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Abstract

Determinantal Point Processes (DPPs) are a widely used probabilistic model for negatively corre-

lated sets. DPPs have been successfully employed in Machine Learning applications to select a

diverse, yet representative subset of data. In these applications, the parameters of the DPP need to

be fitted to match the data; typically, we seek a set of parameters that maximize the likelihood of

the data. The algorithms used for this task to date either optimize over a limited family of DPPs, or

use local improvement heuristics that do not provide theoretical guarantees of optimality.

It is natural to ask if there exist efficient algorithms for finding a maximum likelihood DPP

model for a given data set. In seminal work on DPPs in Machine Learning, Kulesza conjectured

in his PhD Thesis (2012) that the problem is NP-complete. The lack of a formal proof prompted

Brunel, Moitra, Rigollet and Urschel (2017a) to conjecture that, in opposition to Kulesza’s con-

jecture, there exists a polynomial-time algorithm for computing a maximum-likelihood DPP. They

also presented some preliminary evidence supporting their conjecture.

In this work we prove Kulesza’s conjecture. In fact, we prove the following stronger hardness

of approximation result: even computing a 1 − 1
poly logN

-approximation to the maximum log-

likelihood of a DPP on a ground set of N elements is NP-complete. At the same time, we also

obtain the first polynomial-time algorithm that achieves a nontrivial worst-case approximation to

the optimal log-likelihood: the approximation factor is 1
(1+o(1)) logm

unconditionally (for data sets

that consist of m subsets), and can be improved to 1− 1+o(1)
logN

if all N elements appear in a O(1/N)-
fraction of the subsets.

In terms of techniques, we reduce approximating the maximum log-likelihood of DPPs on a

data set to solving a gap instance of a “vector coloring” problem on a hypergraph. Such a hyper-

graph is built on a bounded-degree graph construction of Bogdanov, Obata and Trevisan (2002),

and is further enhanced by the strong expanders of Alon and Capalbo (2007) to serve our purposes.

* Please see the associated technical report for complete proofs: http://arxiv.org/abs/2205.12377

© 2022 E. Grigorescu, B. Juba, K. Wimmer & N. Xie.
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1. Introduction

Determinantal Point Processes (DPPs) are a family of probability distributions on sets that feature

repulsion among elements in the ground set. Roughly speaking, a DPP is a distribution over all 2N

subsets of {1, . . . , N} defined by a positive semidefinite (PSD) N ×N matrix K (called a marginal

kernel or correlation kernel) whose eigenvalues all lie in [0, 1], such that, for any S ⊆ {1, . . . , N},

random subsets X drawn according to the distribution satisfy Pr[S ⊆ X] = det(KS), where KS

is the principal submatrix of K indexed by S.

DPPs were first proposed in quantum statistical physics to model fermion systems in thermal

equilibrium (Macchi, 1975), but they also arise naturally in diverse fields such as random matrix the-

ory, probability theory, number theory, random spanning trees and non-intersecting paths (Dyson,

1962; Burton and Pemantle, 1993; Rudnick and Sarnak, 1996; Soshnikov, 2000). After the seminal

work of Kulesza and Taskar (2012), DPPs have attracted a flurry of attention from the machine

learning community due to their computational tractability and excellent capability at producing

diverse but representative subsets, and subsequently fast algorithms have been developed for sam-

pling from DPPs (Hough et al., 2006; Kulesza and Taskar, 2010; Rebeschini and Karbasi, 2015; Li

et al., 2016b,a; Anari et al., 2016; Dereziński et al., 2019; Launay et al., 2020). Furthermore, DPPs

have since found a vast variety of applications throughout machine learning and data analysis, in-

cluding text and image search, segmentation and summarization (Lin and Bilmes, 2012; Kulesza

and Taskar, 2012; Zou and Adams, 2012; Gillenwater et al., 2012b,a; Yao et al., 2016; Kulesza and

Taskar, 2011b; Affandi et al., 2014; Lee et al., 2016; Affandi et al., 2013b; Chao et al., 2015; Af-

fandi et al., 2013a), signal processing (Xu and Ou, 2016; Krause et al., 2008; Guestrin et al., 2005),

clustering (Zou and Adams, 2012; Kang, 2013; Shah and Ghahramani, 2013), recommendation sys-

tems (Zhou et al., 2010), revenue maximization (Dughmi et al., 2009), multi-agent reinforcement

learning (Osogami and Raymond, 2019; Yang et al., 2020), modeling neural spikes (Snoek et al.,

2013), sketching for linear regression (Dereziński and Warmuth, 2018; Derezinski et al., 2020),

low-rank approximation (Guruswami and Sinop, 2012), and likely many more.

Maximum likelihood estimation. Many of these applications require inferring a set of parame-

ters for a DPP capturing a given data set. As a DPP specifies a probability distribution, hence in

contrast to supervised learning problems, the quality of a DPP cannot be estimated by the “error

rate” of the model’s predictions. The standard approach to estimate a DPP from data is to find pa-

rameters that maximize the likelihood of the given data set being produced by a sample from the

DPP (Kulesza and Taskar, 2012), i.e., the probability density of the observed data in the joint dis-

tribution. When the samples are identically and independently chosen from the DPP, the likelihood

is the product of the probability densities the DPP assigns to the sampled subsets. The goal of the

maximum likelihood estimator (MLE) method is to find a kernel matrix that maximizes the likeli-

hood of the data set. Brunel et al. (2017b) showed that the maximum likelihood estimate indeed

converges to the true kernel at a polynomial rate. In general, maximizing the likelihood of a DPP

gives rise to a non-convex optimization problem, and has been approached with heuristics such as

expectation maximization (Gillenwater et al., 2014), fixed point algorithms (Mariet and Sra, 2015),

and MCMC (Affandi et al., 2014). In the continuous case, the problem has been studied under

strong parametric assumptions (Lavancier et al., 2015), or smoothness assumptions (Baraud, 2013).
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1.1. Our results

In spite of the wide applications of DPPs and the central role of the learning step, no efficient

algorithms are known to find a maximum likelihood DPP. Instead, as mentioned above, two families

of algorithms are known: one seeks to learn an optimal DPP within certain parameterized families

of DPP structures (Kulesza and Taskar, 2012; Affandi et al., 2014; Gartrell et al., 2016; Mariet and

Sra, 2016; Gartrell et al., 2017; Urschel et al., 2017; Dupuy and Bach, 2018), while the other invokes

heuristics to maximize the likelihood in an unconstrained search over the parameter space (Kulesza

and Taskar, 2011a; Gillenwater et al., 2014; Affandi et al., 2014; Mariet and Sra, 2015). Neither of

these approaches provides any guarantees for how close the likelihood of the obtained parameters

are to the maximum over all DPPs.

Indeed, Kulesza (2011a; 2012) conjectured over a decade ago that the problem of finding a set

of parameters is NP-hard, but indicated that he was unable to formally establish a reduction: his

thesis includes a sketch of a reduction from EXACT-3-COVER to a related problem1 with numerical

evidence suggesting its correctness but without a formal proof. The subsequent literature adopted

this belief, despite the lack of a solid theoretical foundation.

In this work, we resolve this question by proving Kulesza’s conjecture: computing maximum

likelihood DPP kernels is indeed NP-hard. In fact, we establish a stronger, gapped hardness result:

even approximating the maximum likelihood is NP-hard.

Theorem 1 (Informal Statement of the Main Theorem) There is a ground set of size N such

that it is NP-hard to
(

1−O( 1
log9 N

)
)

-approximate the maximum DPP log-likelihood value of a

training set.

Remark 2 Some comments on our (somewhat confusing) convention of approximation factors are

in place. Since log likelihood functions are always negative real numbers and it is a bit awkward

to work with optimizing negative quantities, we therefore add a minus sign at the front of our def-

inition of log likelihood functions. Consequently, we minimize log likelihood functions instead of

maximizing them. On the other hand, as our hard learning instances are reduced from MAX-3SAT

and 3-COLORING, to be consistent with hardness results in the literature on these problems, we use

α-approximation (where 0 < α < 1, for maximization problems) in the statements of our hardness

and algorithmic results. Note that here “α-approximation” actually means that the log likelihood

function (in our definition and ought to be minimized) output by an algorithm is at most 1
α time the

optimal log likelihood function.

Therefore, the difficulty of learning a DPP is not tied to any particular representation of the

marginal kernel, as in fact estimating the maximum likelihood value itself is NP-hard. Note, how-

ever, that many problems in learning are hard merely due to the difficulty of finding a specific

representation (Pitt and Valiant, 1988), which is not the case for our problem.

The NP-hardness of maximum likelihood learning naturally raises the question of whether any

nontrivial approximation is possible. We show that such an approximation is possible: we present

a simple, polynomial-time algorithm obtaining a 1
(1+o(1)) logm -approximation for a data set with m

subsets.

1. Technically, the reduction proposed by Kulesza targets a variant of the maximum-likelihood DPP learning problem

in which the instance specifies a set of positive-semidefinite matrices along with the data, and the objective is to find

a DPP kernel in the cone of the given matrices that maximizes the likelihood.
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Theorem 3 (Informal Statement of the Approximation Algorithm) There is a polynomial-time

approximation algorithm achieving the following: on an input data set consisting of m subsets

over a ground set of size N , it returns a kernel that 1
(1+o(1)) logm -approximates the maximum log

likelihood. Moreover, if every element in the ground set appears in at most O(1/N)-fraction of the

subsets, the kernel achieves a (1− 1+o(1)
logN )-approximation to the maximum log likelihood.

We stress that in contrast to the prior work on learning DPP kernels with guarantees (Urschel

et al., 2017), our algorithm does not rely on the data being produced by a DPP to have a “cycle ba-

sis” of short cycles or large nonzero entries. We obtain an approximation to the optimal likelihood

for any data set. Although a 1
(1+o(1)) logm -approximation is weak, when every element appears in

relatively few subsets (which is common in practice), our algorithm is much better: the actual ap-

proximation factor is 1 − 1
log(m/amax)

, where amax/m is the fraction of the data subsets containing

the most frequent element in the ground set. Hence, if all elements appear in at most a ∼ 1/N -

fraction of the subsets, we obtain a (1 − 1+o(1)
logN )-approximation to the log likelihood. Although

we don’t expect our algorithm to obtain substantially better likelihood than various heuristics em-

ployed in practice, it may nevertheless serve as a benchmark to estimate how close to optimal these

solutions are. Moreover, the family of instances constructed in our reduction indeed satisfies this

condition; therefore, to improve the hardness of approximation bound beyond 1 − 1+o(1)
logN , the hard

instance of data set must have some elements appearing in ω(1/N)-fraction of the subsets.

1.2. Our approach and techniques

We show that it is NP-hard to approximate the optimal DPP likelihood function by reducing from a

coloring problem, rather than from EXACT-3-COVER, which was Kulesza’s (2012) initial approach.

We begin with some intuition leading to a notion of vector coloring that we use in the reduction.

As any marginal kernel K ∈ R
N×N is positive semidefinite, it can be factored as K = Q⊤Q, where

Q ∈ R
k×N , Q⊤ stands for the transpose of M , and k is called the dimension of the kernel. If we

denote the column vectors of Q by q1, . . . , qN , each qi ∈ R
k, then one can think of these qi’s as

providing an embedding of the elements in {1, . . . , N} into the space R
k, and the embedding vec-

tors capture similarities among elements. Specifically, the preference of DPPs for diverse subsets,

roughly speaking, stems from the following fact: if a subset S includes elements that are similar,

the submatrix KS would contain columns that are nearly co-linear embedding vectors, and hence

its determinant (and correspondingly, the probability that S is the random subset generated by the

marginal kernel K) is close to zero.2

Consider, for simplicity, a training set that consists of a collection of subsets of {1, . . . , N}, each

of size r where r is a constant. What can we say about a maximum-likelihood DPP kernel for such

a data set? Ideally, the embedding vectors should encode an “r-vector-coloring” of the elements in

the following sense. Each of the r colors is represented by a unit vector (after normalizations) in an

orthonormal basis; to maximize the likelihood function, every subset S = {i1, . . . , ir} that appears

in the training set corresponds to a “rainbow coloring” of the embedding vectors {qi1 , . . . , qir}
(“rainbow coloring” means that the r embedding vectors are all colored differently), while for the

2. Recall that, since K and hence KS are Gram matrices, det(KS) is equal to the square of the volume of the paral-

lelepiped spanned by the embedding vectors of elements in S.
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r-subsets that do not appear in the training set, we would like as many as possible of them to contain

some repeated color.3

Thus, it is natural to attempt a reduction from GRAPH r-COLORING to Maximum Likelihood

Learning of DPP. However, if we view each edge as a 2-subset, then we fail to get a hard problem to

begin with, since graph 2-coloring is easy. We overcome this by “lifting” each edge to a size-3 subset

(or equivalently, we transform a graph into a 3-uniform hypergraph, and view all its hyperedges as

size-3 subsets in the data set) so that we can still work with 3-COLORABILITY. On an input graph

G = (V,E), our goal would be to show the following: if G is 3-colorable, then there is a DPP

kernel whose likelihood is large (completeness); if G is not 3-colorable, then the likelihood of every

DPP kernel is small (soundness).

As the column vectors of DPP kernels are in Euclidean spaces instead of discrete ones, the

continuous variant of coloring that works for us is the notion of vector coloring of graphs. A vector

coloring of a graph G = (V,E) is a mapping from vertices in V to points (vectors) in some low-

dimensional metric space M, such that the presence or absence of edges between any pair of vertices

prescribes the value of the inner product between the two corresponding vectors. (See Section 1.3.)

Our problem differs from this one in two important ways: first, we do not care too much about the

minimum dimension of the Euclidean space in which a vector representation exists; second, which

is more subtle and will be elaborated below, we need a “gapped” reduction.

There are several technical challenges we need to address in order to make the reduction from 3-

COLORABILITY work. First, we need to understand the structure of kernels that achieve maximum

likelihood values. To this end, by an extension of an argument of Brunel et al. (2017a), we prove that

the square of the norm of every embedding vector is equal to the empirical frequency of the element.

Furthermore, via a projection argument, we show that there always exists a good rank-3 DPP kernel

without giving up too much likelihood. This greatly simplifies the analysis of the gadgets employed

in our reduction.

Secondly, instead of a “decision” hardness result on vector coloring of hypergraphs (e.g. it is

NP-hard to decide if there is a 3-dimensional orthogonal representation for the elements in the set

that satisfies certain orthogonality conditions), we rather require a “gapped” reduction, obtaining

something like “starting with a YES instance, we end up with a set of embedding vectors so that

the average volume of the 3-dimensional parallelepipeds spanned by these embedding vectors of

hyperedges is large; starting with a NO instance, then every possible embedding scheme will make

the average volume of those parallelepipeds small”. Namely, in an “averaging” sense, we need the

resulting hypergraph transformed from a NO instance to be “far from” 3-vector colorable. Accord-

ingly, the NO instance of 3-COLORABILITY should have the property that, even after removing a

small fraction of the edges, it is still not 3-colorable. On the other hand, the strongest known hard-

ness results (Khanna et al., 2000; Guruswami and Khanna, 2004; Dinur et al., 2009; Brakensiek

and Guruswami, 2016) on coloring 3-colorable graphs are based on dense graphs; the requirement

on NO instance mentioned above, when applied to dense graphs, would make the problem fall into

the regime of property testing, which is unfortunately known to be computationally easy (Goldreich

et al., 1998).

We circumvent this obstacle by adapting a sparse graph construction of Bogdanov, Obata and

Trevisan (2002) (referred to as BOT graph henceforth). Based on the hardness of approximating

MAX-3SAT, BOT graph was used in Bogdanov et al. (2002) to prove query lower bound for testing

3. Implicitly, we would also like to have k = r so that no non-degenerate parallelepiped of dimension higher than r
exists, as the number of size-(r + 1) or larger subsets dominates those of size-r subsets; see Conjecture 12 below.
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3-CNF formula

MAX-3SAT

BOT graph

3-COLORING

BOT hypergraph

VECTOR-COLORING

DPP learner

MLE-DPP-KERNEL

Figure 1: High level overview of our reductions.

3-COLORABILITY in the bounded-degree model. We fix some minor mistakes in the construction

and analysis of Bogdanov et al. (2002), further enhance the robustness of BOT graph with the strong

expander construction of Alon and Capalbo (2007). These modifications allow us to show that, for

some absolute constant δ, we can decode a 3-coloring of the vertices which satisfies at least (1− δ)-
fraction of the edges in the original BOT graph, as long as the DPP log likelihood of a training

set constructed from the edges of the BOT graph were close enough to the maximum value of a

3-colorable graph. An overview of the reduction sequence is illustrated in Figure 1.

Algorithmic results. For the upper bound, we obtain an approximation algorithm by using some

of the properties required for the analysis of our reduction. The algorithm itself is very simple:

given a data set X1, X2, . . . , Xm, output the DPP marginal kernel given by the N × N diagonal

matrix K such that Kii = |{j : Xj ∋ i}|/m for all i in the ground set. In other words, the

diagonal entries of the marginal kernel are just the empirical probabilities of elements in the data

set. Hadamard’s inequality gives a lower bound on the optimal likelihood that is similar to the

likelihood of the diagonal kernel; if the elements all appear in at most a amax/m-fraction of the

subsets, the ratio
log likelihood output by the algorithm

optimal log likelihood
is at most 1 +

log((1−amax
m

)1−amax/m)

log((amax
m

)amax/m)
≈ 1 + 1

logN

when amax/m is O(1/N). For an unconditional upper bound, observe that elements in all m sets

should occur with probability 1 in the maximum likelihood DPP (and thus may be disregarded

without loss of generality), hence we may plug amax = m − 1 into the aforementioned bound and

obtain a (1 + o(1)) logm upper bound on the ratio.

1.3. Related work

Learning DPPs. As mentioned earlier, Urschel et al. (2017) in particular proposed an algorithm

for recovering a DPP’s kernel up to similarity, which is efficient when (i) the graph defined by

interpreting the kernel as a weighted adjacency matrix has a “cycle basis” of cycles of bounded

length and (ii) the nonzero entries are not too small. Furthermore, they gave a lower bound on the

sample complexity of estimating the DPP kernel, showing that it indeed depends similarly on these

quantities. Thus, when there is enough data to permit exact recovery of the kernel, this algorithm

will perform well, but otherwise there is no guarantee that the algorithm produces a kernel for a

DPP with likelihood close to maximum.

In a companion paper, Brunel et al. (2017a) also studied the rate of estimation obtained by the

maximum likelihood kernel. Again, they determined classes of DPPs for which it is efficient (or

not). Moreover, they identified an exponential number of saddle points, and conjectured that these

are the only critical points; they further suggested that a proof of this conjecture might lead to an

efficient algorithm for computing a maximum likelihood kernel. But, they did not actually provide

algorithms for computing the likelihood or the kernel itself.
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Starting with the pioneering work of Kulesza and Taskar (2011a), various empirical learning

algorithms have been proposed for learning discrete DPPs, such as Bayesian methods (Affandi

et al., 2014), expectation-maximization (EM) algorithms (Gillenwater et al., 2014), fixed-point it-

eration (Mariet and Sra, 2015), learning non-symmetric DPPs (Gartrell et al., 2019), learning with

negative sampling (Mariet et al., 2019), and minimizing Wasserstein distance (Anquetil et al., 2020).

However, none of these algorithms has theoretical guarantees. Efficient learning algorithms have

also been designed for restricted classes of DPPs (Mariet and Sra, 2016; Gartrell et al., 2017; Dupuy

and Bach, 2018; Osogami et al., 2018). A related problem, namely testing DPPs, recently has been

investigated by (Gatmiry et al., 2020).

We note that in contrast to the problem of learning the DPP kernel from a data set as consid-

ered here, the problem of computing the mode (“MAP estimate”) of a DPP given by its kernel

has long been known to be NP-complete (Ko et al., 1995; Civril and Magdon-Ismail, 2009). The

inapproximability for this problem was recently strengthened substantially by (Ohsaka, 2021).

Vector coloring problems. The notion of orthogonal representation (in which there is an edge

between two vertices if and only if the two corresponding representation vectors are orthogonal4)

was introduced by Lovász (1979), and was used in the definition of the famous Lovász’s ϑ function,

which has been employed to bound quantities such as Shannon capacity, the clique numbers or the

chromatic numbers of graphs. More generally, a geometric representation of a graph is a mapping

from vertices in V to points in a metric space M, such that two vertices are connected by an edge if

and only if the distance between the two corresponding points satisfies certain condition. For exam-

ple, orthogonal representation is a special case of the unit-distance graph where (in the framework

of geometric representation) the underlying metric space is the unit sphere (with distance 1 replaced

by sphere distance π/2). Geometric representation of graphs is a well-studied subject, revealing

many surprising connections between parameters (e.g. dimension) of geometric representations and

properties of the original graph, such as chromatic number, connectivity, excluded subgraphs, tree

width, planarity, etc; see e.g. (Lovász, 1979; Lovász et al., 1989; Parsons and Pisanski, 1989; Karger

et al., 1998; Lovász and Vesztergombi, 1999; Lovász et al., 2000; Haynes et al., 2010) and the recent

textbook (Lovász, 2019).

Matrix completion problem. Geometric representations of graphs are intimated connected to

another class of problems, matrix completion problems. For instance, the celebrated result of Peeters

(1996), showing NP-hardness of deciding whether a 3-dimensional orthogonal representation over a

finite field exists for a graph, was obtained through reducing 3-COLORABILITY to a low-rank matrix

completion problem. Matrix completion studies under what conditions a partially specified matrix

can be completed into one which belongs to a certain class of matrices, such as low-rank matrices,

semidefinite matrices, Euclidean distance matrices, etc. See e.g. Laurent (2009) for an overview

of the important results in this area. Interestingly, a recent work of Hardt et al. (2014), which

proved the hardness of low-rank matrix completion problem under the incoherence assumption

(a commonly used assumption for many matrix completion results), was also based on gapped

versions of computationally hard problems on graphs such as the r-COLORING problem and the

(r, ǫ)-INDEPENDENT-SET problem.5

4. Some authors, for example Lovász (1979), define orthogonal representation by mandating the vectors of two non-

adjacent vertices to be orthogonal.

5. In this problem, one is given an undirected graph that is promised to be r-colorable and is asked to find an independent

set of size ǫn, where ǫ < 1/r and n is the number of the vertices in the graph.
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2. Maximum likelihood learning of DPP and our main hardness result

2.1. Preliminaries

Unless stated otherwise, all logarithms in this paper are to the base e (i.e. natural logarithms). For

positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For an n-dimensional real vector x,

we use ‖x‖2 =
√

x21 + · · ·+ x2n to denote the ℓ2 or Euclidean norm of x.

Matrix analysis. Let A be an m × n matrix. The (i, j)th entry of A will be denoted by Ai,j .

All matrices in this paper are over real numbers R; therefore the Hermitian adjoint of A, AH is

the same as A⊤, the transpose of A. By the spectral theorem, the eigenvalues of a real, symmetric

matrix M ∈ R
n×n are all real numbers, and will be denoted λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M). A

real, symmetric matrix M is called positive semidefinite (PSD) if all its eigenvalues are non-negative

(i.e., λn(M) ≥ 0). Well-known equivalent characterizations of PSD matrices include x⊤Mx ≥ 0
for all x ∈ R

n, and the existence of a matrix Q ∈ R
k×n for some k > 0 such that M = Q⊤Q.

A useful variational characterization of the eigenvalues of real, symmetric matrices is the Courant-

Fischer theorem, which states that for every 1 ≤ k ≤ n (when a set of vectors whose indices are

outside the range [n], then the set is understood to be empty) we have

λk(A) = min
x1,...,xk−1∈Rn

max
y 6=0, y∈Rn

y⊥x1,...,xk−1

y⊤Ay

y⊤y
,

and

λk(A) = max
xk+1,...,xn∈Rn

min
y 6=0, y∈Rn

y⊥xk+1,...,xn

y⊤Ay

y⊤y
.

The singular values of a matrix A ∈ R
m×n are defined as the (positive) square roots of the

eigenvalues of AHA = A⊤A (a real, symmetric n × n matrix). Namely, σi(A) =
√

λi(A⊤A),
i = 1, . . . , n. We also arrange the singular values of a matrix A in decreasing order, that is σ1(A) ≥
σ2(A) ≥ · · · ≥ σn(A). The Frobenius norm of A, denoted ‖A‖F , is defined to be ‖A‖F =
√

∑m
i=1

∑n
j=1 |Ai,j |2. It is well-known that ‖A‖2F = σ2

1(A) + · · · + σ2
n(A). Finally, the spectral

norm of a square n× n matrix A is defined as the square root of the maximum eigenvalue of AHA,

i.e.,

‖A‖2 =
√

λ1(A⊤A) = max
x6=0

‖Ax‖2
‖x‖2

= σ1(A).

Discrete determinantal point processes. A discrete determinantal point process (DPP) P over a

finite set X is a probability measure over the set of all subsets of the ground set X . The distribution

of P is specified by a marginal kernel K ∈ R
X×X , which is a positive semidefinite matrix with

eigenvalues in [0, 1], in the following manner: if Y ⊆ X is a random subset drawn according to P ,

then its probability mass function PK is defined such that, for every S ⊆ X ,

Pr
Y ∼PK

[S ⊆ Y ] = det(KS).

Here KS is the principal submatrix of K indexed by S ⊆ X .
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If it is the case that all eigenvalues of K are in [0, 1), then P is called an L-ensemble, whose

kernel can be defined to be the positive definite6 matrix L = K(I − K)−1. In this case, the

corresponding probability mass function, denoted PL, can be shown to be

Pr
Y ∼PL

[Y = S] =
det(LS)

det(I + L)
,

for every S ⊆ X . Hence, PrY ∼PL
[Y = ∅] = det(I −K), and consequently a DPP is an L-

ensemble if and only if the random variable Y = ∅ with non-zero probability.

2.2. Maximum Likelihood Learning of DPPs

We define the problem of Maximum Likelihood Learning of DPPs as follows. A learning algorithm

receives a training data set {X ′
t}

T ′

t=1 (viewed as a multiset), typically drawn independently and

identically from a distribution D over the subsets of a ground set X . The goal of the learning

algorithm is to find a DPP kernel K based on the training set that minimizes7 the following maximum

log likelihood estimator

ℓ(K) = −
1

T ′
log

T
∏

t=1

Pr
Y ∼PK

[Y = Xt] = −
1

T ′

T
∑

t=1

log Pr
Y ∼PK

[Y = Xt],

where {X1, . . . , XT } is the set of distinct elements in the multiset {X ′
t}

T ′

t=1. When the training data

set {X ′
t}

T ′

t=1 is clear from context, we simply denote the value of the maximum log likelihood of an

optimal DPP kernel by ℓ∗.

One common way to establish the hardness of maximum likelihood learning problems is to show

that even computing the maximum value of the log likelihood ℓ∗ is hard (if one could efficiently find

an optimal DPP kernel K, then since evaluations of determinants can be performed in polynomial

time, clearly the corresponding log likelihood ℓ∗ would be efficiently computable as well). That is

also the approach we take in this paper. In fact, the lower bound actually proved is much stronger:

we show that it is NP-hard even to compute a 1 − O( 1
log9 N

)-approximation of ℓ∗ for a ground set

of size N .

Theorem 4 (Main) There are infinitely many positive even integers N such that the following

holds.8 Let X = {1, 2, . . . , N}. There is a training data set {Xt}
N/2
t=1 of size N/2, where Xi ⊆ X

for each i, such that it is NP-hard to
(

1−O( 1
log9 N

)
)

-approximate the maximum log likelihood

value that a DPP kernel can achieve on the training set.

6. A real, symmetric matrix is called positive definite (PD) if all its eigenvalues are positive.

7. We add a negative sign at the front to make the estimator to be always positive, and thus changing the maximization

problem into a minimization one. To be consistent, we still call the quantity as a “maximum” likelihood estimator;

see Remark 2.

8. As we will see later that N/2 is the number of edges in a specially constructed graph. We then construct a 3-uniform

hypergraph based on this graph, and add a new node to the hypergraph for each edge in the graph. The ground set

consists of these newly added nodes together with the set of vertices in the original graph, hence the cardinality of

the ground set is at most N .
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2.3. Proof of the Main Theorem: an outline

MAX-3SAT with bounded occurrence. Our starting point is the hardness of MAX-3SAT, in

which given a Boolean formula φ in 3-CNF form, the goal is to output the maximum number of

clauses of φ that can be satisfied by any truth assignment of the variables. A classical hardness

result is Håstad’s 3-bit PCP theorem (Håstad, 2001), which states that it is NP-hard to (7/8 + ǫ)-
approximate MAX-3SAT for any constant ǫ > 0. However, for our purposes, we need the formula

φ to have bounded occurrences of any variable. Let MAX-3SAT(k) denote a subclass of MAX-

3SAT, in which the instances satisfy that every variable occurs in at most k clauses. Håstad (2000)

showed that it is NP-hard to 7/8+1/(log k)c-approximate MAX-3SAT(k) where c is some absolute

constant.9 Therefore,

Lemma 5 (Håstad (2000)) There is a constant integer k and constant ǫ > 0 (depending only on

k) such that it is NP-hard to (1− ǫ)-approximate MAX-3SAT(k).

That is, for infinitely many integers n, there are two families of instances φY and φN in MAX-

3SAT(k) of size n each with the following property: φY is satisfiable; every truth assignment can

satisfy at most an 1 − ǫ fraction of the clauses in φN ; and it is NP-hard to distinguish between the

two cases.

3-COLORING for bounded degree graphs. Next, we adapt a gap-preserving reduction of Bog-

danov, Obata and Trevisan (2002), which was originally used to prove an Ω(n) query lower bound

for testing 3-Colorability in bounded-degree graphs under the property testing model. On input

an instance φ of MAX-3SAT(k), the reduction outputs a degree-bounded graph Gφ (BOT graph)

which satisfies the following: if φ is satisfiable then Gφ is 3-colorable; and if every truth assignment

can satisfy at most 1− ǫ fraction of the clauses in φ then every 3-coloring of the vertices of Gφ can

make at most 1−ǫ′ fraction of the edges in Gφ non-monochromatic. Here ǫ′ is a constant depending

only on ǫ and k.

Lemma 6 (Bogdanov et al. (2002)) There are absolute constants d and ǫ′ > 0 such that the fol-

lowing holds. For infinitely many integers n, there are two degree-d bounded graphs Gφ,Y and Gφ,N

of size n such that: Gφ,Y is 3-colorable; no 1− ǫ′ fraction of the edges of Gφ,N is 3-colorable; and

yet it is NP-hard to distinguish between the two cases.

Very strong expanders. The main idea of the reduction of Bogdanov et al. (2002) is to make

k copies of TRUE, FALSE and DUMMY for each variable and its negation, and use an expander

to connect these copies together to ensure truth value consistency among different copies. Any

constant-degree expander with reasonable vertex-expansion suffices: on one hand, the resulting

graph Gφ is of bounded degree; on the other hand, by the expansion property, deleting a small

fraction of the edges in Gφ will still leave the graph with a large connected component, using

which, one can — from the coloring of Gφ — decode a satisfying assignment that satisfies most of

the clauses.

However, for the purpose of proving hardness of DPP Maximum Likelihood Learning, we need

the expander to have some additional properties, which are encapsulated in the following definition.

9. We may also use the NP-hardness results of Berman et al. (2003) for 3-SAT instances in which every variable appears

exactly 4 times, or assuming RP 6= NP, use the hardness result of Trevisan (2001) with better parameters.

10
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Definition 7 (Very strong expanders (Alon and Capalbo, 2007)) A graph G = (V,E) is called

a d-regular very strong expander on n vertices if the average degree in any subgraph of G on at

most n/10 vertices is at most d/6, and the average degree in any subgraph of G on at most n/2
vertices is at most 2d/3.

The nice properties of very strong expanders that we require are summarized in the following

theorem from Alon and Capalbo (2007).

Theorem 8 (Alon and Capalbo (2007)) Let G = (V,E) be a very strong d-regular expander on

n vertices. If we delete an arbitrary subset of m′ ≤ nd/150 edges from G and denote the resulting

graph by G′, then G′ contains a subgraph H on at least n − 15m′/d vertices and the diameter of

H is O(log n).

The known explicit constructions of Ramanujan graphs (Lubotzky et al., 1988; Margulis, 1988)

yield families of d-regular strong expanders on n vertices for infinitely many n’s.

3-uniform hypergraph. To obtain the training data set, we transform a BOT graph Gφ = (V,E)
into a 3-uniform hypergraph Hφ = (V ′, E′) as follows. The vertex set V ′(Hφ) is V (G) ∪ E(G),
and for notational convenience, we will simply label the “graph-vertex” vertices by av for every

v ∈ V (G), and label the “graph-edge” vertices in V ′(Hφ) by a(u,v) for every edge (u, v) ∈ E(G).
Then the set of hyper-edges is E′(Hφ) = {(au, av, a(u,v)) : (u, v) ∈ E(G)}. It follows that Hφ is a

3-uniform hypergraph with10 N = |V ′(Hφ)| = n+m and |E′(Hφ)| = m, where n and m denote

the number of vertices and edges of the BOT graph Gφ, respectively.

Now, what happens if we use the set of hyper-edges of Hφ as the training data set {Xt}
m
t=1,

and feed it to a DPP Maximum Likelihood Learning algorithm? Our first step in understanding the

optimal DPP kernel is to establish a connection between DPP kernel of learning BOT hypergraphs

and a problem called “vector coloring”.

Connecting DPP kernels with vector colorings. Since K is a positive semidefinite matrix, we

can write K as K = Q⊤Q for some matrix Q. Let q1, . . . , qN ∈ R
k be the columns of Q. We can

further decompose these vectors as qi = ‖qi‖2χi, where χi ∈ R
k is a unit vector. The quantity ‖qi‖2

is a measure of the “importance” of item i, and χi is a normalized vector which encodes diversity

features of item i. Now the entries of the marginal kernel satisfy Kij = ‖qi‖2χ
⊤
i χj‖qj‖2, where

χ⊤
i χj ∈ [−1, 1] is a signed measure of the similarity between item i and item j. In particular, the

diagonal entries satisfy that Kii = ‖qi‖
2
2 for every i ∈ [N ].

We prove the following theorem, which allows us to somewhat decouple ‖qi‖2 and χi for each

item i, and identify (from the training set) the value of the “importance” (i.e. value ‖qi‖2) for each

item.11 Our result essentially determines at least one of the optimal settings of the importance of

each item.

Theorem 9 Let K be a marginal kernel with likelihood ℓ(K). Then there exists a marginal kernel

K ′ with ℓ(K ′) ≤ ℓ(K) such that the diagonal of K ′ (indexed by vertices and edges of Gφ) satisfies

K ′
ii =

{

degGφ
(u)

m for i = u ∈ V (Gφ);
1
m for i = (u, v) ∈ E(Gφ).

10. In order to not overload the statement in Theorem 4 with multiple parameters, we may add isolated vertices to graph

Gφ so that n = m and hence the ground set size is N and the sample size is m = N/2.

11. It is no coincidence that our simple algorithm, using this “first-moment” information from the training set in a similar

manner, constructs its DPP that achieves nontrivial worst-case approximation to the optimal log likelihood.
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Thus, it remains to determine the diversity features that maximize the likelihood. To this end, we use

a variant of 3-colorability in which the “colors” are generalized to vectors in R
k and the “coloring

constraint” for an edge (i, j) is satisfied if the vectors χi and χj assigned to the vertices i and j are

orthogonal.

More formally, let Sk−1 be the unit sphere in k-dimensional Euclidean space; that is, Sk−1 =
{x ∈ R

k : ‖x‖2 = 1}. Given a graph G = (V,E), we define a vector k-coloring of G to be a

function χ : V (G) → Sk−1. We say that a vector k-coloring χ is orthogonal if, for every edge

(u, v) ∈ E(G), we have χ⊤
u χv = 0. We define the error of a vector k-coloring χ of G to be

errχ(G) :=
1

|E(G)|

∑

(u,v)∈E(G)

|χ⊤
u χv|

2

so that a vector k-coloring χ of G is orthogonal if and only if errχ(G) = 0. Since χu and χv are

unit vectors, |χ⊤
u χv| = | cos θuv| for all (u, v) ∈ E(G), where θuv is the angle between χu and χv.

Now, by combining Theorem 9 with the fact that any 3-coloring of G naturally induces a vector

3-coloring of G, it is not hard to prove the following “completeness” theorem.

Theorem 10 (Completeness theorem) Let Gφ be a BOT graph, and let n = |V (Gφ)| be the

number of vertices and m = |E(Gφ)| be the number of edges of Gφ, respectively. If φ is satisfiable,

then there exists a rank-3 DPP marginal kernel K such that

ℓ(K) = ℓ∗ = 3 logm−
1

m

∑

(u,v)∈E(Gφ)

(

log(degGφ
(u)) + log(degGφ

(v))
)

.

Projecting DPP kernels to R
3. Intuitively, the maximum likelihood marginal kernel has dimen-

sion 3 so that zero probability measure will be assigned for subsets of size at least 4. We were unable

to prove this, but we nevertheless manage to show that the loss in making such an assumption is not

too great:

Theorem 11 Let Gφ be a BOT graph with maximum degree at most k. There is a constant Ck

depending only on k such that the following holds. Let K be an optimal marginal kernel with

likelihood ℓ(K) ≤ ℓ∗ + δ for some 0 < δ ≤ 1/(128k)2, then there exists a marginal kernel K ′ of

dimension 3 such that ℓ(K ′) ≤ ℓ∗ + Ckδ
1/4.

We conjecture that an even stronger statement is in fact true.

Conjecture 12 (Cardinality-rank conjecture) If the cardinality of every subset in a training set

is at most k ≥ 1, then every optimal maximum likelihood marginal kernel for the training set has

dimensional at most k.

This conjecture may be of independent interest outside the realm of maximum likelihood learning

of DPPs.

Decoding truth assignments from vector colorings. Because of Theorem 11, from now on we

assume that the dimension of Q is 3. Therefore, for each (au, av, a(u,v)) ∈ E′(Hφ),

Pr
Y ∼PK

[Y = {au, av, a(u,v)}] = det(K{au,av ,a(u,v)}),

12
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where K = Q⊤Q is the marginal kernel of DPP P . To maximize the likelihood, we want to

maximize the product of determinants of the above form. Since each a(u,v) occurs in only one

example, we can assume that χa(u,v) is always taken to be orthogonal to χau and χav . Thus, the

likelihood contribution from (au, av, a(u,v)) is maximized when χ⊤
auχav = 0; or equivalently, when

χau and χav are orthogonal. We formally prove this correspondence between the “orthogonality” of

the associated vector 3-coloring of Gφ and the likelihood of the corresponding DPP with marginal

kernel K = Q⊤Q, where the column of Q corresponding to vertex u is ‖qau‖2χau . Moreover, we

can even decode the truth-assignment of the Boolean formula φ if the vector 3-coloring of Gφ is

very close to satisfying all edges of Gφ.

Theorem 13 (Soundness theorem) Let ℓ∗ be the optimal log likelihood as in Theorem 10. Then

there exists a constant C > 0 which depends only on k and ǫ′ as those defined in Theorem 6,

such that the following holds. If there is a DPP marginal kernel K of rank 3, which satisfies

ℓ(K) ≤ ℓ∗ + C
log2 n

where n = |V (Gφ)| is the number of vertices in the BOT graph, then there is a

truth assignment that satisfies at least (1 − ǫ) fraction of the clauses in φ, where ǫ is the constant

defined in Theorem 5.

To see why Theorem 13 implies our main theorem, Theorem 4, consider that we start the reduc-

tion with two families of instances φY and φN in MAX-3SAT(k) which are NP-hard to distinguish.

Then we construct their corresponding BOT hypergraphs, HφY
and HφN

, and use the edge sets

of these two hypergraphs as training sets of size m for a DPP maximum likelihood learning al-

gorithm. The log likelihood estimator of φY is ℓ∗ = Θ(logN) by Theorem 10. What is the log

likelihood estimator of φN? Well, by Theorem 11, if the marginal kernel of GφN
has log likelihood

ℓ(K) ≤ ℓ∗ + δ for some small enough δ > 0, then there exists a marginal kernel K ′ of dimension

3 such that ℓ(K ′) ≤ ℓ∗ + Ckδ
1/4. By Theorem 13, we must have δ = Ω( 1

log2 N
) for φN . That

is, the log likelihood estimator of φN is ℓ∗ + Ω( 1
log8 N

). Now if there were an polynomial-time

algorithm A which approximates the log likelihood estimator within a factor of 1 − 1/Ω(log9N),
then A would be able to tell apart φY from φN — thus solving an NP-complete problem — simply

by approximating the maximum log likelihood estimators on training data sets from HφY
and HφN

,

respectively.

3. Discussion and open problems

In this work, we establish that it is NP-hard to obtain a 1−O( 1
log9 N

)-approximation to the maximum

log likelihood of DPPs. We also demonstrate a simple polynomial-time algorithm that achieves
1

(1+o(1)) logm -approximation. One immediate open problem is to close this large gap. A natural and

plausible approach is to prove the cardinality-rank conjecture or at least to improve the bound in

Theorem 11. Note that our hardness result does not rule out efficient learning with some constant

factor of approximation: it is still possible that there is a polynomial-time algorithm that obtains

a DPP kernel with a 99%-approximation to the maximum log likelihood. As observed earlier, we

cannot preclude constant-factor approximations by a better analysis of the constructed hard instance:

the approximation algorithm shows that our hardness result is tight up to a polynomial factor for

the type of subset collections employed in the proof. Therefore any stronger hardness proof would

require constructing a collection of subsets in which some element appears in a non-trivial fraction

of the subsets.

13
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Our investigation just takes a first stab at understanding the computational landscape of learning

DPPs. In particular, our knowledge for the complexity of learning DPPs when the data set is indeed

generated by an unknown DPP is still very limited: Can one design efficient algorithms for such

a task? Can the DPP kernel be learned with arbitrary accuracy? And if not, what is the best

approximation factor can such an algorithm achieve? Note that the data here is no longer a worst-

case data set, but only sampled from a worst-case DPP. The underlying model is thus a semi-

random one, and it seems challenging to extend NP-completeness hardness to such settings; some

kind of average-case hardness is likely to be the best one can hope for. This is essentially the

approach that Brunel et al. (2017a) had envisioned when examining the optimization landscape of

the likelihood function for DPP kernels. The convergence of the empirical log-likelihood function

to the true log-likelihood function only holds with high probability, and so in particular doesn’t

carry over to the kinds of worst-case data sets produced by our reduction. Thus, their conjectured

property may still hold, and may be a route to an efficient algorithm in this setting. On the other

hand, “realizability” is probably a too strong assumption for practical purposes; DPPs are generally

used to model processes featuring negative association, and it often seems implausible that the data

actually follows a DPP distribution. Therefore, finding more appropriate assumptions is yet to be

explored, and an algorithm for a realizable setting would be a natural first step along this direction.

As the other side of the coin, it is entirely conceivable that such efficient algorithms may not exist

at all. One may view our main result as proving the hardness of “agnostic-learning” DPPs, while

here the task would be proving hardness of “PAC-learning” DPPs. Presumably this is more difficult,

as PAC-learning is in general easier than agnostic learning, it is thus harder to obtain lower bounds

in the former setting. In particular, the usual approach of proving PAC-learning lower bounds

involves uniform distributions over some prescribed collections of subsets. Such distributions are

within the scope of PAC-learning model as it allows arbitrary distributions. By contrast, DPPs are

normally unable to generate the uniform distribution over an arbitrary collection of subsets. Indeed,

we believe that the data set we construct would be atypical for all DPPs. This is why contrary to the

usual representation-specific hardness theorems in PAC-learning, we believe that an average-case

hardness assumption will be necessary here.

Indeed, this discussion also highlights that maximum likelihood estimation is a kind of represen-

tation-specific (or “proper”) learning. One more potential route to learning DPPs is thus to use a

more expressive representation that may possibly achieve better likelihood than the best DPP for a

given data set, thwarting our reduction. Probabilistic Generating Circuits (Zhang et al., 2021), for

example, can efficiently represent DPPs, and therefore may be an appropriate representation to use

for this purpose.
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