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NHERI — SimCenter Tools

SimCenter provides a suite of computational tools for the hazards community
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A collection of Python modules used for uncertainty quantification and
Ul ) propagation
N p g — Includes commonly applied methods and new developments

— Serves as a UQ toolbox and a Python development environment

* Developed collaboratively by members of SURG
— Author: Michael D. Shields,

— Contributors: Dimitris Giovanis, Audrey Olivier, Aakash Bangalore Satish, Lohit Vandanapu, Mohit Chauhan
Katiana Kontolati, Dimitris Loukrezis, Ketson R.M. dos Santos

b

* Version control through git (requires Python 3)
— Version 3.1.4 available for download/installation via GitHub (https://github.com/SURGroup/UQpy)

* Available on the Python Package Index (PyPI) and Conda (pip install UQpy)
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UQpy: A general purpose Python package and development environment it
for uncertainty quantification
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https://github.com/SURGroup/UQpy

Simple Active Learning Framework
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Active Learning for UQ

This framework is nothing new:

Jones et al. (1998) Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization
Developed the Expected Improvement Function — A learning function for global optimization

Bichon et al. (2008). Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions, ALAA Journal
Developed the Efficient Global Reliability Analysis (EGRA) method based on the
Expected Feasibility Function

Echard et al. (2011). AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation, Structural Safety
Developed the Adaptive Kriging with Monte Carlo Simulation (AK-MCS) based on
the U Learning Function for reliability analysis

Lam. “Sequential adaptive designs in computer experiments for response surface model fit.” PhD diss., The Ohio State University, 2008.
Developed the Expected Improvement for Global Fit function to adaptive construct accurate surrogates.
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Simple Active Learning Framework

Assess Error /

Experiments must be parameterized

Testing apparatus, data collection, and
data processing must be automated

Various flavors of ML models are readily
available

Define the objective of the study
What are we trying to learn/discover?
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Parameterized Experiments
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Some Available Parameters in the UF BLWT
* Vaneaxial Fan Bank:

* 8 fans, independent RMP

* Potentially time varying RMP
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Parameterized Experiments

Terraformer (Fetch Length = 18.3 m)

Test Section
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Some Available Parameters in the UF BLWT
* Vaneaxial Fan Bank:

* 8 fans, independent RMP

* Potentially time varying RMP
* Flow Field Modulator (FFM)

* 319 fans, independent RMP

* Potentially time varying RMP
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Parameterized Experiments

Some Available Parameters in the UF BLWT
* Vaneaxial Fan Bank:
* 8 fans, independent RMP
* Potentially time varying RMP
* Flow Field Modulator (FFM)
* 319 fans, independent RMP
* Potentially time varying RMP
* Terraformer
* 1118 individual roughness elements
* Each with controlled height and width
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Parameterized Experiments

Fan Bank
o T Irwin Spires R —
f_L\
‘ '_ HHHHI -
\ 2_"y T / Development Section S %= 95 m
% FFM

Some Available Parameters in the UF BLWT
* Vaneaxial Fan Bank:

* 8 fans, independent RMP

* Potentially time varying RMP
* Flow Field Modulator (FFM)

* 319 fans, independent RMP

* Potentially time varying RMP
* Terraformer

* 1118 individual roughness elements

* Each with controlled height and width
* Test Section

* Rotational degrees of freedom
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Parameterized Experiments

Terraformer (Fetch Length = 18.3 m) Test Section
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Some Available Parameters in the UF BLWT
* Vaneaxial Fan Bank:
* 8 fans, independent RMP

* Potentially time varying RMP
* Flow Field Modulator (FFM) The number of different

* 19 fans, independent RMP ways the UF BLWT can be
* Potentially time varying RMP .
configured is enormous

* Terraformer

* 1118 individual roughness elements

* FEach with controlled height and width
* Test Section

* Rotational degrees of freedom
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Terraformer Parameterized
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Simple Active Learning Framework

Experiments must be parameterized

Testing apparatus, data collection, and
data processing must be automated
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Automation
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Simple Active Learning Framework
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Testing apparatus, data collection, and
data processing must be automated

Various flavors of ML models are readily
available
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Machine Learning Models

We use Gaussian Process Regression

Many other flavors of ML models exist
e Artificial Neural Networks
* Deep or Shallow Neural Networks
* Convolutional Neural Networks
* Recursive Neural Networks
* Physics Informed Neural Networks
* Polynomial Chaos Expansions

* Support Vector Regression
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Simple Active Learning Framework

Assess Error /

Experiments must be parameterized

Testing apparatus, data collection, and
data processing must be automated

Various flavors of ML models are readily
available

Define the objective of the study
What are we trying to learn/discover?
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UQ .. Learning Functions

Learning Objective
Function

Noisy U-function Goal: Conduct experiments along the surface
separating the 2" order equivalent and non-
equivalent regions.

1y (6)
Un(e) = g
\/0’92 (6) — a2(0) How: Conduct experiments that have the

highest probability of incorrectly predicting
the sign of the performance function.

Noisy EIGF Goal: Conduct experiments that globally best
approximate the performance function.

(Expected

Improvement

P E[L,(0)] = (ug @) - g(Q*)) + 05 (0) — a2 (6) How: Conduct experiments that have both

for Global Fit)

high prediction uncertainty and large
difference from nearby experiments

Goal: Conduct experiments that allow
efficient computation of sensitivity indices.

2
ip (Bj(l)) = (,u "o, (Bj(l)) — Uy (0*)) + cr:(i) (9]_(1)) How: Conduct experiments that have both
high prediction uncertainty and large
differences from nearby experiments in
conditional GP

]OHNS HOPKINS

UNIVERSITY of
UF ‘ FLORIDA W WHITING SHOOL




Results

Over 1000 experiments conducted in the past 2 years!

Distance metric
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Results

Much of this data will be published to DesignSafe

GP prediction (Exp 76: Amp: 29.3mm, Mean Amp: 76.1mm)
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Thank You!
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