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Abstract
Theory of mind, the ability to model others’
thoughts and desires, is a cornerstone of human
social intelligence. This makes it an important
challenge for the machine learning community,
but previous works mainly attempt to design
agents that model the “mental state” of others
as passive observers or in specific predefined
roles, such as in speaker-listener scenarios. In
contrast, we propose to model machine theory of
mind in a more general symmetric scenario. We
introduce a multi-agent environment SymmToM
where, like in real life, all agents can speak,
listen, see other agents, and move freely through
the world. Effective strategies to maximize an
agent’s reward require it to develop a theory
of mind. We show that reinforcement learning
agents that model the mental states of others
achieve significant performance improvements
over agents with no such theory of mind model.
Importantly, our best agents still fail to achieve
performance comparable to agents with access to
the gold-standard mental state of other agents,
demonstrating that the modeling of theory of
mind in multi-agent scenarios is very much an
open challenge. Code can be found at https:
//github.com/msclar/symmtom.

1. Introduction
Human communication is shaped by the desire to efficiently
cooperate and achieve communicative goals (Tomasello,
2009). Children quickly learn that other people have
independent mental states, and that communicating is
necessary to obtain information from or shape the intentions
of those they interact with. Remembering and reasoning
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Figure 1. In SymmToM, agents aim to gain all available
information (depicted as diamonds, black for known, white for
unknown). Since hearing is limited to its neighbor cells, they must
guess what happened beyond this range. Agents can see the whole
grid, but mistakes in inferences may happen (as with the red agent).

over others’ mental states ensures efficient communication
by avoiding having to repeat information, and contributes to
achieving common goals with minimal effort.

Because of this, there is growing interest in developing
agents that can exhibit this kind of behavior, referred to
as Theory of Mind (ToM) by developmental psychologists
(Premack & Woodruff, 1978). Previous work on agents
imbued with such capabilities has focused mainly on two
types of tasks. The former are tasks where the agent is a
passive observer of a scene that has to predict the future
by reasoning over others’ mental states. These tasks may
involve natural language (Nematzadeh et al., 2018) or be
purely spatial (Gandhi et al., 2021; Rabinowitz et al., 2018;
Baker et al., 2011). The latter are tasks where the theory
of mind agent has a specific role, such as “the speaker” in
speaker-listener scenarios (Zhu et al., 2021).

In contrast, human cooperation and communication is often
multi-party, and rarely assumes that people have singular
pre-specified roles. Moreover, human interlocutors are
seldom passive observers of a scene but instead active
participants. These dynamics mean human communication
has additional complexities, such as the coordination
between theory of mind, planning, and action, that are not
easily tested in previous work. Therefore, we develop a
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more flexible environment, SymmToM, where we can study
what happens when all participants must act as both speaker
and listener. SymmToM is a fully symmetric multi-agent
environment where all agents can see, hear, speak, and move,
and are active players of a simple information-gathering
game. To solve SymmToM, agents need to exhibit different
levels of theory of mind, as well as efficiently communicate
through a simple channel with a fixed set of symbols.

SymmToM is partially observable for all agents: even if
agents have full vision, hearing may be limited. This also
differentiates SymmToM from prior work, as modeling
may require probabilistic theory of mind. In other words,
agents need to not only remember and infer other agents’
knowledge based on what they saw, but also estimate the
probability that certain events happened. This estimation
may be performed by assuming other agents’ optimal
behavior and processing the partial information available.

Despite its simple action space, SymmToM both fulfills
the properties required for symmetric theory of mind to
arise (which will be discussed in the following section), and
empirically cannot be completely solved either by using
well-known multi-agent deep reinforcement learning (RL)
models, or even by tailoring those models to our task. In
addition, all dimensions of complexity can be easily scaled
to be more or less challenging, and we demonstrate how to
test for different levels of theory of mind with corresponding
metrics. Given this simplicity, flexibility, and difficulty, we
contend that the SymmToM environment is an attractive
first step towards testing the ability of agents to develop
symmetric machine theory of mind.

2. Theory-of-Mind (ToM) Agents
A Theory-of-Mind agent can be defined as a modification
of the standard multi-agent RL paradigm, where the agents’
policies are conditioned on their beliefs about others.
Formally, we define a reinforcement learning problem M
as a tuple of a state space S , action space A, state transition
probability function T ∈ S×A×S → [0,1], and reward
R ∈ S×A → R, i.e. M := ⟨S,A, T,R⟩. In this setting,
an agent learns a (possibly probabilistic) policy π :S→A
mapping states to actions to maximize their reward.

In a multi-agent RL setting each agent can potentially have
its own state space, action space, transition probabilities,
and reward function, so we can define an instance of Mi =
⟨Si,Ai, Ti, Ri⟩ for each agent i. For convenience, we can
also define a joint state space S =

⋃︁
i Si that describes the

entire world in which all agents are interacting. Importantly,
in this setting each agent will have its own view of the
entirety of the world, described by a conditional observation
function ωi : S → Ωi that maps from the state of the entire
environment to only the information observable by agent i.

Since theory of mind is the ability to know (and act upon)
the knowledge that an agent has, agents with no theory
of mind will follow a policy that depends only on their
current (potentially partial or noisy) observation of their
environment: πi(ai,t | ωi(st)). Agents with zeroth order
theory of mind (Flobbe et al., 2008; Hedden & Zhang, 2002)
can reason over their own knowledge. These agents will
be stateful, πi(· |ωi(st), h

(i)
t ), where h

(i)
t is i’s hidden state.

Hidden states are always accessible to their owner, i.e. i has
access to h

(i)
t .

Agents with capabilities of reasoning over other agents’
mental states will need to estimate h

(j)
t for j ̸= i. We

denote i’s estimation of j’s mental state in time t as ĥ
(i,j)

t :

πi(· | ωi(st), h
(i)
t , ĥ

(i,1)

t . . . ĥ
(i,i−1)

t , ĥ
(i,i+1)

t . . . ĥ
(i,n)

t )

How do we estimate ĥ
(i,j)

t ? As a function of i’s (the
predicting agent) previous hidden state t−1, i’s observation
in t−1, and i’s prediction of the hidden states of every agent
in the previous turn:

ĥ
(i+1)

t =f(h
(i)
t−1, ωi(st−1), ĥ

(i,1)

t−1 . . . ĥ
(i,i−1)

t−1 , ĥ
(i,i+1)

t−1 . . . ĥ
(i,n)

t−1 )

i’s prediction of other agents’ observation in t− 1 is
also crucial, but not explicitly mentioned since it can be

computed using ωi(st−1). For the initial turn, ĥ
(i,j)

0 may be
initialized depending on the problem: if initial knowledge

is public, ĥ
(i,j)

0 is trivial; if not, ĥ
(i,j)

0 may be estimated.

3. Symmetric Theory-of-Mind
We define symmetric theory of mind environments as
settings where theory of mind is required to perform a task
successfully, and all agents have the same abilities. Having
the same abilities means that all agents would have the same
set of legal actions if placed in the same state (in terms of
both location and knowledge), which is independent of the
policy each agent executes. There are at least four defining
characteristics for symmetric theory of mind to arise:

Symmetric action space. In symmetric theory of mind
all agents are required to have the same action space (in
contrast to, for example, theory of mind tasks in speaker-
listener settings). Concretely, Ai = Aj ̸= ∅ ∀i, j.

Imperfect information. In perfect information scenarios
all knowledge is public, making it impossible to have
agents with different mental states. In theory of mind
tasks in general, there could be a subset of agents with
perfect information (e.g. a passive observer predicting
future behavior). In symmetric theory of mind, since all
agents have the same abilities and roles, all agents must
have imperfect information. More precisely, ωi –the subset
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Figure 2. Example of three consecutive turns in an episode. There
are three agents in a 5 × 5 grid, each with a hearing range of 1
(shaded in the same color of the agent). Fully-colored cells depict
recharge bases. Information is represented by diamonds: black,
gray, and white diamonds represent an information piece known
first-hand, second-hand, and not known, respectively. Black circles
show the information piece currently being said by each agent.

of the full state that agent i can observe if placed in each
state– must not be the identity for any agent i.

Observation of others. Agents must have at least partial
information of another agent to estimate its mental state. In
contrast to passive-observer settings, in symmetric theory of
mind every agent must be able to partially observe all others.
More precisely, ωi must observe at least partial information
about s(j)t (the subset of st that refers to agent j), although
we do not require s(j)t ̸= ∅ in every single turn. Moreover, if
communication is allowed, it is desirable to partially observe
or infer interactions between two or more agents to develop
second order theory of mind (i.e. predicting what an agent
thinks about what another agent is thinking) or higher.

Information-seeking behavior. It should be relevant
for successfully performing the task to gather as much
information as possible, and this information-gathering
should involve some level of reasoning over other agent’s
knowledge. This is true for first-order theory of mind
tasks in general, and can be formalized as π∗ ̸= π for
any zeroth-order theory of mind policy πi(· | ωi(st), h

(i)
t ).

In general, tasks can incorporate perpetual information
seeking behaviors, to incentive efficient play even in long
episodes. However, to achieve this with finish capacity,
requires forgetting. Forgetting can be implemented as an
explicit loss of knowledge under specific conditions, or
degradation of memories. This introduces the concept of
information staleness. Since information is not cumulative
and the environment is only partially observable, agents will
need to estimate whether what they knew to be true still
holds in the present.

4. The SymmToM Environment
SymmToM is an environment where n agents are placed in
a w×w grid world, and attempt to maximize their reward by

gathering all the information available in the environment.
Its construction mirrors the requirements specified above.
There are c available information pieces, that each agent may
or may not know initially. Information pieces known at the
start of an episode are referred to as first-hand information.
Each turn, agents may move through the grid to one of its
four neighboring cells, and may speak exactly one of their
currently known information pieces. More precisely, the
action space of agent j is defined as follows:

Aj = {left, right, up, down, no move} × {1, . . . , c} (1)

When an agent utters an information piece, it is heard by
every agent in its hearing range (a 2h + 1×2h + 1 grid
centered in each agent, with 2h+ 1<w). The agents who
heard the utterance can share this newly information with
others in following turns. We refer to this as second-hand
information, since it is learned –as opposed to first-hand
information, given at the start of each episode. The state
space is comprised of the position of the agents and their
current knowledge:

S ={{(pi, ki), for i ∈ {1, . . . , n}} where
pi ∈ {1, . . . , w} × {1, . . . , w}, and ki ∈ {0, 1}c}

Each agent aims to maximize their individual reward Ri

via information seeking and sharing. Rewards are earned
by hearing a new piece of information, giving someone
else a new piece of information, or correctly using recharge
bases. Recharge bases are special cells that reset an agent’s
knowledge in exchange for a large reward (e.g. (n−1)c
times the reward for listening to or sharing new information).
Each agent has its own stationary recharge base during an
episode. To trigger a base, an agent steps into its base having
acquired all the available pieces of information, causing the
agent to lose all the second-hand information it learned.
Recharge bases guarantee that there is always reward to
seek information. Concretely, let s = {(pi, ki), for i ∈
{1, . . . , n}} be a state and ai = (adir

i , acomm
i ) ∈ Ai an

action, where adir
i represents the physical and acomm

i the
communicative action. We define agent i’s reward Ri as
the addition of three components. First, the reward for
hearing new information, measured as the number of new
information pieces heard by i. Second, the reward for
hearing new information, computed as the number of agents
that heard what i said and it was new to them. And lastly,
the reward for using the recharge base correctly. Formally,

Ri(s,ai) =
∑︂
i ̸=j

1{||pi − pj ||∞ ≤ h and ki,acomm
j

= 0}

+
∑︂
i ̸=j

1{||pi − pj ||∞ ≤ h and kj,acomm
i

= 0}

+ (a− 1) · c · 1{pi = basei and kj = {1, . . . , 1}}

where ki,acomm
j

= 0 represents that the acomm
j -th element of

ki is unknown (i.e. zero).
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A non-theory of mind agent can only achieve limited success.
Without reasoning about its own knowledge (i.e. without
zeroth order theory of mind), it does not know when to use
a recharge base. Moreover, without knowledge about other
agent’s knowledge (i.e. without first order theory of mind) it
is not possible to know which agents possess the information
it is lacking. Even if it accidentally hears information, a non-
first-order theory of mind agent cannot efficiently decide
what to utter in response to maximize its reward. Higher
order theory of mind is also often needed in SymmToM, as
we will discuss further in §8.

Even though we only discussed a collaborative task for
SymmToM, it can easily be extended for competitive tasks1.
Moreover, all our models are also designed to work under
competitive settings. SymmToM satisfies the desiderata we
laid out in the previous section, as we will detail below:

Symmetric action space. As defined in Eq. 1, Ai = Aj

for all i, j. Only a subset may be available at a time since
agents cannot step outside the grid, speak a piece they have
not heard, or move if they would collide with another agent
in the same cell, but they all share the same action space.

Imperfect information. Messages sent by agents outside
of the hearing range will not be heard. For example, in
Fig. 2a green sends a message but it is not heard by anyone,
since it is outside of red’s and blue’s range. Hearing ranges
are guaranteed not to cover the whole grid, since 2h+1 < w.

Observation of others. Agents have perfect vision of the
grid, even if they cannot hear what was said outside of their
hearing range. Hence, an agent may see that two agents
were in range of each other, and thus probably interacted,
but not hear what was communicated. An example of
this can be seen in Fig. 2a, where green observes blue
and red interacting without hearing what was uttered. The
uncertainty in the observation also differentiates SymmToM
from prior work: to solve the task perfectly, an agent
needs to assess the probability that other agents outside
its hearing range shared a specific piece of information to
avoid repetition. This estimation may be performed using
the knowledge of what each agent knows (first order theory
of mind), the perceived knowledge of each of the agents
in the interaction (second order theory of mind), as well as
higher order theory of mind.

Information-seeking behavior Rewards are explicitly
given for hearing and sharing novel information,
guaranteeing information-seeking is crucial in SymmToM.

1There are many possible competitive extensions. For example,
if we ended the trial when an agent steps successfully on their base
for the b-th time (b > 1, to preserve the forgetting mechanism),
giving that agent a positive reward and a negative one to all others,
we would encourage competition.

Recharge bases (Fig. 2b) ensure that the optimal solution is
not for all agents to accumulate in the same spot and quickly
share all the information available; and that the information
tracking required is more complex than accumulating past
events. Conceptually, with recharge bases we introduce an
explicit and observable forgetting mechanism. As discussed
in Section 3, this allows for perpetual information seeking
and requires information staleness estimation.

5. Baseline Learning Algorithms and Bounds
To learn a strong baseline policy for SymmToM, we
use MADDPG (Lowe et al., 2017), a well-known multi-
agent actor-critic framework with centralized training and
decentralized execution, to counter the non-stationarity
nature of multi-agent settings. In MADDPG, each actor
policy receives its observation space as input, and outputs
the probability of taking each action. Notably, actors in
MADDPG have no way of remembering past turns. This is
a critical issue in SymmToM, as agents cannot remember
which pieces they know, which ones they shared and to
whom, and other witnessed interactions. To mitigate this, it
is necessary to add a mechanism to carry over information
from past turns, for example via incorporating a recurrent
network as RMADDPG (Wang et al., 2020) does.

Perfect Information, Heuristic and Lower Bound Models
Performance is difficult to interpret without simpler
baselines. As a lower bound model we use the original
MADDPG, that since it does not have recurrence embedded,
should perform worse or equal to any of the modifications
described above. We also include an oracle model
(MADDPG-Oracle), that does not require theory of mind
since it receives the current knowledge K for all agents in its
observation space. The performance of MADDPG-Oracle
may not always be achieved, as there could be unobserved
communication with multiple situations happening with
equal probability. Moreover, as the number of agents and
size of the grid increases, current reinforcement learning
models may not be able to find an optimal spatial exploration
policy; they may also not be capable of inferring the optimal
piece of information to communicate in larger settings. In
these cases, MADDPG-Oracle may not perform optimally,
so we also include a baseline with heuristic agents to
compare performance.

Heuristic agents will always move to the center of the board
and communicate round-robin all the information pieces
they know until they have all the available knowledge. Then,
they will move efficiently to their recharge base and come
back to the center of the grid, where the process restarts.
We must mention that this heuristic is not necessarily the
perfect policy, but it will serve as a baseline to note settings
where current multi-agent reinforcement learning models
fail even with perfect information. Qualitatively, smaller
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settings have shown to approximately follow a policy like
the heuristic just described.

6. Explicit Modeling of Symmetric Theory of
Mind

In contrast to RMADDPG (Wang et al., 2020), we
specifically design algorithms for our environment. This
will ensure that we test the current limits of performance
with known multi-agent deep reinforcement learning models.
If even these models fail to solve the task, it will be a clear
signal that there is more modeling research needed, and
that SymmToM will be a useful benchmark to develop
and test on. Intuitively, our model computes a matrix,
K ∈ {0, 1}c×n, that reflects the information pieces known
by each agent from the perspective of the agent being
modeled: Kij reflects if the agent being modeled believes
that agent j knows i. K is updated every turn and used as
input of the following turn of the agent, obtaining the desired
recurrent behavior. K is also concatenated to the usual
observation space, to be processed by a two-layer ReLU
MLP and obtain the probability distributions for speech and
movement, as in the original MADDPG. There are several
ways to approximate K. It is important to note that each
agent can only partially observe communication, and thus it
is impossible to perfectly compute K deterministically.

The current knowledge is comprised of first-hand
information (the initial knowledge of every agent, F ,
publicly available) and second-hand information. Second-
hand information may have been heard this turn (S, whose
computation will be discussed below) or in previous turns
(captured in the K received from the previous turn, noted
K(t−1)). Additionally, knowledge may be forgotten when
an agent steps on a base having all the information pieces.
To express this, we precompute a vector B ∈ {0, 1}n that
reflects whether each agent is currently on its base; and a
vector E ∈ {0, 1}n that determines if an agent is entitled to
use their recharge base:

Ej = 1
∑︁

i Kij=c for all j ∈ {1, . . . , n}

We are then able to compute K as follows:

K
(t)
ij = (Fij or Sij or K(t−1)

ij ) and not (Bj and Ej) (2)

F , K(t−1), and B are given as input, but we have not yet
discussed the computation of the second-hand information
S. S often cannot be deterministically computed, since
our setting is partially observable. We will identify three
behaviors and then compute S as the sum of the three:

S = S[0] + S[1] + S[2]

For simplicity, we will assume that we are modeling agent
k. S[0] will symbolize the implications of the information

spoken by agent k: if agent k speaks a piece of information,
they thus know that every agent in its hearing range
must have heard it (first order theory of mind). S[1]

will symbolize the implications of information heard by
k: this includes updating k’s known information (zeroth
order theory of mind) and the information of every agent
that is also in hearing range of the speaker heard by k.
S[2] will symbolize the estimation of information pieces
communicated between agents that are out of k’s hearing
range. Since we assume perfect vision, k will be able to see
if two agents are in range of each other, but not hear what
they communicate (if they do at all).

S[0] and S[1] can be deterministically computed. To do
so, it is key to note that every actor knows the set of
communicative actions A ∈ {0, 1}c×n performed by each
agent last turn, given that those actions were performed in
their hearing range. Moreover, each agent knows which
agents are in its range, as they all have perfect vision. We
precompute H ∈ {0, 1}n×n to denote if two given agents
are in range.

Then, S[0]
ij = 1 if and only if information piece i was said

by k, and agents k and j are in hearing range of each other:

S
[0]
ij = Aik ·Hkj

S
[1]
ij = 1 if and only if agent k (the actor we are modeling)

heard some agent ℓ speaking information piece i, and agent
j is also in range of agent ℓ. Note that agent k does not need
to be in hearing range of agent j. More precisely,

S
[1]
ij = Aiℓ ·Hkℓ ·Hℓj , for any agent ℓ

S[2] –the interactions between agents not in hearing range
of the agent we are modeling– can be estimated in different
ways. A conservative approach would be to not estimate
interactions we do not witness (S[2] = 0, which we will call
MADDPG-ConservativeEncounter (MADDPG-CE)); and
another would be to assume that every interaction we do not
witness results in sharing a piece of information that will
maximize the rewards in that immediate turn. We will call
this last approach MADDPG-GreedyEncounter (MADDPG-
GE). MADDPG-GE assumes agents play optimally, but
does not necessarily know all the known information and
that could lead to a wrong prediction. This is particularly
true during training, as agents may not behave optimally.
The computation of S[2] for MADDPG-GE is as follows.

First, we predict the information piece Uℓ that agent ℓ
uttered. MADDPG-GE predicts Uℓ will be the piece that the
least number of agents in range know, as it will maximize
immediate reward:

Uℓ = argmin
i

∑︂
j

(Kij and Hjℓ) ∈ {1, . . . c}
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With this prediction, agent j will know information i if at
least one agent in its range said it:

S
[2]
ij = 1 if ∃ ℓ ̸= k s.t. Uℓ = j and Hjℓ and j ̸= k else 0

6.1. MADDPG-EstimatedEncounter

MADDPG-CE and MADDPG-GE are two paths to
information sharing estimation, but neither estimate the
probability of an agent knowing a specific piece of
information. In MADDPG-EstimatedEncounter (MADDPG-
EE), known information of other agents is not binary,
i.e. Kij ∈ [0, 1]. This added flexibility can avoid making
predictions of shared information based upon unreliable
information.

MADDPG-EE estimates the probability that an agent j
uttered each piece of information (Uj ∈ Rc) by providing
the current information of all agents in its range to an MLP:

Uj = softmax(f(K1j , . . . ,Kcj ,

{K1ℓ, . . . ,Kcℓ for all ℓ where Hjℓ})), with f an MLP

Then, the probability of having heard a specific piece of
information will be the complement of not having heard it,
which in turn means that none of the agents in range said it:

S
[2]
ij = 1−

∏︂
ℓ,Hjℓ=1

1− Uℓ

Since MADDPG-EE requires functions to be differentiable,
we use a differential approximation of Eq. 2. A pseudocode
of MADDPG-EE’s implementation can be found in Section
A.4. MADDPG-EE solely focuses on first order theory of
mind, and we leave to future work modeling with second
order theory of mind. The structure of the model would be
similar but with an order of magnitude more parameters.

7. Experiments
Next we compare the aforementioned algorithms. The
observation space will be constituted of a processed version
of the last turn in the episode, to keep the input size
controlled. More precisely, the observation space is
composed of: the position of all agents, all recharge bases,
the current direction each agent is moving towards, what
they communicated in the last turn, the presence of a wall
in each of the immediate surroundings, and every agents’
first-hand information. First-hand information is publicly
available in our experiments to moderate the difficulty of the
setup2, but this constraint could also be removed. To lift this
constraint, one approach would be to assume that Fij = 0

2This simple setting is still partially observable, since the agents
cannot hear interactions outside of their hearing range.

for every unknown first-hand information, and learn K only
based on heard interactions (modeled in S[1]).

We use reward as our main evaluation metric. This metric
indirectly evaluates theory of mind capabilities, since
information-seeking is at the core of SymmToM. We train
through 60000 episodes, and with 9 random seeds to account
for high variances. Our policies are parametrized by a two-
layer ReLU MLP with 64 units per layer, as in the original
MADDPG (Lowe et al., 2017). MADDPG-EE’s function f
is also a two-layer ReLU MLP with 64 units per layer.

We test two board sizes (w ∈ {6, 12}), two numbers of
agents (n ∈ {3, 4}), and three quantities of information
pieces (c ∈ {n, 2n, 3n}). Agents are placed randomly, and
initial information is distributed randomly but equitably:
each information piece is initially known by the same
number of agents. Information exchange is simultaneous
among agents. h=1 for all our experiments: only agents’
immediate neighbors will hear what they communicate.

Running experiments with the same number of turns for
every setting would imply that agents can move less in
combinations with larger values of w. Therefore, we set the
length of each episode to 5w, to make the length of each
episode proportional to the grid size. Since the duration of
the experiment is directly proportional to the length of the
episodes, we settled on a small multiplier. 5w allows agents
to move to each edge of the grid and back to the center.
More design and experimental details can be found in §A.5.

7.1. Main Results

As we can observe in Table 1, there is a significant
difference in performance between MADDPG-Oracle and
MADDPG (MADDPG-Oracle is 127% better on average):
this confirms that developing theory of mind and recurrence
is vital to perform successfully in SymmToM. MADDPG-
Oracle is often not an upper bound: when c > n, the
heuristic performs better (92% on average, see details in
§A.5). This shows that even with perfect information, it can
be difficult to learn the optimal policy using MADDPG.

Moreover, models with recurrence perform significantly
better than MADDPG (∼60% better), showing that
remembering past information gives a notable advantage.
As expected, recurrent models tailored to our problem
resulted in better performance than a vanilla LSTM
(RMADDPG). The performance of the best of the tailored
models (MADDPG-{CE,GE,EE}) was 42% better on
average than plain RMADDPG. LSTM was able to surpass
the best of the tailored models only for n=3,w=12,c=3n.

Increasing c generally decreases global rewards for learned
agents (on average, c = 2n rewards are 74% of those
for c = n, and c = 3n rewards are 76.5% of c = n).
This suggests that probabilistic decisions are harder to
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Table 1. Average reward per agent evaluated during 1000 episodes. 9 runs are averaged for each learned agent, using the best checkpoint
to compensate for collapses in performance seen in Fig. 5 and 6. Values shown are individual rewards to normalize by the number of
agents. Bold represents the best result of a learned imperfect-information model for each setting. Standard deviations appear in brackets.

agents (n) 3 4
grid width (w) 6 12 6 12
info pieces (c) n 2n 3n n 2n 3n n 2n 3n n 2n 3n

Heuristic (1000 trials) 39[11] 53[13] 58[13] 37[12] 58[15] 71[15] 60[15] 74[15] 74[16] 59[18] 86[18] 99[18]
MADDPG-Oracle 42[7] 48[6] 41[6] 56[18] 40[12] 41[17] 70[4] 47[6] 32[5] 55[10] 33[6] 33[11]

MADDPG 40[2] 18[2] 15[1] 39[16] 33[16] 11[1] 34[6] 22[3] 13[0] 17[4] 15[2] 14[1]
+RNN (RMADDPG) 39[5] 19[3] 18[3] 42[9] 24[15] 20[7] 30[4] 20[2] 16[1] 32[7] 17[3] 16[1]
+Conservative (CE) 36[4] 26[3] 33[4] 49[12] 55[34] 14[1] 40[7] 31[3] 25[3] 30[12] 25[8] 16[1]
+Greedy (GE) 37[7] 26[4] 34[4] 52[19] 61[26] 14[2] 34[11] 30[4] 26[3] 34[8] 28[12] 16[2]

+Estimated (EE) 41[4] 20[2] 15[2] 39[10] 24[10] 11[1] 36[8] 22[3] 14[1] 23[13] 18[3] 15[1]

learn, or impossible to successfully navigate when several
events are equally likely. MADDPG-EE did not show
improvements over the other agents, and in some cases
performance decreased dramatically (e.g. w= 6, c= 3n).
MADDPG-EE uses an MLP in its definition of S[2], which
provides flexibility but complicated learning. We leave
exploration of other probabilistic agents to future work, but
the significant performance gap between learned models and
the MADDPG-Oracle / heuristic shows there is ample space
for improvement in this task, and hence proves SymmToM
to be a simple yet unsolved benchmark.

Increasing n results in a 11% reduction of performance
on average for learned models. Nonetheless, the heuristic
improved its rewards by an average of 46%, given the larger
opportunities for rewards when including an additional
listener. Overall, this implies that increasing n also makes
the setup significantly more difficult. Finally, increasing w
did not have a conclusive result: for n = 4 it consistently
decreased performance in 17%, but for n = 3 we saw an
improvement of 18% and 61% for c = n and c = 2n
respectively, and a decrease of 27% for c = 3n.

In sum, modifying c and n provides an easy way of making
a setting more difficult without introducing additional rules.

8. Discussion
A classic example of a scenario specifically designed to
test theory of mind is the Sally-Anne task (Wimmer &
Perner, 1983). This false belief task, originally designed
for children, aims to test if a passive observer can answer
questions about the beliefs of another person, in situations
where that belief may not match reality. If we were to use it
for machine theory of mind, we could repeat the experiment
and ask an agent to predict the position of an object varying
the underlying conditions. This test is feasible because there
is only one agent with freedom of action, which ensures
that desired conditions are met every time. We can set up a

similar setting in SymmToM if we allow for manual control
of all agents but one, as shown in Fig. 3. Other tests besides
the ones shown may be designed. In particular, in Fig. 3d
we show an example of probabilistic theory of mind where
two communicative events are equally likely, but one could
modify this scenario to have different probabilities and test
the expected value of the turns until red successfully shares
an information piece. One could also design retroactive
deduction tests: for example, in Fig. 3d if red communicates
and receives no reward, it can deduce that green had received
that information from blue. If there had been another agent
(e.g. a yellow agent) in range of blue when it spoke to
green, the red agent could also update its knowledge about
yellow. Results and full discussion for the proposed tests
are detailed in App. A.1. Models generally failed tests
depicted in Fig. 3a and 3b, with significant variance between
runs. As expected, w = 12 proved harder than the same
test in a smaller grid. In w = 6 models often converged
to a suboptimal but reasonable policy, whereas in w=12
efficient movement to a suboptimal goal was nontrivial.
Notably, the second-order theory of mind test (Fig 3c)
averaged ∼ 75% success rate, which we hypothesize is
due to having a mobile agent that the tested agent perceives
as feedback.

Post-hoc analysis also has its challenges in multi-agent
settings, even in the most direct cases. Thanks to our reward
shaping, using recharge bases is always the optimal move
when an agent has all the information available: an agent
will have a reward of (n− 1)c for using the base, whereas it
can only gain up to n− 1+ c−1 per turn if it decides not to
use it. Even in this case, small delays in using the base may
occur, for example if the agent can gather additional rewards
on its path to the base. More generally, having multiple
agents makes a specific behaviors attributable to any of the
several events happening at once, or a combination of them.

Even though it may be difficult to establish causality
when observing single episodes, we developed metrics
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(a) 0th order ToM test (b) 1st and 2nd order ToM test

(c) 2nd order ToM test (d) Probabilistic ToM test

Figure 3. Example tests for 0th, 1st, 2nd order, and probabilistic
Theory of Mind. We test red agents, immobilize gray agents, and
control blue and green agents’ movements. In Fig. 3a, red will go
to the top right if it remembers to have heard the first piece, and to
the left otherwise. In Fig. 3b, red will move to the right if and only
if it assumes that the two agents on the left played optimally (red
cannot hear them). In Fig. 3c, blue is controlled to ensure it will
search the agent on the bottom left (its optimal play, in five moves).
Red’s optimal move is to meet blue, and hence must only move to
the bottom left, even if the agent currently there will not provide
any reward. In Fig. 3d, red will interact with green not knowing
what blue previously shared with it. Red should be able to share
the missing piece to green with an expected value of 1.5 turns.

that comparatively show which models are using specific
features of the environment better than others. Reward
can also be understood as a metric with a more indirect
interpretation.

Post-hoc analyses of single episodes can also be blurred
by emergent communication. Since agents were trained
together, they may develop special meaning assignment
to specific physical movements or messages. Even though
qualitatively this does not seem to be the case for the models
presented, tests should also account for future developments.
This also implies that one should not over-interpret small
differences in metrics.

We briefly describe the developed metrics below, full tables
of results are available in Appendix A.2. All metrics are
normalized by number of agents (i.e., they show the score
for a single agent). This allows for better comparison
between n = 3 and n = 4 settings.

Unsuccessful recharge base rate: Average times per
episode an agent steps on its recharge base without having
all the information available (i.e. wrong usage of the
recharge base). Note that an agent may step on its base just
because it is on the shortest path to another cell. Therefore,
a perfect theory of mind agent will likely not have zero on
this score; but generally, lower is better. See A.2 Table 4.

Wrong communication piece selection: Average times
per episode an agent attempted to say information they
currently do not possess. In these cases, no communication
happens. Lower is better. See A.2 Table 5.

Useless communication piece selection: Average times
per episode an agent communicated an information piece
that everyone in its hearing range already knew, when having
a piece of information that at least one agent in its range did
not know. Lower is better. See A.2 Table 6.

Useless movement: Average times per episode an agent
moves away from every agent that does not have the exact
same information it has, given that the agent does not
currently possess all the information available. This means
that the agent is moving away from any possible valuable
interaction. Lower is better. See A.2 Table 7.

A.2 contains full results tables. Briefly, we saw
that MADDPG-CE and MADDPG-GE used recharge
bases unsuccessfully at similar rates as Oracle, whereas
RMADDPG performed 41% worse. Regarding information
sharing, results suggest all models may be making wrong
communicational decisions, but RMADDPG is more biased
towards sharing redundant information when in-doubt,
whereas MADDPG-CE and MADDPG-EE tend towards
not communicating at all (the true effect of trying to share
information one does not know).

9. Related Work
Theory-of-Mind has been studied for decades in cognitive
science (Premack & Woodruff, 1978; Wellman, 1992;
Astington & Baird, 2005). More recently, there has been
work on developing agents that show that they can reason
over the beliefs and goals of others (Rabinowitz et al.,
2018; Rescorla, 2015). In many cases, models have been
evaluated by being passive omniscient observers of a scene,
either in a 2D (Rabinowitz et al., 2018) or natural language
(Nematzadeh et al., 2018) world. Trained models are
asked to predict the future given omniscient knowledge,
but communication between observed agents is either non-
existent or handcrafted. In cases where the modeled agent is
active in the scene, movement or speech may be restricted
for some agents but not others, leading to an asymmetric
dynamic. For example, MADDPG (Lowe et al., 2017) has
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two tasks where oral communication is allowed, but there is
only one speaker and the listener(s) have to react. Moreover,
the speaker is immobile, in contrast to the listener(s). Other
theory of mind speaker-listener tasks were evaluated only
with two conversational agents, such as Zhu et al. (2021).

Work in reinforcement learning also often implicitly has
some theory of mind modeling, especially in collaborative
tasks. Even if the models can scale to multi-agent
scenarios, models are often evaluated with only two
agents for simplicity (Wang et al., 2020; Jain et al.,
2019). Evaluating on only two agents often limits the
opportunities for efficiently using higher-order theory of
mind to solve a task: for example, agents never have to
reason about i’s assessment of j’s modeling of k’s mental
state. One fully-symmetric multi-agent task often used in
reinforcement learning is cooperative navigation (Lowe
et al., 2017), a collaborative task that requires agents to
cover landmarks without collision. Agents need to estimate
where other agents will move, thus modeling their mental
states. Traditionally, this task does not allow explicit
communication between agents, resulting in impoverished
theory of mind capabilities (Astington & Baird, 2005).
Concurrently with our work, ToM2C (Wang et al., 2021)
extended cooperative navigation and another related task
(target coverage) to allow communication. Since all
agents are symmetric, ToM2C may be understood as an
example of multi-agent Symmetric Machine Theory of
Mind. Nonetheless, some key differences arise: ToM2C
only allows for targeted communication between pairs of
sender and receiver, impeding deductions from bystanders
of a specific sent message. Moreover, ToM2C only
allows the sender to communicate the current estimation
of the receiver goals, whereas –as detailed in Section
2– SymmToM allows agents to communicate pieces of
information that they estimate are not known to people
in their vicinity, but they never reveal this knowledge
estimation directly. Information gathering plays a much
more crucial role in SymmToM, and agents also need to be
able to predict that other agents may forget information.

In the present work, we only focus on creating a task for
analyzing complex reasoning over other agents’ knowledge
or lack thereof. Although theory of mind typically refers
to reasoning over mental states, other aspects of theory of
mind include understanding preferences, goals, intentions,
and desires of others. Passive-observer benchmarks
(Gandhi et al., 2021; Shu et al., 2021) have been proposed
for evaluating the understanding of agent’s goals and
preferences, as well as understanding agent intentions
(Ullman et al., 2009; Netanyahu* et al., 2021). Modeling
is often analyzed by comparing to a human baseline,
which is mainly possible due to the static nature of these
datasets. Recently, Tejwani et al. (2021; 2022), developed a
reinforcement learning framework called Social MDP, that

incorporates social interactions into MDPs by reasoning
recursively about the goals of other agents. As mentioned,
reasoning about others goals’ is another aspect of theory
of mind, and it is complementary to our work. Social
MDP’s agents have full observation and only need to
estimate other agent’s goals based on their (fully observable)
behavior. In SymmToM, in contrast to Social MDP, all
agents have the same publicly-known information-sharing
goal. What is unknown to SymmToM agents is the full
state, particularly what other agents know at a given time:
agents’ reasoning aims to deduce interactions they did not
witness. Although our reward fosters collaboration, agents
in SymmToM do not directly gain from any increase or
decrease in others’ rewards as in Social MDP. Moreover,
Social MDP’s task does not have verbal communication,
limiting communication to physical signaling.

10. Conclusions and Future Work
We defined a framework to analyze machine theory of mind
(ToM) in a multi-agent symmetric setting, a richer and
more realistic setup than theory of mind tasks currently
used. Based on the four properties needed for symmetric
theory of mind to arise, we provided a simplified setup
on which to test the problem, and showed we can easily
increase difficulty by growing the number of agents or
communication pieces. Our goal in this work was not
to solve symmetric theory of mind, but rather to give a
starting point to explore more complex models in this
area. Even with this minimal set of rules, SymmToM
proves algorithmically difficult for current multi-agent deep
reinforcement learning models, even when tailored to our
specific task. We leave to future work to develop models
that handle second-order theory of mind and beyond, and
models that reevaluate past turns to make new deductions
with information gained a posteriori (i.e., models that pass
retroactive deduction tests). Another interesting direction is
to replace the information pieces with constrained natural
language: our communication sharing is binary, whereas
in language there is flexibility to communicate different
subsets of a knowledge base using a single sentence. It
would also be interesting to test humans on this task. We
hypothesize they may converge to a suboptimal policy –like
the heuristic– due to our memory constraints and difficulty
to methodically update and estimate knowledge. These
should not be limiting factors for agents and thus we expect
better performance in agent-agent interactions. We also
think it would be valuable to test the differences in human
performance if we alleviate memory limitations by allowing
to take notes, and re-watching past turns.
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(a) 0th order ToM test, w = 6.
Minimum turns to succeed: 3.

(b) 1st & 2nd order ToM test, w = 6
Minimum turns to succeed: 2.

(c) Probabilistic ToM test, w = 12
Minimum turns to succeed: 1.5.

(d) 0th order ToM test, w = 12
Minimum turns to succeed: 9.

(e) 1st & 2nd order ToM test, w = 12
Minimum turns to succeed: 8.

(f) 2nd order ToM test,
w = 12.

Figure 4. Depictions of rescaled tests from Figure 3, designed to match some of the parameter combinations already experimented on.

A. Appendix
A.1. Ad-Hoc Theory of Mind (ToM) tests

We test on the four examples shown in Figure 3, adapting the examples to fit one of the grid sizes we already experimented
on. For the tests described in Figure 3a and Figure 3b, we test two different grid sizes: w = 6 and w = 12. For the tests
described in Figure 3c and Figure 3d we only test w = 12 and w = 6 respectively. Image depictions of the exact test
configurations can be seen in Figure 4.

We measure three metrics: average success rate (SR), average failure rate (FR), and ratio of average turns to succeed vs.
optimum (RATSO). Note that average success rate and average failure rate do not necessarily sum 1 since these two metrics
only include trials where the agent reached any of the two proposed outcomes. If, for example, the agent never moved from
the starting point, the trial would not be counted positively towards Avg. Success Rate nor Avg. Failure Rate. In addition,
ratio of average turns to succeed vs. optimum (RATSO) is the ratio between the average turns it took to succeed in successful
trials, and the optimum number of turns to succeed in a specific trial (lower is better, minimum possible value is 1.0).

For the tests in Figure 4a, 4b, 4d, and 4e, the trial ends when the red agent reaches the hearing range of one of the two
possible target agents. The test depicted in Figure 4f is a pass/fail test: if red moves suboptimally at any point before meeting
blue, the trial is declared as failed. This makes it a particularly difficult test to pass at random. Because of the nature of this
second order theory of mind test, we only report the average success rate. Finally, for the probabilistic theory of mind test
(Figure 4c) we want to measure how fast can red communicate all the information it has to green. The optimal number of
turns is 1.5 (as described in Figure 3). Since this test can end either if all information has been shared to green, or if the
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Theory of Mind test
Fig. 3a

(0th order)
Fig. 3c

(2nd order)
grid width (w) 6 12 12

SR FR 1-SR-FR RATSO SR FR 1-SR-FR RATSO SR

MADDPG-Oracle 0% 100% 0% – 0% 43% 57% – 76%

MADDPG 0% 100% 0% 1.11 0% 22% 78% – 74%
RMADDPG 0% 76% 24% – 0% 32% 68% – 74%
MADDPG-CE 0% 86% 14% – 0% 0% 100% – 69%
MADDPG-GE 0% 57% 43% 6.11 0% 18% 82% – 75%
MADDPG-EE 23% 63% 14% 3.28 0% 11% 89% 3.00 69%

Theory of Mind test
Fig. 3b

(1st and 2nd order)
Fig. 3d

(probabilistic)
grid width (w) 6 12 6

SR FR 1-SR-FR RATSO SR FR 1-SR-FR RATSO SR RATSO

MADDPG-Oracle 0% 79% 21% – 0% 37% 63% – 71% 2.10

MADDPG 0% 83% 17% 1.07 0% 24% 76% – 43% 3.17
RMADDPG 6% 83% 11% 1.60 0% 46% 54% – 70% 2.71
MADDPG-CE 0% 83% 17% 8.33 0% 51% 49% – 47% 2.25
MADDDPG-GE 25% 58% 17% 3.00 0% 51% 49% – 29% 2.18
MADDPG-EE 8% 71% 21% 5.25 0% 47% 53% – 45% 1.89

Table 2. Results for tests depicted in Fig. 4, evaluated during 1000 episodes for each of 9 different random seeds. SR means average
success rate, FR means average failure rate, and RATSO is the ratio of average turns to succeed vs. the optimum turns to succeed. 1-SR-FR
depicts the ratio of episodes where an agent did not reach any grid cell to terminated the test (either successfully or unsuccessfully) before
the trial reached the maximum number of turns allowed (5w). A horizontal line means a metric could not be computed. Percentages are
rounded to the nearest integer.

maximum number of turns has been reached, we will only report SR and RATSO. In other words, by design FR = 0 will
always hold in this test.

Results are shown in Table 2. All tests show there is significant work to be done in improving agents’ reasoning. Even in the
Oracle setting, agents often fail the tests. For example, MADDPG-Oracle always fails the zeroth-order theory of mind test
with w = 6 (depicted in Figure 4a). This shows that the trained model has learned a suboptimal but reasonable policy, since
it moves towards an agent that will earn it a reward. In contrast, a high 1− SR− FR in the test in Figure 4a shows that the
agent never moved to the hearing range of any of the two possible “goal” agents – hence earning zero reward. Even though
this would suggest MADDPG-GE performs the worst for this test, it is important to note that immobilizing agents introduces
a new confounding variable (as all ad-hoc tests do, in line with what we argue in the main text). For example, if an agent
sees that another one is not moving towards them, they might infer this agent is judging the interaction as useless and avoid
interaction as well. In a test with a movement-controlled agent instead of all immobilized ones (second-order theory of mind
test, Figure 4f) MADDPG-GE showed to perform the best among all learned agents, moving optimally in 75% of the trials.
Success rate for the best of untrained models was only 33%, showing agents’ learning significantly improves performance
on this test.

As expected, tests in smaller grids showed to be easier than the same test performed on agents trained in a larger grid (See
results for 0th and 1st+2nd order theory of mind in Table 2; no model was successful for w = 12). Since reward signals tend
to be more sparse in larger grids, all models show larger values of 1− SR− FR. This may suggest that even efficiently
moving towards a suboptimal goal may be a challenge, or that agents converged to a policy that plays a larger weight on
making deductions based on other agents’ movements. For w = 6, the best success rates were shown by MADDPG-*E
models, although they still show ample room for improvement. As it can be seen in Table 3, even when average success rate
is low, there sometimes exist seeds with exceptional performance. Concretely, there was one MADDPG-EE that was able to
solve the 0th test for w = 6 to perfection.

Finally, in the probabilistic theory of mind test we see that no agent was able to consistently have perfect success in the task
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0th order
(w = 6)

0th order
(w = 12)

1st order
(w = 6)

1st order
(w = 12)

2nd order
test

probabilistic
test

MADDPG-Oracle 0% 0% 0% 0% 82% 100%

MADDPG 0% 0% 1% 0% 81% 90%
RMADDPG 0% 0% 53% 0% 82% 99%
MADDPG-CE 0% 0% 0% 0% 80% 71%
MADDPG-GE 0% 0% 79% 0% 80% 60%
MADDPG-EE 100% 0% 37% 0% 83% 79%

Table 3. Average success rates (SR) of the best performing seed for each test. Showcases that although in most cases models are failing
the tests, there are seeds performing better than most (even reaching perfect success rate, such as MADDPG-EE for the w = 6 test.)

(71% success rate was the highest achieved, by MADDPG-Oracle). This means that the red agent was not able to consistently
communicate all the information to the green agent before the maximum number of turns was reached. Nonetheless, if we
constrain ourselves to the successful trials, we see that MADDPG-EE was able to finish the test in less than twice the time
of the theoretical optimum (1.89x, a similar rate as MADDPG-Oracle, whose RATSO was 2.1). This suggests that when
agents succeed, they do so fairly quickly. For comparison, untrained agents have a RATSO between 5 to 7, showing the
training procedure improved this metric significantly.

As we emphasized in the main text, many more tests can be proposed. Our released code base also allows for easily adding
new tests to the suite.

A.2. Post-hoc analyses

RMADDPG had the worst scores for unsuccessful recharge base use rate and useless communication piece selection
count (see Tables 4 and 6). RMADDPG scored 41% more than Oracle for unsuccessful base usage on average, and 64%
more than Oracle on average for usage of a useless communication piece (in all our metrics, lower is better). The best
tailored models (MADDPG-CE and MADDPG-GE) performed similarly to Oracle on average for these two metrics. In
contrast, MADDPG-CE and MADDPG-GE performed significantly worse than Oracle for the wrong communication piece
selection count (49% and 53% more than Oracle on average, see Table 5). This suggests that all models may be making
wrong decisions, but RMADDPG is biased towards communicating redundant information whereas MADDPG-CE and
MADDPG-EE tend towards not communicating at all (the true effect of trying to communicate something they are not
allowed). Further analysis is needed to truly understand if these apparently wrong behaviors were done in turns where the
agent had all the information available to make a better move, or if this is their default when they believe they have nothing
of value to communicate. A priori RMADDPG bias seems more principled, but it still showed worse performance overall.

No learned model performed particularly better in the useless movement metric (average differences in performance were
less than 15%, see Table 7), suggesting that they perform pointless movements in similar frequencies. It is important
not to overinterpret small differences in these metrics. For example, a useless movement may be a signal of emergent
communication. Furthermore, an agent may communicate something suboptimal for its immediate reward but this move
may not affect its expected reward for the trial.
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agents (n) 3 4
grid width (w) 6 12 6 12
info pieces (c) n 2n 3n n 2n 3n n 2n 3n n 2n 3n

MADDPG-Oracle 3.89 3.04 4.26 5.34 3.63 3.44 2.83 4.20 1.34 2.40 2.71 1.21

MADDPG 4.70 3.71 2.81 7.07 5.88 0.37 6.57 3.32 0.85 6.75 3.18 0.57
RMADDPG 6.09 5.22 3.04 9.46 6.39 4.92 5.57 4.61 0.87 7.17 2.42 0.42
MADDPG-CE 3.94 5.62 3.45 4.60 3.70 0.34 3.23 3.40 1.08 4.38 1.45 0.43
MADDPG-GE 4.01 5.75 3.86 5.34 4.55 0.33 4.19 3.11 1.03 3.82 1.94 0.60
MADDPG-EE 4.84 3.65 2.54 6.36 6.38 0.37 6.53 2.91 0.72 6.98 3.17 0.42

Table 4. Results for unsuccessful recharge base usage rate, normalized by agent. Bold lettering represents the best result of a learned
imperfect-information model for each setting (lower is better).

agents (n) 3 4
grid width (w) 6 12 6 12
info pieces (c) n 2n 3n n 2n 3n n 2n 3n n 2n 3n

MADDPG-Oracle 3.06 3.22 3.36 10.76 9.84 5.76 2.68 4.86 1.88 7.95 5.85 3.59

MADDPG 4.77 0.39 0.30 11.29 4.25 1.12 5.82 0.24 1.33 11.59 1.00 1.85
RMADDPG 3.13 1.74 0.93 8.86 6.08 3.55 3.37 1.98 1.01 10.83 5.13 5.10
MADDPG-CE 6.46 3.70 3.81 11.00 5.60 3.51 7.14 4.03 3.84 14.34 4.35 11.37
MADDPG-GE 5.88 3.97 3.33 10.91 6.10 4.15 7.76 4.14 3.37 13.87 6.99 12.16
MADDPG-EE 4.40 0.37 0.24 9.53 3.89 0.33 5.38 0.10 0.79 9.03 1.39 2.85

Table 5. Results for wrong communication piece selection count, normalized by agent. Bold lettering represents the best result of a
learned imperfect-information model for each setting (lower is better).

agents (n) 3 4
grid width (w) 6 12 6 12
info pieces (c) n 2n 3n n 2n 3n n 2n 3n n 2n 3n

MADDPG-Oracle 8.10 13.26 14.01 20.64 24.64 21.28 10.55 17.11 11.55 23.53 15.48 13.22

MADDPG 8.21 12.92 20.64 17.34 28.80 42.85 14.78 17.12 24.57 25.82 39.56 49.90
RMADDPG 8.17 16.83 18.42 18.23 34.85 38.28 14.13 19.66 24.51 28.75 37.00 50.26
MADDPG-CE 11.83 9.28 9.69 19.75 12.91 8.19 17.50 12.77 15.05 26.13 11.32 28.09
MADDPG-GE 11.55 9.52 10.19 19.72 13.45 10.11 17.28 11.97 15.75 24.58 16.61 27.93
MADDPG-EE 7.79 12.67 20.28 15.92 34.51 41.02 14.57 17.77 25.08 24.09 35.42 49.53

Table 6. Results for useless communication piece selection count, normalized by agent. Bold lettering represents the best result of a
learned imperfect-information model for each setting (lower is better).

agents (n) 3 4
grid width (w) 6 12 6 12
info pieces (c) n 2n 3n n 2n 3n n 2n 3n n 2n 3n

MADDPG-Oracle 2.46 1.38 1.77 4.33 5.71 4.01 0.78 1.36 0.81 2.60 2.17 1.75

MADDPG 2.03 2.37 1.42 4.59 4.01 3.04 2.17 1.19 0.60 4.66 3.32 1.42
RMADDPG 2.93 2.59 1.50 3.74 4.27 3.74 1.85 1.44 0.42 3.85 3.04 1.28
MADDPG-CE 2.31 2.28 1.72 4.91 2.17 2.93 1.89 0.78 0.95 4.06 0.92 3.80
MADDPG-GE 2.66 2.23 1.73 4.26 2.21 3.50 1.96 0.64 0.87 4.31 1.70 3.43
MADDPG-EE 2.35 2.19 1.98 4.05 5.28 3.31 2.18 1.32 0.44 4.75 3.26 1.97

Table 7. Results for useless movement count, normalized by agent. Bold lettering represents the best result of a learned imperfect-
information model for each setting (lower is better).



Symmetric Machine Theory of Mind

A.3. Training curves for all 9 random seeds combined

(a) n = 3, c = n,w = 6 (b) n = 4, c = n,w = 6

(c) n = 3, c = 2n,w = 6 (d) n = 4, c = 2n,w = 6

(e) n = 3, c = 3n,w = 6 (f) n = 4, c = 3n,w = 6

Figure 5. Average episode rewards throughout training for 60000 episodes for all combinations of n ∈ {3, 4}, w = 6, and c ∈
{n, 2n, 3n}.



Symmetric Machine Theory of Mind

(a) n = 3, c = n,w = 12 (b) n = 4, c = n,w = 12

(c) n = 3, c = 2n,w = 12 (d) n = 4, c = 2n,w = 12

(e) n = 3, c = 3n,w = 12 (f) n = 4, c = 3n,w = 12

Figure 6. Average episode rewards throughout training for 60000 episodes for all combinations of n ∈ {3, 4}, w = 12, and c ∈
{n, 2n, 3n}.



Symmetric Machine Theory of Mind

A.4. Pseudocode of MADDPG-EE

Algorithm 1 Actor implementation of MADDPG-EE, approximating K to make it differentiable.
Input: observation, A ∈ {0, 1}c×n, agent idx ∈ {0, . . . n − 1}, F ∈ {0, 1}c×n, K ∈ {0, 1}c×n, B ∈ {0, 1}n, H ∈
{0, 1}n×n

Make agents not be in their own hearing range, to avoid talking to themselves from the previous turn. This would be
problematic when using recharge bases.

H = H − 1n×n

Compute S[0], all the heard information spoken by agent idx:
S[0] = copy

n times
A[:, agent idx]⊙ copy

c times
H[agent idx, :]

Compute S[1], all heard information by agent idx, spoken by all agents:
S[1] = (A⊙ copy

C times
H[agent idx, :]) ·H

Compute S[2], an estimation of information pieces communicated between agents that were out of agent idx’s hearing
range:

Uj = softmax(f1(K1j , . . . ,Kcj , {K1ℓ, . . . ,Kcℓ for all ℓ where Hjℓ})), with f1 an MLP
S
[2]
ij = 1−

∏︁
ℓ,Hjℓ=1 1− Uℓ for all i ∈ {0, . . . , c− 1} and j ∈ {0, . . . , n− 1}

S = S[0] + S[1] + S[2]

Ei = 1sum(K[:,i])=c ∈ {0, 1}n for all i ∈ {0, . . . , c− 1}
K = step

(︁
F · 100 +K + S − 2 · copy

c times
(B ⊙ E)

)︁
return softmax(f2([observation K])), K where f2 is an MLP

A.5. Experiment Design Decisions and Considerations About Result Presentation

We tested with n = 3 and n = 4 and not larger numbers of agents, as the training time increases quadratically with n; also,
the intrinsic difficulty of larger setup –even with perfect information– would possibly degrade performance to the point of
making it impossible to compare models.

We select values of c as kn with k ∈ N so that every agent has k different information pieces at the start of each episode.

Experiments were run on a server with 256GB RAM, 2 18-core Intel E5-2699 processors @ 2.3GHz. All runs for
n = 3, w = 6 took approximately 600 hours of compute; all runs for n = 3, w = 12 took approximately 1150 hours of
compute; runs for n = 4, w = 6 took approximately 950 hours of compute; runs for n = 4, w = 12 took approximately
1800 hours of compute. We parallelized computation across the 18 cores. This made unfeasible to run experiments with
n > 4, since all experiments for n = 3 and n = 4 took jointly 4500 hours of compute.

We decided to evaluate running additional episodes over the best checkpoints of each model because there was high variance
for some runs, and drops in performance after achieving the highest rewards. Those results are the base of the discussion and
can be seen in Table 1. Still, we share the training curves so that the reader can observe these behaviors in Fig. 5 and Fig. 6.

We used the same hyperparameters as the ones used in MADDPG, except with a reduced learning rate and tau (lr = 0.001
and τ = 0.005). We used the same parameters for all our experiments.

We computed “A is 127% better than B on average” –and all other similar statements– as an average of relative increases.
More precisely, if A1,...,A12 and B1,...,B12 are the average scores for each of the 12 settings for A and B respectively (see
Table 1’s columns), 127% better means meani Ai

Bi
= 2.27.


