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Abstract

Children do not learn language from passively analyzing cor-
relations between language and observations, but from interac-
tion with caregivers or peers. The non-nativist approach claims
that the main driver of language learning should be to achieve
communicative goals. Imitation, on the other hand, is another
natural desire that many argue influences language learning.
However, there are still gaps in the research on what roles
communicative goals and imitating linguistic input play in lan-
guage acquisition, due to the difficulty of performing compre-
hensive experiments with human learners. In this paper, we
propose a computational framework using simulated experi-
ments that allows us to compare the roles of the two drivers.
Specifically, we simulate a two-way communication game be-
tween a speaker, corresponding to a language learner, and a
listener, corresponding to a caregiver or teacher. The speaker’s
communicative goals are modeled as rewards for successful
completion of a referential game, and imitation is performed
by mimicking feedback from the listener. The listener adap-
tively chooses to give feedback and makes choices based on
the speaker’s utterances.

With empirical results on naturalistic visual and language data,
we find that communicative goals play an important role in
driving language learning, whereas imitation accelerates the
learning process. We also find that (1) models trained with
communicative goals tend to use minimal vocabulary and ut-
terances and overextend them to concepts outside the original
word meanings; (2) the strategy with which the listener pro-
vides feedback also influences the learning results and speed.

Code and data for replicating the experiments are availabl
to spur future research on models for computational studies o
language learning.

Keywords: Interaction; Language Learning; Referential
Games; Reinforcement Learning; Communicative Goals; Lin-
guistic Input

Introduction

Children learn a striking amount of language in their first few
years of life — thousands of sounds, words, grammatical cate-
gories, and how to combine them into meaningful utterances.
Unlike most recent machine learning models, which learn
language from static existing text or images (?,?), very young
children do not learn language purely from observing visual —
linguistic co-occurrences, e.g. watching television (2, |7, |2, |7,
7), but rather from interacting with their parents in conversa-
tions regarding family members, body parts, animals, foods
and clothing, directed by the interest of the child (?, |7, |7).
The challenge is then to understand how this learning process
works and what internal and external factors influence it.
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Figure 1: A child and adult playing shared-goal bidirectional
communication games. The child learns from both commu-
nicative goals and the parent’s feedback as linguistic input.
On the left, the child uses incorrect word order to describe
the shape in the middle, but the adult understands and gives
corrective input. In contrast, on the right, the child uses “or-
ange square” to describe the shape on the right, but the adult
misinterprets and provides feedback for the shape on the left.

The most common and straightforward view is that chil-
dren primarily use language as a tool to communicate (2} |7}
7). Just like learning to use other tools, one becomes more
proficient via trial-and-error. Getting what they ask for, like
asking for “applesauce” and receiving it instead of another
object, reinforces the connection between entities and names.
Conversely, failing to achieve a goal leads to a weaker con-
nection or even negative reinforcement. Parents and adult
members of the community also share intentions with chil-
dren and respond to children’s requests (?,?), and thus chil-
dren learn language from the use of language (?, |?). From
this view, language is learned to convey meaning and rein-
forced by communicative goals (CG), providing pressure to
learn at least semantics, and perhaps also syntax to allow for
disambiguation of more difficult concepts (?,|?)

Another way children learn language from their parents is
through imitation, which has been studied for centuries since
7 (1787). Although parents do not always explicitly point
out grammatical mistakes in children’s language, they offer
corrective linguistic input (LI) to children based on their un-
derstanding of the meaning of the children’s utterances (7, |7}
7). As a part of social learning, children imitate the feedback
from their parents and learn the correlation between feedback
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and the meaning they want to express. In this way, the flu-
ency of a children’s speech improves, but since the parents
may not interpret the request correctly, the meaning of the
feedback may align with the children’s intent.

In this paper, we simulate this learning process in the con-
text of language games, which have been the proving ground
for various linguistics theories since their conception by |?, (?).

Drawing an analogy to the child-parent conversation sce-
nario, we model the child as a speaker agent, which generates
utterances based on the target objects provided by the envi-
ronment, and the parent as a listener agent, which responses
to the child’s utterances by choosing the objects and/or give
corrective feedbacks. Based on this setup, we study the fol-
lowing research question

Can we form a computational speaker model that learns
to speak from a skilled language listener under the com-
munication game setting? What role do communicative
goals and linguistic input play in this process?

Our hypothesis is that communicative goals are the
main driver of language learning in this formulation
(Communication Games section), while linguistic input ac-
celerates the learning process through syntax level supervi-
sion. To evaluate this, we use neural networks combined with
heuristic rules to model the speakers and listeners (Model
section). The learning process is implemented with a bal-
ance of reinforcement learning for CG and maximum likeli-
hood estimation for LI (Learning Process section). We per-
form empirical experiments on communication games with
MSCOCO (2, ?) images and captions (Experiment section).
We find that CG contributes most to the game accuracy and
also helps learning syntax as reflected by a fluency metric. We
also find that different listener strategies also contribute to the
success of language learning. Interesting, we also find that
overextension in the resulting language of CG-driven mod-
els is very common, which is also common in early children
speech (?}|7), while the same phenomenon does not often ap-
pear in models only trained with LI. Our results may provide
evidence for usage-based language acquisition theory, the be-
lief that language is acquired in the service of communicative
functions (?}(?).

Communication Games

Following previous work on communicative agents learning
to form communication pacts in referential games, we use
asymmetric speaker-listener games (?, [7) with additional
feedback channels.

A general goal-oriented language game provides an envi-
ronment where the participants use language to communicate
with each other to achieve the given goal. We consider the
most basic setting of a collaborative referential game.

Procedure

As illustrated in Fig. ??, in a communication game, the target
image of the game x ~ (1) is uniformly randomly sampled

Listener View

Speaker View
Speaker says: “dog orange” Listener hears: “dog orange™

Listener feedback: “an orange dog on a back sofa”

Figure 2: Game View. The speaker and listener have different
knowledge about the game. Because the speaker does not
know the distractor images (the white dog and black cat in
this game), it needs to describe the image so that the listener
could distinguish it from most distractors.

from the pool of images I, only visible to the speaker. N dis-
tractor images are randomly sampled from a distribution DY .
The target image and distractors are randomly shuffled before
being shown to the listener to prevent any bias in the order.
We denote the shuffled sequence of images as C, and order of
the goal as iy, i.e. C;, = x and {Ci};x;, is a permutation of C.

The speaker (modeling the child) takes the first turn in each
game by describing the image in English. The listener (mod-
eling the parent) then takes one of two actions based on the
utterance u: (1) choose an image 7 or (2) perform no action
1= noop (e.g. when they do not understand the utterance with
enough confidence). Additionally, at the end of each game,
the listener can choose to provide linguistic supervision to
the speaker. At the end of each game, the speaker receives a
reward based on the listener’s action.

Reward

To model the communicative goals, we give positive rewards
when the game is successful and negative rewards if the lis-
tener chooses the wrong image. In addition, we encourage
the speaker to give unambiguous utterances by penalizing the
noop action with a small negative reward —1 < wy0p, <0

~

K(i8> i) =

1 =i,
Whoop i= noop (1)

—1 otherwise

Speaker

As mentioned before, the participants consist of a speaker
and a listener sending and receiving natural language mes-
sages. The speaker is a message-producing model defined
by the vocabulary ¥; the space of observations I; and a
model f: I — X*. The listener is an instruction-follower
defined by the same vocabulary ¥, observation space IV,
and space of actions [N + 1] as the speaker; and a model
g: X" x INt1 5 [N+ 1] x 6*. Note that the listeners cannot

2We use a tighter lower bound of wy,qp, so that a random choice
is worse than no action: w > % —1.



directly observe the goal, so the speakers need to use instruc-
tions to inform the listeners about the goal of each game.

Models
Speaker
The speaker is an image captioning model (?} |2, |?), which
first encodes the goal image x with a pretrained ResNet (?,|?),

and generates the utterance u = u;*, with an LSTM neural
network (?,|7) in an auto-regressive fashion:

(u; | uy, ug,. .. ui—1,Xx)

@)
oc eXp(wlfiLSTM(wul Wiy s -y Wu_, o = ResNet(x))),

where w,, € R% is the word embedding of word u;.

Listener

A listener consists of two parts, a neural network-based
ranker and a rule-based controller deciding whether to act and
give language feedback to the speaker.

Given the utterance u, the listener ranks the images C by the
dot product between the LSTM embeddings of u and image
embeddings encoded by the same pretrained ResNet as the
speaker, i.e. for each image C’i, the score for ranking is

Plistener(i | x,C) o< exp(LSTM’ (w,)ResNet(C;))  (3)

where w,, is a shorthand for the word embedding of all words
in the sentence. Note that we use the same visual network for
speakers and listeners, ignoring the differences between the
visual perception of individuals, but the parameters language
networks are not the same. We will discuss the method to
acquire these parameters later in this section.

In human conversations, parents use a variety of techniques
when giving feedback, including asking clarification ques-
tions and providing exemplar utterances. However, incorpo-
rating this open-ended feedback presents a huge challenge
to the computational modeling of speakers. In this paper,
we limit the feedback to full correct utterances for the goal
image, which may be redundant or ineffective in many real
world cases, but is general enough that most other kinds of
feedback can be converted to it. We consider a listener con-
trolled by both neural network rankers (as described above)
and heuristic rules (Alg. ??) which makes a choice when its
confidence is high enough and gives feedback to the speaker
if it thinks the utterance is not articulated well. Following (?,
?7), we use the probability of prediction as the indicator of con-
fidence. Alg. ?? has two parameters 0; and 8, which control
making choices and giving feedback respectively. We will
show the dramatic effects brought by these two parameters
on language learning in the experiments. The golden utter-
ances for images U™ are drawn from the captions provided in
MSCOCO dataset (?, 7).

Listener Pretraining To model learning for a proficient
language user, we need a good enough listener. Apart from 0
and 0, as well as the parameters in the ResNet, the parameters

Algorithm 1 Rule-Based Listener

Reqllil’ei 01,92, Piistener, Us 67 u*
> U* is the golden description of images in C
g ¢ argmax; Plisener (i | #,C)
if Plistener(g | M;C) >0 thel}
Make choice fiistener(#,C) = g
else
flistener(uvc) = Noop
end if
if Piistener (g | M;C) < 6, then B
Give feedback hjiseener (4,C) = Ug
end if © If the confidence is too low, the listener will not
make a choice or give feedback.

in the language network need pretraining. We use mini-batch
stochastic gradient descent to optimize the following

Olistener = argmg-x EXNH(I)7CNH(1>N 10g Plistener(ig | X, C) 4)

Learning Process
Objectives

The communicative goals and mimicking linguistic input can
be modeled as two distinct learning objectives for the speaker
network. Similar to children getting rewards from the envi-
ronment if their request is fulfilled, and penalties otherwise,
we use the expected game rewards as the objective for CG:

Occ = ]Ex~‘ll(l),u~7t(u\x),C~D){V K(igvflistener(“a C))a 4)

Note that the action space — the space of utterances — is
discrete and non-differentiable, so we employ reinforcement
learning to optimize the speaker policy 7. Later in this section
we give a brief introduction to PPO (?,|?), the RL method we
used in the experiment.

Children’s language models are reinforced if they recover
the parent’s corrective linguistic input. We thus model this
objective as an maximum likelihood objective which mea-
sures parents’ language in children’s models.

O = B a1 wen(ulx).c~ ¥ 108 W (Bistener (4, C) | x). (6)

This part is optimized with stochastic gradient descent.
To study the joint effect of both objectives, we adopt a mul-
titask learning objective:

Ojoint = AOcG + (1 —A) Opy )

where A is the coefficient balancing the two objectives and
correlates with the importance of the CG objective.

Optimizing CG objective
Reinforcement learning methods are often employed to opti-

mize non-differentiable objectives. In this subsection, we use
the short hands state s = {u;}'_{, action a = u, at time step
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Figure 3: Accuracy change along training steps. We divide the training process into three stages. In Stage I (0-400k step),
linguistic input leads to much steeper learning curve. In Stage II (400-1000k step) models with only linguistic input start to
flatten out, but models driven by communicative goals continue to improve. And finally in Stage III (>1000k steps), models
driven by communicative goals converge to a higher average reward than models with only linguistic input.

t for generating the utterance. The simplest RL method is
policy gradient

LS (n) = B 4(n(a | 5)R (s,a)). 8)

As an on-policy method, PG optimizes its policy on the roll-
out data only once, which is inefficient. We can use impor-
tance sampling to reuse the data:

Lrge (®) = Bsa [l (R)AT] +(Toi0) ©
where 119¢ () = nt(als)/Toa(als) is the likelihood ratio be-
tween the new policy T and the old policy 7,4 used to sample
data, AT% £ E[R,[s; = 5,a; = a;Toia] — E[R|s; = 53 Te1q] i
the advantage value function of the old policy T,1q. However,
using this method does not guarantee a policy improvement.
Therefore, TRPO (?, ?) and PPO (?,|?) are introduced with
the basic idea of restricting the policy in a close distance from
the old policy. PPO restricts the policy by a clipping function

L2

LCLIP (TE) =K [min (rs,a (Tc)As,a? TCLIP (rs,a (TE)’ 8) As,a)]
(10)

TCLIP

where is defined as

l—¢ r,m<1-¢

I+e  r,(m)>1+e (11)

ryq(T) otherwise

TCLIP(rs,a(jt)7£) =

(1 —g,1+4¢) is called the clipping range, and 0 < € < 1 is the
parameter. Note that in theory most RL methods can be em-
ployed to optimize the CG objective. However, we use PPO
here based on the trade-off of simplicity and relative good
performance. We discuss other RL methods in the related
works section.

3There are two variants of PPO: we refer to the one with clip-

ping function as PPO, and refer to the one with adaptive KL penalty
coefficient as PPO-penalty (?,|?).

Experiment
Game Setup

We use conventional split of MS COCO (?, |?). All of our
neural networks are trained or pretrained on the training set,
and all the results below are calculated on the test set.

In each game, after sampling the goal image x, the distrac-
tors are sampled from either uniform distribution C ~ U(1)¥
(easy and default setting) or from a distribution skewed to the
goal C ~ DY, where D, (y) o< el*¥2 and x and y are embed-
dings from pretrained ResNet (?,|?) (hard setting).

Metrics

We use two metrics in the following experiments: (1) accu-
racy: the frequency of the listener choosing the goal among
images; (2) fluency score, which reflects grammar quality of
the sentence without considering semantics relatedness, fol-
lowing (2, |?)

fluency = ﬁ(ln(pM(u)) —1In(py (u))) (12)

We use GPT-2 large (?,|?) as py and a unigram model as py,
both are fine-tuned/trained on MSCOCO.

What Drives Accuracy?

The first question we want to investigate is which signal is
more important in learning semantically correct descriptions
for the target image. In this paper, we use the listener’s accu-
racy as a proxy to examine the semantic quality of generated
descriptions. As shown in Fig. ??, the accuracy of the LI-
only model tops out at 60%, while models with the CG ob-
jective have significantly higher accuracy. However, the CG-
only model needs about 400k steps to warm-up before dra-
matically improving on the similar performance of the com-
bined model. With the help of LI, the CG+LI model (where
A = 0.01 is the best hyperparameter, used in all CG+LI mod-
els) not only has a faster improvement at the start of training,
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Figure 4: Fluency change along training steps. CG-only
model decreases from 0.4 to -0.4, while CG+LI climbs from
-0.5 to 1.25, and LI-only model climbs from -0.5 to 0.75.

but also achieves higher accuracy then CG-only model. From
this result, we can see that CG is the main driver for con-
veying accurate information. The communication goal signal
steers the model to output pragmatical descriptions that help
the listener choose the correct target. In the hard setting, the
CG+LI model and CG-only model both achieve 74% accu-
racy while the LI-only model only reaches 59%, which is a
similar trend as the easy setting, thus confirming our conclu-
sion still holds even if more detailed descriptions are needed
for the game.

What Factors Help Fluency Learning?

The second question to investigate is which signal helps the
speaker to learn to produce fluent language. Fig. ?? shows
that LI is the main driver for learning to speak more fluently.
The likely reason for the decreasing fluency of the CG-only
model is the vocabulary shrinks and concentrates on a few
words instead of all frequent ones in MSCOCO. In contrast,
learning from linguistic inputs helps the model to fit the nat-
ural distribution of words. Later in this section, we will talk
about the overextension of CG driven models. The improve-
ment brought by LI may be the reason why CG+LI model
does not need a warmup in Stage I in Fig. ??.

Does the Listener’s Strategy Affect to Learning?

In all previous experiments, we present results with 0; = 0.4
and 0, = 0.9 as the the thresholds for the listener strategy. In
Fig. ?? we show the influence of these two parameters on the
model’s final accuracy. We find that the performance is very
sensitive to the listener strategy. A small 0.05 change results
in the difference between the best result and failure.

Overextension Phenomenon

Besides the experiments on CG and LI's influence on lan-
guage learning, a signifcant difference between CG-driven
models and LI-only model is overextension.

<
0.33
0.33
0.33 0.33
0.33 0.33
0.33 0.33
0.33 0.34

095 09 085 0.8 0.75 0.7 065 0.6 055 05 045 04

0.4 0.45 0.5 0.6 0.7 0.8
61

Figure 5: The influence of listener parameters to the accuracy
of CG+LI model. Darker indicates better result, and 0.33 is
the trivial accuracy since N = 2 in our experiments. Only
showing the lower triangle, since 0, > 0; in Alg. ??. The
best parameters are the triangle region on the center left, and
parameters outside it easily lead to failure.

To explore this, we randomly choose several nouns in
the empirical vocabulary (words that exist in utterances) of
CG+LI model. Most words exhibit intuitive cases of overex-
tension. Some are based on color similarity, e.g., court; some
are based on shape similarity, e.g. horse, giraffe, kite; while
others are based on texture similarity, e.g. couch, pizza. We
hypothesize there are a few possible reason for overextension
in the model: (1) the shared visual perception — similar im-
ages to the speaker also look similar to the listener; (2) lack
of linguistic inputs — with limited vocabulary, the RL model
tests the acceptability of similar concepts; (3) the generality
of the listener — the listener can understand the utterances just
as we can interpret these errors. Although the models are
making these errors, it may not necessarily be a bad thing.
This phenomenon accounts for 40% of words used by 1;6 to
2;6 children (2, [?). This shows our formulation may be a good
model of child language acquisition.



Related Work
Emergent Communication

Without natural language annotations, this pressure for the
speaker and listener enables language emergence. first
uses the same recurrent neural networks as the speaker and
the listener to conduct emergent communication in referen-
tial game. Following their lead, study how emergent
languages are grounded to the input images, and stud-
ies multi-turn communication via negotiation. study
the compositionally and systematicity of emergent languages.
(?L[?) also explore the setting of training speaker with both
reinforcement learning and MLE in referential games. To
build a model that can communicate with humans, they start
with a pretrained language model and use ground truth data
of games in the experiment. Whereas we start from randomly
initialized speakers and do not allow listeners’ access to the
goal to study language learning from scratch in the commu-
nication games.

Reinforcement Learning for Language Generation

Different reinforcement learning methods have been applied
to language generation. On-policy methods include REIN-
FORCE 7), actor-critic(?, [, [?), policy gradient
[?), and off-policy methods include importance weighted pol-
icy gradient 7)., Q-learning (?, [2), and soft Q-learning
(? [?). In this paper, we use the most commonly used on-
policy method PPO to optimize the CG objective. Experi-
menting with other methods is an interesting future direction.

Conclusion and Future Directions

In this paper, we propose a computational framework for
language learning through communication games with both
communicative goals and linguistic input objectives. We in-
vestigate the roles of CG and LI in general language learning
in terms of conveying meaning and syntax learning. We also
find that listener’s strategy is important for language learning.
This sheds light on child language learning — language usage
may be the main driver, but without linguistic inputs language
may be slow to acquire. Additionally, the adults’ strategy in
responding to the children’s request is also important. Future
work could further confirm this intuition by teaching human
subjects (new) language with the best listener setting.
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