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ABSTRACT

Quantum random number generation (QRNG) is an important cryptographic primitive. Various security models
exist from the fully trusted to the fully device independent scenario. Here we look at the middle-ground of semi
source independence (where the only thing known about the source is the dimension) and where measurements
are not ideal (e.g., there may be loss and detector inefficiencies). We show how to compute optimistic bit
generation rates even in this strong security model and our methods may be broadly applicable to other quantum
cryptographic protocols in this setting.

1. INTRODUCTION

Quantum random number generators (QRNG) are protocols that distill randomness from a quantum source
in a cryptographically secure manner. Various security models exist from the fully-trusted (which leads to
systems with weak security guarantees) to the fully device-independent model1,2 (which leads to systems that
are generally very inefficient with today’s technology). A middle ground are various semi-device independent
(SDI) scenarios3–8 which provides users with strong security and fast random bit generation rates with today’s
technology. However, regardless of the security model, ensuring high efficiency is an important challenge that
can often be overcome by more optimal security proofs. See9 for a survey of QRNG protocols.

In this work, we analyze the random bit generation rates for high-dimensional QRNG protocols in a particular
SDI scenario. High dimensional states are known to provide several benefits, at least in theory, to quantum
cryptographic protocols10–21 (see also22 for a survey). Here we consider the case of QRNG protocols where
measurement devices are not ideal. In previous work,23–25 we showed how improvements to bit generation rates
of certain Source Independent (SI) QRNG protocols with ideal measurement devices are possible using a new
technique we developed which we call sampling-based entropic uncertainty.24 In this work, we analyze SDI-
QRNG protocols in a stronger SDI model and even when the user’s measurement devices are not ideal (making
our work useful for practical implementations unlike our past work). We show how our sampling-based entropic
uncertainty relations can be applied to their security analysis, and can even lead to more optimistic bit generation
rates compared to other methods. Our proof techniques, using methods we developed in25,26 here can also be
broadly applied to other cryptographic protocols and also lead to new insights in general quantum information
theory.

2. PRELIMINARIES

We begin with some notation and terminology we will use throughout this work. We denote by Ad to be
an alphabet of d characters with a distinguished “0” element. Without loss of generality, we simply assume
Ad = {0, 1, · · · , d − 1}. Given q ∈ AN

d and a subset t ⊂ {1, · · · , N}, we write qt to mean the substring of q
indexed by t; we write q−t to mean the substring indexed by the complement of t. Finally, we write w(q) to be
the relative Hamming weight of q, namely w(q) = |{i : qi 6= 0}|/|q|, where |q| is the number of characters in q.

A quantum state or density operator ρ is a semi-definite Hermitian operator of unit trace. If ρ acts on some
bipartite Hilbert space HA ⊗HE , we write ρAE . We also write ρE to mean the state resulting from tracing out
the A register.
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By Hd we mean a Hilbert space of dimension d. Given an orthonormal basis B = {|b0〉 , · · · , |bd−1〉} and a

word q ∈ AN
d , we write |q〉B or |qB〉 to mean the state |bq1〉 ⊗ |bq2〉 ⊗ · · · ⊗ |bqN 〉.

Given random variable X, the Shannon entropy is denoted H(X). The d-ary entropy is denote Hd(x) and
defined to be:

Hd(x) = x logd(d− 1)− x logd x− (1− x) logd(1− x). (1)

Notice that, when d = 2, this becomes the usual binary entropy function.

A very important quantity in quantum cryptography is the conditional quantum min entropy27 defined to
be:

H∞(A|E)ρ = sup
σE

max{λ ∈ R : 2−λIA ⊗ σE − ρAE ≥ 0}, (2)

where the supremum is over all density operators σE . Several important properties of min entropy are easily
proven, in particular, given ρAE = ρA ⊗ ρE (i.e., if the A and E systems are independent), then H∞(A|E)ρ =
H∞(A). Also, it is easy to show that H∞(A) = − logmaxλ, where the maximum is over all eigenvalues λ of ρA.

Finally, given a state ρAE =
∑

a paρ
(a)
AE , it can be shown from the definition of min entropy that:

H∞(A|E) ≥ min
a
H∞(A|E)(a)ρ . (3)

Smooth entropy is defined to be27

Hǫ
∞(A|E)ρ = sup

σ
H∞(A|E)σ, (4)

where the supremum is over all density operators that are ǫ close to ρ in trace distance, namely ||ρ− σ|| ≤ ǫ.

Smooth min entropy is a very important quantity in that it measures how much uniform randomness may
be extracted from a quantum state, independent of an adversary. In particular, given a classical-quantum state
ρAE , then, privacy amplification27 is a process that hashes the A register down to an ℓ bit string. Then, it holds
that:27
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In particular, the amount of min entropy in the state before privacy amplification relates directly to the amount
of secret randomness that may be extracted from the state. Later, when we analyze QRNG protocols, our main
goal will be to bound the quantum min entropy as a function only of observed statistics. In particular, by setting
the right-hand side of the above expression to be ǫPA, one may extract an ℓ bit random string that is ǫPA close
to an ideal uniform and independent random string, with:

ℓ = Hǫ
∞(A|E)ρ − 2 log

1

ǫPA − 2ǫ
. (6)

One other important min entropy result we will need later was proven in28 (using methods in27):

Lemma 2.1. (From28): Given a state |ψ〉AE =
∑

i∈J αi |i〉
X⊗|Ei〉, define the mixed state χ =

∑

i∈J |αi|2 |i〉 〈i|
X⊗

|Ei〉 〈Ei|. Then, if a measurement in the Z basis is performed on |ψ〉, the resulting min entropy can be bounded
by:

H∞(Z|E)ψ ≥ H∞(Z|E)χ − log2 |J |,
where H∞(Z|E)χ is the min entropy in the mixed state following a measurement in that same basis.



2.1 Quantum Sampling

Our proof method uses the framework of quantum sampling introduced by Bouman and Fehr in.28 Here we
briefly discuss the main results of this method - for more details see.28

A classical sampling strategy consists of a probability distribution over subsets PT , a guess function f : A∗
d →

R, and a target function g : A∗
d → R. Given a word q ∈ AN

d , the strategy consists of sampling t using PT ,
observing qt, and evaluating f(qt). A good sampling strategy should produce an accurate guess of the value
g(q−t). In particular, it should hold that, with high probability over the choice of t, that |f(qt)− g(q−t)| ≤ δ.

More formally, let Gt be the set of “good” words for a fixed subset t defined as:

Gt = {q ∈ AN
d : |f(qt)− g(q−t)| ≤ δ}.

Define the error probability to be:
ǫcl = max

q∈AN
d

Pr
(
q 6∈ Gt

)
,

where the probability is over the subset choice t. The main result from28 was to promote this to quantum states
as follows. Fix a basis X, then we can define the set of “ideal” quantum states as:

span(Gt)⊗HE = span(|q〉X : q ∈ Gt)⊗HE .

Notice that, if |φt〉 ∈ span(Gt) ⊗ HE , then if a measurement of those systems indexed by t were performed,
resulting in outcome x, it would hold that the unmeasured portion would collapse to one of the form:

|φtx〉 =
∑

i∈Jx

αi |i〉X ⊗ |Ei〉 ,

where Jx = {i ∈ AN−|t|
d : |g(i)− f(x)| ≤ δ}. The main result from,28 then, is:

Theorem 2.2. (From,28 though reworded here for our application): Given a sampling strategy as discussed and
a quantum state |ψ〉AE, then there exist ideal states {|φt〉} such that each |φt〉 ∈ span(Gt)⊗HE and:
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In particular, quantum states behave “almost like” ideal states (where sampling always works), on average over
the subset choice.

One strategy we will use in our work is where the subset is chosen uniformly at random from all subsets of
size m < N/2 (where N is the number of characters in the word) and where f(x) = g(x) = w(x), the relative
Hamming weight. For this strategy, it can be shown (see28), that:

ǫcl ≤ 2 exp

(−δ2m(n+m)

m+ n+ 2

)

. (7)

3. PROTOCOL AND ANALYSIS

The protocol we consider was introduced in3 and is a high-dimensional semi-source independent protocol. The
protocol assumes a source prepares some quantum signal and sends it to Alice. An honest and ideal source
should prepare N copies of the state |0〉X for some known orthonormal basis X = {|0〉X , · · · , |d− 1〉X , |vac〉}.
Of course, as we are assuming the semi-source independent model, the only assumption made on the source is
that its dimension is known. A subset t ⊂ {1, · · · , N} of size m < N/2 is chosen and a measurement of those
systems are made in the POVM Λ = {X0, X1, Xvac}, where:

Xi = η |i〉 〈i|X , for i = 0, · · · , d− 1 (8)

Xvac = I −
∑

i

Xi. (9)



Here, η is used to represent the detector efficiency (which is one in the ideal case). Unlike our prior work,25

we assume imperfect measurement detectors with efficiency strictly less than one and potential vacuum signals.
Note that in26 we assumed imperfect detectors but for a QKD application; while we use methods from26 to
derive our key-rate, the application is new and some of the methods are different and thus require restating
here. Thus, this measurement results in an outcome q ∈ (Ad ∪ {vac})m ∼= Am

d+1, where we treat symbol d to be
the vacuum event. Note that a vacuum may occur if either the signal is an actual vacuum, or one of the other
detectors “misses” the signal due to a low efficiency. Note that, in the ideal case, it should hold that w(q) = 0;
any non-zero Hamming weight will be considered noise.

Following this “test” stage, the remaining n = N − m signals will be subjected to a measurement in an
alternative basis Z = {|0〉Z , · · · , |d− 1〉Z , |vac〉}. Ideally, it should hold that these states are mutually unbiased
in that 〈iZ |jX〉 = 1/

√
d. Of course the vacuum state lives in both bases and this has inner-product one in

both. This results in outcome r ∈ AN
d+1 (we take vac to be the d + 1’th symbol). This is then run through a

two-universal hash function for privacy amplification purposes to produce a final secret random string of size ℓ.

Note that, to choose random subset t requires log
(
N
m

)
random bits. Thus, QRNG protocols are really

randomness expansion protocols in that they do require some small seed randomness to initialize the system.
However, as we will show, this system can produce more random bits than were used so this initial seed may
be constantly replenished. Interestingly, the two-universal hash function need only be chosen once and then
hard-coded so no additional randomness is needed there.29

3.1 Security Analysis

We follow methods we developed in25,26 to derive a bound on the quantum min entropy of the system based
only on the dimension d and the value q. We do not require a characterization of η or any other assumptions on
the source.

The source begins by preparing a quantum state |ψ〉AE ∈ HA ⊗ HE where HA
∼= H⊗N

d+1 for user chosen
N = n +m (with n > m). Using Theorem 2.2, along with the sampling strategy analyzed in Equation 7, we
know that there exist an ideal state σTAE of the form:

σTAE =
1

T

∑

t

|t〉 〈t| ⊗ |φt〉 〈φt| ,

where T =
(
N
m

)
and each |φt〉 ∈ span(|q〉X : |w(qt)− w(q−t)| ≤ δ)⊗HE . By setting:

δ =

√

(m+ n+ 2) ln(2/ǫ2)

m(m+ n)
,

we have (again, using Theorem 2.2 and Equation 7):
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Above, the sum is over all subsets t ⊂ {1, · · · , N} of size m.

We begin by analyzing the ideal state (where the state of the AE portion depends on the subset choice). The
analysis for that may then be promoted, through a probabilistic argument, to the real case (the actual state |ψ〉
which is independent of the subset choice before sampling).

Consider the ideal state σ. After choosing a subset t, the state collapses to |φt〉. Then, after observing
q ∈ Am

d+1, it is straight-forward to show that the state must collapse to one of the form:

σ
(t,q)
AE =

∑

x∈Jq

px P

(
∑

i∈Ix

αi,x |i〉X ⊗ |Ei,x〉
)

︸ ︷︷ ︸

σx

, (10)



where:

Jq = {x1 · · ·xm ∈ Am
d+1 : xj = qj if qj 6= vac}

Ix = {i ∈ An
d+1 : |w(i)− w(x)| ≤ δ}.

Here, Jq represents the uncertainty on the measured portion of the state due to device imperfections (whenever
Xvac clicks, the user cannot be certain if it is really due to the underlying signal being |vac〉 or one of the other
states and simply a function of η < 1). The set Ix represents the uncertainty in the unmeasured portion which
we can bound exactly thanks to Theorem 2.2.

Using Equation 3, we have:
H∞(A|E)σ(t,q) ≥ min

x∈Jq
H∞(A|E)σx .

We now use Lemma 2.1 to bound the min entropy contained in σx following a Z basis measurement. Consider
the following mixed state:

χ =
∑

i∈Ix

|αi,x|2 |i〉 〈i|X ⊗ |Ei,x〉 〈Ei,x| .

Following a Z basis measurement of this state, the outcome is:

χZ =
∑

i∈Ix

|αi,x|2
∑

z∈An
d+1

p(z|i) |z〉 〈z| ⊗ |Ei,x〉 〈Ei,x| .

Using Equation 3, and noting that, at this point, the E and Z registers are independent (in the mixed state χZ),
we have:

H∞(A|E)χ ≥ − logmax
z,i

p(z|i).

Note that the maximum above is over all z ∈ An
d+1, thus we must also consider the probability of a vacuum

event occurring. Thus:

p(z|i) = (1)
ν ·
(
1

d

)n−ν

(11)

where ν is the number of vacuum states in |i〉. Of course, since i ∈ Ix, we have ν ≤ n(w(x) + δ) and so:

p(z|i) ≤ d−n(1−w(x)−δ). (12)

From Lemma 2.1, we therefore have:

H∞(A|E)σ ≥ min
x
H∞(A|E)σx ≥ min

x
(n(1− w(x)− δ) log2 d− log2 |Ix|)

The minimum above is attained whenever we count a vacuum symbol in q as a non-zero character in x. Thus:

H∞(A|E)σ ≥ n(1− w(q)− δ) log2 d− n
hd+1(w(q) + δ)

logd 2
, (13)

where, above, we used the well known bound on the volume of a Hamming ball to bound Ix.
Of course, the above was just the ideal state analysis. However, we may use a probabilistic argument, as

in,24–26 to promote this to the real case. Indeed, using methods from,24–26 it is straight-forward to show that:

Pr

(

H4ǫ+2ǫ1/3

∞ (A|E)ψ(t,q) ≥ n

(

(1− w(q)− δ) log2 d−
hd(q + δ)

logd 2

))

≥ 1− 2ǫ1/3 (14)

where the probability is over all subset choices t and observations q. Combining with Equation 6, we conclude
that the number of secret random bits that may be extracted which are ǫPA = 9ǫ+ 4ǫ1/3 distant from the ideal
random string are:

ℓ = n

(

(1− w(q)− δ) log2 d−
hd(w(q) + δ)

logd 2

)

− 2 log
1

ǫ
. (15)

Note that this expression is very different from the one in25 where we did not consider loss; it is also different
from our expressions in26 which were QKD specific.



Figure 1. Evaluating our key-rate with imperfect detectors when d = 2. Here, we set Q = 5% and evaluate for various
levels of loss ν.

4. EVALUATION

We evaluate our bound assuming a depolarization channel with loss due to fiber and detector inefficiencies. This
is an assumption made only in this section in order to evaluate the bound. Our security proof above does not
require any such assumption (nor does it require a characterization of the detector efficiencies). Instead, one
simply needs to observe q to evaluate the bound above.

First, given a fiber channel of length x km, the probability of loss is pl = 1−10−.15x/10. The total probability,
then of observing a vacuum on any particular measurement is:

ν = pl + (1− pl)(1− η).

If a signal is not lost, it depolarizes with probability Q; in particular:

|0〉 〈0|X 7→ (1−Q) |0〉 〈0|X +Q/dI,

thus, we have the expected value of w(q) is: q = ν + (1− ν) (d−1)
d Q.

We also compare with our work in25 for a similar protocol but with perfect detectors; we also compare with
the bound produced in3 (again for ideal detectors). For evaluating our bit rate, we use m = .07N (that is, the
sample size is 7% of total signals. We also set ǫ = 10−36 which gives us a failure probability on the order of
10−12.

Evaluating our bound for d = 2 and d = 4 is shown in Figure 1 and 2. A comparison to our work in25

for ideal devices is shown in Figure 3 and a comparison to both25 and3 can be seen in Figure 4. Interestingly,
our bound, even with non-ideal devices, can still outperform alternative methods in3 using standard entropic
uncertainty relations. Our bound does not outperform our work in25 but this is to be expected as that other work
assumed ideal measurement devices and used a sampling-based approach. Note that these are not entirely fair
comparisons to our work here as our work here involves a stronger security model where measurement devices
are not completely ideal as in that prior work.

5. CLOSING REMARKS

Here we analyzed a high-dimensional QRNG protocol in the semi-source independent security model and where
also measurement devices are not ideal. We showed how the framework of quantum sampling28 and sampling
based entropic uncertainty24 can be used to derive fairly optimistic bit generation rates in this scenario. Our
methods may potentially be broadly applied to other quantum cryptographic protocols in this security model.



Figure 2. Evaluating our key-rate with imperfect detectors when d = 4. Here, we set Q = 5% and evaluate for various
levels of loss ν.

Figure 3. Comparing our bound here assuming non-ideal detectors with that derived in25 but for ideal detectors when
d = 8. We note that the old bound from25 outperforms, however this is to be expected since that work assumed perfect
detectors and no loss.



Figure 4. Comparing our bound here assuming non-ideal detectors with that derived in25 but for ideal detectors when
d = 8 and also comparing with the original bound from3 for this protocol (again, assuming ideal detectors and no loss).
Interestingly, even with non-ideal devices, our proof method can produce a more optimistic bit generation rate even with
non-ideal devices and loss than prior methods.
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