 2020 IEEE High Performance extreme Computing
Conference (HPEC), 2020.

[17] C. Pascoe, L. Stewart, B. Sherman, V. Sachdeva, and M. Herbordt,
“Execution of Complete Molecular Dynamics Simulations on Multiple
FPGAs,” in IEEE High Performance Extreme Computing Conference,
2020.

[18] L. Stewart, C. Pascoe, E. Davis, B. Sherman, M. Herbordt, and
V. Sachdeva, “Particle Mesh Ewald for Molecular Dynamics in OpenCL
on an FPGA Cluster,” in IEEE Symposium on Field Programmable
Custom Computing Machines, 2021.

[19] C. Wu, S. Bandara, T. Geng, V. Sachdeva, B. Sherman, and M. Her-
bordt, “System-Level Modeling of GPU/FPGA Clusters for Molecular
Dynamics Simulations,” in IEEE High Performance Extreme Computing
Conference, 2021.

[20] Z. Yao, J.-S. Wang, G.-R. Liu, and M. Cheng, “Improved neighbor list
algorithm in molecular simulations using cell decomposition and data
sorting method,” Computer Physics Communications, vol. 161, no. 1,
pp. 27 – 35, 2004.

[21] W. Brown, P. Wang, S. Plimpton, and A. Tharrington, “Implementing
molecular dynamics on hybrid high performance computers–short range
forces,” Computer Physics Communications (CPC), vol. 182, no. 4, pp.
898–911, 2011.

[22] Y. Gu, T. VanCourt, and M. Herbordt, “Accelerating molecular dynamics
simulations with configurable circuits,” IEE Proceedings on Computers
and Digital Technology, vol. 153, no. 3, pp. 189–195, 2006.

[23] ——, “Explicit design of FPGA-based coprocessors for short-range
force computation in molecular dynamics simulations,” Parallel Com-
puting, vol. 34, no. 4-5, pp. 261–271, 2008.

[24] A. Obeidat, A. Jaradat, B. Hamdan, and H. Abu-Ghazleh, “Effect
of cutoff radius, long range interaction and temperature controller on
thermodynamic properties of fluids: Methanol as an example,” Physica
A: Statistical Mechanics and its Applications, vol. 496, 2018.

[25] C. Yang, T. Geng, T. Wang, J. Sheng, C. Lin, V. Sachdeva, W. Sherman,
and M. Herbordt, “Molecular Dynamics Range-Limited Force Evalua-
tion Optimized for FPGA,” in 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2019, pp. 263–271.

[26] J. Grossman, B. Towles, B. Greskamp, and D. Shaw, “Filtering, reduc-
tions and synchronization in the Anton 2 network,” in Proc. International
Parallel and Distributed Processing Symposium, 2015, pp. 860 – 870.

[27] J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. Skeel, L. Kale, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal Computational Chemistry, vol. 26, pp.
1781–1802, 2005.

[28] M. Chiu and M. Herbordt, “Efficient filtering for molecular dynamics
simulations,” in 2009 International Conference on Field Programmable
Logic and Applications, 2009.

[29] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell,
M. Bergdorf, J. Bhatt, J. A. Butts, T. Correia et al., “Anton 3:
twenty microseconds of molecular dynamics simulation before lunch,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–11.

[30] M. Chiu, M. Khan, and M. Herbordt, “Efficient calculation of pairwise
nonbonded forces,” in 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines, 2011.

[31] C. Wu, T. Geng, S. Bandara, C. Yang, V. Sachdeva, W. Sherman, and
M. Herbordt, “Upgrade of FPGA Range-Limited Molecular Dynamics
to Handle Hundreds of Processors,” in 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2021.

[32] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,
“Novo-G#: A Community Resource for Exploring Large-Scale Re-
configurable Computing Through Direct and Programmable Intercon-
nects,” in 2016 IEEE High Performance Extreme Computing Conference
(HPEC), 2016.

[33] J. Sheng, Q. Xiong, C. Yang, and M. Herbordt, “Collective Commu-
nication on FPGA Clusters with Static Scheduling,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 4, 2017.

[34] T. Boku, R. Kobayashi, N. Fujita, H. Amano, K. Sano, T. Hanawa,
and Y. Yamaguchi, “Cygnus: GPU meets FPGA for HPC,” in
International Conference on Supercomputing, 2019, https://www.r-
ccs.riken.jp/labs/lpnctrt/assets/img/ lspanc2020jan boku light.pdf.

[35] A. Mondigo, T. Ueno, K. Sano, and H. Takizawa, “Comparison of
Direct and Indirect Networks for High-Performance FPGA Clusters,”
in ARC 2020. Lecture Notes in Computer Science, vol 12083, F. Rin-
con, J. Barba, H. So, P. Diniz, and J. Caba, Eds. Springer, 2020,
10.1007/978-3-030-44534-8 24.

[36] H. Shahzad, A. Sanaullah, and M. Herbordt, “Survey and Future Trends
for FPGA Cloud Architectures,” in IEEE High Performance Extreme
Computing Conference, 2021.

[37] C. Plessl, “Bringing FPGAs to HPC Production Systems and
Codes,” in H2RC’18 workshop at Supercomputing (SC’18), 2018, doi:
10.13140/RG.2.2.34327.42407.

	Introduction
	Background
	Range-Limited Force
	Particle Filtering and approximating RC
	Traditional Manhattan Method

	Design
	Logical Topology
	Corner Caches and Overlapping Position Caches
	The Modified Manhattan Method
	Cell Cache Partitioning and Corner Particle Pre-checking
	Architecture
	Memory Misalignment
	Multi-chip Solution

	Evaluation
	Performance
	Filtering Rates
	Position Input Ring Latency
	Motion Update Ring Latency
	Multi-FPGA Data Transfer
	Hardware Resource Usage

	Conclusion
	References

