
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Proceedings of the

31st USENIX Security Symposium is

sponsored by USENIX.

Augmenting Decompiler Output with
Learned Variable Names and Types

Qibin Chen and Jeremy Lacomis, Carnegie Mellon University; Edward J. Schwartz,

Carnegie Mellon University Software Engineering Institute; Claire Le Goues,

Graham Neubig, and Bogdan Vasilescu, Carnegie Mellon University

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin

Augmenting Decompiler Output with Learned Variable Names and Types

Qibin Chen*, Jeremy Lacomis*, Edward J. Schwartz†,

Claire Le Goues*, Graham Neubig*, Bogdan Vasilescu*

*Carnegie Mellon University. {qibinc, jlacomis, clegoues, gneubig, bogdanv}@cs.cmu.edu
†Carnegie Mellon University Software Engineering Institute. eschwartz@cert.org

Abstract
A common tool used by security professionals for reverse-

engineering binaries found in the wild is the decompiler. A

decompiler attempts to reverse compilation, transforming a

binary to a higher-level language such as C. High-level lan-

guages ease reasoning about programs by providing useful

abstractions such as loops, typed variables, and comments, but

these abstractions are lost during compilation. Decompilers

are able to deterministically reconstruct structural properties

of code, but comments, variable names, and custom variable

types are technically impossible to recover.

In this paper we present DIRTY (DecompIled variable

ReTYper), a novel technique for improving the quality of

decompiler output that automatically generates meaningful

variable names and types. DIRTY is built on a Transformer-

based neural network model and is trained on code automati-

cally scraped from repositories on GitHub. DIRTY uses this

model to postprocesses decompiled files, recommending vari-

able types and names given their context. Empirical evalua-

tion on a novel dataset of C code mined from GitHub shows

that DIRTY outperforms prior work approaches by a sizable

margin, recovering the original names written by developers

66.4% of the time and the original types 75.8% of the time.

1 Introduction

Reverse engineering is an important problem in the context

of software. For example, security professionals use reverse

engineering to understand the behavior or provenance of mal-

ware [12, 54, 55], discover vulnerabilities in libraries [49, 55],

or patch bugs in legacy software [49, 55]. However, since it

is rare to have access to source code, analysis is often per-

formed at the binary level. This can be challenging: compilers

optimize for execution speed or binary size, not readability.

A number of tools attempt to make the process of

examining binary programs easier. One is the disassembler,

which converts raw binary code to a sequence of instructions

executed by the compiler. Although this produces human read-

able code, reasoning about assembly code can still be difficult.

Operations that are simple to specify at a high-level are often

translated into a long sequence of assembly instructions (e.g.,

looping over the elements of an array requires instructions

that maintain an index variable, increment it each iteration of

a loop, and conditionally jump on its value). Another, more

sophisticated tool is a decompiler, which transforms code

from binary to a high-level language such as C.

Although decompilers generate abstractions that improve

code readability and are widely used by reverse engineers in

practice, they never fully reconstruct the original developer-

written code [43], since the process of compilation irrevocably

destroys some information. This means that useful pieces of

information, such as comments, identifier names, and types,

all of which are known to meaningfully contribute to program

comprehension [17, 30], are typically absent from decompiler

output. Nonetheless, recent work has shown that it is possi-

ble to reconstruct some useful information about the original

code during decompilation, namely identifier [25, 29] and

procedural names [8], even when this information is not part

of the binary. The key insight is that human-written code is of-

ten repetitive in the same context [2, 9, 23]. Therefore, given

large corpora of human-written code, one can learn highly

probable names for identifiers in similar contexts, even if not

always the exact names the authors of the code chose origi-

nally. This is an important improvement on the facilities of

modern decompilers, which almost completely ignore names

beyond simple heuristics (e.g., i and j for loop guards).

In this paper we focus on the closely related problem of

recovering meaningful variable types, an important additional

layer of code documentation that can help improve readability

and understandability [14, 43, 48]. Figure 1 shows an example

of a simple function and its decompilation. The author of the

original code in Figure 1a has defined a pnt structure that

contains two float members used to refer to the X and Y

coordinates of a point. This makes it possible to define a

new point and refer to its members by name (e.g., p1.x and

p1.y). Because the decompiler does not know about the pnt

structure, it creates two float arrays instead of generating a

struct (Figure 1b). This can harm understandability. First, it

USENIX Association 31st USENIX Security Symposium 4327

typedef struct point {

float x;

float y;

} pnt;

void fun() {

pnt p1, p2;

p1.x = 1.5;

p1.y = 2.3;

// ...

use_pts(&p1, &p2);

}

(a) Original code

void fun() {

float v1[2], v2[2];

v1[0] = 1.5;

v1[1] = 2.3;

// ...

use_pts(v1, v2);

}

(b) Decompiled fun

Figure 1: A function with a struct and its decompilation.

void fun() {

// stack layout:

// [xxx][p][yyyy]

char x[3];

int y;

// ...

}

(a) Original code

void fun() {

// stack layout:

// [xxxx][yyyy]

char x[4];

int y;

// ...

}

(b) Decompiled fun

Figure 2: A function illustrating the data layout problem in

decompilation. In the stack layout the characters x, y, and p

represent a single byte assigned to the variables x and y, or

padding data respectively. The decompiler cannot recognize

that the inserted padding data does not belong to the x array.

is not clear that v1 and v2 represent points at all. Second, even

if better names were chosen, such as point1 and point2, and a

reverse engineer concluded that they represent 2D points, it

is not clear which array index refers to which coordinate, or

even that the coordinates are Cartesian (instead of e.g., polar).

Unlike names, types are constrained by memory layouts,

and thus theoretically should be easier to recover (only types

that fit that memory layout should be considered as candi-

dates). In fact, decompilers already narrow down possible type

choices using the fact that base types targeting a specific plat-

form can only be assigned to variables with a specific memory

layout (e.g., on most platforms an int variable can never be

retyped to a char because they require different amounts of

memory). This already makes it possible for decompilers to

infer base types and a small set of commonly-used typedefs.

On the other hand, despite performing a battery of complex

binary analyses, the data layout inferred by the decompiler is

often incorrect, which makes the problem harder. For exam-

ple, consider the program shown in Figure 2. Two top-level

variables are declared, x: a three-byte char array, and y: a four-

byte int. During compilation, the compiler inserts a single

byte of padding after the x array for alignment. When this

function is decompiled, the decompiler can tell where x and

y begin, but it cannot tell if x is a three-byte array followed

by a single byte of padding, or a four-byte array whose last

element is never used.

Prior work on reconstructing types falls into two groups.

The first, such as TIE [31], attempt to recover syntactic types,

e.g., struct {float; float}, but not the names of the structure

or its fields. The second, such as REWARDS [33], attempt

to also recover the type name (referred to as semantic types).

However, these systems typically only support a small set of

manually-defined types and well-known library calls. Neither

the first nor the second deal with the padding issue above.

In contrast, our system DIRTY (DecompIled variable Re-

TYper) recovers both semantic and syntactic types, handles

padding, and is not limited to a small set of manually-defined

types. Instead, DIRTY supports 48,888 possible types encoun-

tered “in the wild” in open-source C code (compared to the

150 different type names in 84 standard library calls supported

by REWARDS). At a high level, DIRTY is a Transformer-

based [50] neural network model to recommend types in a

particular context, which operates as a postprocessing step to

decompilation. DIRTY takes a decompiled function as input,

and outputs probable names and types for all of its variables.

To build DIRTY, we start by mining open-source C code

from GITHUB, and then use a decompiler’s typical ability to

import variable names and types from DWARF debugging

information to create a parallel corpus of decompiled func-

tions with and without their corresponding original names

and types. As a side effect of this large-scale mining effort,

we also automatically compile a library of types encountered

across our open-source corpus. We then train DIRTY on this

data, introducing two task-specific innovations. First, we use

a Data Layout Encoder to incorporate memory layout infor-

mation into DIRTY’s predictions and simultaneously address

a fundamental limitation of decompilers caused by padding.

Second, we address both the variable renaming and retyp-

ing tasks simultaneously with a joint Multi-Task architecture,

enabling them to benefit from each other.

We show that DIRTY can assign variable types that agree

with those written by developers up to 75.8% of the time, and

DIRTY also outperforms prior work on variable names.

Note that even though we implement DIRTY on top of the

Hex-Rays1 decompiler because of its positive reputation and

its programmatic access to decompiler internals, our approach

is not fundamentally specific to Hex-Rays, and should concep-

tually work with any decompiler that names variables using

DWARF debug symbols.

In summary, we contribute:

• DIRT—the Dataset for Idiomatic ReTyping—a large-

scale public dataset of C code for training models to

retype or rename decompiled code, consisting of nearly

1 million unique functions and 368 million code tokens.

• DIRTY—the DecompIler variable ReTYper—an open-

source Transformer-based neural network model to re-

cover syntactic and semantic types in decompiled vari-

ables. DIRTY uses the data layout of variables to im-

prove retyping accuracy, and is able to simultaneously

retype and rename variables in decompiled code.

1https://www.hex-rays.com/products/decompiler/

4328 31st USENIX Security Symposium USENIX Association

Example output from DIRTY is available online at

https://dirtdirty.github.io/explorer.html.

2 Model Design

In this section, we describe our machine learning model and

decisions that influenced its design, starting with some rel-

evant background. Our model is a neural network with an

encoder-decoder architecture.

2.1 The Encoder-Decoder Architecture

Our task consists of generating variable types (and names) as

output given individual functions in decompiled code as input.

This means that unlike a traditional classification problem

with a fixed number of classes, both our input and output are

sequences of variable length: input functions (e.g., fed into the

network as a sequence of tokens) can have arbitrarily many

variables, each requiring a type (and name) prediction.

Therefore, we adopt an encoder-decoder architecture [7],

commonly used for sequence-to-sequence transformations,

as opposed to the traditional feed-forward neural network ar-

chitecture used in classification problems with a fixed-length

input vector and prediction target. More specifically, the en-

coder takes the variable-length input and encodes it as a fixed-

length vector. Then, this fixed-length encoding is passed to

the decoder, which converts the fixed-length vector into a

variable-length output sequence. This architecture, further en-

hanced through the attention mechanism [3], has been shown

to be effective in many tasks such as machine translation, text

summarization [36], and image captioning [53].

2.2 Transformers

There are several ways to implement an encoder-decoder.

Until recently, the standard implementation used a particu-

lar type of recurrent neural network (RNN) with specialized

neurons called long short-term memory units; these neurons

and networks constructed from them are commonly referred

to as LSTMs [24]. More recently, Transformer-based mod-

els [4, 15, 42, 57], building on the original Transformer archi-

tecture [50], have been shown to outperform LSTMs and are

considered to be the state-of-the-art for a wide range of natural

language processing tasks, including machine translation [4],

question answering and abstractive summarization [10, 32],

and dialog systems [1]. Transformer-based models have also

been shown to outperform convolutional neural networks such

as ResNet [19] on image recognition tasks [11].

Transformers have several properties that make them a

particularly good fit for our type prediction task. First, they

capture long-range dependencies, which commonly occur in

program code, more effectively than RNNs. For example, a

variable declared at the beginning of a function may not be

used until much later; an ideal model captures information

about all uses of a variable. Second, transformers can perform

more computations in parallel on typical GPUs than LSTMs.

As a result, training is faster, and a Transformer can train on

more data in the same amount of time. In our case, this en-

ables us to train on our large-scale, real-world dataset, which

consists of 368 million decompiled code tokens.

Although there have been a number of advances in

neural machine translation since the original Transformer

model [50], most recent advances focus on improvements

on other factors, such as training data and objectives [4, 10,

32, 42], dealing with longer sequences [57], efficiency [6],

and scaling [15], rather than changing the fundamental archi-

tecture. Moreover, most of these improvements are tailored

for the natural language domain, making them less general-

izable than the original model and inapplicable to our task.

Instead, we keep our model simple, which allows different,

better architectures or implementations to be used out-of-the-

box in the future. For example, the recent Vision Transformer

(ViT) [11], which also intentionally follows the original Trans-

former architecture “as closely as possible” when adapting

Transformers to computer vision tasks.

We omit the technical details of Transformers, includ-

ing multi-headed self-attention, positional encoding, and the

specifics of training as they are beyond the scope of this paper.

2.3 DIRTY’s Architecture

In DIRTY, we cast the retyping problem as a transformation

from a sequence of tokens representing the decompiled code

to a sequence of types, one for each variable in the original

source code. This section describes DIRTY’s architecture in

detail. Figure 3 shows an overview of the architecture.

Code Encoder. The encoder converts the sequence of code

tokens of the decompiled function (lower-left of Figure 3),

x = (x1,x2, . . . ,xn), into a sequence of representations,

H = (h1,h2, . . . ,hn) , (1)

where each continuous vector hi ∈ R
d_model is the contextual-

ized representation for the i-th token xi. During training, the

encoder learns to encode the information in the decompiled

function x relevant to solving the task into H. For example, for

a code token xi =v1, useful information about v1 in the con-

text of x (e.g., operations performed on v1) is automatically

learned and stored in hi.

Specifically, we denote the encoding procedure as

H = fen (x;θen) , (2)

where the input x = (x1,x2, . . . ,xn) is the code token se-

quence of the decompiled function and the output H =
(h1,h2, . . . ,hn) is the sequence of deep contextualized repre-

sentations. fen denotes the encoder, implemented with neural

networks, and θen denotes its learnable parameters.

The ultimate goal of DIRTY is to make type predictions

about each variable that appears in the decompiled function.

However, the encoder produces hidden representations for

USENIX Association 31st USENIX Security Symposium 4329

as <Component> to denote that they are components of a variable

in the source code. This allows the model to combine them

with other variables into an array or a struct.

The final DIRT dataset consists of 75,656 binaries ran-

domly sampled from the full set of 4,346,134 binaries to

yield a dataset that we could fully process based on the com-

putational resources we had available. We split the dataset

per-binary as opposed to per-function, which ensures that dif-

ferent functions from the same binary cannot be in both the

test and training sets. The training dataset consists of 997,632

decompiled functions, and a total number of 48,888 different

types. We also preprocess the decompiled code with byte-pair

encoding (BPE) [45], a widely adopted technique in NLP

tasks to represent rare words with limited vocabulary by to-

kenizing them into subword units. After this step, the DIRT

dataset consists of 368 million decompiled code tokens, and

an average of 220.3 tokens per function. Detailed statistics

about the DIRT dataset and the train/valid/test split can be

found in Table 11 in Appendix A.

Metrics. We evaluate DIRTY using two metrics:

Name Match: Following DIRE [29], we consider a variable

name prediction correct if it exactly string matches the

name assigned by the original developer. We compute

the prediction accuracy as the average percentage of

correct predictions across all functions in the test set.

Type Match: We consider a type prediction to be correct

only if the predicted type fully matches the ground truth

type, including data layout, and the type and name of

any fields if applicable. We serialize types to strings and

use string matching to determine type matching.

Note that both metrics are conservative. Predictions may

still be meaningful, even if not identical to the original names.

A human study evaluating the quality of predicted types and

names is beyond the scope of the current paper.

Meaningful Subsets of the Test Data. We introduce several

subsets of the DIRT test set to better interpret the results:

Function in training vs Function not in training.

Similarly to Lacomis et al. [29], Function in training

consists of the functions in the test set that also appear

in the training set, which are mainly library functions.

Allowing this duplication simulates the realistic use

case of analyzing a new binary that uses well-known

libraries. We also separately measure the cases where

the function is not known during training (i.e., Function

not in training) to measure the model’s generalizability.

Structure types. Only 1.8% of variables in DIRT have struc-

ture types. Because of this low percentage, examining

overall accuracy may not reflect DIRTY’s accuracy when

predicting structure types, which we have found anec-

dotally to be more challenging. To mitigate this, we

separately measure DIRTY’s accuracy on structures in

addition to its overall accuracy.

Overall In Train Not in Train

Method All Struct All Struct All Struct

FSize 23.6 9.7 23.5 9.1 23.8 10.4

HR 37.9 28.7 39.0 28.7 36.4 28.7

DIRTY 75.8 68.6 89.9 79.2 56.4 54.6

Table 1: DIRTY has higher retyping accuracy than Frequency

By Size (FSize) and Hex-Rays (HR) on the DIRT dataset, both

for all types (All) and on structural types alone (Struct).

3.2 RQ1: Overall Effectiveness

We evaluate DIRTY on the idiomatic retyping task and report

its accuracy compared to several baselines.

Baselines. We measure our accuracy with respect to two base-

line methods for predicting variable types:

Frequency by Size The number of bytes a variable occupies

is the most basic information for a type. For this tech-

nique, we predict the most common developer-assigned

type for a given size (as reported by the decompiler).

E.g., int is the most common 4-byte type, and __int64

is the most common 8-byte type; this baseline simply

assigns these types to variables of the respective size.

Hex-Rays [22] During decompilation, Hex-Rays already pre-

dicts a type for each variable, so we can use these predic-

tions as a baseline. However, Hex-Rays cannot predict

developer-generated types without prior knowledge of

them, e.g., Hex-Rays assigns unsigned __int16 instead

of the more common uint16_t, which puts it at an un-

fair disadvantage. For this baseline, we reassign the type

chosen by Hex-Rays to the most common developer-

chosen name associated with it (e.g., we replace every

unsigned __int16 with uint16_t.

Results. As shown in Table 1, DIRTY can correctly recover

75.8% of the original (developer-written) types from the de-

compiled code. In contrast, Hex-Rays, the highest scoring

baseline, can only recover 37.9% of the original types.

As expected, DIRTY performs even better when it has seen

a particular function before (In Train), generating the same

type as the developer 89.9% of the time. This indicates that

DIRTY works particularly well on common code such as

libraries. Even when a function has never been seen (Not in

Train), DIRTY predicts the correct type 56.4% of the time.

Table 1 also shows the performance of DIRTY on structure

types alone. Correctly predicting structure types is more diffi-

cult than predicting scalar types, and all models show a drop in

performance. Despite this drop, DIRTY still achieves 68.6%

accuracy overall, and 54.6% accuracy on the Function not in

training category. Frequency By Size struggles on structures

with only 9.7% accuracy; this is expected since structures of a

given size can have many possible types. Hex-Rays is slightly

USENIX Association 31st USENIX Security Symposium 4333

more accurate at 28.7%, as the decompiler is able to analyze

the layout of structures.

Table 2 shows several examples of retyping predictions

from the Function not in training partition. These examples

show that accuracy is not the full story; even when DIRTY

is unable to predict the correct type, the differences are often

minor (e.g., unsigned int v. int, and const char * v. char *).

The bottom half of Table 2 shows prediction examples of

structure types.6 DIRTY is able to recover the actual struc-

ture much of the time. At other times, DIRTY also produces

some semantically reasonable but syntactically unacceptable

predictions, like char[32] for class std::string.

3.3 RQ2: Comparison with Prior Work

We further compare DIRTY with recent work on type recov-

ery [58] and variable name recovery [29].

Type Recovery. While there is prior work on type recovery

(see also Section 4), none of the existing approaches, TIE [31],

Howard [47], Retypd [39], TypeMiner [34] and OSPREY [58],

are publicly available. We are grateful to Zhang et al. [58],

the authors of OSPREY, for kindly sharing their evaluation

material so we could compare results.

OSPREY is a recently proposed probabilistic technique

for variable and structure recovery that outperforms exist-

ing work including Howard [47], Angr [46], Hex-Rays [22]

and Ghidra [58]. The OSPREY authors provided us with the

GNU coreutils7 executables they used in their evaluation,

which were compiled with -O0 to disable optimization. We

ran DIRTY on these executables, but only evaluated on stack

and heap variables, since OSPREY does not recover register

variables. This benchmark consists of 101 binaries and 17,089

variables. We also define two subsets of the dataset:

Visited A subset of 13,020 variables that are covered by

BDA [59], a binary abstract interpretation tool that OS-

PREY relies on. OSPREY is expected to perform better on

these covered functions than uncovered functions, which

we also report as Non-Visited.8 However, DIRTY is not

subject to this limitation.

Struct A subset of 3,061 variables related to structure types.

Following OSPREY, we include structs allocated on the

stack, pointers to structs on the heap, and arrays of structs.

These variables do not have to be in the Visited subset.

Because DIRTY can predict up to 48,888 different types,

each including the full syntactic and semantic information,

we convert its predictions in a post-hoc manner to make it

comparable with OSPREY.9

6We omit the full predicted contents of structs here for conciseness.
7https://www.gnu.org/software/coreutils/
8A majority of uncovered functions are unreachable from the entry point

of the binary, and others are indirect call targets which BDA fails to analyze.
9Specifically, we discard type names and field names. For example, bool

and char are both converted to Primitive_1, which stands for a primitive

type occupying 1 byte of memory, const char * and char * are converted

Table 3 compares the accuracies of both systems. On the

overall coreutils benchmark, DIRTY slightly outperforms OS-

PREY (76.8% vs 71.6%). OSPREY outperforms DIRTY on

the Visited subset, but as expected, performs worse on the

Non-Visited functions. Meanwhile, DIRTY is more consistent

on Visited and Non-Visited. When only looking at structure

types, OSPREY outperforms DIRTY (26.6% vs 15.7%).

However, this comparison puts DIRTY at a disadvantage,

since OSPREY was designed for this task of recovering syn-

tactic types, while DIRTY was trained to recover variable and

type/field names, and much of this information is thrown out

for this evaluation. To address this, we trained a new model,

DIRTYLight , on DIRT, but tailored the training to OSPREY’s

simplified task. The accuracy of this model is also reported in

Table 3. As expected, the DIRTYLight model outperforms the

off-the-shelf DIRTY model, since it is trained specifically for

this task. DIRTYLight greatly improves prediction accuracy

on the Struct subset, and even outperforms OSPREY.

To further get a fine-grained comparison with OSPREY, we

calculate accuracy on 101 coreutils binaries individually, and

show the prediction accuracies of DIRTY and OSPREY with

respect to the number of variables in the programs in Figure 6.

We observe that DIRTY is competitive compared with OS-

PREY. Interestingly, while the results on large binaries are

close, DIRTY performs better on small binaries. This suggests

our learning-based method trained on GitHub data might gen-

eralize better on rare patterns compared to empirical methods

that might have been developed based on observations on a

limited number of common and relatively larger programs.

In addition, DIRTY is also much faster and scalable. On

average, OSPREY takes around 10 minutes to analyze one

binary in coreutils, while it takes 75 seconds for DIRTYLight

to finish inference on the whole coreutils benchmark.

Overall, we believe both methods are valuable. Since at this

point DIRTY is using Hex-Rays recovered data layout as input

to its Data Layout Encoder, we believe a promising future

direction is to combine these two methods—using OSPREY’s

results as the input to DIRTY’s, and the combined approach

can potentially achieve even better results.

Name Recovery. The Decompiled Identifier Renaming En-

gine (DIRE) is a state-of-the-art neural approach for decom-

piled variable name recovery [29]. The DIRE model consists

of both a lexical encoder and a structural encoder, utilizing

both tokenized decompiled code and the reconstructed ab-

stract syntax tree (AST). In contrast, DIRTY’s simpler en-

coder only uses the tokenized decompiled code.

The DIRE authors provide a public dataset for decompiled

variable renaming compiled with -O0. To compare with DIRE,

we train DIRTY on the DIRE dataset and also train DIRE

on the DIRT dataset. Since DIRE is focused on variable re-

naming, and there is no type information collected in their

to Pointer<Primitive_1>, and struct ImVec2 {float x; float y

;} converted to Struct<Primitive_4, Primitive_4>.

4334 31st USENIX Security Symposium USENIX Association

20% 40% 60% 80% 100%

Size of Training Set

0%

20%

40%

60%

80%

100%

A
cc
u
ra
cy

All

In train

Not in train

Figure 7: Effect of training data size. With 100% of the data,

the accuracies of All, In train, and Not in train are 75.8%,

89.9%, and 56.4% respectively. With 20%, these drop to

67.9%, 82.3%, and 48.0% respectively.

version DIRTYS. DIRTY contains 167M parameters, while

DIRTYS only 40M. Table 10 contains details of the hyperpa-

rameter differences between the two models.

Table 5 shows overall DIRTY is 75.8% accurate vs. 74.5%

for DIRTYS’s. This indicates increasing the model size has

a positive effect on retyping performance. The gain from

increased model capacity is notably larger when comparing

performance on structures. This improvement suggests that

complex types are more challenging and require a model with

larger representational capacity. We are not able to train a

larger model due to limits on computation power.

Dataset Size. We examine the impact of training data size on

prediction accuracy. As a data-driven approach, DIRTY relies

on a large-scale code dataset; studying the impact of data size

gives us insight into the amount of data to collect. We trained

DIRTY on 20%, 40%, 60%, 80% and 100% portion of the

full training partitionand report the results in Figure 7.

Figure 7 shows the change in accuracy with respect to the

percentage of training data. Increasing the size of training

data has a significant positive effect on the accuracy. Between

20% and 100% of the full size the accuracy increases from

67.9% to 75.8%, a relative gain of 11.6%.

Notably, accuracy on Function not in training has a relative

gain of 17.5% much larger than on the Function in training

partition. This is likely because the Function in training parti-

tion contains common library functions shared by programs

both in the training and test set, and even a smaller dataset

will have programs that use these functions. In contrast, the

Function not in training part is open-ended and diverse.

It is also worth noting that the accuracy drops sharply when

the training set size is decreased from 40% to 20%, justifying

the necessity for using a large-scale dataset.

Data Layout Encoder. We explore the impact of the Data

Layout encoder on DIRTY’s performance. We experiment

with a new model with no Data Layout encoder, DIRTYNDL.

Table 6 shows the accuracy results overall and on the Func-

Model Overall In train Not in train

DIRTYNDL 72.2 88.4 49.9

DIRTY 75.8 89.9 56.4

Table 6: Effect of the Data Layout encoder on the accuracy

of DIRTY. Accuracy is reported for the model with (DIRTY)

and without (DIRTYNDL) the encoder.

tion in training and Function not in training partitions. The

inclusion of the Data Layout encoder improves overall accu-

racy from 72.2% to 75.8%, indicating that the Data Layout

encoder is effective. The results are even more interesting

when the results are broken into the two partitions. The rel-

ative gain on the Function in not training partition is 13%

(49.9% to 56.4%), compared to 1.7% on the Function in train-

ing partition (88.8% to 89.9%). This suggests the Data Layout

encoder greatly improves DIRTY’s generalization ability.

Table 7 compares example predictions from DIRTY and

DIRTYNDL on the same types from the Function not in

training partition. For the __int64 example, the type pre-

dictions from DIRTY mostly have the correct size of 8

bytes. DIRTYNDL, however, often incorrectly predicts int and

unsigned int. This is understandable because in situations

where the value doesn’t exceed the 32-bit integer, __int64

can be safely interchanged with int, these situations can be

identified in some decompiled code. However, apart from the

correctness of the retyped program, accuracy to the original

binary, (i.e., allocating 8 bytes instead of 4), is also important.

DIRTY achieves this better than DIRTYNDL.

In the second example, the struct __m128d type occupies

16 bytes, and has two members at offset 0 and 8. DIRTYNDL

mainly mistakes this structure as a double, which might make

sense semantically but is unacceptable syntactically. With the

Data Layout encoder, DIRTY effectively reduces these errors.

This demonstrates this component achieves the soft masking

effect on type prediction as intended in Section 2.4.

Multi-Task Decoder. In this section we study the effective-

ness of the Multi-Task decoder when compared to decoders

designed for only retyping or only renaming. Inspecting the

accuracy numbers reported in Table 8, the Multi-Task decoder

has similar, but slightly lower overall accuracy on both tasks

as the two specialized models (-0.8% for retyping and -1.3%

for renaming). One possible reason is that the Multi-Task

model has twice the length of decoding lengths than a special-

ized model, which makes greedy decoding harder.

Despite the small decrease in performance, the unified

model has advantages. These are illustrated in the XName and

XType columns of Table 8. XName and XType stand for the

subsets of the full dataset where the Multi-Task decoder makes

correct renaming predictions and correct retyping predictions,

and we evaluate the retyping and renaming performance on

4336 31st USENIX Security Symposium USENIX Association

DIRTY DIRTYNDL

__int64 struct __m128d __int64 struct __m128d

__int64 74.3% struct __m128d 78.7% __int64 67.0% double 33.1%

<Component> 5.7% <Component> 15.4% int 6.3% <Component> 27.2%

void * 1.7% void 2.9% <Component> 6.0% __int64 10.3%

char * 1.7% __int128 2.2% unsigned int 1.5% struct __m128d 5.9%

const char * 1.6% double 0.7% char * 1.2% int 3.7%

Table 7: Comparative examples from DIRTY with and without Data Layout encoder from the Function not in training partition.

Predictions inside a gray box have a different data layout than the ground truth type. DIRTY effectively suppresses these, which

helps guide the model to a correct prediction. The structure’s full type is struct __m128d {double[2] m128d_f64;}.

Retyping Renaming

Model Overall XName Overall XType

Retyping 75.8 90.6 - -

Renaming - - 66.4 82.6

Multi-Task 74.9 92.3 65.1 84.6

Table 8: Performance comparison of the Retyping-only,

Renaming-only, and Multi-Task decoders. Overall perfor-

mance is shown, in addition to performance on retyping when

the name is correct (XName) and performance on renaming

when the type is correct (XType).

GNU coreutils

Model -O0 -O1 -O2 -O3

DIRTY 48.20 46.01 46.04 46.00

Table 9: Accuracy comparison of DIRTY on the GNU core-

utils benchmark compiled with -O0, -O1, -O2, and -O3 opti-

mization levels.

them, respectively.10 The Multi-Task decoder outperforms

the specialized models by 1.9% and 2.4% relatively on these

metrics, in spite of the longer decoding length. This means

the type and name predictions from the Multi-Task decoder

are more consistent with each other than from specialized

models. In other words, making a correct prediction on one

task increases the probability of success on the other task.

In practice, this offers additional flexibility and opens the

opportunity for more applications. For example, consider a

cooperative setting where a human decompilation expert uses

DIRTY as an analysis tool. The human expert may be unsat-

isfied with the model’s top prediction and want to switch to

another one in the top-k candidates list. With a Multi-Task de-

coder, the model adjusts the name prediction for that variable,

which is impossible with the specialized decoders.

10The probability of success on the other task also increases by chance,

because success on one task implies it is easier than average. We have

eliminated this influence by, e.g., comparing 92.3 to 90.6, instead of 74.9.

3.5 RQ4: Compiler Optimization Levels

We study the impact of compiler optimizations on DIRTY’s

accuracy. In keeping with the spirit of the OSPREY evaluation

on coreutils compiled with -O3, we choose coreutils as our

evaluation dataset. However, since we did not have access to

the original dataset used by OSPREY except -O0, we recom-

piled GNU coreutils 3.2 ourselves using optimization levels

-O0, -O1, -O2, and -O3. Table 9 shows how accurately DIRTY

is able to recover the full type (including type and field names)

informaition at each optimization level. As expected, DIRTY

does best at -O0, since DIRTY is trained on -O0 code and

we believe -O0 code to be simpler. Going from -O0 to -O1,

DIRTY’s accuracy drops from 48.2% to 46.0%. However,

there is little difference in performance between -O1, -O2,

and -O3. This suggests that DIRTY does slightly better on

the optimization level of code it was trained on, but that the

effect of optimizations is small. We believe this is because

Hex-Rays recognizes and will “undo” some optimizations

so that the decompiled code will be very similar. For exam-

ple, unoptimized code will often reference stack variables

using a frame pointer, but optimized code will reference such

variables using the stack pointer, or even maintain them in

a register. But both implementations will look similar in the

decompiled code, since the mechanism used to reference the

variable is not important at the C level. Since DIRTY operates

on the decompiled code, the decompiler effectively insulates

DIRTY from these optimizations.

3.6 Illustration

To gain more qualitative insights into DIRTY’s predictions,

consider the example in Figure 8. The code shown is the Hex-

Rays output, cleaned for presentation. Here, we would like to

rename and retype the arguments a1, a2, and a3, in addition to

the variable v1. The table in Figure 8 shows the developer’s

chosen types and names together with DIRTY’s suggestions.

DIRTY suggests the same types and names as the developer

for a3 and v1, and the same type but a different name for a2.

Although the names disagree for a2, we note that pic is an

abbreviation for picture, so the disagreement is minor. We

USENIX Association 31st USENIX Security Symposium 4337

int find_unused_picture(int a1, int a2, int a3) {

int i, j, v1;

if (a3) {

for (i = <Num>;; ++i) {

if (i > <Num>)

goto LABEL_13;

if (!*(*(<Num> * i + a2) + <Num>))

break;

}

v1 = i;

} else {

for (j = <Num>;; ++j) {

if (j > <Num>) {

LABEL_13:

av_log(a1, <Num>, <Str>);

abort();

}

if (pic_is_unused(<Num> * j + a2))

break;

}

v1 = j;

}

return v1;

}

ID Developer DIRTY

a1 AVCodecContext_0 *avctx MpegEncContext_0 *s

a2 Picture_0 *picture Picture_0 *pic

a3 int shared int shared

v1 int result int result

Figure 8: Simplified Hex-Rays output. <Num> and <Str> are

placeholder tokens for constant numbers and strings respec-

tively. The table summarizes the original developer names and

types along with the names and types predicted by DIRTY.

also observe that Picture_0 *, the type of a2 itself carries a

lot of semantic information; even if DIRTY was unable to

suggest a meaningful name, Picture_0 *a2 is still helpful for

reverse engineering.

The developer and DIRTY disagree on both the name and

the type of a1. In this case, the name chosen by DIRTY

(s) would probably not be considered a very useful im-

provement over a1. However, the type suggested by DIRTY

(MpegEncContext_0 *) could still be quite useful to a reverse

engineer, even if it is inaccurate. It suggests that this argument

is a “context”, and hints that this function is used for video.

4 Related Work

Other projects related to type recovery for decompilation are

REWARDS [33], TIE [31], Retypd [39], and OSPREY [58].

Unlike our approach, they use program analyses to compute

constraints on types. Additionally, they are either limited to

only predicting the syntactic type (TIE, Retypd, OSPREY),

or only predicting one of a small set of hand-written types

(150 for REWARDS). In comparison, DIRTY automatically

generates a database of types by observing real-world code.

Other projects use machine learning to predict types, but tar-

get different languages than DIRTY. DEEPTYPER [20] learns

type inference for JavaScript and OPTTYPER [40], LAMB-

DANET [52], R-GNNNS-CTX [56] target TypeScript. Training

a machine learning algorithm for the task of typing dynamic

languages like these is a slightly easier task: generating a

parallel corpus is simple, since the types can simply be re-

moved without changing the semantics. The DIRT dataset

is fundamentally different: including debug information of-

ten changes the layout of the code as the decompiler adds

structures and syntax for accessing them.

To the best of our knowledge, the most directly-related

work to DIRTY is TypeMiner [34]. TypeMiner is a pioneering

work, providing the proof-of-concept for recovering types

from C binaries. However, they use much simpler machine

learning algorithms and their dataset only consists of 23,482

variables and 17 primitive types. Escalada et al. [14] has

provided similar insights. They adopt simple classification

algorithms to predict function return types in C, but they only

consider from only 10 different (syntactic) types and their

dataset is limited to 2,339 functions from real programs and

18,000 synthetic functions.

Two other projects targeting the improvement of decom-

piler output using neural models are DIRE [29], which pre-

dicts variable names, DIRECT [38], which extends DIRE

using transformer-based models, and Nero [8], which gen-

erates procedure names. Other approaches work directly on

assembly [16, 26, 27], and learn code structure generation in-

stead of aiming to recover developer-specified variable types

or names. Similarly, DEBIN [18] and CATI [5] use machine

learning to respectively predict debug information and types

directly from stripped binaries without a decompiler.

5 Discussion

In this paper we presented DIRTY, a novel deep learning-

based technique for predicting variable types and names in

decompiled code. Still, DIRTY is limited in several ways that

provide key opportunities for future improvements.

Alternative Decompilers to Hex-Rays. We implement

DIRTY on top of the Hex-Rays decompiler because of its

positive reputation and the programmatic access it affords to

decompiler internals. However, DIRTY is not fundamentally

specific to Hex-Rays, and the technique should conceptually

work with any decompiler that names variables using DWARF

debug symbols. Note that, due to its recent popularity and

promise, we attempted to evaluate our techniques using the

newer, open-source Ghidra decompiler. Unfortunately, it is

currently infeasible, because Ghidra routinely failed to accu-

rately name stack variables based on DWARF. This appears

to be a combination of specific issues11 and the general de-

sign of the decompiler. Ghidra’s decompiler consists of many

passes which modify and augment the current decompilation.

11https://github.com/NationalSecurityAgency/ghidra/issues/2322

4338 31st USENIX Security Symposium USENIX Association

Some of these passes combine variables, but in doing so may

combine a DWARF-named variable with others. Since the

combined variable no longer corresponds directly with the

DWARF variable information, Ghidra discards the name. We

are optimistic, however, that when the above-mentioned is-

sues are addressed, Ghidra may again be a reasonable target

for our approach.

Generalizing to Unseen Types. A limitation of DIRTY’s

current decoder is that it can only predict types seen during

training. Fortunately, there appears, empirically, to be suf-

ficient redundancy across large corpora that DIRTY is still

frequently able to successfully recover structural types. This

lends credence to the hypothesis that code is natural, an ob-

servation that has been explored in several domains [9, 23].

It moreover appears that data layout is of particular impor-

tance here: layout information recovered from the decompiler

impose key constraints on the overall prediction problem. In-

deed, our results in Section 3.4 corroborate the intuition that

the Data Layout Encoder is especially important for succeed-

ing on previously unseen code.

We envision meaningful future opportunities to more di-

rectly expand DIRTY’s capabilities to predict unseen struc-

tures. This problem is analogous machine translation models

that must deal with rare or compound words (e.g., xenopho-

bia) that are not present in their dictionary. Byte Pair Encod-

ing [45] (BPE) is the most frequently used technique to tackle

this problem in the natural language domain. It automatically

splits words into multiple tokens that are present in the dic-

tionary (e.g., xeno and ##phobia). (The ## indicates the word

is still part of the current word, instead of a new word next

to it.) This technique greatly increases the number of words

a model can handle despite a limited dictionary size, and en-

ables the composition of new words that were not seen during

training. This suggests that we can similarly extend DIRTY’s

decoder to predict previously unseen types by decomposing

structure types into multiple pieces with BPE. For example,

a structure type struct timeval {time_t tv_sec; suseconds_t

tv_usec;} is split into four separate tokens, which are 1) struct

timeval, 2) time_t tv_vec;, 3) suseconds_t tv_usec;, and 4)

<end_of_struct>.

However, unfortunately, our preliminary experiments sug-

gested that this hurts overall prediction accuracy. It also sig-

nificantly slows down prediction, since it drastically increases

the number of decoding steps. It moreover requires finer-

grained accuracy metrics, like tree distance, to allow us to

measure and credit partially correct predictions. Based on

these observations, we believe unseen structure types should

be handled specially with a tailored model, a problem we

leave to future work.

Supporting Non-C Languages. A benefit of decompiling to

C is that as a relatively low-level language, it can express the

behavior of executables beyond those written in C. Although

we designed DIRTY to be used with C programs and types,

DIRTY can run on non-C programs, and will try to identify

the C type that best captures the way in which that variable is

being used. Thus, DIRTY provides value to analysts seeking

to understand non-C programs, similar to how C decompilers

such as Hex-Rays help analysts to understand C++ programs.

However, many compiled programming languages have

type systems far richer than C’s, and expressing these types

in terms of C types may be confusing. For example, in C++,

virtual functions are often implemented by reading an address

out of a virtual function table [13, 44]. Although techniques

like DIRTY can recognize such tables as structs or arrays of

code pointers, it does not reveal the connection to the higher-

level C++ behavior of virtual functions.

Extending DIRTY to support higher-level languages such

as C++ is an interesting open problem. To some degree, as

long as the decompiler is able to import the higher-level type

information from debug symbols into the decompiler output, it

should be possible to train DIRTY to recognize non-C types.

For instance, 6% of the programs in DIRT are written in

C++, and our evaluation measures DIRTY’s ability to predict

common C++ class types such as std::string. But recovering

higher level properties of these types, especially for those

never seen during training, is a challenging problem and is

likely to require language-specific adaptations [13, 44].

Limited Input Length. As common with Transformers, we

truncate the decompiled function if the length n exceeds

some upper limit max_seq_length, which makes training

more efficient. In our experiments we set max_seq_length

to 512 for two reasons. First, 512 is the default value for

max_seq_length in many Transformer models [10, 50]. Sec-

ond, in DIRT, the average number of tokens in a function is

220.3, and only 8.8% of the functions have more than 512

tokens, i.e., we exclude relatively few of the possible inputs

encountered in the wild. Still, if enough computational re-

sources are available, we recommend using efficient Trans-

former implementations such as Big Bird [57] instead. These

can deal with much larger max_seq_length and can be used

out-of-the-box to replace our implementation.

6 Conclusion

The decompiler is an important tool used for reverse engi-

neering. While decompilers attempt to reverse compilation by

transforming binaries into high-level languages, generating

the same code originally written by the developer is impossi-

ble. Many of the useful abstractions provided by high-level

languages such as loops, typed variables, and comments, are

irreversibly destroyed by compilation. Decompilers are able

to deterministically reconstruct some structural properties of

code, but comments, variable names, and custom variable

types are technically impossible to recover.

In this paper we address the problem of assigning decom-

piled variables meaningful names and types by statistically

USENIX Association 31st USENIX Security Symposium 4339

modeling how developers write code. We present DIRTY (De-

compIled variable ReTYper), a novel technique for improving

the quality of decompiler output that automatically generates

meaningful variable names and types. Empirical evaluation

of DIRTY on a novel dataset of C code mined from GitHub

shows that DIRTY outperforms prior work approaches by

a sizable margin, recovering the original names written by

developers 66.4% of the time and the original types 75.8% of

the time.

Acknowledgments

The authors would like to thank Zhou Zhang and the authors

of OSPREY for providing us with data and feedback for our

comparative experiments. This material is based upon work

supported in part by the National Science Foundation (awards

1815287 and 1910067).

References

[1] Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,

Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and

Quoc V. Le. Towards a human-like open-domain chat-

bot. arXiv preprint arXiv:2001.09977, 2020.

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu,

and Charles Sutton. A survey of machine learning for

big code and naturalness. ACM Computing Surveys

(CSUR), 51(4):81, 2018.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. Neural machine translation by jointly learning to

align and translate. In International Conference on

Learning Representations, ICLR, 2015.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-

lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. arXiv

preprint arXiv:2005.14165, 2020.

[5] Ligeng Chen, Zhongling He, and Bing Mao. CATI:

Context-assisted type inference from stripped binaries.

In International Conference on Dependable Systems

and Networks, DSN, 2020.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya

Sutskever. Generating long sequences with sparse trans-

formers. arXiv preprint arXiv:1904.10509, 2019.

[7] Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase rep-

resentations using RNN encoder-decoder for statistical
machine translation. In Conference on Empirical Meth-

ods in Natural Language Processing, EMNLP, 2014.

[8] Yaniv David, Uri Alon, and Eran Yahav. Neural re-

verse engineering of stripped binaries using augmented

control flow graphs. Proceedings of the ACM on Pro-

gramming Languages, 4(OOPSLA):1–28, 2020.

[9] Premkumar Devanbu. New initiative: The naturalness

of software. In International Conference on Software

Engineering, ICSE, pages 543–546, 2015.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: Pre-training of deep bidi-

rectional transformers for language understanding. In

Annual Conference of the North American Chapter of

the Association for Computational Linguistics, NAACL-

HLT, pages 4171–4186, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander

Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias

Minderer, Georg Heigold, Sylvain Gelly, et al. An

image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929,

2020.

[12] Lukas Durfina, Jakub Kroustek, and Petr Zemek. PsybOt

malware: A step-by-step decompilation case study. In

Working Conference on Reverse Engineering, WCRE,

pages 449–456, 2013.

[13] Rukayat Ayomide Erinfolami and Aravind Prakash.

Devil is virtual: Reversing virtual inheritance in C++

binaries. In Proceedings of the ACM Conference on

Computer and Communications Security, CCS, pages

133–148, 2020.

[14] Javier Escalada, Ted Scully, and Francisco Ortin. Im-

proving type information inferred by decompilers

with supervised machine learning. arXiv preprint

arXiv:2101.08116, 2021.

[15] William Fedus, Barret Zoph, and Noam Shazeer. Switch

transformers: Scaling to trillion parameter models

with simple and efficient sparsity. arXiv preprint

arXiv:2101.03961, 2021.

[16] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-

dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:

An end-to-end neural program decompiler. In Con-

ference on Neural Information Processing Systems,

NeurIPS, 2019.

[17] Edward M. Gellenbeck and Curtis R. Cook. An inves-

tigation of procedure and variable names as beacons

during program comprehension. Technical report, Ore-

gon State University, 1991.

4340 31st USENIX Security Symposium USENIX Association

[18] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Ray-

chev, and Martin Vechev. DEBIN: Predicting debug

information in stripped binaries. In Conference on Com-

puter and Communications Security, CCS, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pages 770–778, 2016.

[20] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and

Miltiadis Allamanis. Deep learning type inference. In

Joint Meeting of the European Software Engineering

Conference and the Symposium on the Foundations of

Software Engineering, ESEC/FSE, 2018.

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (GELUs). arXiv preprint arXiv:1606.08415, 2016.

[22] Hex-Rays. The hex-rays decompiler, 2019. URL https:

//www.hex-rays.com/products/decompiler/.

[23] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel,

and Premkumar Devanbu. On the naturalness of soft-

ware. In International Conference on Software Engi-

neering, ICSE, pages 837–847. IEEE, 2012.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural Computation, 9(8):1735–1780,

1997.

[25] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire

Le Goues, and Bogdan Vasilescu. Meaningful variable

names for decompiled code: A machine translation ap-

proach. In International Conference on Program Com-

prehension, ICPC, pages 20–30, May 2018.

[26] Deborah S. Katz, Jason Ruchti, and Eric Schulte. Using

recurrent neural networks for decompilation. In Interna-

tional Conference on Software Analysis, Evolution and

Reegnineering, SANER, pages 346–356, 2018.

[27] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran

Yahav. Towards neural decompilation. arXiv preprint

arXiv:1905.08325, 2019.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference

on Learning Representations, ICLR, 2015.

[29] Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz,

Miltiadis Allamanis, Claire Le Goues, Graham Neubig,

and Bogdan Vasilescu. DIRE: A neural approach to de-

compiled identifier naming. In International Conference

on Automated Software Engineering, ASE, 2019.

[30] Dawn Lawrie, Christopher Morrell, Henry Feild, and

David Binkley. What’s in a name? A study of identifiers.
In International Conference on Program Comprehen-

sion, ICPC, pages 3–12, 2006.

[31] JongHyup Lee, Thanassis Avgerinos, and David Brum-

ley. TIE: Principled reverse engineering of types in

binary programs. In Network and Distributed System

Security Symposium, NDSS, 2011.

[32] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan

Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Veselin Stoyanov, and Luke Zettlemoyer. BART: De-

noising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. In

Annual Meeting of the Association for Computational

Linguistics, ACL, pages 7871–7880, 2020.

[33] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Auto-

matic reverse engineering of data structures from binary

execution. In CERIAS Annual Security Symposium, CE-

RIAS, 2010.

[34] Alwin Maier, Hugo Gascon, Christian Wressnegger, and

Konrad Rieck. TypeMiner: Recovering types in binary

programs using machine learning. In International Con-

ference on Detection of Intrusions and Malware, and

Vulnerability Assessment, DIMVA, 2019.

[35] Paul Michel and Graham Neubig. Extreme adaptation

for personalized neural machine translation. In Annual

Meeting of the Association for Computational Linguis-

tics (Short Papers), ACL, pages 312–318, 2018.

[36] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, and

Bing Xiang. Abstractive text summarization using

sequence-to-sequence RNNs and beyond. In SIGNLL

Conference on Computational Natural Language Learn-

ing, CoNLL, pages 280–290, 2016.

[37] Hermann Ney, Dieter Mergel, Andreas Noll, and

Annedore Paeseler. A data-driven organization of the dy-

namic programming beam search for continuous speech

recognition. In International Conference on Acoustics,

Speech, and Signal Processing, ICASSP, 1987.

[38] Vikram Nitkin, Anthony Saieva, Baishakhi Ray, and Gail

Kaiser. DIRECT: A transformer-based model for de-

compiled identifier renaming. In Workshop on Natural

Language Processing for Programming, 2021.

[39] Matthew Noonan, Alexey Loginov, and David Cok.

Polymorphic type inference for machine code. In Con-

ference on Programming Language Design and Imple-

mentation, PLDI, pages 27–41, 2016.

[40] Irene Vlassi Pandi, Earl T Barr, Andrew D Gordon, and

Charles Sutton. OptTyper: Probabilistic type inference

by optimising logical and natural constraints. arXiv

preprint arXiv:2004.00348, 2020.

USENIX Association 31st USENIX Security Symposium 4341

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

PyTorch: An imperative style, high-performance deep

learning library. In Conference on Neural Information

Processing Systems, NeurIPS, pages 8024–8035. 2019.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei

Li, and Peter J. Liu. Exploring the limits of transfer

learning with a unified text-to-text transformer. Journal

of Machine Learning Research, 21:1–67, 2020.

[43] Eric Schulte, Jason Ruchti, Matt Noonan, David Ciar-

letta, and Alexey Loginov. Evolving exact decompila-

tion. In Workshop on Binary Analysis Research, BAR,

2018.

[44] Edward J. Schwartz, Cory F. Cohen, Michael Duggan,

Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines.

Using logic programming to recover C++ classes and

methods from compiled executables. In Conference on

Computer and Communications Security, CCS, 2018.

[45] Rico Sennrich, Barry Haddow, and Alexandra Birch.

Neural machine translation of rare words with subword

units. arXiv preprint arXiv:1508.07909, 2015.

[46] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Andrew Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, and Giovanni Vigna. (State of) The art of war:

Offensive techniques in binary analysis. In Symposium

on Security and Privacy, SP, pages 138–157, 2016.

[47] Asia Slowinska, Traian Stancescu, and Herbert Bos.

Howard: A dynamic excavator for reverse engineering

data structures. In Network and Distributed System Se-

curity Symposium, NDSS, 2011.

[48] Katerina Troshina, Yegor Derevenets, and Alexander

Chernov. Reconstruction of composite types for decom-

pilation. In Working Conference on Source Code Analy-

sis and Manipulation, SCAM, pages 179–188, 2010.

[49] Michael James van Emmerik. Static Single Assignment

for Decompilation. PhD thesis, University of Queens-

land, 2007.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. In

Conference on Neural Information Processing Systems,

NeurIPS, pages 6000–6010, 2017.

[51] Nguyen Xuan Vinh, Julien Epps, and James Bailey. In-

formation theoretic measures for clusterings compari-

son: Variants, properties, normalization and correction
for chance. The Journal of Machine Learning Research,

11:2837–2854, 2010.

[52] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig.

LambdaNet: Probabilistic type inference using graph

neural networks. In International Conference on Learn-

ing Representations, ICLR, 2020.

[53] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,

Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and

Yoshua Bengio. Show, attend and tell: Neural image

caption generation with visual attention. In Interna-

tional Conference on Machine Learning, ICML, pages

2048–2057, 2015.

[54] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-

Padilla, and Matthew Smith. No more gotos: Decom-

pilation using pattern-independent control-flow struc-

turing and semantics-preserving transformations. In

Network and Distributed System Security Symposium,

NDSS, 2015.

[55] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-

Padilla, and Matthew Smith. Helping Johnny to analyze

malware: A usability-optimized decompiler and mal-

ware analysis user study. In Symposium on Security and

Privacy, SP, pages 158–177, 2016.

[56] Fangke Ye, Jisheng Zhao, and Vivek Sarkar. Advanced

graph-based deep learning for probabilistic type infer-

ence. arXiv preprint arXiv:2009.05949, 2020.

[57] Manzil Zaheer, Guru Guruganesh, Avinava Dubey,

Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip

Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big

Bird: Transformers for longer sequences. arXiv preprint

arXiv:2007.14062, 2020.

[58] Z. Zhang, Y. Ye, W. You, G. Tao, W. Lee, Y. Kwon,

Y. Aafer, and X. Zhang. OSPREY: Recovery of variable

and data structure via probabilistic analysis for stripped

binary. In Symposium on Security and Privacy, SP, pages

872–891, 2021.

[59] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei,

Yonghwi Kwon, and Xiangyu Zhang. BDA: Practical

dependence analysis for binary executables by unbiased

whole-program path sampling and per-path abstract in-

terpretation. Proceedings of the ACM on Programming

Languages, 3(OOPSLA):1–31, 2019.

4342 31st USENIX Security Symposium USENIX Association

A Experimental Setup

Hyperparameter Configurations Our detailed hyperpa-

rameters are shown in Table 10. We use a six-layer Trans-

former Encoder for the code encoder, a three-layer Trans-

former Encoder for the data layout encoder, and a six-layer

Transformer Decoder for the type decoder. We set the num-

ber of attention heads to 8. Input embedding dimensions and

hidden sizes dmodel are set to 512 for the code encoder, and

256 for the data layout encoder. Following prior work, we

empirically set the size of the inner-layer of the position-

wise feed-forward inner representation size d f f to four times

the hidden size dmodel [50]. We use the gelu activation func-

tion [21] rather than the standard relu, following BERT [10].

During training, we set the batch size to 64 and the learning

rate to 1× 10−4. We use the Adam optimizer [28] and set

β1 = 0.9,β2 = 0.999 and ε = 1× 10−8. We apply gradient

clipping by value within the range [−1,1]. We also apply

a dropout rate of 0.1 as regularization. We train the model

for 15 epochs. At the inference time, we use beam search to

predict the types for each function with a beam size of 5.

Hardware Configuration We conducted all experiments

on Linux servers equipped with two Intel Xeon Gold 6148

processors, 192GB RAM and 8 NVIDIA Volta V100 GPUs.

We expect that a similar machine could reproduce the full

training and testing stage of our main experiments in 120

GPU hours.

Software We implemented our models with PyTorch [41]

version 1.5.1 and Python 3.6. We plan to release our dataset,

code and pre-trained models at publication time.

Hyperparameter DIRTY DIRTYS

Max Sequence Length 512 512

Encoder/Decoder layers 6/6 3/3

Hidden units per layer 512 256

Attention heads 8 4

Layout encoder layers 3 3

Layout encoder hidden units 256 128

Batch size 64 64

Training epochs 15 30

Learning rate 10−4 10−4

Adam ε 10−8 10−8

Adam β1 0.9 0.9

Adam β2 0.999 0.999

Gradient clipping 1.0 1.0

Dropout rate 0.1 0.1

Number of parameters 167M 40M

Table 10: Summary of the hyperparameters of DIRTY and

the smaller DIRTYS.

Dataset DIRTY

#Binaries 75,656

Unique #functions (train) 718,765

Unique #functions (valid) 139,473

Unique #functions (test) 139,394

% func body in train (valid) 64.6%

% func body in train (test) 65.5%

Avg. #code tokens 220.3

Median #code tokens 86

Avg. #identifiers per function 5.1

Median #identifiers per function 3

Table 11: Statistics of the DIRT datasets.

USENIX Association 31st USENIX Security Symposium 4343

