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Abstract

Often machine learning and statistical mod-
els will attempt to describe the majority of
the data. However, there may be situations
where only a fraction of the data can be fit
well by a linear regression model. Here, we
are interested in a case where such inliers can
be identified by a Disjunctive Normal Form
(DNF) formula. We give a polynomial time
algorithm for the conditional linear regres-
sion task, which identifies a DNF condition
together with the linear predictor on the cor-
responding portion of the data. In this work,
we improve on previous algorithms by remov-
ing a requirement that the covariances of the
data satisfying each of the terms of the con-
dition have to all be very similar in spectral
norm to the covariance of the overall condi-
tion.

1 INTRODUCTION

Linear regression is a technique frequently used in sta-
tistical and data analysis. The task for standard linear
regression is to fit a linear relationship among variables
in a data set. Often, the goal is to find the most par-
simonious model that can describe the majority of the
data. In this work, we consider the situation where
only a small portion of the data can be accurately
modeled using linear regression. More generally, in
many kinds of real-world data, portions of the data of
significant size can be predicted significantly more ac-
curately than by the best linear model for the overall
data distribution: Rosenfeld et al. (2015) showed that
there are attributes that are significant risk factors for
gastrointestinal cancer in certain subpopulations, but
not in the overall population. Hainline et al. (2019)
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demonstrated that a variety of standard (real-world)
regression benchmarks have portions that are fit signif-
icantly better by a different linear model than the best
model for the overall data set; Calderon et al. (2020)
presented further, similar findings. We will consider
cases where linear regression fits well when the data
set is conditioned on a simple condition, which is un-
known to us. We study the task of finding such a linear
model, together with a formula on the data attributes
describing the condition, i.e., the portion of the data
for which the linear model is accurate.

This problem was introduced by Juba (2017), who
gave an algorithm for conditional sparse linear regres-
sion, using the maximum residual as the objective.
This was extended to the usual squared-error loss (as
well as other ℓp losses) by Hainline et al. (2019). Juba
(2017) also gave an algorithm for the general (non
sparse) case that could only find a small fraction of
the largest such condition. All these algorithms find
conditions describing subpopulations that are a union
of some basic subsets of data, selected by “terms.” For
example, simple families of terms may be obtained by
considering the data for which a small set of categor-
ical attributes take some specific values, or based on
whether the value of some real attributes lie in specific
quantiles of the distribution. Calderon et al. (2020)
gave an algorithm for non sparse linear regression that
matches the size of the largest condition, but only un-
der a new assumption, that the covariances of the data
satisfying each of the terms of the condition have to
all be very similar in spectral norm to the covariance
of the overall condition.

Uniform covariances across terms is an extremely re-
strictive assumption: it means that essentially the only
difference between populations selected by the various
terms may be in their means. Note that the prob-
lem presupposes that there is significant heterogeneity
in the conditional covariances across the distribution
overall, or else the same linear model would be equally
accurate across the various subsets; concretely, the risk
factors found by Rosenfeld et al. (2015) are a kind of
correlation between a factor and the target variable
that exists in the identified subpopulation, but not in
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the larger population. In a real-world data set, there
is no reason to expect that the only relationships that
exist would involve the target attribute; relationships
between other pairs of attributes may appear when
we consider one term or another. For example, in-
tuitively, if the data lies on a curved manifold, then
conditioning on some attribute taking values that se-
lect one portion of the curve or another would alter
such relationships since the tangent space changes, and
the covariance matrix in any local region of the man-
ifold only has eigenvectors lying in the tangent space.
(Note that we only require a common component in
the orthogonal subspace for a linear model to exist.)
So, Calderon et al’s algorithm can only be guaranteed
to find highly homogeneous subsets of a distribution
that features significant heterogeneity overall. In their
work, Calderon et al. concluded with the question of
whether or not this new property was necessary to ob-
tain a computationally efficient algorithm.

1.1 Our Contribution

In this work, we answer the questions posed by
Calderon et al. (2020) and Juba (2017), solving
the form of the task originally sought: we give a
polynomial-time algorithm that identifies a condition
that covers as much of the distribution as the optimal
condition and a linear model which provides a good
fit when conditioned on said condition, even if the
terms of the condition feature heterogeneous covari-
ances. The only assumptions on the data we use are
bounds on the moments of the data itself (including
hypercontractivity) and generalizations of the stan-
dard Gaussian noise assumption on the subset of the
data described by the unknown condition. Note that
in regression, the error can be arbitrarily large with ar-
bitrary probability, so bounds on the moments of the
data are necessary to empirically estimate the error.

Our algorithm is inspired by the list-decodable sub-
space recovery algorithm presented by Bakshi and
Kothari (2021). Their work uses the sum of squares
method to construct an algorithm which addresses ro-
bust subspace recovery. We present an analogous algo-
rithm for conditional linear regression. As in Calderon
et al. (2020), this is done by using a collection of sub-
sets, which we will call “terms,” in place of individual
points. We thus make use of the fact that by draw-
ing many examples per term, the noise in the data
selected by a term can be better controlled, leading to
more accurate estimates.

We stress that in contrast to the guarantee that Bak-
shi and Kothari obtain for their problem, we can ob-
tain arbitrary accuracy with an algorithm that runs
in fixed polynomial time, with an exponent that does
not depend on the desired accuracy; we only require a

sufficient (polynomial) number of examples from the
target distribution, and our running time has only a
low-order polynomial dependence on the size of the
data set. (The dependence on the dimension, by con-
trast, while fixed, is a higher degree polynomial due to
our use of the sum-of-squares method; reducing this
dependence is a key challenge for future work, see Sec-
tion 4.) In particular, given only the certifiable hy-
percontractivity assumption, Bakshi and Kothari ob-
served that they do not obtain useful estimates for
linear regression in fixed polynomial time: a O(1/µ)-
accurate estimate is not meaningful for unit-norm co-
efficient vectors when µ ≤ 1/2.

Moreover, for the related problem of robust linear re-
gression with a minority of inliers (discussed further
below), all known approaches require a “certifiable
anticoncentration” assumption that is much more re-
strictive, and cannot be satisfied by distributions sup-
ported on lower-dimensional manifolds, or discrete dis-
tributions such as the uniform distribution on the hy-
percube, for example. Indeed, Karmalkar et al. (2019)
show that anticoncentration is necessary for the robust
linear regression problem, but our work shows that it
is not necessary for conditional linear regression. Fur-
thermore, Diakonikolas et al. (2021) gave lower bounds
for the d-dimensional robust linear regression problem
in the statistical query model of dO(1/µ) queries. It was
thus unclear whether or not a fixed polynomial depen-
dence, in which 1/µ does not appear in the exponent,
was even possible for our problem.

1.2 Related Work

Our work is both technically and conceptually re-
lated to “list-decodable” linear regression. Classical
work in robust statistics (Huber, 1981; Rousseeuw and
Leroy, 1987) considers situations where a minority
subset of the data consists of “outliers” that should
be ignored. Recent works (Diakonikolas et al., 2019;
Prasad et al., 2020, e.g.) have proposed methods to ro-
bustly estimate parameters for a wide variety of mod-
els. In this classical setting, it did not make sense
to consider the possibility that a majority of the data
could be “outliers,” in part because there would no
longer be a unique, dominant solution to consider.
But, a recently proposed model of “list-decodable”
robust statistics (Charikar et al., 2017) (similarly to
classical algorithms such as RANSAC (Fischler and
Bolles, 1981) for subspace discovery) overcomes this
obstacle by permitting a list of possible estimates
or models to be produced, provided that the list is
not too long (generally, O(1/µ) estimators for a µ-
fraction of the data) and that an accurate estimate
appears somewhere in the list. In particular, algo-
rithms for list-decodable linear regression have been
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proposed (Raghavendra and Yau, 2020; Karmalkar
et al., 2019) (see also Bakshi and Kothari (2021)). Al-
though we have formulated our problem in such a way
that we only produce a single arbitrary model as out-
put, we could have returned a list of models as well (or
vice-versa, select a suitable model from such a list).
The main distinction is that in this line of work, on
the one hand, one does not need to produce a DNF
that identifies the inliers, in contrast to our setting.
Note that without this formula, we cannot tell when
we should use one of the models versus another to
make predictions for new data. Of course, on the other
hand, in these works one is not promised that such a
DNF exists, either, and so the approach used in our
analysis cannot be used in these problems.

Another similar line of work to conditional linear re-
gression is selective regression (El-Yaniv and Wiener,
2012): here as well, the objective is to identify a frac-
tion of the data that can be fit well. But in contrast to
our setting, this work was in a “transductive” learning
setting where a linear predictor is first identified, and
then a data set is given, and finally a ranking of that
data is produced. The interpretation is that the top
µ-fraction of the ranking comprise the data for which
the predictor is expected to be most accurate. In con-
trast, we jointly produce a linear model and a DNF
that identifies which further examples, drawn from the
same distribution, will be accurately predicted by the
model. In learning with rejection or abstention (Cortes
et al., 2016), on the other hand, a formula that selects
a subset of the data is identified, but the problem for-
mulation assigns a penalty to each example that is
“rejected” – thus, we have a default loss value that
our classifier can take in place of the loss that would
be incurred by this prediction, and this overall loss is
minimized over the entire data set. The cost of re-
jection here takes the place of the probability of the
subset µ in our problem.

All of these works have some similarities to classical
topics such as fitting mixture models (McCulloch and
Searle, 2001; Jiang, 2007). The primary difference is
that in such work, first, every data point should have
been drawn from some linear model in the mixture; if
some large subset of the data cannot be fit well by lin-
ear models, there is no guarantee that the model will
identify a small subset that can be fit well. A second
difference is that such models do not provide a (DNF)
rule to decide whether or not subsequent data is drawn
from one of the components versus another. There are
a number of topics such as regression trees (Quinlan,
1992), cluster-wise regression (Park et al., 2017), etc.
that do provide such rules, but again, if the data over-
all cannot be fit well, they do not guarantee that small
subsets of the data that can be fit well will be found.

2 PRELIMINARIES

We will assume that we have a data set containing N
samples, from a distribution D over {0, 1}n ×R

d ×R.
Each sample consists of an n dimensional vector of
Boolean attributes x, a d dimensional real valued vec-
tor of predictor variables y, and a real valued response
z, which we would like to predict. We will denote the
ith sample as (x,y, z)(i) and abbreviate it as x(i) when
there is no ambiguity.

For linear regression, we want to find a vector of coef-
ficients v such that z can be predicted by 〈v,y〉. Typ-
ically, v is found using ordinary least squares, which
minimizes the sum of (〈v,y〉−z)2 over all data points.
However, since we are interested in cases where the
majority of data cannot be fit, we want to find a sub-
set of points described by condition c where there ex-
ists a good linear model. Similar to previous work,
we will consider conditions represented by Disjunctive
Normal Form (DNF) formulas; other natural families
of formulas are either weaker or yield intractable prob-
lems (Juba, 2017). A k-DNF is defined to be a disjunc-
tion (OR) of terms where each term is a conjunction
(AND) of no more than k attributes.

Throughout this paper, we will use ‖ · ‖F to denote
the Frobenius norm and ‖·‖2 to denote the ℓ2-norm of
a vector. We will also define XI as the characteristic
function where XI(x) = 1 if x ∈ I and 0 otherwise. For
brevity, we will use [N ] = {n ∈ N|1 ≤ n ≤ N}. For a
matrix M , M � 0 denotes M is positive semidefinite.
Finally, we will use Π to denote projection matrices.

Definition 2.1 (Conditional Linear Regression).
Given a sample of N points, (x,y, z)(i), from a dis-
tribution D over {0, 1}n × R

d × R, the task of con-
ditional linear regression is to find a k-DNF, c, and
linear predictor, v = (v1 . . . vd)

T , such that, with high
probability, |〈v,y〉 − z| is bounded by ǫ when condi-
tioned on c(x) = 1 and c(x) = 1 is satisfied by at least
a µ fraction of the data.

We will present an algorithm that finds c and v that is
close to the optimal values of c∗ and v∗ given that the
distribution of samples conditioned on c∗ follows cer-
tain regularity conditions. Our algorithm is obtained
by solving a sum-of-squares relaxation (Parrilo, 2000;
Lasserre, 2001; Nesterov, 2000; Shor, 1987) of a poly-
nomial optimization problem:

Definition 2.2 (Sum-of-squares relaxation). Given a
system of polynomial inequalities for polynomials in
R[x1, . . . , xn], g1(x) ≥ 0, . . . , gr(x) ≥ 0, h1(x) =
0, . . . , hs(x) = 0, the degree-ℓ sum-of-squares relax-
ation is the following semidefinite optimization prob-
lem. The set of program variables u is indexed by
monomials over x1, . . . , xn of total degree at most ℓ,
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with uα denoting the variable for the monomial with
degree vector α ∈ N

n. We define the degree-ℓ mo-
ment matrix Mℓ(u) indexed by α,β ∈ N

n with total
degree at most ℓ/2 to be Mℓ(u)(α,β) = uα+β. For a
“shift” polynomial p ∈ R[x1, . . . , xn] of degree t, let-
ting pγ denote the coefficient of the monomial xγ in
p, the degree-ℓ localizing matrix Mℓ(pu) is defined by
Mℓ(pu)(α,β) =

∑
γ pγuα+β+γ for α and β of total

degree at most ℓ/2− t. Now, the program has the con-
straints that u0 = 1; Mℓ(u) � 0; Mℓ(hju) = 0 for j ∈
{1, . . . , s}; and Mℓ(

∏
j∈S gju) � 0 for S ⊆ {1, . . . , r}

s.t.
∑

j∈S deg(gj) ≤ ℓ.

Given a bound on the magnitudes of the values in-
volved, the solutions to semidefinite programs can
be approximated to arbitrary precision in polynomial
time by various algorithms; the current state-of-the-
art is due to Jiang et al. (2020).

A helpful interpretation of the sum-of-squares relax-
ation is that it defines a set of “pseudo-distributions”
that relax the moments of probability distributions
supported on solutions to the system of inequalities,
with an associated “pseudo-expectation” operator de-
fined on polynomials of degree up to ℓ (we borrow the
presentation from Raghavendra and Yau (2020)):

Definition 2.3 (Pseudo-distribution (Barak et al.,
2012)). A level ℓ pseudo-distribution is a finitely-
supported function D : Rn → R such that

∑
x D(x) =

1 and
∑

x D(x)f(x)2 ≥ 0 for every polynomial f of
degree at most ℓ/2.

Definition 2.4 (Pseudo-expectation (Barak et al.,
2012)). The pseudo-expectation of a function f on R

d

with respect to a pseudo-distribution D, denoted by
ẼD(x) =

∑
x D(x)f(x).

A low-degree pseudo-distribution is generally not a
probability distribution, and we generally cannot sam-
ple from it. The quality of a sum-of-squares relax-
ation is characterized by “sum-of-squares proofs”—
under mild conditions, the bounds obtained by the
relaxation of a given degree match the optimal bound
that can be proved via a sum-of-squares proof (Parrilo,
2000; Lasserre, 2001; Nesterov, 2000; Shor, 1987):

Definition 2.5 (Sum of Squares proofs (Grigoriev and
Vorobjov, 2002)). Fix a set of polynomial inequalities
A = {gi(x) ≥ 0}i∈[m] ∪ {hi(x) = 0}i∈[m′] in variables
x1, . . . , xn. A sum-of-squares proof of q(x) ≥ 0 is an
identity of the form


1 +
∑

k∈[m′′]

d
2
k(x)



 · q(x)

=
∑

j∈[m′′′]

s
2
j (x) +

∑

S⊆[m]

a
2
S(x) ·

∏

i∈S

gi(x) +
∑

i∈[m′]

bi(x)hi(x),

where {sj(x)}j∈[m′′′], {aS(x)}S⊆[m], {bi(x)}i∈[m′], and

{dk(x)}k∈[m′′] are real polynomials. If the expressions
in the identity have total degree at most D, we de-
note that q(x) ≥ 0 has a degree-D sum-of-squares proof
from A (where x1, . . . , xn are the indeterminates) by

A D

x1,...,xn

q(x) ≥ 0.

Moreover, a recent technique for extracting solutions
from the sum-of-squares relaxation has been to use
identifiability (Raghavendra et al., 2019): roughly, if
there is a sum-of-squares proof that a portion of the
solution is determined up to small ℓ2 error, then we
can read that portion of the solution off directly from
the degree-1 variables. Conceptually, our analysis will
follow this approach. Towards such an analysis, we re-
quire that the data/noise possess some niceness prop-
erties in a form that is amenable to sum-of-squares:

Definition 2.6 (Certifiable Hypercontractivity, Sec-
tion 2.1 of Bakshi and Kothari (2021)). A distribution
D over R

d has C-hypercontractive degree-2 polynomi-
als if for every d× d matrix Q,

Ex∼D

(

x
⊤
Qx− tr(Q)

)2h

≤ (Ch)h
(

Ex∼D

(

x
⊤
Qx

)2
)h

.

We say that the hypercontractivity is ℓ-certifiable if
there is a degree-ℓ sum-of-squares proof of this inequal-
ity with Q as an indeterminate.

Lemma 2.7 (Certifiable Hypercontractivity Under
Sampling. Lemma 6.11 in Bakshi and Kothari
(2021)). Let D be a 1-subgaussian, 2h-certifiably C-
hypercontractive distribution over R

d. Let S be a set
of n = Ω((hd)8h) i.i.d. samples from D. Then, with
probability at least 1−1/poly(n), the uniform distribu-
tion on S is h-certifiably (2C)-hypercontractive.

In linear regression, it is standard and convenient
to assume Gaussian residuals with mean 0 and con-
stant variance σ2. We stress that in order to em-
pirically estimate the squared error of candidate lin-
ear models, we need some control on the moments of
the loss function, which for various candidates corre-
sponds to various quadratic polynomials; hypercon-
tractivity of such quadratic polynomials gives such
bounds. Many distributions, including the Gaussian
distribution, uniform distribution on the Boolean hy-
percube, and log-concave distributions are examples of
certifiably hypercontractive distributions; affine trans-
formations, (bounded-weight) mixtures, and products
of such distributions are also certifiably hypercontrac-
tive (Klivans et al., 2018; Bakshi and Kothari, 2021).
It is thus reasonable to assume that the distribution
is, in particular, certifiably hypercontractive. Lemma
2.7 shows that empirical distributions from a certifi-
ably hypercontractive distribution are also certifiably
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hypercontractive. We also assume that degree-2 poly-
nomials similarly have certifiably bounded variances,
which also holds for such distributions (Bakshi and
Kothari, 2021).

3 RESULTS

3.1 Preprocessing

For our algorithm, we will consider the data as m dis-
joint subsets which we will call terms, {Ij}

m
j=1. To

find k-DNF conditions, we will create a term for each
setting of each set of k distinct attributes, but the algo-
rithm can be used with any family of sets we choose.
We will weight each term by the number of points,
|Ij |, in term Ij . We will define Igood as the collection
terms of the optimal k-DNF c∗. From the perspective
of the subspace recovery task (Bakshi and Kothari,
2021), Igood represents the collection of inliers, and
the remaining points represent the outliers. Since the
condition c∗ is satisfied by a µ fraction of the data,
|Igood| = µN . Additionally, our algorithm will as-
sume that each term Ij is pairwise disjoint. This can
be achieved by duplicating points that satisfy more
than one term (Calderon et al., 2020). We have N
data points and m terms, so there will be at most
mN data points following the duplication procedure.
Previously, |Igood| = |

⋃
Ij∈Igood

Ij | which increases to

|Igood| =
∑

Ij∈Igood
|Ij | with duplicate points. There-

fore size of Igood may blow up at most by a factor of
the number of terms in Igood. If we use N ′ to denote
the number of points after duplication, notice that
N ′

good/N
′ ≥ Ngood/mN . Thus the proportion of good

points after duplication is at least a µ/m (Calderon
et al., 2020). Hereafter, N , Igood, {Ij}

m
j=1, and µ will

be used to describe the data after duplication.

Our algorithm only obtains good estimates when each
term in Igood is large. Since the contribution of each
term is weighted by its size, we can remove sufficiently
small terms without compromising the quality of the
estimates. Finally, we will extend y(i) by a constant,
1, to allow for an intercept in the linear model.

3.2 Main algorithm: identifying the data

subspace

Recall that our goal is to find the linear predictor v

such that
〈
v,y(i)

〉
= z(i) for all points satisfying con-

dition c∗. If we extend v with -1 and y(i) with z(i),
the previous equation is equivalent to

〈
v,y(i)

〉
= 0.

This equation describes a hyperplane, which allows us
to look at our conditional linear regression problem
from the perspective of a subspace recovery problem.
Note that both v and y(i) are now (d+2)-dimensional
vectors. Let us use Π to denote a projection matrix

that projects onto this subspace and Π∗ to denote the
optimal projection.

Definition 3.1 (Reformulation of the Problem).
Given a distribution, D, over points {x(i),y(i), z(i)}Ni=1

and predefined disjoint subsets, {Ij}
m
j=1. Let Igood be

an unknown collection of terms containing points that
satisfy c∗ such that P (x ∈ Igood) ≥ µ. If there exists a
linear predictor, v∗, such that |〈v∗,y〉| ≤ ǫ and a pro-
jection matrix, Π∗, that projects onto the hyperplane
described by the linear predictor, then we want to find
Π̂ that approximates Π∗ such that ‖Π̂−Π∗‖F ≤ error.

Note that the Frobenius norm bounds the spectral
norm from above, where the squared error of v is pre-
cisely v⊤Π∗v, so a solution to this reformulation gives
an empirical estimate that is off by at most ‖v‖22·error.

The advantage of this reformulation is that the sub-
space is uniquely determined by the set of terms,
whereas if the subspace has lower dimension, there
may be a large space of linear models, which are thus
not identifiable: i.e., Π∗ does not necessarily have rank
n− 1 because the data may lie on a lower-dimensional
subspace, e.g., if not all covariates are informative.
This matters because sum-of-squares relaxes a pro-
gram capturing the moments of a distribution over
solutions—if there is a unique solution Π∗ to our esti-
mation problem (if it is “identifiable”), then the first
moments of Π in such a distribution must contain that
unique solution, hence we may be able to read the val-
ues of Π∗ off from a solution to the sum-of-squares
relaxation. But, if the solution is not unique, the val-
ues obtained from the sum-of-squares program may
be uninformative. What remains to be shown is that
there is a fixed degree sum-of-squares proof that the
solution is unique. Then, the values of a solution can
indeed be read off from a solution of a corresponding
degree sum-of-squares relaxation. (See Raghavendra
et al. (2019) for an overview of this approach.)

One remaining issue is that even if the subspace con-
taining the support of D|c∗ is identifiable once c∗ is
fixed, there may be multiple candidates c for c∗. If
each lies in a different subspace, the variables Π in a
solution to the sum-of-squares relaxation may not cor-
respond to any of these subspaces. An analogous issue
arises in robust linear regression in the minority-inlier
regime, and Karmalkar et al. (2019); Raghavendra and
Yau (2020) developed techniques to address this issue:
in particular, Algorithm 1 follows the “rounding by
votes” approach of Karmalkar et al. (2019). In this
approach, we (step 1) solve for, in particular, a set of
moments that minimizes the ℓ2-norm of the term indi-
cator variables’ first moments. Intuitively, this ensures
that we obtain a maximum entropy mixture of such
solutions, so in particular the solution has support on
any desired c∗ (c.f. Lemma 3.7). Then we (step 2) con-
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sider the solutions we would obtain by conditioning on
each one of these indicators. Intuitively, this “breaks
ties,” by asserting that one of the terms must be in-
cluded in the program’s solution. In particular, some
term must supply at least an average fraction of the
probability mass of c∗, and by Markov’s Inequality,
the error from Π∗ of this solution is only moderately
larger than the error if we had conditioned on c∗. This
latter error is small (Lemma 3.6), and hence we obtain
a sufficiently good estimate of Π∗ by conditioning on
a single term. In fact, we need not consider all of the
indicators, (step 3) it suffices to consider the solutions
obtained from a sample of O(1/µ) indicators, sampled
according to their weight in the solution. Apart from
the details of the relaxation, this is Algorithm 1.

The main issue is thus indeed to establish that the re-
laxation is sufficiently tight to permit identifiability of
Π∗ when conditioned on c∗, as captured in Lemma 3.6.
We remark that Karmalkar et al. (2019); Raghavendra
and Yau (2020) needed a stronger assumption to ob-
tain identifiability for regression, that the data was
anti-concentrated. Anticoncentration does not hold if,
e.g., the data lies on a lower-dimensional manifold, so
it is a restrictive assumption. By contrast, we only
need hypercontractivity and bounded moments to es-
timate the subspace.

We now state our main theorem, which is adapted from
Theorem 1.4 of Bakshi and Kothari (2021).

Theorem 3.2. Let Π∗ be a projection matrix for a di-
mension r subspace. Let D|c∗ be a mean 0, covariance
Π∗ distribution with 2-certifiably C-hypercontracitve
degree-2 polynomials with certifiably C-bounded vari-
ances. Then, there exists an algorithm that takes
n ≥ Ω

(
(d log d/µ)16

)
samples from D and outputs a

list L of O(1/µ) projection matrices such that with
probability at least 0.99 over the draw of the sample
and randomness of the algorithm, there is a Π̂ ∈ L
satisfying ‖Π̂−Π∗‖F ≤ O(1/µ) in polynomial time.

Let Aw,v,ǫ,Π be the SoS program in Figure 1 where w,
v, ǫ, and Π1, . . . ,Πm are indeterminates.

We interpret the program constraints as follows:

1. Defines y′(i) such that the inliers have mean 0
while preserving the constant 1 for the intercept
of the model.

2. Conditioned on c, the linear predictor v fits well.
3. The number of samples when conditioned on c

comprises a µ fraction of the data.
4. The Boolean constraint: wj ∈ {0, 1} for all j.
5. Defines Πj as a projection matrix corresponding

to the distribution of points in term Ij .
6. The residuals of the linear model follow a Gaus-

sian distribution with mean 0 and standard devi-
ation σ, bounding the average noise on the inliers.

7. The samples are certifiably hypercontractive.
8. Similarly, the variance is certifiably bounded.
9. The second moment of each predictor variable of

samples satisfying c is bounded by α.
10. Finally, the fourth moment of each predictor vari-

able of samples satisfying c is bounded by β.

We note that constraints 7 and 8 are infinite families of
constraints. But since there are sum-of-squares proofs
of these constraints, similar to Bakshi and Kothari
(2021), we can use the quantifier elimination technique
(Fleming et al., 2019, Section 4.3.4) to rewrite these
as standard constraints. We note that we substitute
the cubic polynomial y′⊤Qy′ for Q in the proof of the
hypercontractive inequality, thus obtaining a degree-6
sum-of-squares proof from the original degree-2 proof.

Algorithm 1

Input: Sample Y = {x(1),x(2), . . . ,x(N)} from D.
Output: A list L of O(1/µ) projection matrices
such that there exists Π̂ ∈ L satisfying ‖Π̂−Π∗‖F <
O(1/µ).
Operation:

1. Find a degree 12 pseudo-distribution
µ̃ satisfying Aw,v,ǫ,Π that minimizes√∑m

j=1 wj

∑
x(i)∈Ij

XIj (x
(i)).

2. For each i ∈ [N ] such that

Ẽµ̃

[∑m
j=1 wjXIj

(
x(i)

)]
> 0, let Π̂i =

Ẽµ̃[
∑m

j=1 wjXIj (x
(i))Π]

Ẽµ̃[
∑

m
j=1 wjXIj (x(i))]

. Otherwise, set Π̂i = 0.

3. Take J to be a random multi-set formed by
union of O(1/µ) independent draws of i ∈ [N ]

with probability
Ẽ[

∑m
j=1 wjXIj (x

(i))]
µN

4. Output L = {Π̂i|i ∈ J} where J ⊆ [N ]

For the following analysis, y(i) will denote the samples
after centering the inliers, which is equivalent to y′(i)

from the program.

The root of our improved analysis is Lemma 3.3 below,
which uses Chebyshev’s Inequality to give us an error
bound inversely proportional to N2. Thus, as we draw
more data, the right hand side goes to 0.

Lemma 3.3 (Frobenius Closeness of Empiri-
cal and True Covariances). Define w(Ij) =
1

µN

∑N
i=1 wjXIj (x

(i)). With probability 1− δ,

∥

∥

∥

∥

∥

1

µN

N
∑

i=1

wjXIj (x
(i))Πjy

(i)
y
(i)⊤Πj − w(Ij)Πj

∥

∥

∥

∥

∥

2

F

≤
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ
.
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

y
′(i) = y

(i) −
1

µN

m
∑

j=1

N
∑

i=1

wjXIj (x
(i))y(i) +

[

1
0d+1

]

∀j ∈ [m] wjXIj (x
(i))
(〈

v,y
′(i)
〉

+ ǫi

)

= 0

∀j ∈ [m]

m
∑

j=1

|Ij |wj = µN

∀j ∈ [m] wj = w
2
j

∀j ∈ [m] wjXIj (x
(i))Πj

(

y
′(i) −

[

0d+1

ǫi

])

= wjXIj (x
(i))

(

y
′(i) −

[

0d+1

ǫi

])

∀j ∈ [m]
∑

i∈Ij

wjǫi ≤ wj

σ

|Ij |

∀Q, j ∈ [m]
1

µN

N
∑

i

wjXIj (x
(i))
(

y
′(i)⊤

Qy
′(i) − tr(QΠj)

)2

≤
Cwj

µN

N
∑

i

XIj (x
(i))(y′(i)⊤

Qy
′(i))2

∀Q, j ∈ [m]
1

µN

N
∑

i

wjXIj (x
(i))(y′(i)⊤

Qy
′(i))2 ≤ C‖ΠjQΠj‖

2
F

∀j ∈ [m] wj

∑

i∈Ij

[

(y
′(i)
1 )2 . . . (y

′(i)
d+2)

2
]⊤

≤ wj |Ij |α1

∀j ∈ [m] wj

∑

i∈Ij

[

(y
′(i)
1 )4 . . . (y

′(i)
d+2)

4
]⊤

≤ wj |Ij |β1
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Figure 1: Polynomial constraints used in the SoS Program

Proof. The squared Frobenius norm is equivalent to
summing the square of each element. Thus we will
bound the square of each element using Chebyshev’s
inequality and then compute the sum. The matrix
1

µN

∑N
i=1 wjXIj (x

(i))Πjy
(i)y(i)⊤Πj can treated as a

random quantity that represents an empirical estimate
of w(Ij)Πj .

Recall wjXIj (x
(i))Πj(y

(i)−ǫi) = wjXIj (x
(i))(y(i)−ǫi)

from the program. Thus wjXIj (x
(i))Πjy

(i) =

wjXIj (x
(i))(y(i) + (Πj − I)ǫi). The empir-

ical covariance matrix can be rewritten as
1

µN

∑N
i=1 wjXIj (x

(i))(y(i) + (Πj − I)ǫi)(y
(i) +

(Πj − I)ǫi)
⊤. Let us use the notation Ar,s to denote

the element in row r and column s of a matrix A.
Using Chebyshev’s Inequality, the square of each
element in the Frobenius norm can be bounded
by

wj(d+2)2

µ2N2δ

(∑N
i=1 XIj (x

(i))V ar(((y(i) + (Πj − I)ǫi)

(y(i)+(Πj−I)ǫi)
⊤)r,s)

)
with probability 1−δ/(d+2)2.

Since y(i) has been extended with one, let us treat
the first element of y(i) as 1. Therefore, when r = 1 or
s = 1, V ar(((y(i)+(Πj−I)ǫi)(y

(i)+(Πj−I)ǫi)
⊤)r,s) ≤

α + α2σ2. For all other pairs of r and s, the variance
is bounded by β + 1α4. Due to the same coordinate
of y(i) being 1 for all i ∈ [N ], the second moment,

α, must be at least 1. Therefore, V ar(((y(i) + (Πj −
I)ǫi)(y

(i) + (Πj − I)ǫi)
⊤)r,s) ≤ β + α+ 7α4σ2.

Tying it all together, the square of each element can be

bounded by
wj |Ij |wj(d+2)2

µ2N2δ

(
β + α+ 7α4σ2

)
with prob-

ability 1 − δ/(d + 2)2. This is a (d + 2) dimen-
sional square matrix so there are (d + 2)2 elements.
Therefore, the squared Frobenius norm is bounded by
wj |Ij |wj(d+2)4

µ2N2δ

(
β + α+ 7α4σ2

)
and by a union bound,

this holds with probability at least 1− δ.

The improved bound of Lemma 3.3 then gives us an
adequate estimate of the covariances for regression.
We will crucially exploit the number of terms m be-
ing independent of the size of the sample N—this is
the key difference between conditional linear regression
and subspace recovery or robust linear regression.

Lemma 3.4 (Frobenius Closeness of Subsample to
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Covariance, w-samples).

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{∥

∥

∥

∥

∥

1

µN

N
∑

i=1

wjXIj (x
(i))y(i)

y
(i)⊤− w(Ij)Πj

∥

∥

∥

∥

∥

4

F

≤C
2

(

1

µN

N
∑

i=1

wjXIj (x
(i))

)

·

(

wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)

}

with probability at least 1− δ.

Lemma 3.5 (Frobenius Closeness of Subsample to
Covariance, I-samples).

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{∥

∥

∥

∥

∥

1

µN

N
∑

i=1

wjXIj (x
(i))y(i)

y
(i)⊤− w(Ij)Πj∗

∥

∥

∥

∥

∥

4

F

≤C
2

(

1

µN

N
∑

i=1

wjXIj (x
(i))

)

·

(

wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)

}

with probability at least 1− δ.

The proofs of Lemmas 3.4 and 3.5 are similar to Lem-
mas 4.5 and 4.6 in Bakshi and Kothari (2021), but by
using Lemma 3.3 we are able to form a tighter bound.

Lemma 3.6 (Frobenius Closeness of Π and Π∗,
Lemma 4.3 in Bakshi and Kothari (2021)).

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{(

m
∑

j=1

w(Ij)

)

‖Π−Π∗‖
2
F

≤ mC

√

25
(

wj(d+ 2)4(β + α+ 7α4σ2)

µNδ

)

}

.

with probability at least 1 − mδ where w(Ij) =
1

µN

∑N
i=1 wjXIj

(
x(i)

)
.

Lemma 3.6 admits a sum-of-squares proof and is
proved by using Lemmas 3.4 and 3.5. Here, it is crucial
that we can take N ≫ m. The full proofs for all new
lemmas are included in the supplementary material.

Lemma 3.7 (Large weight on inliers from high-
-entropy constraints. Fact 4.4 in Bakshi and
Kothari (2021) and Lemma 3.1 in Raghaven-
dra and Yau (2020)). Let Ẽξ be a pseudo-
distribution of degree ≥ 2 that satisfies Aw,v,ǫ,Π

and minimizes
∥∥∥Ẽξ

∑m
j=1

∑
i∈Ij

wjXIj

(
x(i)

)∥∥∥
2
. Then

Ẽξ

[∑m
j=1

∑
i∈Ij

wjXIj

(
x(i)

)]
≥ µ2N .

The main theorem, Theorem 3.2, can be obtained by
using Lemmas 3.6 and 3.7 and following a similar ar-
gument to Theorem 1.4 of Bakshi and Kothari (2021).

Proof. Given a distribution D|c∗ that is certifiably
hypercontractive, Lemma 2.7 implies that a large
enough sample of inliers will also be certifiably
hypercontractive with high probability. Algorithm 1
finds a pseudo-distribution that satisfies Aw,v,ǫ,Π and

minimizes
√∑m

j=1 wj

∑
x(i)∈Ij

XIj (x
(i)). Then

1
µN

∑m
j=1 wj

∑N
i=1 Ẽµ̃

[
XIj (x

(i))‖Π−Π∗‖
2
F

]
≤

mC
√
25

wj(d+2)4(β+α+7α4σ2)
µNδ by using Lemma

3.6. By applying Jensen’s Inequality
and taking the square root, we have
1

µN

∑m
j=1 wj

∑N
i=1 Ẽµ̃

∥∥[XIj (x
(i))Π]− [XIj (x

(i))Π∗]
∥∥2
F

≤

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . Due to the defi-

nition of Π̂i from the algorithm, we can rewrite the
inequality as 1

µN

∑m
j=1 wj

∑N
i=1 Ẽµ̃‖Π̂i − Π∗‖F ≤√

mC
√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . Let Z =

1
µN

∑m
j=1 wj

∑N
i=1 Ẽ[XIj (x

(i))]. Then, from Lemma

3.7, Z ≥ µ and 1
Z ≤ 1

µ . Dividing by Z on both sides

thus yields: 1
Z

(
1

µN

∑m
j=1 wj

∑N
i=1 Ẽµ̃‖Π̂i −Π∗‖F

)
≤

1
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ .

Since each index i ∈ [N ] is chosen with probabil-

ity Ẽ[
∑m

j=1 wjXIj (xi)]/
∑

i∈[N ] Ẽ[
∑m

j=1 wjXIj (xi)] =
1
µn Ẽ[

∑m
j=1 wjXIj (xi)], it follows that i ∈ Igood with

probability at least 1
µn

∑m
j=1 wj

∑
i∈Ij

Ẽ[XIj (xi)] =
Z ≥ µ. By Markov’s inequality applied to
the last equation, with probability 1

2 over the

choice of i conditioned on i ∈ Igood, ‖Π̂i −

Π∗‖F ≤ 2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . Thus,

in total, with probability at least µ/2, ‖Π̂i −

Π∗‖F ≤ 2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . There-

fore, with probability of at least 0.99 over the draw
of the random set J , the list constructed by the
algorithm contains Π̂ such that ‖Π̂i − Π∗‖F ≤

2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ .

For the running time, the SDP can be solved in polyno-
mial time and dominates the running time. Therefore,
the algorithm runs in polynomial time overall.

For a projection Π and a linear predictor, v, which
satisfies 〈v,y(i)〉 = 0 for all i ∈ Igood when disregarding
noise, v⊤Π = 0⊤. Therefore, for each candidate Π, we
can recover a candidate linear predictor u by treating
u as a solution to the linear system u⊤Π = 0⊤.
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3.3 Obtaining a k-DNF Condition

Once we obtain an approximation for v̂, we will use
the method described by Calderon et al. (2020) to ob-
tain a k-DNF condition for c. Since we have used
the same reductions, specifically the reduction to dis-
joint terms by duplicating points, we will be able to
invoke their analysis of their method. Let us de-
fine a loss function, f (i) : H → R, for each point

as f (i)(v) =
(
z(i) −

〈
v,y(i)

〉)2
. Let fIj (v) be a the

average loss over points in Ij . Finally, let us define
f̄(v) = E[fIgood(v)] as the expectation of average loss
for points in Igood. We will search through the Boolean
data space {x} for conditions c for each u. When we
find a pair (u, c) such that fc(u) is small and there are
are enough points satisfying c, then we return that pair
as a solution. For some constant accuracy parameter
γ and Lipschitz constant L, if ‖u − v∗‖ < γ, then
|f̄(u)− f̄(v∗)‖ ≤ γL = O(γ). Since f̄ is nonnegative,
if f̄(v∗) ≤ ǫ, then f̄(u) ≤ ǫ+ γ.

Recall that during preprocessing, we duplicated points
that satisfied more than 1 term so that each term is
disjoint. For m terms, each point can be copied at
most m times. Let t be the number of terms in c.

Lemma 3.8 (Lemma 3.4 in Calderon et al. (2020)).
Let u be such that ‖u − v∗‖ < γ. Then |f̄(u)| ≤
t(γ + ǫ).

After obtaining u such that fi(u) is close to fi(v
∗),

Calderon et al. (2020) use a greedy set-cover algorithm
to find the corresponding conditions c. The algorithm
greedily chooses terms Ij satisfying

∑
i∈Ij

f (i)(u) ≤

(1 + γ)µǫN to maximize the number of additional
points in Ij that did not satisfy the previously chosen
terms. It iterates until the number of points satisfying
the chosen terms is at least (1− γ/2)µN .

Lemma 3.9 (Lemma 3.5 in Calderon et al. (2020)).
If there exists an optimal k-DNF c∗ that is satisfied by
a µ-fraction of the points with total loss ǫ, then, the
weighted greedy set cover algorithm finds a k-DNF ĉ

that is satisfied by a (1−γ)µ-fraction of the points with
total loss O(t log(µN)ǫ).

Thus, we can obtain a pair (u, c) that gives empiri-
cal error that is only greater than the optimal by a
O(t log(µN)) factor. Given that our assumed bounds
on the moments of the data distribution implies that
the square of the loss (being a quadratic polynomial)
is bounded, we can use the bounds of Cortes et al.
(2013) to bound the generalization error of linear re-
gression on each possible k-DNF, to thus obtain that
the true generalization error is similarly bounded. For
y ∈ B ⊆ R

d, where B is the ℓ2 radius of B, this only
incurs a polynomial increase in the sample complexity
in B, t, and 1/γ overall.

4 DISCUSSION AND FUTURE

DIRECTIONS

We have thus shown that the assumption of homoge-
neous covariances used by Calderon et al. (2020) is not
needed to obtain a polynomial-time algorithm for con-
ditional linear regression. On the other hand, although
we obtain a polynomial running time and sample com-
plexity, the exponents are quite large. In particular,
the sample complexity we obtain in our analysis is far
from optimal for this problem. Thus, our algorithm
is impractical in its current form and our contribution
is strictly theoretical. The main direction for future
work is to develop a practical algorithm that does not
require the homogeneous covariance assumption.

We now elaborate on the obstacles. Much of the over-
head in the sample complexity arises from the use of
the certifiable hypercontractivity assumption (specifi-
cally Lemma 2.7, which guarantees certifiability is pre-
served for empirical distributions), which requires rel-
atively high-degree polynomial expressions. Another
source of sub-optimality seems to arise from the way
we invoke bounds obtained via Chebyshev’s inequal-
ity on the Frobenius error of the projector onto the
data subspace. We conjecture that this can be im-
proved by a more refined analysis, but it is still not
clear whether or not certifiable hypercontractivity –
the dominant source of overhead for most purposes –
is really necessary.

The overhead in the computational complexity arises
from the use of the sum-of-squares semidefinite pro-
gram relaxation. Although the degree of the relaxation
is moderate, the technique unfortunately yields algo-
rithms that solve a large semidefinite program, and
thus inherently tends to simply scale poorly. In many
cases, however, the development of a sum-of-squares
algorithm has led to the subsequent development of
a spectral algorithm that can be practical. Examples
of this sequence include a number of robust estima-
tion tasks (Schramm and Steurer, 2017; Hopkins et al.,
2019; Diakonikolas et al., 2020; Depersin, 2020) and
tasks to identify hidden structures in a data set (Hop-
kins et al., 2016, 2017), that are variously of similar
flavor to our problem.
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Conditional Linear Regression for Heterogeneous Covariances:
Supplementary Materials

A Sum of Squares

We first recall the notion of pseudodistributions satisfying a set of constraints:

Definition A.1. Let D be a level-ℓ pseudodistribution and A be a system of polynomial inequality constraints of
the form fi ≥ 0 for i ∈ [m]. We will say that D satisfies A at degree r if for every subset S ⊆ [m] of the constraints
of A and every sum-of-squares polynomial h with deg(h) +

∑
i∈S max{deg(fi), r} ≤ ℓ, ẼD[h ·

∏
i∈S fi] ≥ 0. We

denote this by D r A.

Lemma A.2 (Soundness. Fact 3.4 in Bakshi and Kothari (2021)/Lemma 3.4 in Ma et al. (2016)). If D r A

for a level-ℓ. pseudo-distribution D and there exists a sum-of-squares proof A
r′

B, then D
r·r′+r′

B.

In words, if a pseudodistribution D satisfies the set of constraints A and there is a proof of another set of
constraints B from A, then if the level ℓ of D is sufficiently high, D must also satisfy B. Hence, simply by
optimizing a program formulated using A, we obtain a solution that obeys any set of derived constraints B.

Lemma A.3 (SoS Hölder’s Inequality. Fact 3.11 in Bakshi and Kothari (2021)/Fact A.6 in Hopkins and Li
(2017)). Let w1, . . . , wn be indeterminates and let f1, . . . , fn be polynomials of degree m in vector valued variable
x. Let k be a power of 2. Then,

{
w2

i = wi, ∀i ∈ [n]
}

2kn

x,w





(
1

n

n∑

i=1

wifi

)k

≤

(
1

n

n∑

i=1

wi

)k−1(
1

n

n∑

i=1=

fk
i

)
 .

Lemma A.4 (SoS Almost Triangle Inequality. Fact 3.8 in Bakshi and Kothari (2021)/Lemma A.2 in Kothari
and Steurer (2017)). Let a, b be indetermnates. Then, for any t ∈ N,

2t

a,b {
(a+ b)2t ≤ 22t

(
a2t + b2t

)}
.

Lemma A.5 (Cancellation within SoS. Fact 3.12 in Bakshi and Kothari (2021)/Fact 5.4 in De et al. (2016)).
Let a be an indeterminate. Then, {

at ≤ 1
}
∪ {a ≥ 0} t

a
{a ≤ 1}.

Lemma A.6 (SoS Cauchy Schwarz. Fact 2.4 in Raghavendra and Yau (2020)/Lemma A.1 in Ma et al. (2016)).
Let x1, . . . , xn, y1, . . . , yn be indeterminates, then

4

x1,...,xn,y1,...,yn





(
n∑

i=1

xiyi

)2

≤

(
n∑

1=1

x2
i

)(
n∑

i=1

y2i

)
 .

Lemma A.7 (Simple SoS AM-GM Inequality.). Let f1(x1, . . . , xn), f2(x1, . . . , xn) be degree-d polynomials. Then,

2d

x1,...,xn

{(
f1(x1, . . . , xn) + f2(x1, . . . , xn)

2

)2

≥ f1(x1, . . . , xn) · f2(x1, . . . , xn)

}
.

Proof.
(

f1(x1,...,xn)+f2(x1,...,xn)
2

)2
− f1(x1, . . . , xn) · f2(x1, . . . , xn) =

(
f1(x1,...,xn)−f2(x1,...,xn)

2

)2
.
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B Analysis of Algorithm 1

Lemma B.1 (Lemma 3.7 – Large weight on inliers from high-entropy constraints. Fact 4.4 in Bakshi and Kothari
(2021) and Lemma 3.1 in Raghavendra and Yau (2020)). Let Ẽξ be a pseudo-distribution of degree ≥ 2 that

satisfies Aw,v,ǫ,Π and minimizes
∥∥∥Ẽξ

∑m
j=1

∑
i∈Ij

wjXIj

(
x(i)

)∥∥∥
2
. Then Ẽξ

[∑m
j=1

∑
i∈Ij

wjXIj

(
x(i)

)]
≥ µ2N .

Proof. (This proof is the same as Lemma 3.1 in Raghavendra and Yau (2020).) For the sake of of simplicity,
let wi =

∑
i∈Ij

wjXIj

(
x(i)

)
and note that wi ∈ {0, 1}. Let ẼP denote a pseudo-distribution corresponding to

the actual assignment {w′
i}i∈[N ] and let ẼD be the pseudo-expectation that minimizes ‖ED[w]‖. For a constant

κ ∈ [0, 1], define the pseudo-expectation ẼR as a mixture of ẼP and ẼD.

ẼR
def
= κẼP + (1− κ)ẼD

Since ED is the pseudo-expectation that minimizes ‖ẼD[w]‖, then

〈
ẼR[w], ẼR[w]

〉
≥
〈
ẼD[w], ẼD[w]

〉
.

We can use the definition of ẼR to expand the left hand side.

κ2
〈
ẼP [w], ẼP [w]

〉
+ 2κ(1− κ)

〈
ẼP [w], ẼD[w]

〉
+ (1− κ)2

〈
ẼD[w], ẼD[w]

〉
≥
〈
ẼD[w], ẼD[w]

〉

By rearranging the terms, we get

〈
ẼP [w], ẼD[w]

〉
≥

1

2κ(1− κ)

(
(2κ− κ2)

〈
ẼD[w], ẼD[w]

〉
− κ2

〈
ẼP [w], ẼP [w]

〉)
.

By definition,
〈
ẼP [w], ẼP [w]

〉
=
∑N

i=1 w
2
i = µN . By using the Cauchy-Schwartz inequality,

〈
ẼD[w], ẼD[w]

〉
≥

1
N

(∑
i ẼD[wi]

)2
= 1

N (µN)2 = µ2N . By substituting these bounds, we get that

〈
ẼD[w], ẼP [w]

〉
≥

(2κ− κ2)µ2 − κ2µ

2κ(1− κ)
·N.

As κ → 0, the right hand side tends to µ2N .

Lemma B.2 (Lemma 3.3 – Frobenius Closeness of Empirical and True Covariances). Let ǫi =

[
0d+1

ǫi

]
and

w(Ij) =
1

µN

∑N
i=1 wjXIj (x

(i)). Then with probability 1− δ,

∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))Πjy

(i)y(i)⊤Πj − w(Ij)Πj

∥∥∥∥∥

2

F

≤
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ
.

Proof. The squared Frobenius norm is equivalent to summing the square of each element. Thus we will
bound the square of each element using Chebyshev’s inequality and then compute the sum. The matrix
1

µN

∑N
i=1 wjXIj (x

(i))Πjy
(i)y(i)⊤Πj can treated as a random quantity that represents an empirical estimate of

w(Ij)Πj .

Recall wjXIj (x
(i))Πj(y

(i) − ǫi) = wjXIj (x
(i))(y(i) − ǫi) from the program. Thus wjXIj (x

(i))Πjy
(i) =

wjXIj (x
(i))(y(i) + (Πj − I)ǫi). The empircal covariance matrix can be rewritten as 1

µN

∑N
i=1 wjXIj (x

(i))(y(i) +

(Πj − I)ǫi)(y
(i) + (Πj − I)ǫi)

⊤. Let us use the notation Ar,s to denote the element in row r and column s of a
matrix A. Using Chebyshev’s Inequality, the square of each element in the Frobenius norm can be bounded by
wj(d+2)2

µ2N2δ

(∑N
i=1 XIj (x

(i))V ar(((y(i) + (Πj − I)ǫi)(y
(i) + (Πj − I)ǫi)

⊤)r,s)
)
with probability 1− δ/(d+ 2)2.

V ar(((y(i) + (Πj − I)ǫi)(y
(i) + (Πj − I)ǫi)

⊤)r,s) is the variance of a sum of random variables. V ar(y
(i)
r y

(i)
s ) =

E[y
(i)2
r y

(i)2
s ] − E[y

(i)
r y

(i)
s ]2 ≤ E[y

(i)2
r y

(i)2
s ] due to nonnegativity. By using the SoS Cauchy Schwarz and SoS
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AM-GM inequalities, Lemmas A.6 and A.7, E[y
(i)2
r y

(i)2
s ] ≤

√
E[y

(i)2
r ]E[y

(i)2
s ] ≤

(
E[y

(i)4
r ] + E[y

(i)4
s ]

)
/2. Thus

V ar(y
(i)
r y

(i)
s ) ≤ max{E[y

(i)4
r ]E[y

(i)4
s ]} ≤ β. Since y(i) has been extended with one, let us treat the first element of

y(i) as 1. Therefore, when r = 1 or s = 1, V ar(((y(i)+(Πj−I)ǫi)(y
(i)+(Πj−I)ǫi)

⊤)r,s) ≤ α+α2σ2. For all other
pairs of r and s, the variance is bounded by β+1α4. Due to the same coordinate of y(i) being 1 for all i ∈ [N ], the
second moment, α, must be at least 1. Therefore, V ar(((y(i)+(Πj−I)ǫi)(y

(i)+(Πj−I)ǫi)
⊤)r,s) ≤ β+α+7α4σ2.

Tying it all together, the square of each element can be bounded by
wj |Ij |wj(d+2)2

µ2N2δ

(
β + α+ 7α4σ2

)
with proba-

bility 1− δ/(d+ 2)2. This is a (d+ 2) dimensional square matrix so there are (d+ 2)2 elements. Therefore,

∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))Πjy

(i)y(i)⊤Πj − w(Ij)Πj

∥∥∥∥∥

2

F

≤
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ
.

By taking the union bound, this holds with probability at least 1− δ.

Lemma B.3 (Lemma 3.4 – Frobenius Closeness of Subsample to Covariance, w-samples. Same proof as Lemma
4.5 in Bakshi and Kothari (2021)).

Aw,v,ǫ,Π 12

w,Π

{∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))y(i)y(i)⊤ − w(Ij)Πj

∥∥∥∥∥

4

F

≤ C2

(
1

µN

N∑

i=1

wjXIj (x
(i))

)(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)

with probability at least 1− δ.

Proof. For a (d+2)× (d+2) matrix-valued indeterminate Q and using the SoS Hölder’s Inequality, Lemma A.3,
we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π,Q

{〈
1

µN

∑

i∈Ij

wjXIj (x
(i))y(i)y(i)⊤ − w(Ij)Πj , Q

〉2

=

〈
1

µN

N∑

i=1

wjXIj (x
(i))
(
y(i)y(i)⊤ −Πj

)
, Q

〉2

≤

(
1

µN

N∑

i=1

wjXIj (x
(i))

)(
1

µN

N∑

i=1

wjXIj (x
(i))
〈
y(i)y(i)⊤ −Πj , Q

〉2
)}

(1)

Using certifiable hypercontractivity combined with the bounded variance constraints, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π,Q

{
1

µN

N∑

i=1

wjXIj (x
(i))
〈
y(i)y(i)⊤ −Πj , Q

〉2
≤
(
C2t

)
‖ΠjQΠj‖

2
F

}
. (2)

By combining Equations 1 and 2 and substituting Q = 1
µN

∑N
i=1 wjXIj (x

(i))y(i)y(i)⊤ − w(Ij)Π, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))y(i)y(i)⊤ − w(Ij)Πj

∥∥∥∥∥

4

F

≤ C2

(
1

µN

N∑

i=1

wjXIj (x
(i))

)
‖ΠjQΠj‖

2
F

= C2

(
1

µN

N∑

i=1

wjXIj (x
(i))

)∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))Πjy

(i)y(i)⊤Πj − w(Ij)Πj

∥∥∥∥∥

2

F

}
.
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By using Lemma B.2, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))y(i)y(i)⊤ − w(Ij)Πj

∥∥∥∥∥

4

F

≤ C2

(
1

µN

N∑

i=1

wjXIj (x
(i))

)(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)

with probability at least 1− δ.

Lemma B.4 (Lemma 3.5 – Frobenius Closeness of Subsample to Covariance, I-samples. Same proof as Lemma
4.5 in Bakshi and Kothari (2021)).

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{∥∥∥∥∥
1

µN

N∑

i=1

wjXIj (x
(i))y(i)y(i)⊤ − w(Ij)Πj∗

∥∥∥∥∥

4

F

≤ C2

(
1

µN

N∑

i=1

wjXIj (x
(i))

)(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)

with probability at least 1− δ.

Proof. This follows the same proof as Lemma B.3.

Lemma B.5 (Lemma 3.6 – Frobenius Closeness of Π and Π∗. Same as Lemma 4.3 in Bakshi and Kothari
(2021).).

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{


m∑

j=1

w(Ij)


 ‖Π−Π∗‖

2
F

≤ mC

√
25
(
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ

)}
.

with probability at least 1−mδ where w(Ij) =
1

µN

∑N
i=1 wjXIj

(
x(i)

)
.

Proof. Define w∗(Ij) =
|Ij |
µN . Using the SoS Almost Triangle Inequality, Lemma A.4, and Lemmas B.3 and B.4,

we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{
w(Ij)

4 ‖Πj −Πj∗‖
4
F

≤ 25C2w(Ij)

(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)}
.

By dividing both sides of the inequality by w(Ij)
2, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{
w(Ij)

2 ‖Πj −Πj∗‖
4
F

≤ 25C2w(Ij)
−1

(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)}
.

By using Cancellation within SoS, Lemma A.5 and multiplying both sides of the inequality by w(Ij)
1/2, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{
w(Ij)w(Ij)

1/2 ‖Πj −Πj∗‖
2
F

≤ C

√
25
(
wj |Ij |(d+ 2)4(β + α+ 7α4σ2)

µ2N2δ

)}
.
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Since w(Ij) =
1

µN

∑N
i=1 wjXIj (x

(i)) and is bounded above by w∗(Ij), then with probability 1− 2δ:

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{
w(Ij) ‖Πj −Πj∗‖

2
F ≤ C

√
25
(
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ

)}
.

Define Π and Π∗ as a weighted average of Πj and Πj∗ respectively, where the weights are proportional to |Ij |.
Thus Π =

∑m
j=1 w(Ij)Πj and Π∗ =

∑m
j=1 w(Ij)Πj∗. By summing both sides of the inequality over all j ∈ [m],

we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{
m∑

j=1

w(Ij) ‖Πj −Πj∗‖
2
F

≤

m∑

j=1

C

√
25
(
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ

)}
.

By using the Cauchy-Schwarz Inequality and the triangle inequality to rewrite the left hand side, we have

Aw,v,ǫ,Π 12

w,v,ǫ,Π

{


m∑

j=1

w(Ij)


 ‖Π−Π∗‖

2
F

≤ mC

√
25
(
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ

)}

with probability 1− 2mδ.

Lemma B.6 (Lemma 2.7 – Certifiable Hypercontractivity Under Sampling. Lemma 6.11 in Bakshi and Kothari
(2021)). Let D be a 1-subgaussian, 2h-certifiably C-hypercontractive distribution over R

d. Let S be a set of
n = Ω((hd)8h) i.i.d. samples from D. Then, with probability at least 1− 1/poly(n), the uniform distribution on
S is h-certifiably (2C)-hypercontractive.

B.1 Proof of Main Theorem

Theorem B.7 (Main Theorem – Theorem 3.2). Let Π∗ be a projection matrix for a subspace of dimension r.
Let D|c∗ be a distribution with mean 0, covariance Π∗, and 2-certifiably C-hypercontracitve degree-2 polynomials.
Then, there exists an algorithm that takes n ≥ Ω

(
(d log d/µ)16

)
samples from the distribution D and outputs

a list L of O(1/µ) projection matrices such that with probability at least 0.99 over the draw of the sample and
randomness of the algorithm, there is a Π̂ ∈ L satisfying ‖Π̂−Π∗‖F ≤ O(1/µ) in polynomial time.

Proof. This follows the same proof as Theorem 1.4 in Bakshi and Kothari (2021). Since D|c∗ is certifiably
C-hypercontractive, Fact B.6 implies that ≥ n = Ω(d log d/µ)16 samples suffice for the uniform distribtution on
the inliers, Igood, to have 2-certifiably C-hypercontractive degree 2 polynomials with probabiliy at least 1− 1/d.
Let ξ1 be the event that this succeds, and condition on it.

Let µ̃ be a pseudo-distribution of degree-24 satisfying Aw,v,ǫ,Π and minimizing
√∑m

j=1 wj

∑N
i=1 XIj (x

(i)) as

described in Algorithm 1. Observe that such a pseudo-distribution is guaranteed to exist: take the pesudo-
distribution supported on a single point, (w,Π) such that wi = 1 iff i ∈ Igood and Π = Π∗. It is straight forward

to check that Π∗ is indeed a rank r projection matrix and rank d+2 projection matrix and
∑m

j=1

∑N
i=1 XIj (x

(i)) =
µN . Conditioned on ξ1, the hypercontractivity constraint is also satisfied by the inliers.

Since Lemma B.5 admits a sum-of-squares proof, it follows from Fact A.2 that the polynomial inequality is
preserved under pseudo-expectations.

1

µM

k∑

j

wj

N∑

i=1

Ẽµ̃

[
XIj (x

(i))‖Π−Π∗‖
2
F

]
≤ mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.
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Alternatively, we can rewrite the above as follows:

1

µN

m∑

j=1

wj

N∑

i=1

Ẽµ̃

∥∥∥[XIj (x
(i))Π]− [XIj (x

(i))Π∗]
∥∥∥
2

F

≤ mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.

Applying Jensen’s Inequality yields


 1

µN

m∑

j=1

wj

N∑

i=1

∥∥∥Ẽµ̃[XIj (x
(i))Π]− Ẽµ̃[XIj (x

(i))Π∗]
∥∥∥
F




2

≤ mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.

Taking the square root,

1

µN

m∑

j=1

wj

N∑

i=1

∥∥∥Ẽµ̃[XIj (x
(i))Π]− Ẽµ̃[XIj (x

(i))Π∗]
∥∥∥
F

≤

√√√√mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.

Recall, the rounding in Algorithm 1 uses Π̂i =
Ẽµ̃[

∑m
j=1 wjXIj (x

(i))Π]
Ẽµ̃[

∑
m
j=1 wjXIj (x(i))]

to denote the projector corresponding to the

i-th sample. Then rewriting the above equation yields:

1

µN

m∑

j=1

wj

N∑

i=1

Ẽµ̃‖Π̂i −Π∗‖F ≤

√√√√mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.

Let Z = 1
µN

∑m
j=1 wj

∑N
i=1 Ẽ[XIj (x

(i))]. Then, from Lemma B.1, Z ≥ µ ⇒ 1
Z ≤ 1

µ . Dividing by Z on both sides
thus yields:

1

Z


 1

µN

m∑

j=1

wj

N∑

i=1

Ẽµ̃‖Π̂i −Π∗‖F


 ≤

1

µ

√√√√mC

√

25
wj(d+ 2)4(β + α+ 7α4σ2)

µNδ
.

Since each index i ∈ [N ] is chosen with probability
Ẽ[
∑m

j=1 wjXIj
(xi)]

∑
i∈[N] Ẽ[

∑
m
j=1 wjXIj

(xi)]
= 1

µN Ẽ[
∑m

j=1 wjXIj (xi)], it fol-

lows that i ∈ Igood with probability at least 1
µN

∑m
j=1 wj

∑
i∈Ij

Ẽ[XIj (xi)] = Z ≥ µ. By Markov’s in-

equality applied to the last equation, with probability 1
2 over the choice of i conditioned on i ∈ Igood,

‖Π̂i − Π∗‖F ≤ 2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . Thus, in total, with probability at least µ/2, ‖Π̂i − Π∗‖F ≤

2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ . Therefore, with probability of at least 0.99 over the draw of the random set J ,

the list constructed by the algorithm contains Π̂ such that ‖Π̂i −Π∗‖F ≤ 2
µ

√
mC

√
25

wj(d+2)4(β+α+7α4σ2)
µNδ .

Now to account for the running time of the algorithm, the SDP for the program can be solved in polynomial
time, so the algorithm runs in polynomial time overall.
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