

Active machine learning driven wind tunnel experiments: Realizing the benefits of automation at the UF-BLWT

Michael D. Shields
Associate Professor
Dept. of Civil & Systems Engineering
Dept. of Materials Science and Engineering
Johns Hopkins University

Acknowledgements

Mohit Chauhan

Mariel Ojeda Tuz

Kurtis Gurley

Ryan Catarelli

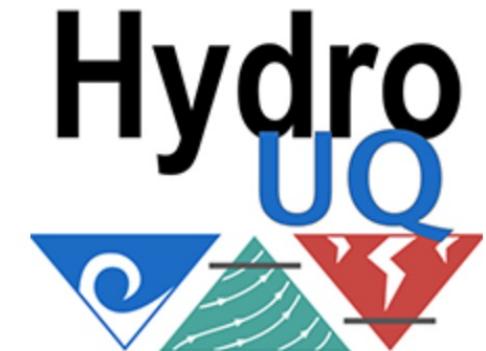
NHERI – SimCenter Tools

SimCenter provides a suite of computational tools for the hazards community

Quantified Uncertainty with
Optimization for the Finite
Element Method

Wind Engineering with UQ for
uncertain response of
buildings to wind loads

Earthquake Engineering with
UQ for uncertain response of
buildings to seismic loads



Building response to water
loading – tsunami and storm
surge events

PBE R2D

Performance Based
Earthquake Engineering
computations for individual
buildings

Regional Resilience
Determination for regional
hazards modeling

UQ py

UQpy

A collection of Python modules used for uncertainty quantification and propagation

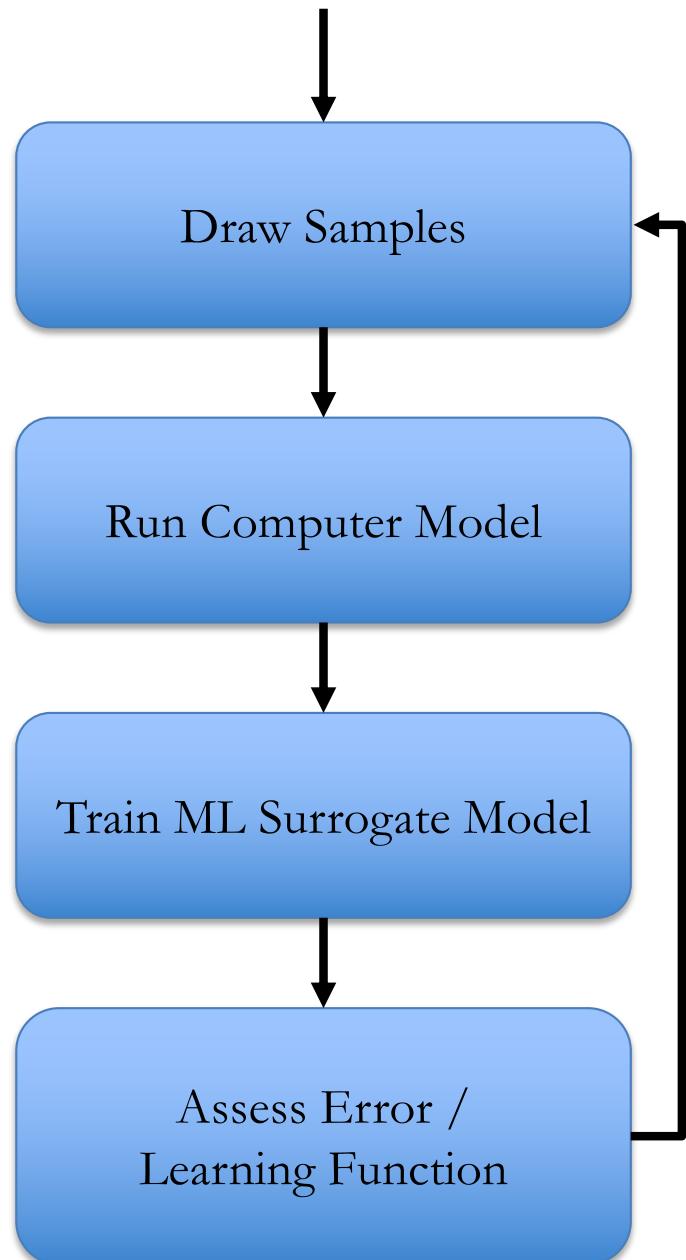
- Includes commonly applied methods and new developments
- Serves as a UQ toolbox and a Python development environment
- Developed collaboratively by members of SURG
 - Author: Michael D. Shields,
 - Contributors: Dimitris Giovanis, Audrey Olivier, Aakash Bangalore Satish, Lohit Vandana, Mohit Chauhan, Katiana Kontolati, Dimitris Loukrezis, Ketson R.M. dos Santos
- Version control through git (requires Python 3)
 - Version 3.1.4 available for download/installation via GitHub (<https://github.com/SURGroup/UQpy>)
- Available on the Python Package Index (PyPI) and Conda (pip install UQpy)



UQpy: A general purpose Python package and development environment for uncertainty quantification

Audrey Olivier, Dimitris G. Giovanis, B.S. Aakash, Mohit Chauhan, Lohit Vandana, Michael D. Shields *

Simple Active Learning Framework



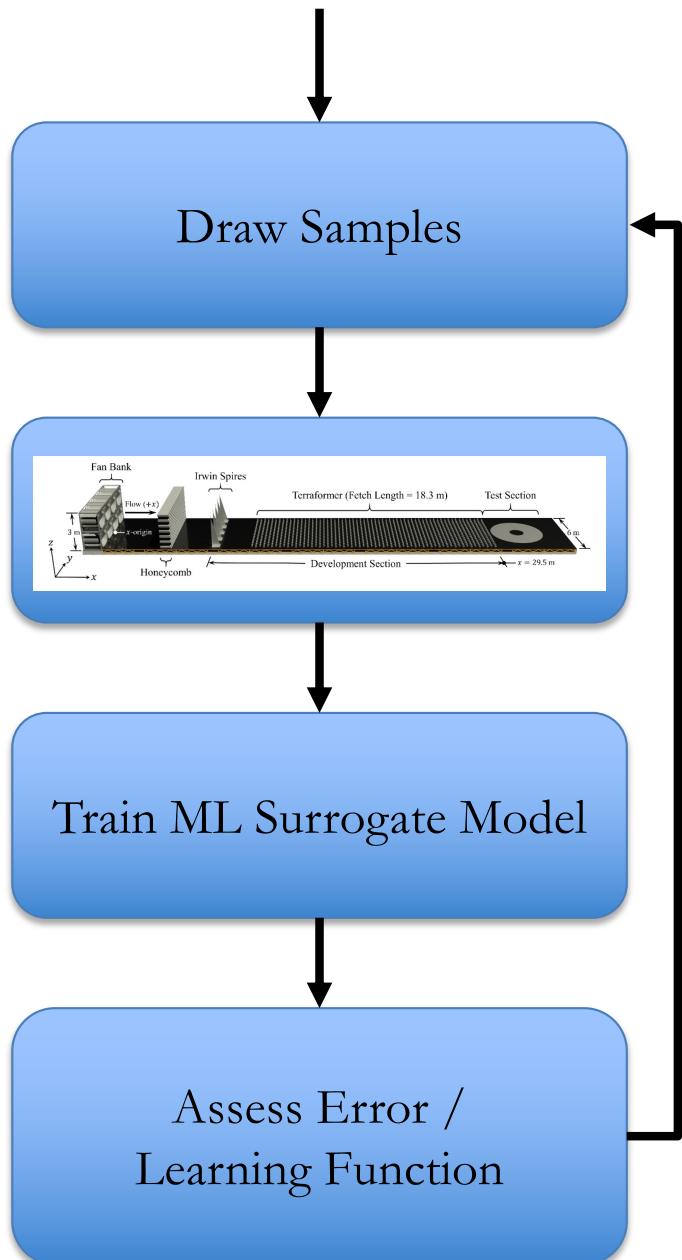
Active Learning for UQ

This framework is nothing new:

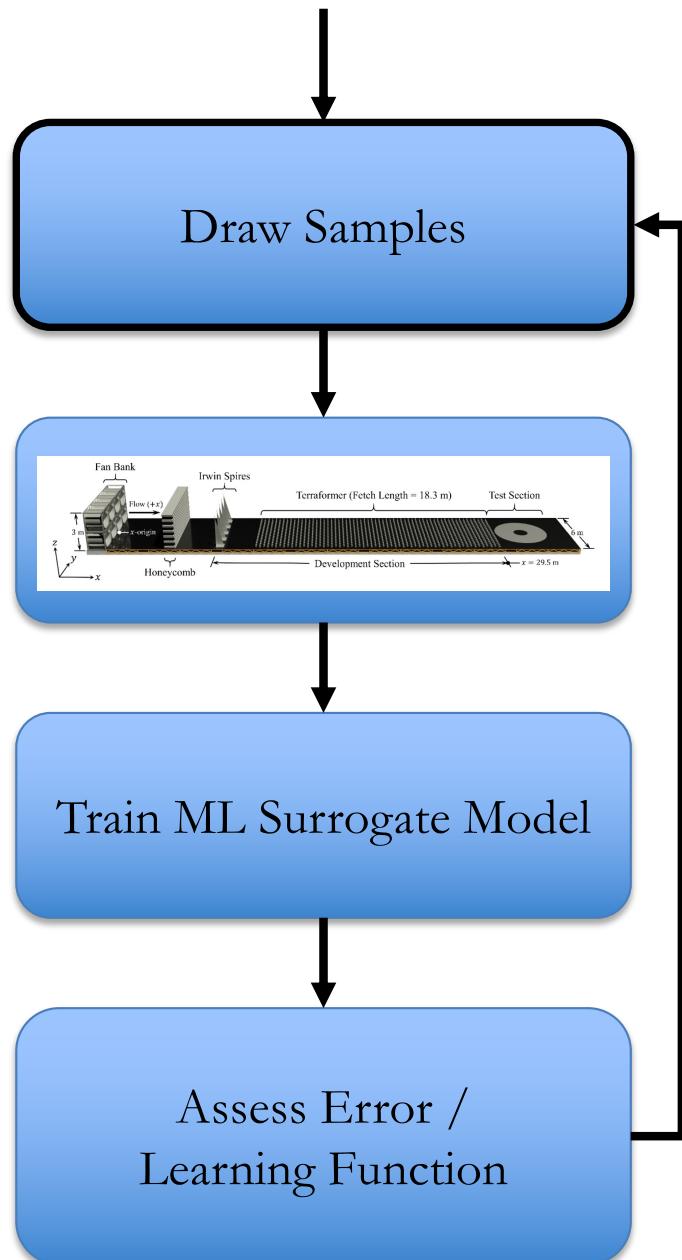
- Jones et al. (1998) *Efficient Global Optimization of Expensive Black-Box Functions*, Journal of Global Optimization
Developed the **Expected Improvement Function** – A learning function for global optimization
- Bichon et al. (2008). *Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions*, AIAA Journal
Developed the Efficient Global Reliability Analysis (EGRA) method based on the
Expected Feasibility Function
- Echard et al. (2011). *AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation*, Structural Safety
Developed the Adaptive Kriging with Monte Carlo Simulation (AK-MCS) based on
the **U Learning Function** for reliability analysis
- Lam. “*Sequential adaptive designs in computer experiments for response surface model fit.*” PhD diss., The Ohio State University, 2008.
Developed the **Expected Improvement for Global Fit** function to adaptive construct accurate surrogates.

•
•
•

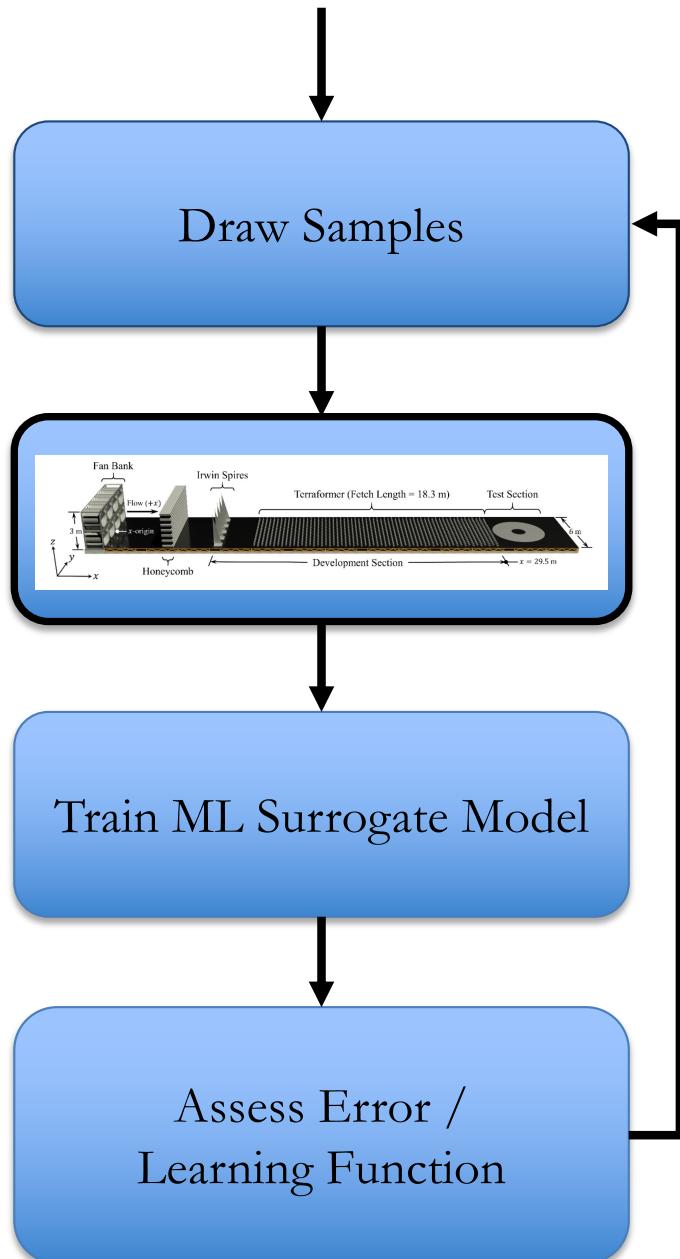
Simple Active Learning Framework



Simple Active Learning Framework



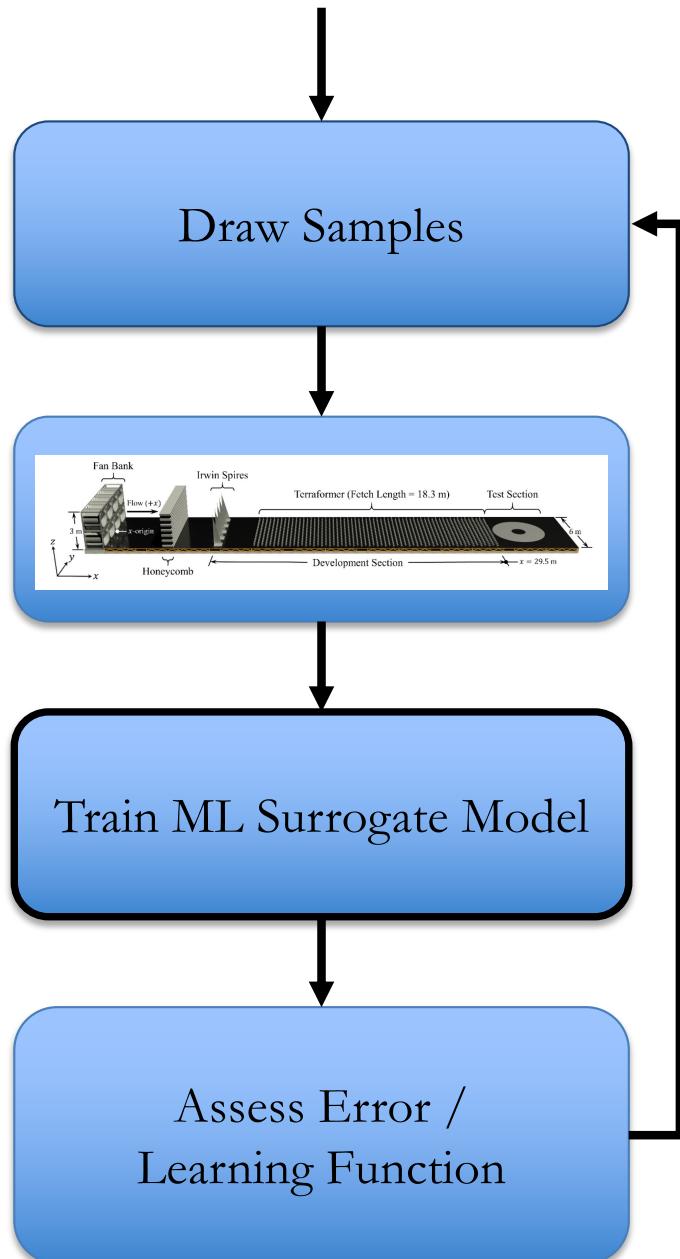
Simple Active Learning Framework



Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

Simple Active Learning Framework

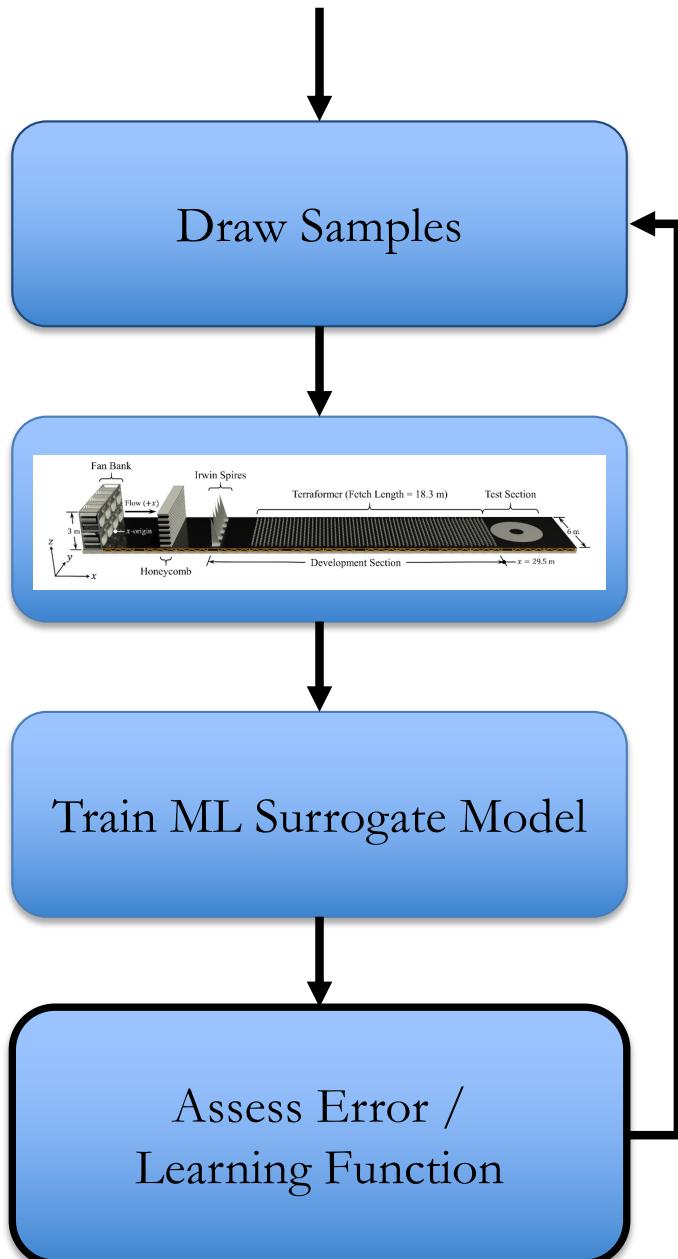


Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

Various flavors of ML models are readily available

Simple Active Learning Framework



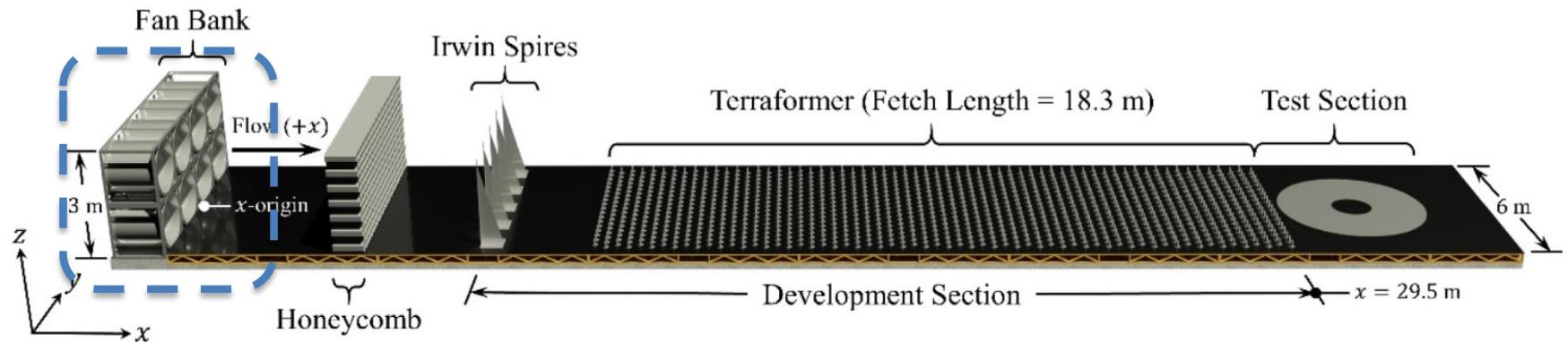
Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

Various flavors of ML models are readily available

Define the objective of the study
What are we trying to learn/discover?

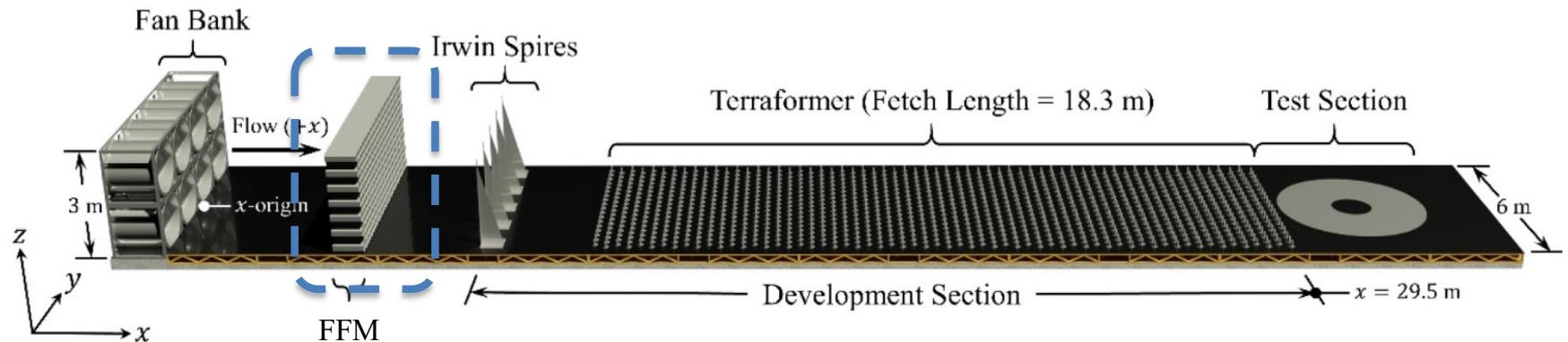
Parameterized Experiments



Some Available Parameters in the UF BLWT

- Vaneaxial Fan Bank:
 - 8 fans, independent RMP
 - Potentially time varying RMP

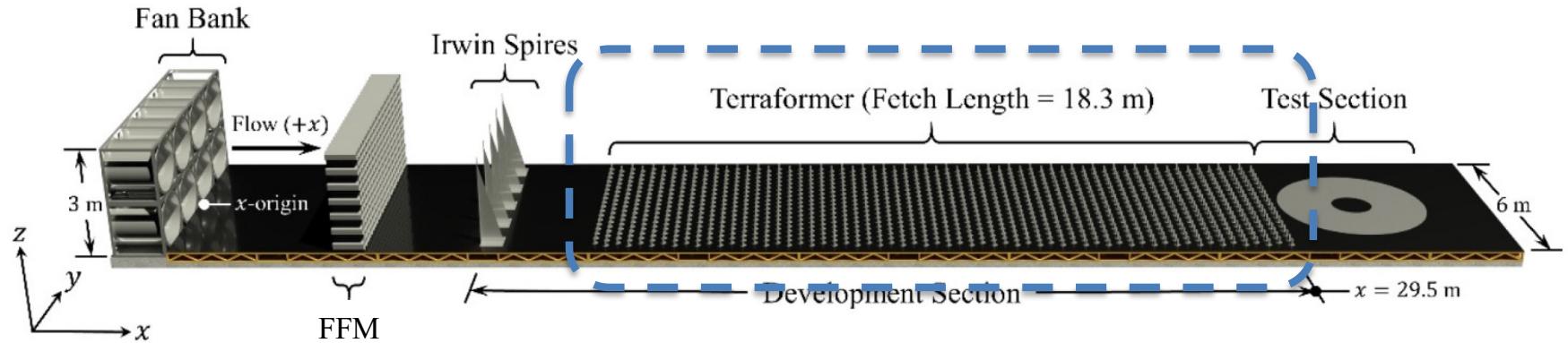
Parameterized Experiments



Some Available Parameters in the UF BLWT

- Vaneaxial Fan Bank:
 - 8 fans, independent RMP
 - Potentially time varying RMP
- Flow Field Modulator (FFM)
 - 319 fans, independent RMP
 - Potentially time varying RMP

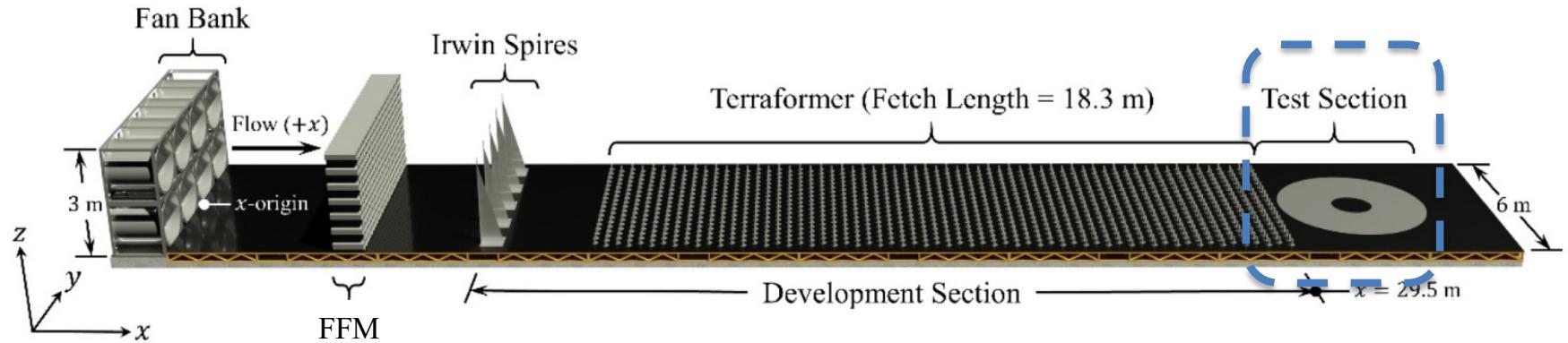
Parameterized Experiments



Some Available Parameters in the UF BLWT

- Vaneaxial Fan Bank:
 - 8 fans, independent RMP
 - Potentially time varying RMP
- Flow Field Modulator (FFM)
 - 319 fans, independent RMP
 - Potentially time varying RMP
- Terraformer
 - 1118 individual roughness elements
 - Each with controlled height and width

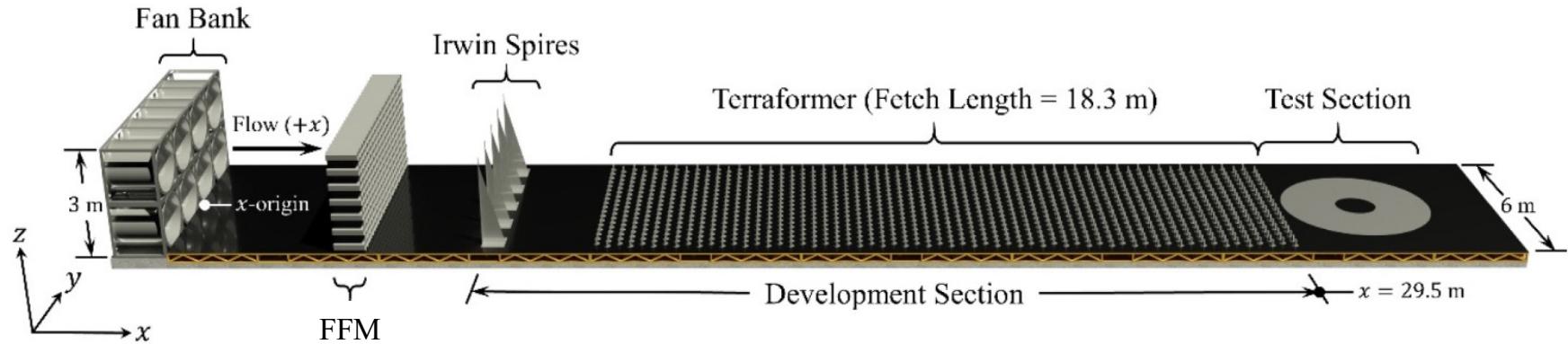
Parameterized Experiments



Some Available Parameters in the UF BLWT

- Vaneaxial Fan Bank:
 - 8 fans, independent RMP
 - Potentially time varying RMP
- Flow Field Modulator (FFM)
 - 319 fans, independent RMP
 - Potentially time varying RMP
- Terraformer
 - 1118 individual roughness elements
 - Each with controlled height and width
- Test Section
 - Rotational degrees of freedom

Parameterized Experiments

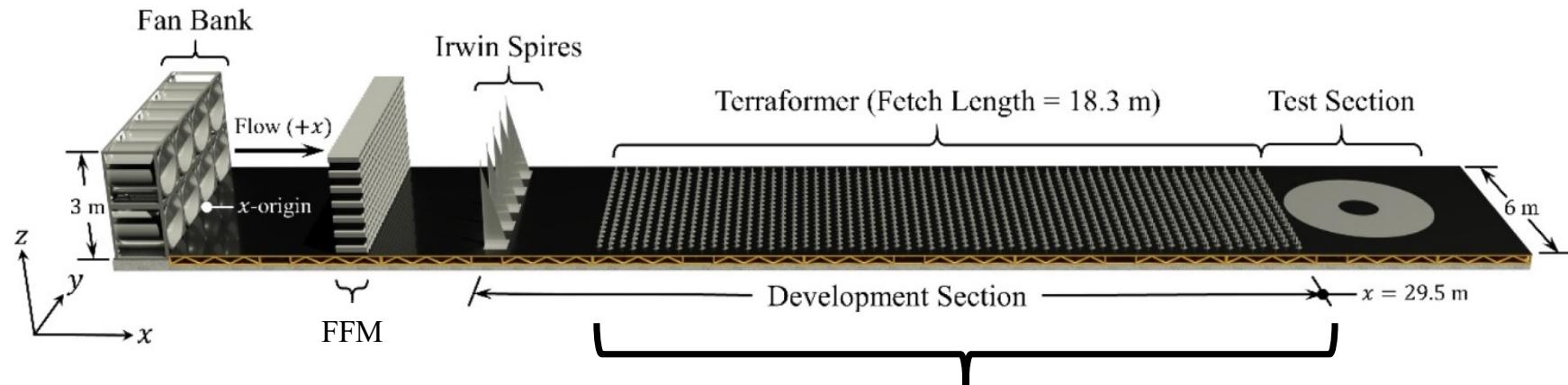
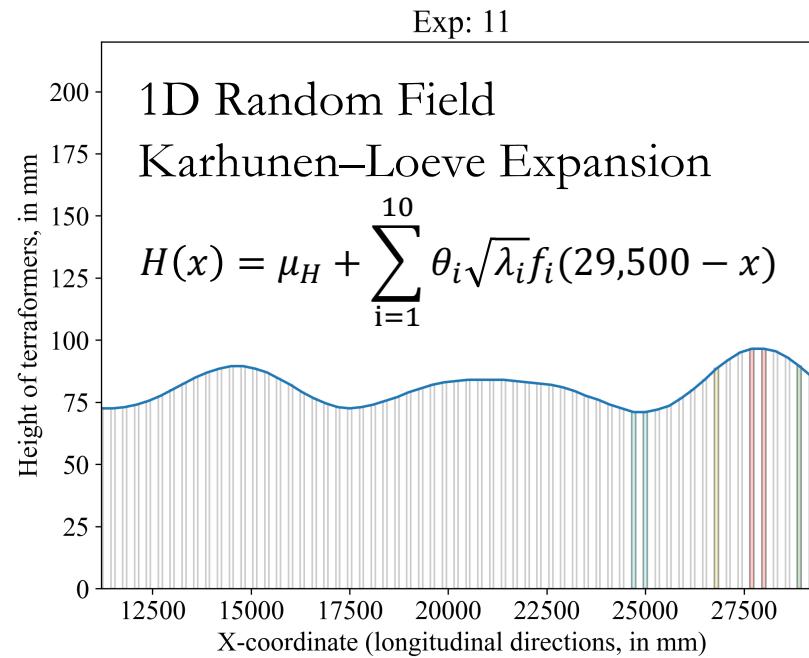


Some Available Parameters in the UF BLWT

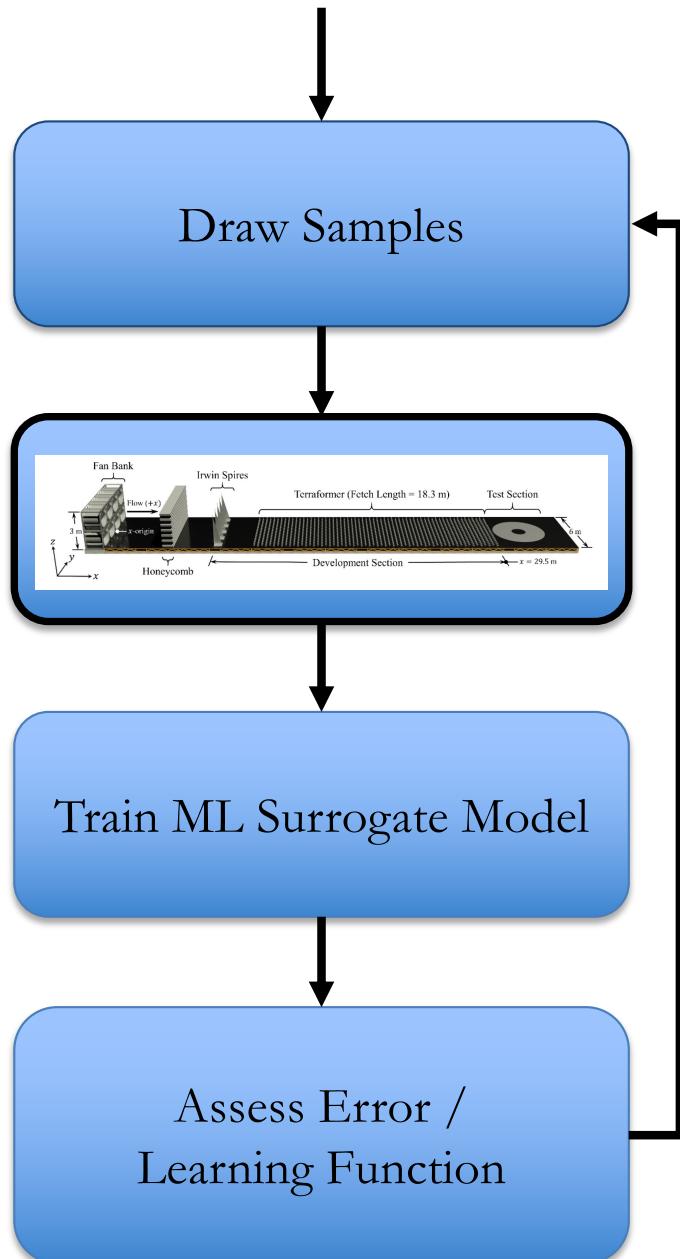
- Vaneaxial Fan Bank:
 - 8 fans, independent RMP
 - Potentially time varying RMP
- Flow Field Modulator (FFM)
 - 319 fans, independent RMP
 - Potentially time varying RMP
- Terraformer
 - 1118 individual roughness elements
 - Each with controlled height and width
- Test Section
 - Rotational degrees of freedom

The number of different ways the UF BLWT can be configured is enormous

Terraformer Parameterized



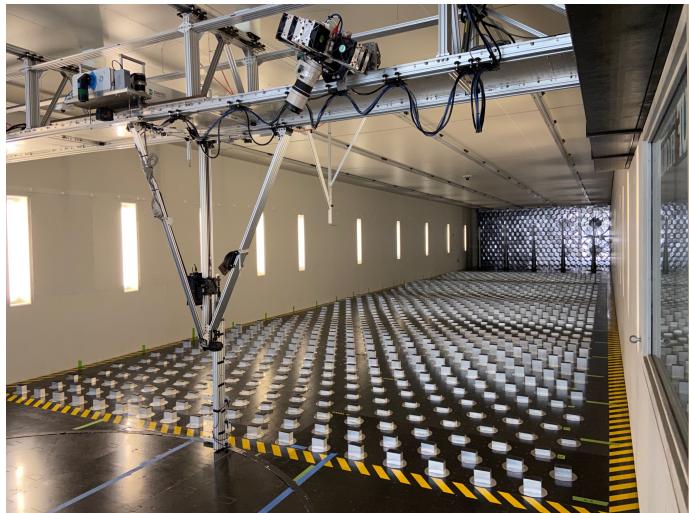
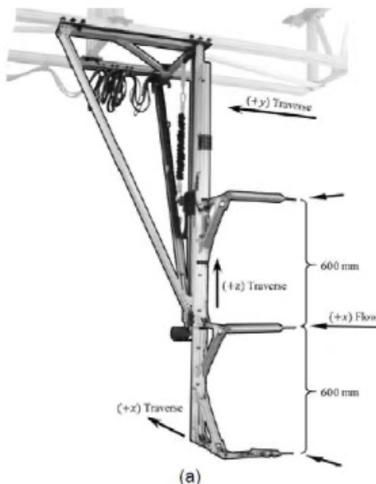
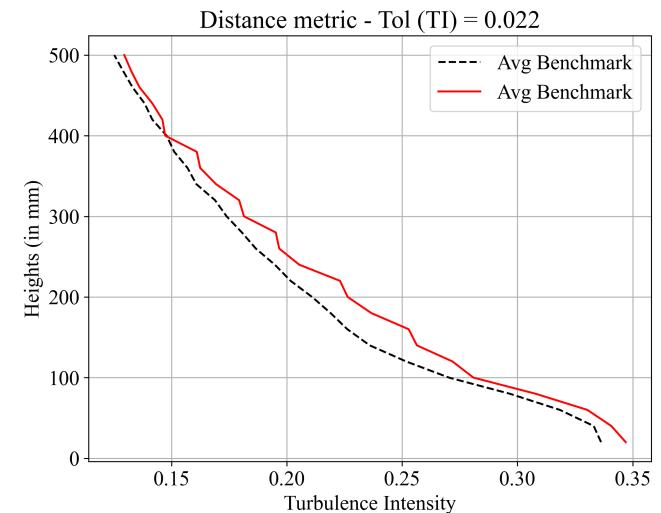
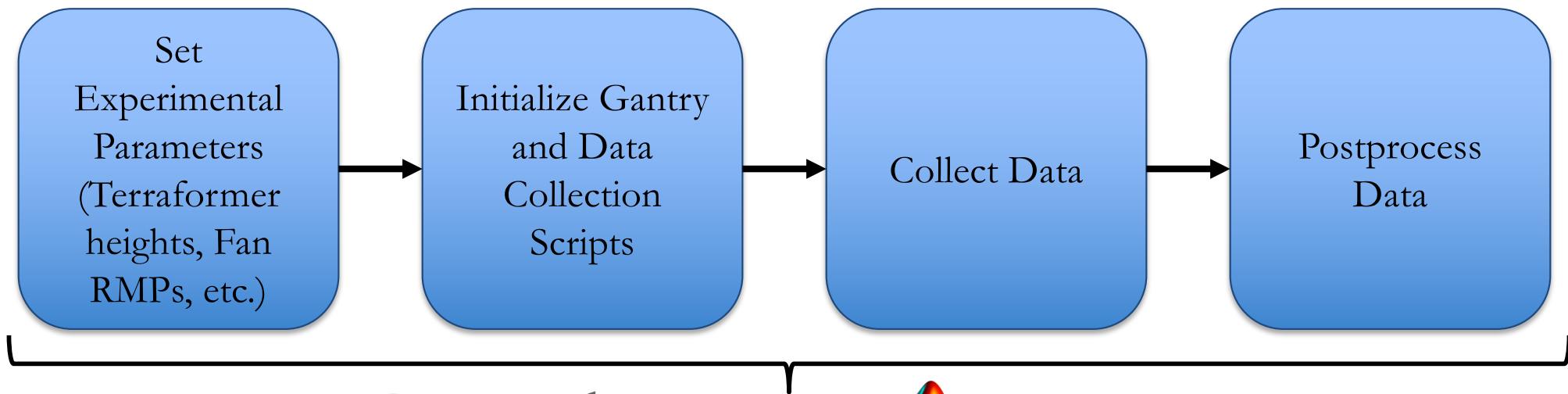
Simple Active Learning Framework



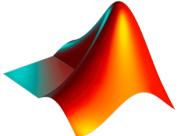
Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

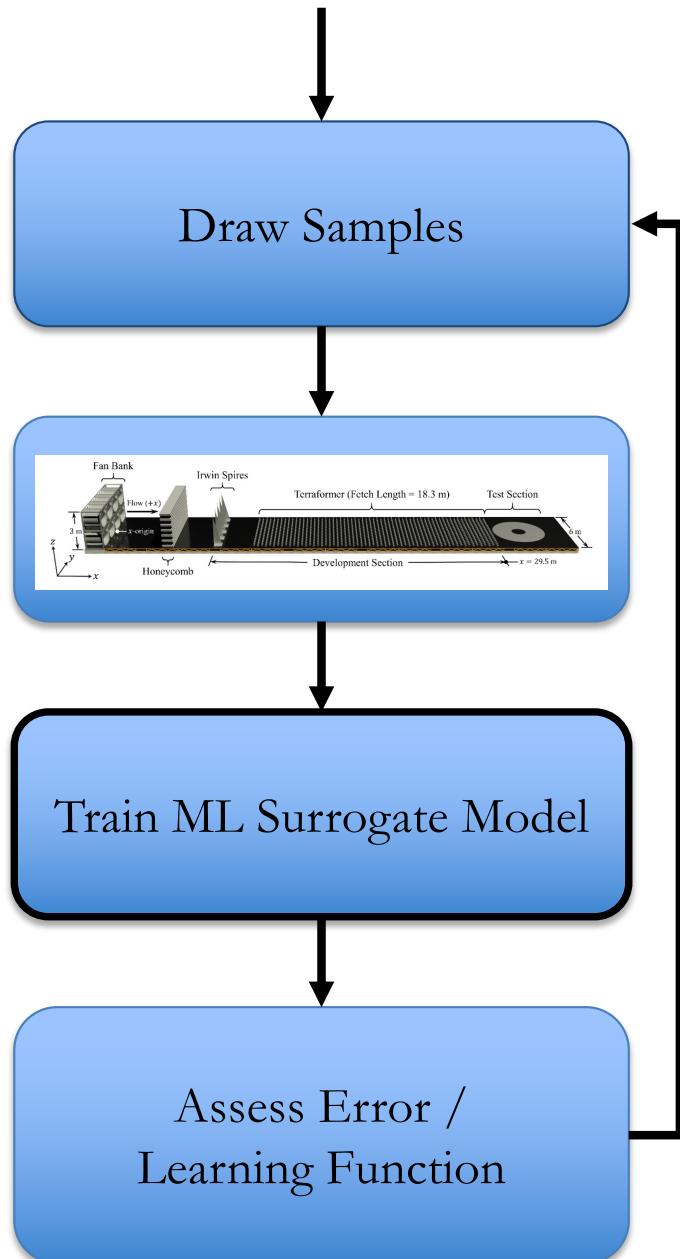
Automation



 python™

 MATLAB®

Simple Active Learning Framework



Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

Various flavors of ML models are readily available

Machine Learning Models

We use Gaussian Process Regression

Many other flavors of ML models exist

- Artificial Neural Networks
 - Deep or Shallow Neural Networks
 - Convolutional Neural Networks
 - Recursive Neural Networks
 - Physics Informed Neural Networks
- Polynomial Chaos Expansions
- Support Vector Regression

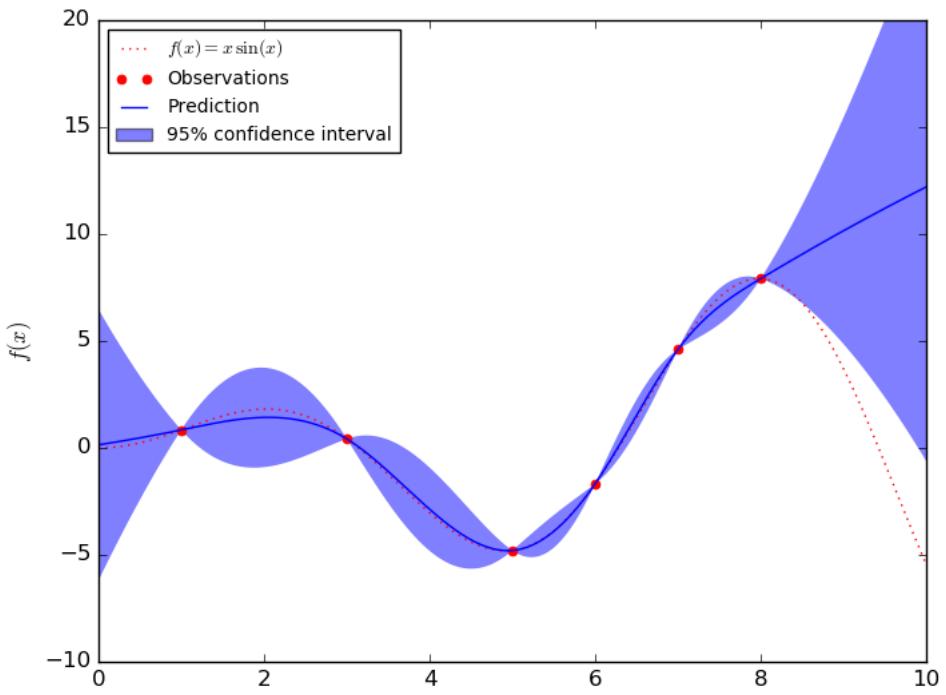
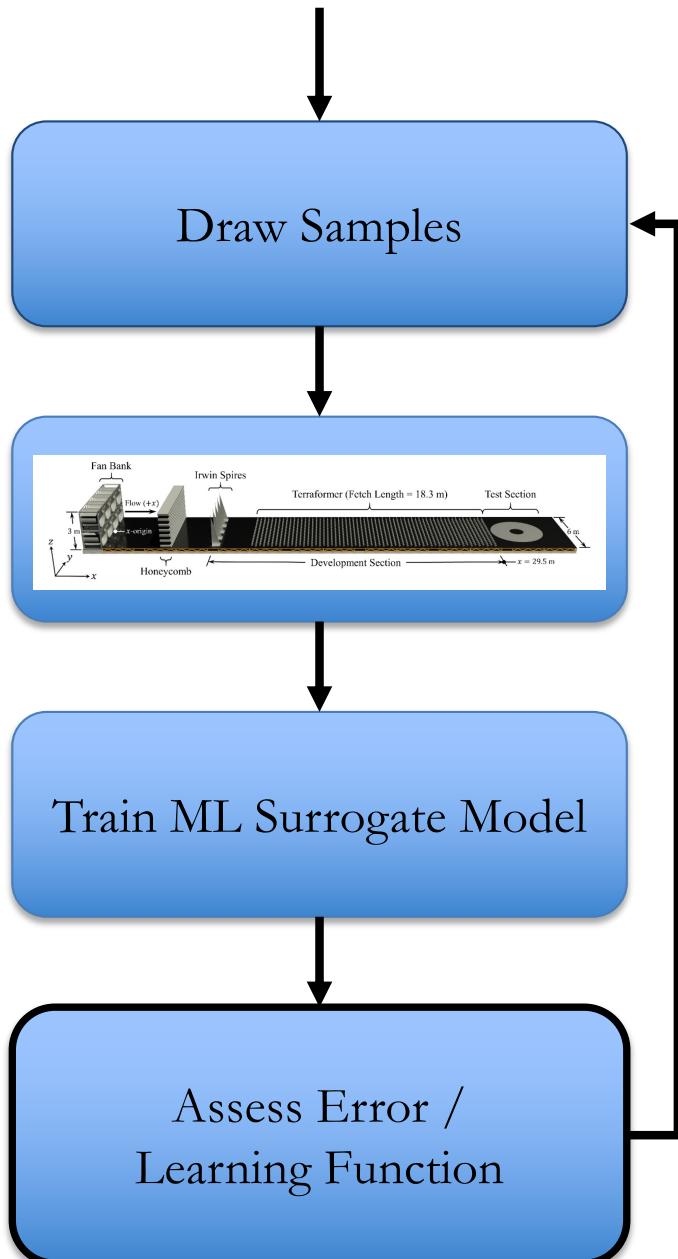


Image from scikit-learn documentation

Simple Active Learning Framework



Experiments must be parameterized

Testing apparatus, data collection, and data processing must be automated

Various flavors of ML models are readily available

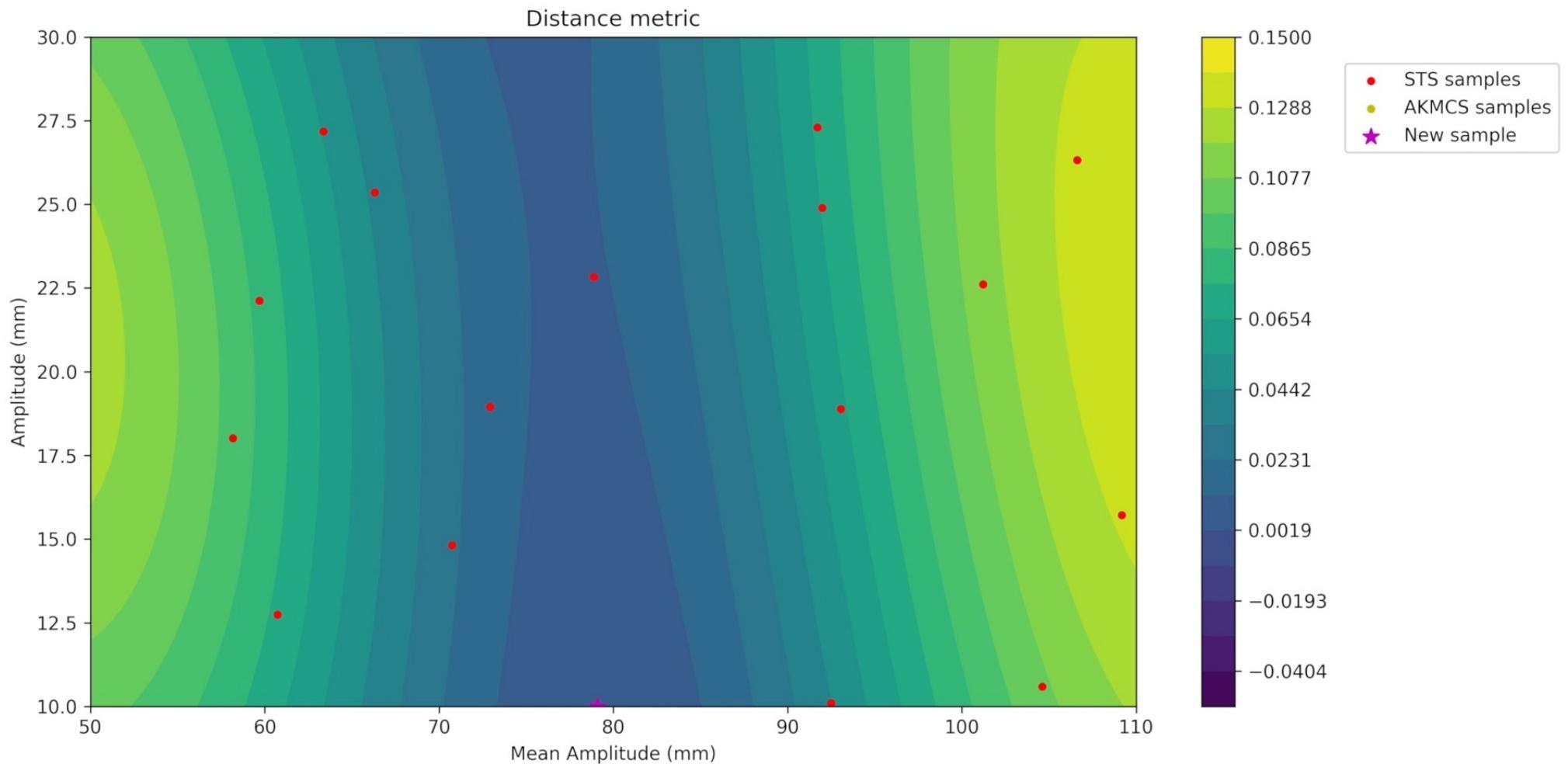
Define the objective of the study
What are we trying to learn/discover?

Learning Functions

Learning Function	Expression	Objective
Noisy U-function	$U_n(\theta) = \frac{\mu_g(\theta)}{\sqrt{\sigma_g^2(\theta) - \sigma_\epsilon^2(\theta)}}$	<p>Goal: Conduct experiments along the surface separating the 2nd order equivalent and non-equivalent regions.</p> <p>How: Conduct experiments that have the highest probability of incorrectly predicting the sign of the performance function.</p>
Noisy EIGF (Expected Improvement for Global Fit)	$E[I_n(\theta)] = (\mu_g(\theta) - g(\theta^*))^2 + \sigma_g^2(\theta) - \sigma_\epsilon^2(\theta)$	<p>Goal: Conduct experiments that globally best approximate the performance function.</p> <p>How: Conduct experiments that have both high prediction uncertainty and large difference from nearby experiments</p>
MUSIC	$\mathcal{J}(\theta_j^{(i)}) = (\mu_{A^{(i)}}(\theta_j^{(i)}) - \mu_{A^{(i)}}(\theta^*))^2 + \sigma_{A^{(i)}}^2(\theta_j^{(i)})$	<p>Goal: Conduct experiments that allow efficient computation of sensitivity indices.</p> <p>How: Conduct experiments that have both high prediction uncertainty and large differences from nearby experiments in conditional GP</p>

Results

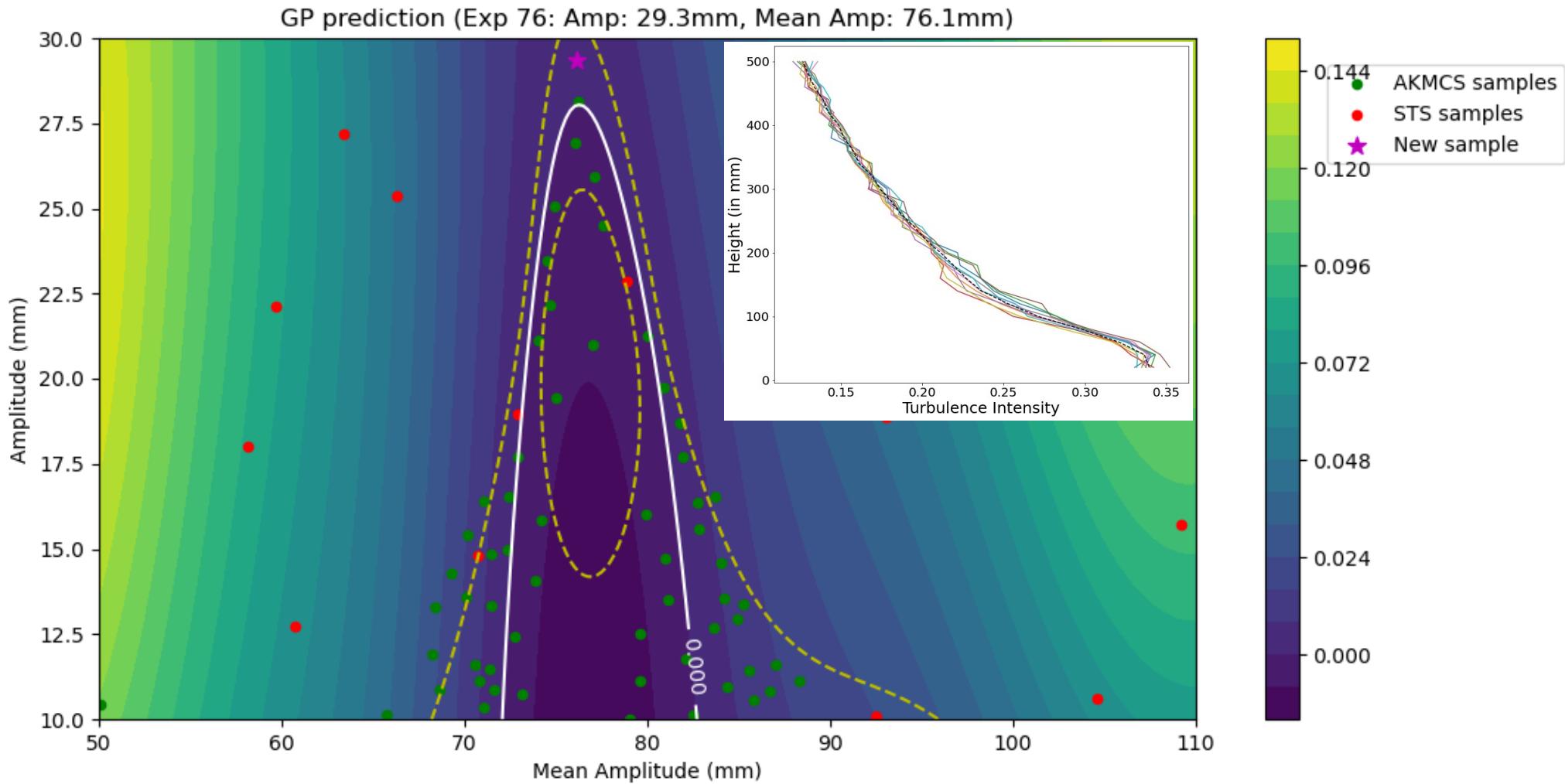
Over 1000 experiments conducted in the past 2 years!



900+ unique terraformer configurations

Results

Much of this data will be published to DesignSafe



Thank You!

