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ABSTRACT

Recent deep learning and sequence-to-sequence learning technology have produced impressive

results on automatic summarization. However, the models have limited insights on the underlying

language and it remains challenging for system-generated summaries to be truthful to the original

input or cover the most important information. This is especially the case for generating abstractive

summaries using neural models. My work aims for a flexible and controllable summarization

system that can be adapted to cater to different scenarios. It is designed to incorporate linguistic

structure information into deep neural networks, have the capability to produce abstracts by re-

using a varying amount of source text, and take language characteristics into consideration for

summary generation and selection.

My dissertation provides a comprehensive overview to the problem of text summarization. I

will present a number of approaches to incorporate linguistic structure into state-of-the-art deep

neural models to help system summaries remain grammatical and retain the most salient meaning

of the source text. I will also describe a summarization approach that is controllable during training

and produce diverse summaries during the decoding and re-ranking processes. Finally, I will

conclude with a novel approach for selecting optimal summaries from a collection of candidates

and discuss the opportunities and challenges in this promising area of research.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The 21st century has an abundance of information. The latest technologies like the Internet and

smart devices allow you to hear news anytime on this planet. You could obtain almost anything

you need from a browser with a search engine. The Internet is becoming an immense library, full

of knowledge, which not everyone could know.

Besides, the volume of total information is growing exponentially. As a matter of fact, we only

had an estimate of about 3.2 million websites in 1999. In 2020, we had around 1.8 billion of them.

It is a 560-time growing in the past two decades. The Internet users are not only its customers

but also information creators. We write reviews for movies, products and services on E-Retailers.

We record our life and share our opinions using online Medium and Social Network. People do

business using the Internet. Advertising, selling, paying are all through the Internet.

As we create and receive different kinds of information from different sources daily, we are

suffering the lack of information processing capacity as human beings. The solution to information

collection, storage and analyzation is much more desired than before. How do we legally and

properly collect the data? How do we safely and efficiently distribute such data? How do we

1



automatically precisely understand and make use of the data? These three questions especially the

last one motivated me to conduct research on summarization.

1.2 Overview of Summarization

Automatic Summarization task aims to generate concise and informative summaries from a large

collection of documents to better support fast browsing of textual content. There are two gen-

eral approaches for summarization, extractive summarization and abstractive summarization. The

extractive approaches extract content from the original text without any modification, while the

abstract methods rephrase the input with a shortened summary.

1.2.1 Extractive Systems

The original idea was conceived in the 1950s, when Luhn [1] proposed a method of computing

the significance of using word statistical information, such as word frequency and distribution, and

then extracting sentences with highest scores to create an ”auto-abstract”.

Most of the extractive system follows this Information Extraction(IE) idea of first scoring the

fragments of original text and then selecting them according to their order.
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At the early stage, a branch of unsupervised systems [1, 2, 3] studied the salience of text

fragments relying on human-designed features such as positional information, word frequency,

key phrase indicators and IDF Scores. At that time, summarization was a sub-field of IE.

Later on, some researches [4, 5, 6] also took text structural and content relations into account.

As more features and data became available, another branch of studies, the supervised methods

[7, 8, 9] became the trend. Such methods attempted to predict a set of human annotated or rule-

based binary labels indicating whether those fragments are selected or not.

In recent years, as computational capacity becomes much faster and cheaper, deep-learning

based methods are getting more popular. Researchers start to use word embedding [10, 11, 12, 13],

Deep Neural Networks[14, 15] instead of handcraft features. This helps in capturing the context.

The extractive summarization is then formulated as a binary sequence labeling problem[16, 17, 18,

19].

1.2.2 Abstractive Systems

Unlike extractive systems, the abstractive summarization aims to comprehend and rephrase the

original expressions with more understanding and less words. As mentioned in [20]:

Most of these summarization approaches aim for selecting the most informative

sentences, while less attempt has been made to generate abstractive summaries, or

compress the extracted sentences and merge them into a concise summary. Simply

3



concatenating extracted sentences may not comprise a good summary, especially for

spoken documents, since speech transcripts often contain many disfluencies and are

redundant.

Before deep-learning shows its dominant performance, a set of methods [21, 20, 22, 23] tent to

apply deletion based sentence compression after the extraction, removing redundancy. However,

other methods focused on summary generations based on semantic representations [24, 25, 26].

Later, as sequence-to-sequence learning schema achieved a remarkable performance on gener-

ation tasks, several abstractive methods were proposed[27, 28, 29]. Such methods are impressive in

generating fluent rephrased summaries. However, they are usually not true-to-original and some-

times ungrammatical. More specifically, such systems may create unexpected new meanings or

bias the original one. We will discuss this hallucination issue and the way of reducing its effect in

Chapter 2 & 3.

To date, pre-trained Language Models promote almost every downstream NLP tasks. To be

more specific, BERT[30] and its variant RoBERTa[31] use fully visible Transformer based encoder

to encode context from both left and right. GPTs[32, 33, 34] propose language model decoders

with an auto-regressive way. UniLM[35] attempted to extend BERT with generation capability

with a delicate attention mask. MASS[36], Bart[37], PEGASUS[38], ProphetNet[39] and T5[40]

made attempts on different training strategies for efficiently pre-training on sequence-to-sequence

tasks with a encoder-decoder Transformer. Such models are fed with huge amount of data (e.g.

billions/trillions of tokens) containing lots of common sense knowledge, thus having a higher

capability of abstraction.

4



1.2.3 Evaluation Metrics

To better evaluate the performance of a summarization system, researchers usually use one or more

human created summaries as references.

Pyramid[41] is a metric designed for human evaluation with multiple references. A pyramid is

built based on how many times a concept unit appears in different references. The more the concept

appears, the larger the concept weighs. Human annotators will find out those concept units and

align them among input, summary and references. Then, the summary will be evaluated using the

weighted recall value of those concept units.

Instead of employing human annotators to figure out the concept units and align them,

ROUGE[42] is proposed to automatically evaluate the n-gram overlap between summary and ref-

erences. It is much easier when adapting to single reference case.

The above methods are designed for evaluating how much information is preserved in the

summary compared to the references. However, such evaluation cannot measure the overall per-

formance. Highly abstract metrics like Fluency, Grammaticality, Informativeness and Truthfulness

are much more complicated. To evaluate the overall performance of a summary, researchers usu-

ally employ human annotators to rate the summary with these metrics.
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1.2.4 Challenge of abstractive summarization systems

There are two major challenges for current summarization systems. First, current abstractive sys-

tems suffer from hallucination. Those systems are mostly data-driven, which remember the train-

ing data distribution very well; however they may not work well with new data. This could intro-

duce the new meanings or bias the original meaning. Second, current abstractive summarization

systems are lack of flexibility. They are mostly sequence-to-sequence models equipped with beam

search method and decode the summaries in an auto-regressive manner. Such methods neither

provide a natural way of length and copy-ratio controlling, nor generate diverse summaries. Lack

of flexibility is also a key reason why abstractive summarization have not been widely used yet.

1.3 Content Layout

In Chapter 2, I will introduce an approach accepted at COLING 2018 for reducing the hallucina-

tion by incorporating structural information from the source side. In Chapter 3, I will illustrate

a work accepted at AAAI 2020 also for reducing the hallucination and improving the grammati-

cality using target side structural information. In Chapter 4, I will describe a method on how to

control the length and copy ratio of generated summaries. This work is also accepted at AAAI

2020. In Chapter 5, I will demonstrate a new pipeline of overgenerate-then-select for length and

quality controlling. This could also extend to more desired properties of summary, coupled with

customized selectors. This work is accepted at NAACL 2021. In Chapter 6, I will conclude my
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research on summarization field, discuss the future work and my expectations for summarization

in the future.
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CHAPTER 2
INCORPORATE SOURCE STRUCTURAL INFORMATION:

STRUCTURE-INFUSED COPY MECHANISMS FOR ABSTRACTIVE

SUMMARIZATION

In this Chapter, I will introduce one of my work accepted at COLING 2018. In this work,

we introduce a novel architecture that encourage salient source words/relations to be preserved in

summaries. This helps the model to better learn those rare but important words/relations in the

training data.

2.1 Background

Recent years have witnessed increasing interest in abstractive summarization. The systems seek

to condense source texts to summaries that are concise, grammatical, and preserve the important

meaning of the original texts [43]. The task encompasses a number of high-level text operations,

e.g., paraphrasing, generalization, text reduction and reordering [44], posing a considerable chal-

lenge to natural language understanding.
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Table 2.1: Example source sentences, reference and system summaries produced by a neural at-

tentive seq-to-seq model. The main verbs are italicized and marked in red. System summaries

fail to preserve summary-worthy content of the source (e.g., main verbs) despite their syntactic

importance.

Src A Mozambican man suspect of murdering Jorge Microsse, director of Maputo central

prison, has escaped from the city’s police headquarters, local media reported on Tuesday.

Ref Mozambican suspected of killing Maputo prison director escapes

Sys mozambican man arrested for murder

Src An Alaska father who was too drunk to drive had his 11-year-old son take the wheel,

authorities said.

Ref Drunk Alaska dad has 11 year old drive home

Sys alaska father who was too drunk to drive

The sequence-to-sequence learning paradigm has achieved remarkable success on abstractive

summarization [27, 28, 29, 45]. While the results are impressive, individual system summaries

can appear unreliable and fail to preserve the meaning of the source texts. Table 2.1 presents

two examples. In these cases, the syntactic structure of source sentences is relatively rare but

perfectly normal. The first sentence contains two appositional phrases (“suspect of murdering

Jorge Microsse,” “director of Maputo central prison”) and the second sentence has a relative clause

(“who was too drunk to drive”), both located between the subject and the main verb. The system,

however, fails to identify the main verb in both cases; it instead chooses to focus on the first few

words of the source sentences. We observe that rare syntactic constructions of the source can pose
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problems for neural summarization systems, possibly for two reasons. First, similar to rare words,

certain syntactic constructions do not occur frequently enough in the training data to allow the

system to learn the patterns. Second, neural summarization systems are not explicitly informed of

the syntactic structure of the source sentences and they tend to bias towards sequential recency.

In this paper we seek to address this problem by incorporating source syntactic structure in

neural sentence summarization to help the system identify summary-worthy content and compose

summaries that preserve the important meaning of the source texts. We present structure-infused

copy mechanisms to facilitate copying source words and relations to the summary based on their

semantic and structural importance in the source sentences. For example, if important parts of the

source syntactic structure, such as a dependency edge from the main verb to the subject (“father”

← “had,” shown in Figure 2.1), can be preserved in the summary, the “missing verb” issue in

Table 2.1 can be effectively alleviated. Our model therefore learns to recognize important source

words and source dependency relations and strives to preserve them in the summaries. Our research

contributions include the following:

• we introduce novel neural architectures that encourage salient source words/relations to be

preserved in summaries. The framework naturally combines the dependency parse tree struc-

ture with the copy mechanism of an abstractive summarization system. To the best of our

knowledge, this is the first attempt at comparing various neural architectures for this purpose;

• we study the effectiveness of several important components, including the vocabulary size,

a coverage-based regularizer [29], and a beam search with reference mechanism [46];
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A father who was too drunk to drive had his 11-year-old son take the wheel .
DT NN WP VBD RB JJ TO VB VBD PRP$ JJ NN VB DT NN .

det
advmod mark amod nsubj

copnsubj
acl:relcl

xcomp

nsubj

nmod:poss
ccomp

det
dobj

punct

Figure 2.1: An example dependency parse tree created for the source sentence in Table 2.1. If

important dependency edges such as “father← had” can be preserved in the summary, the system

summary is likely to preserve the meaning of the original.

• through extensive experiments we demonstrate that incorporating syntactic information in

neural sentence summarization is effective. Our approach surpasses state-of-the-art pub-

lished systems on the benchmark dataset.1

2.2 Related Work

Prior to the deep learning era, sentence syntactic structure has been utilized to generate summaries

with an “extract-and-compress” framework. Compressed summaries are generated using a joint

model to extract sentences and drop non-important syntactic constituents [47, 48, 49, 50], or a

pipeline approach that combines generic sentence compression [51, 52, 53] with a sentence pre-

selection or post-selection process [54, 55, 56, 22, 57]. Although syntactic information is helpful

for summarization, there has been little prior work investigating how best to combine sentence

syntactic structure with the neural abstractive summarization systems.

1We made our system publicly available at: https://github.com/KaiQiangSong/struct_infused_summ
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Existing neural summarization systems handle syntactic structure only implicitly [58, 59, 60,

46, 45]. Most systems adopt a “cut-and-stitch” scheme that picks words either from the vocabulary

or the source text and stitch them together using a recurrent language model. However, there lacks

a mechanism to ensure structurally salient words and relations in source sentences are preserved

in the summaries. The resulting summary sentences can contain misleading information (e.g.,

“mozambican man arrested for murder” flips the meaning of the original) or grammatical errors

(e.g., verbless, as in “alaska father who was too drunk to drive”).

Natural language generation (NLG)-based abstractive summarization [61, 62, 63, 64, 65] also

makes extensive use of structural information, including syntactic/semantic parse trees, discourse

structures, and domain-specific templates built using a text planner or an OpenIE system [66]. In

particular, Cao et al. [67] leverage OpenIE and dependency parsing to extract fact tuples from the

source text and use those to improve the faithfulness of summaries.

Different from the above approaches, this paper seeks to directly incorporate source-side syn-

tactic structure in the copy mechanism of an abstractive sentence summarization system. It learns

to recognize important source words and relations during training, while striving to preserve them

in the summaries at test time to aid reproduction of factual details. Our intent of incorporating

source syntax in summarization is different from that of neural machine translation (NMT) [68, 69],

in part because NMT does not handle the information loss from source to target. In contrast, a

summarization system must selectively preserve source content to render concise and grammatical

summaries. We specifically focus on sentence summarization, where the goal is to reduce the first
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sentence of an article to a title-like summary. We believe even for this reasonably simple task there

remains issues unsolved.

2.3 Our Approach

We seek to transform a source sentence x to a summary sentence y that is concise, grammatical,

and preserves the meaning of the source sentence. A source word is replaced by its Glove em-

bedding [70] before it is fed to the system; the vector is denoted by xi (i ∈ [S]; ‘S’ for source).

Similarly, a summary word is denoted by yt (t ∈ [T ]; ‘T’ for target). If a word does not appear in

the input vocabulary, it is replaced by a special ‘〈unk〉’ token. We begin this section by describing

the basic summarization framework, followed by our new copy mechanisms used to encourage

source words and dependency relations to be preserved in the summary.

2.3.1 The Basic Framework

We build an encoder-decoder architecture for this work. An encoder condenses the entire source

text to a continuous vector; it also learns a vector representation for each unit of the source text

(e.g., words as units). In this work we use a two-layer stacked bi-directional Long Short-Term

Memory [71] networks as the encoder, where the input to the second layer is the concatenation of

hidden states from the forward and backward passes of the first layer. We obtain the hidden states

of the second layer; they are denoted by he
i . The source text vector is constructed by averaging over
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all he
i and passing the vector through a feedforward layer with tanh activation to convert from the

encoder hidden states to an initial decoder hidden state (hd
0). This process is illustrated in Eq. (2.2).

he
i = fe(he

i−1,xi) hd
t = fd(hd

t−1,yt−1) (2.1)

hd
0 = tanh(Wh0

1
S

S
∑

i=1
he

i +bh0) (2.2)

A decoder unrolls the summary by predicting one word at a time. During training, the decoder

takes as input the embeddings of ground truth summary words, denoted by yt , while at test time

yt are embeddings of system predicted summary words (i.e., teacher forcing). We implement an

LSTM decoder with the attention mechanism. A context vector ct is used to encode the source

words that the system attends to for generating the next summary word. It is defined in Eqs (2.3-

2.5), where [·||·] denotes the concatenation of two vectors. The α matrix measures the strength of

interaction between the decoder hidden states {hd
t } and encoder hidden states {he

i }. To predict the

next word, the context vector ct and hd
t are concatenated and used as input to build a new vector

h̃d
t (Eq. (2.6)). h̃d

t is a surrogate for semantic meanings carried at time step t of the decoder. It is
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subsequently used to compute a probability distribution over the output vocabulary (Eq. (2.7)).

et,i = v> tanh(We[hd
t ||he

i ]+be) (2.3)

αt,i =
exp(et,i)

∑
S
i′=1 exp(et,i′)

(2.4)

ct = ∑
S
i=1 αt,ihe

i (2.5)

h̃d
t = tanh(Wh[hd

t ||ct ]+bh) (2.6)

Pvocab(w) = softmax(Wyh̃d
t +by) (2.7)

The copy mechanism [72, 29] allows words in the source sequence to be selectively copied to

the target sequence. It expands the search space for summary words to include both the output

vocabulary and the source text. The copy mechanism can effectively reduce out-of-vocabulary

tokens in the generated text, potentially aiding a number of applications such as MT [73] and text

summarization [74, 75, 76].

Our copy mechanism employs a ‘switch’ to estimate the likelihood of generating a word from

the vocabulary (pgen) vs. copying it from the source text (1− pgen). The basic model is similar

to that of the pointer-generator networks [29]. The switch is a feedforward layer with sigmoid

activation (Eq. (2.8)). At time step t, its input is a concatenation of the decoder hidden state hd
t ,

context vector ct , and the embedding of the previously generated word yt−1. For predicting the

next word, we combine the generation and copy probabilities, shown in Eq. (2.9). If a word w

appears once or more in the input text, its copy probability (∑i:wi=w αt,i) is the sum of the attention

weights over all its occurrences. If w appears in both the vocabulary and source text, P(w) is a

weighted sum of the two probabilities.

15



pgen = σ(Wz[hd
t ||ct ||yt−1])+bz) (2.8)

P(w) = pgenPvocab(w)+(1− pgen) ∑
i:wi=w

αt,i (2.9)

2.3.2 Structure-Infused Copy Mechanisms

The aforementioned copy mechanism attends to source words based on their “semantic” impor-

tance encoded in {αt,i}, which measures the semantic relatedness of the encoder hidden state he
i

and the decoder hidden state hd
t (Eq. (2.4)). However, the source syntactic structure is ignored.

This is problematic, because it hurts the system’s ability to effectively identify summary-worthy

source words that are syntactically important. We next propose three strategies to inject source

syntactic structure to the copy mechanism.

2.3.3 Learning Objective and Beam Search

We next describe our learning objective, including a coverage-based regularizer [29], and a beam

search with reference mechanism [46]. We want to investigate the effectiveness of these techniques

on sentence summarization, which has not been explored in previous work.

Learning objective. Our training proceeds by minimizing a per-target-word cross-entropy loss

function. A regularization term is applied to the α matrix. Recall that αt,i ∈ [0,1] measures the
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Table 2.2: Six categories of structural labels. Example labels are generated for word ‘had’ in

Figure 2.1. Relative word positions are discretized into ten buckets.

Structural info Example

(1) depth in the dependency parse tree 0

(2) label of the incoming edge ‘root’

(3) number of outgoing edges 3

(4) part-of-speech tag ‘VBD’

(5) absolution position in the source text 9

(6) relative position in the source text (0.5, 0.6]

[xi||sei ]

he
i

hd
t

ct
↵t,i

hd
t

ct
↵t,i

xi

[he
i ||sei ]

Figure 2.2: System architectures for ‘Struct+Input’ (left) and ‘Struct+Hidden’ (right). A critical

question we seek to answer is whether the structural embeddings (se
i ) should be supplied as input

to the encoder (left) or be exempted from encoding and directly concatenated with the encoder

hidden states (right).
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interaction strength between the t-th output word and the i-th input word. Naturally, we expect

a 1-to-1 mapping between the two words. The coverage-based regularizer, proposed by See et

al., [29], encourages this behavior by tracking the historical attention values attributed to the i-th

input word (up to time step t-1), denoted by α̃t,i =∑
t−1
t ′=0 αt ′,i. The approach then takes the minimum

between α̃t,i and αt,i, which has the practical effect of forcing αt,i (∀t) to be close to either 0 or 1,

otherwise a penalty will be applied. The regularizer Ω is defined in Eq. (2.10), where M is the size

of the mini-batch, S and T are the lengths of the source and target sequences. For two-way copy

mechanisms, δ replaces α to become the new attention values, we therefore apply regularization

to δ instead of α . When the regularizer applies, the objective becomes minimizing (L +Ω).

Ω = λ

M

∑
m=1

1
T (m)S(m)

T (m)

∑
t=1

S(m)

∑
i=1

(
min(α̃t,i,αt,i)

)
(2.10)

Beam search with reference. During testing, we employ greedy search to generate system sum-

mary sequences. For the task of summarization, the ground truth summary sequences are usually

close to the source texts. This property can be leveraged in beam search. Tan et al., [46] describe a

beam search with reference mechanism that rewards system summaries that have a high degree of

bigram overlap with the source texts. We describe it in Eq. (2.11), where where S (w) denotes the

score of word w. B(y<t ,x) measures the number of bigrams shared by the system summary (up

to time step t-1) and the source text; {y<t ,w} adds a word w to the end of the system summary.

The shorter the source text (measured by length S), the more weight a shared bigram will add to

the score of the current word w. A hyperparameter η controls the degree of closeness between the

system summary and the source text.
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S (w) = logP(w)+η
B({y<t ,w},x)−B(y<t ,x)

S
(2.11)

2.4 Experiments

We evaluate the proposed structure-infused copy mechanisms for summarization in this section.

We describe the dataset, experimental settings, baselines, and finally, evaluation results and analy-

sis.

2.4.1 Data Sets

We evaluate our proposed models on the Gigaword summarization dataset [77, 27]. The task is

to reduce the first sentence of an article to a title-like summary. We obtain dependency parse

trees for source sentences using the Stanford neural network parser [78]. We also use the standard

train/valid/test data splits. Following [27], the train and valid splits are pruned2 to improve the data

quality. Spurious pairs that are repetitive, overly long/short, and pairs whose source and summary

sequences have little word overlap are removed. No pruning is performed for instances in the test

set. The processed corpus contains 4,018K training instances. We construct two (non-overlapped)

validation sets: “valid-4096” contains 4,096 randomly sampled instances from the valid split; it is

used for hyperparameter tuning and early stopping. “valid-2000” is used for evaluation; it allows

2https://github.com/facebookarchive/NAMAS/blob/master/dataset/filter.py
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the models to be trained and evaluated on pruned instances. Finally, we report results on the

standard Gigaword test set [27] containing 1,951 instances (“test-1951”).

2.4.2 Experimental Setup

We use the Xavier scheme [79] for parameter initialization, where weights are initialized using

a Gaussian distribution Wi, j ∼ N (0, σ), σ =
√

2
nin+nout

; nin and nout are numbers of the input

and output units of the network; biases are set to be 0. We further implement two techniques

to accelerate mini-batch training. First, all training instances are sorted by the source sequence

length and partitioned into mini-batches. The shorter sequences are padded to have the same

length as the longest sequence in the batch. All batches are shuffled at the beginning of each

epoch. Second, we introduce a variable-length batch vocabulary containing only source words of

the current mini-batch and words of the output vocabulary. P(w) in Eq. (2.9) only needs to be

calculated for words in the batch vocabulary. It is magnitudes smaller than a direct combination

of the input and output vocabularies. Finally, our input vocabulary contains the most frequent 70K

words in the source texts and summaries. The output vocabulary contains 5K words by default.

More network parameters are presented in Table 2.3.
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Table 2.3: Parameter settings of our summarization system.

Input vocabulary size 70K

Output vocabulary size 5K (default)

Dim. of word embeddings 100

Dim. of structural embeddings 16

Num. of encoder/decoder hidden units 256

Adam optimizer [80] lr = 1e-4

Coeff. for coverage-based regularizer λ = 1

Coeff. for beam search with reference η ≈ 13.5

Beam size K = 5

Minibatch size M = 64

Early stopping criterion (max 20 epochs) valid. loss

Gradient clipping [?] g ∈ [-5, 5]

2.5 Results

ROUGE results on valid set We first report results on the Gigaword valid-2000 dataset in Ta-

ble 2.4. We present R-1, R-2, and R-L scores [42] that respectively measures the overlapped

unigrams, bigrams, and longest common subsequences between the system and reference sum-

maries3. Our baseline system (“Baseline”) implements the seq2seq architecture with the basic

copy mechanism (Eq. (2.1-2.9)). It is a strong baseline that resembles the pointer-generator net-

3w/ ROUGE options: -n 2 -m -w 1.2 -c 95 -r 1000
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Table 2.4: Results on the Gigaword valid-2000 set (full-length F1). Models implementing the

structure-infused copy mechanisms (“Struct+*”) outperform the baseline.

Gigaword Valid-2000

System R-1 R-2 R-L

Baseline 42.48 21.34 40.18

Struct+Input 42.44 21.75 40.46

Struct+Hidden 42.88 21.81 40.63

Struct+2Way+Word 43.21 21.84 40.86

Struct+2Way+Relation 42.83 21.85 40.60

Table 2.5: Example system summaries. ‘S:’ source; ‘T:’ target; ‘B:’ baseline; ‘I:’ Struct+Input;

‘H:’ Struct+Hidden; ‘W:’ 2Way+Word; “R:” 2Way+Relation. “2Way+Relation” is able to preserve

important source relations in the summary, e.g., “government nsubj←−− files,” “files dobj−−→ round,” and

“round nmod−−→ charges.”

S: the government filed another round of criminal charges in a widening stock options scandal

T: options scandal widens

B: government files more charges in stock options scandal

I: another round of criminal charges in stock options scandal

H: charges filed in stock options scandal

W: another round of criminal charges in stock options scandal

R: government files another round of criminal charges in options scandal
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Table 2.6: Example system summaries. “Struct+Hidden” and “2Way+Relation” successfully pre-

serve salient source words (“emergency food shipments”), which are missed out by other systems.

We observe that copying “hold talks” from the source also makes the resulting summaries more

informative than using the word “meet.”

S: red cross negotiators from rivals north korea and south korea held talks wednesday on emergency

food shipments to starving north koreans and agreed to meet again thursday

T: koreas meet in beijing to discuss food aid from south eds

B: north korea , south korea agree to meet again

I: north korea , south korea meet again

H: north korea , south korea meet on emergency food shipments

W: north korea , south korea hold talks on food shipments

R: north korea , south korea hold talks on emergency food shipments
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works described in [29]. The structural models (“Struct+*”) differ from the baseline only on the

structure-infused copy mechanisms. All models are evaluated without the coverage regularizer or

beam search (§2.3.3) to ensure fair comparison. Overall, we observe that models equipped with the

structure-infused copy mechanisms are superior to the baseline, suggesting that combining source

syntactic structure with the copy mechanism is effective. We found that the “Struct+Hidden” ar-

chitecture, which directly concatenates structural embeddings with the encoder hidden states, out-

performs “Struct+Input” despite that the latter requires more parameters. “Struct+2Way+Word”

also demonstrates strong performance, achieving 43.21%, 21.84%, and 40.86% F1 scores, for R-1,

R-2, and R-L respectively.

ROUGE results on test set We compare our proposed approach with a range of state-of-the-

art neural summarization systems. Results on the standard Gigaword test set (“test-1951”) are

presented in Table 2.7. Details about these systems are provided in Table 2.8. Overall, our proposed

approach with structure-infused pointer networks perform strongly, yielding ROUGE scores that

are on-par with or surpassing state-of-the-art published systems. Notice that the scores on the valid-

2000 dataset are generally higher than those of test-1951. This is because the (source, summary)

pairs in the Gigaword test set are not pruned (see §2.4.1). In some cases, none (or very few) of

the summary words appear in the source. This may cause difficulties to the systems equipped

with the copy mechanism. The “Struct+2Way+Word” architecture that respectively models the

semantic and syntactic importance of source words achieves the highest scores. It outperforms

its counterpart of “Struct+2Way+Relation,” which seeks to preserve source dependency relations

in summaries. We conjecture that the imperfect dependency parse trees generated by the parser
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may affect the “Struct+2Way+Relation” results. However, because the Gigaword dataset does not

provide gold-standard annotations for parse trees, we could not easily verify this and will leave it

for future work. In Table 2.5 and 2.6, we present system summaries produced by various models.

Linguistic quality To further gauge the summary quality, we hire human workers from the Ama-

zon Mechanical Turk platform to rate summaries on a Likert scale of 1 to 5 according to three

criteria [85]: fluency (is the summary grammatical and well-formed?), informativeness (to what

extent is the meaning of the original sentence preserved in the summary?), and faithfulness (is

the summary accurate and faithful to the original?). We sample 100 instances from the test set

and employ 5 turkers to rate each summary; their averaged scores are presented in Table 2.9. We

found that “Struct+2Way+Relation” outperforms “Struct+Input” on all three criteria. It also com-

pares favorably to ground-truth summaries on “fluency” and “faithfulness.” On the other hand, the

ground-truth summaries, corresponding to article titles, are judged as less satisfying according to

human raters.

Dependency relations We investigate the source dependency relations preserved in the sum-

maries in Table 2.10. A source relation is considered preserved if both its words appear in the

summary. We observe that the models implementing structure-infused copy mechanisms (e.g.,

“Struct+2Way+Word”) are more likely to preserve important dependency relations in the sum-

maries, including nsubj, dobj, amod, nmod, and nmod:poss. Dependency relations that are less

important (mark, case, conj, cc, det) are less likely to be preserved. These results show that our
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Figure 2.3: Effects of applying the coverage regularizer and the reference beam search to structural

models, evaluated on test-1951. Combining both yields the highest scores.

structure-infused copy mechanisms can learn to recognize the importance of dependency relations

and selectively preserve them in the summaries.

Coverage and reference beam In Figure 2.3, we investigate the effect of applying the coverage

regularizer (“coverage”) and reference-based beam search (“ref beam”) (§2.3.3) to our models.

The coverage regularizer is applied in a second training stage, where the system is trained for

an extra 5 epochs with coverage and the model yielding the lowest validation loss is selected.

Both coverage and ref beam can improve the system performance. Our observation suggests that

ref beam is an effective addition to shorten the gap between different systems.

Output vocabulary size Finally, we investigate the impact of the output vocabulary size on the

summarization performance in Table 2.11. All our models by default use an output vocabulary of
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5K words in order to make the results comparable to state-of-the-art-systems. However, we observe

that there is a potential to further boost the system performance (17.25→17.62 R-2 F1-score, w/o

coverage or ref beam) if we had chosen to use a larger vocabulary (10K) and can endure a slightly

longer training time (1.2x). In Table 2.11, we further report the percentages of reference summary

words covered by the output vocabulary (“InVcb”) and covered by either the output vocabulary

or the source text (“InVcb+Src”). The gap between the two conditions shortens as the size of the

output vocabulary is increased.

2.6 Conclusion

In this paper, we investigated structure-infused copy mechanisms that combine source syntactic

structure with the copy mechanism of an abstractive summarization system. We compared various

system architectures and showed that our models can effectively preserve salient source relations

in summaries. Results on benchmark datasets showed that the structural models are on-par with or

surpass state-of-the-art published systems.
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Table 2.7: Results on the Gigaword test-1951 set (full-length F1). Models with structure-infused

copy mechanisms (“Struct+*”) perform well. Their R-2 F-scores are on-par with or outperform

state-of-the-art published systems.

Gigaword Test-1951

System R-1 R-2 R-L

ABS [?] 29.55 11.32 26.42

ABS+ [?] 29.76 11.88 26.96

Luong-NMT [81] 33.10 14.45 30.71

RAS-LSTM [81] 32.55 14.70 30.03

RAS-Elman [81] 33.78 15.97 31.15

ASC+FSC1 [82] 34.17 15.94 31.92

lvt2k-1sent [?] 32.67 15.59 30.64

lvt5k-1sent [?] 35.30 16.64 32.62

Multi-Task [83] 32.75 15.35 30.82

DRGD [84] 36.27 17.57 33.62

Baseline (this paper) 35.43 17.49 33.39

Struct+Input (this paper) 35.32 17.50 33.25

Struct+2Way+Relation (this paper) 35.46 17.51 33.28

Struct+Hidden (this paper) 35.49 17.61 33.33

Struct+2Way+Word (this paper) 35.47 17.66 33.52
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Table 2.8: Existing summarization methods.

• ABS and ABS+ [27] are the first work introducing an encoder-decoder architecture for

summarization.

• Luong-NMT [81] is a re-implementation of the attentive stacked LSTM encoder-decoder

of Luong et al. [?].

• RAS-LSTM and RAS-Elman [81] describe a convolutional attentive encoder that ensures

the decoder focuses on appropriate words at each step of generation.

• ASC+FSC1 [82] presents a generative auto-encoding sentence compression model jointly

trained on labelled/unlabelled data.

• lvt2k-1sent and lvt5k-1sent [28] address issues in the attentive encoder-decoder frame-

work, including modeling keywords, capturing sentence-to-word structure, and handling

rare words.

• Multi-Task w/ Entailment [83] combines entailment with summarization in a multi-task

setting.

• DRGD [84] describes a deep recurrent generative decoder learning latent structure of sum-

mary sequences via variational inference.
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Table 2.9: Informativeness, fluency, and faithfulness scores of summaries. They are rated by Ama-

zon turkers on a Likert scale of 1 (worst) to 5 (best). We choose to evaluate Struct+2Way+Relation

(as oppose to 2Way+Word) because it focuses on preserving source relations in the summaries.

System Info. Fluency Faithful.

Struct+Input 2.9 3.3 3.0

Struct+2Way+Relation 3.0 3.4 3.1

Ground-truth Summ. 3.2 3.5 3.1

Table 2.10: Percentages of source dependency relations (of various types) preserved in the system

summaries.

System nsubj dobj amod nmod nmod:poss mark case conj cc det

Baseline 7.23 12.07 20.45 8.73 12.46 15.83 14.84 9.72 5.03 2.22

Struct+Input 7.03 11.72 19.72 9.17↑ 12.46 15.35 14.69 9.55 4.67 1.97

Struct+Hidden 7.78↑ 12.34↑ 21.11↑ 9.18↑ 14.86↑ 14.93 15.84↑ 9.47 3.93 2.65↑

Struct+2Way+Word 7.46↑ 12.69↑ 20.59↑ 9.03↑ 13.00↑ 15.83 14.43 8.86 3.48 1.91

Struct+2Way+Relation 7.35↑ 12.07↑ 20.59↑ 8.68 13.47↑ 15.41 14.39 9.12 4.30 1.89
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Table 2.11: Results of the “Struct+2Way+Relation” system trained using output vocabularies of

various sizes (|V |), evaluated on test-1951 w/o coverage or ref beam. The training speed is calcu-

lated as the elapsed time (hours) per epoch, tested on a GTX 1080Ti GPU card.

|V | R-2 Train Speed InVcb InVcb+Src

1K 13.99 2.5h/epoch 60.57 76.04

2K 15.35 2.7h/epoch 69.71 80.72

5K 17.25 3.2h/epoch 79.98 86.51

10K 17.62 3.8h/epoch 88.26 92.18
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CHAPTER 3
INCORPORATE TARGET STRUCTURAL INFORMATION: JOINT

PARSING AND GENERATION FOR ABSTRACTIVE SUMMARIZATION

In the second Chapter, I will demonstrate another paper accepted at AAAI 2020. Instead of

emphasizing those important content from the input, we try to simultaneously decode the summary

and its parsing tree by employing an additional tree-decoder. From the this research, we found the

model can better preserve the dependency relations from both original text and reference summary.

Besides, the model generates better grammatical summaries under human judgment.

3.1 Background

It is crucial for a summary to not only condense the source text but also render itself grammati-

cal. Without grammatical sentences, a summary can be ineffective, because human brain derives

meaning from the sentence as a whole rather than individual words. Abstractive summarization

has made considerable recent progress [29, 86, 87]. Nonetheless, studies suggest that system

summaries remain imperfect. A summary sentence can be ungrammatical and fail to convey the

intended meaning, despite its local fluency [88, 89]. In Table 3.1, we show example abstractive

summaries produced by neural abstractive summarizers. The first summary has failed to con-
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Table 3.1: Example summaries generated by neural abstractive summarizers. They are manually

re-cased for readability.

Source Today, because of a CNN story and the generosity of

donors from around the world, Kekula wears scrubs

bearing the emblem of the Emory University ...

Summ. CNN story and generosity of donors from around the world,

Kekula wears scrubs ...

Source In its propaganda, ISIS has been using Abu Ghraib and

other cases of Western abuse to legitimize its current

actions in Iraq as the latest episodes ...

Summ. In its propaganda, ISIS is being used by the Islamic State

in Iraq and Syria ...

Source Both state and foreign investments in Vietnam’s agriculture

have been not sufficient enough, while local farmers have

to pay fees to contribute to building rural roads ...

Summ. Vietnam’s agriculture not sufficient enough

form to grammar and other summaries changed the original meanings. These summaries not only

mislead the reader but also hinder the applicability of summarization techniques in real-world sce-

narios.

In this paper, we attempt to remedy this problem by introducing a new architecture to jointly

generate a summary sentence and its syntactic parse, while performing abstraction. This is a non-

trivial task, as the method must tightly couple summarization and parsing algorithms, which are

two significant branches of NLP. A joint model for generating summary sentences and parse trees

can be more appealing than a pipeline method. The latter may suffer from error propagation, e.g.,

an ill-formed summary sentence can lead to more parsing errors. Further, a joint method mimics
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the human behavior, e.g., an editor writes a summary and makes corrections instantly as the text

is written. She needs not to finish the whole summary in order to correct errors. A method that

incrementally produces a summary sentence and its syntactic parse aligns with this observation.

Our proposed joint model seeks to transform the source sequence to a linearized parse tree of

the summary sequence. The model seamlessly integrates a shift-reduce dependency parser into a

summarization system employing the encoder-decoder architecture. A “SHIFT” operation leads the

summarizer to generate a new word by copying it from the source text or choosing a word from the

vocabulary; whereas a “REDUCE” operation adds a dependency arc between words of the partial

summary. The challenge of this task is to construct effective representations that support both tasks,

as they require different contextual representations. We propose to couple a sequential decoder

for predicting new summary words and a tree-based decoder for predicting dependency arcs, and

ensure both decoders work in a synchronized fashion. We also introduce an important addition

making use of topological sorting of tree nodes to accelerate the training procedure, making the

framework computationally feasible. Our research contributions can be summarized as follows:

• we propose to simultaneously decode sentences and their syntactic parses while performing

abstraction. Our work represents a first attempt toward joint abstractive summarization and

parsing that holds promise for improved sentence grammaticality and truthful summaries;

• we present a novel neural architecture coupling a sequential and a tree decoder to generate

summary sentences and parse trees simultaneously. Experiments are performed on a variety

of summarization datasets to demonstrate the effectiveness of the proposed method;
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• we describe a new human evaluation protocol to assess if an abstractive summary has pre-

served the original meanings, and importantly, if it has introduced any new meanings that are

nonexistent in the original text. The last factor is largely under-investigated in the literature.1

3.2 Related Work

Recent years have seen increasing interest in summarization using encoder-decoder models [27, 28,

29, 90, 91]. An encoder condenses the source text to a fix-length vector and a decoder unrolls it to

a summary. An encoder (or decoder) can be realized using recurrent networks [59, 46, 92, 93, 94],

convolutional networks [81, 95], or Transformer [30, 96, 97]. To generate a summary word, a

decoder can copy a word from the source text or select an unseen word from the vocabulary.

This flexibility allows for diverse lexical choices. Nevertheless, with greater flexibility comes

the increased risk of producing ill-formed summary sentences that are ungrammatical and fail to

preserve the original meanings.

Parsing the source text to identify summary-worthy textual units has been exploited in the

past. Marcu [98, 99] utilizes discourse structure generated by an RST parser to identify sum-

mary units that are central to the claims of the document. A number of recent studies have ex-

plored constituency and dependency grammars [47, 52, 100, 101, 48, 56, 50], rhetorical struc-

ture [102, 103, 104], and abstract meaning representation [64, 105, 106] to generate compressive

and abstractive summaries. In this paper we emphasize that target-side syntactic analysis is es-

1We make our implementation and models publicly available at
https://github.com/ucfnlp/joint-parse-n-summarize
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pecially important to ensure the well-formedness of abstractive summaries, because generating

summary words and predicting relations between words are interleaved operations.

Summarization and parsing are traditionally regarded as separate tasks. These systems are now

both realized using neural sequence-to-sequence models, making it possible to tackle both tasks

in a single framework. There have been a variety of studies examining neural dependency parsers

using transition- and graph-based algorithms [107, 108, 109, 110]. Our method, inspired by the

recurrent neural network grammar (RNNG)[111] that describes a generative probabilistic model

for parsing and language modeling [112], offers a way to perform summary generation and parsing

in a synchronized manner. Incorporating syntax is found to improve translation [68, 113, 114, 115].

But to date, there has been little work to simultaneously generate a sentence and its syntactic

parse, combining summarization with parsing techniques. Our aim is not to improve existing

parsers but to leveraging parsing for abstractive summarization. Parsing is essentially a structured

prediction problem, whereas summarization involves information reduction from source to target,

which poses an important challenge. In the following section, we describe our model in detail.

3.3 Our Approach

Our goal is to transform a source text x containing one or more sentences to a target sequence

containing a linearized parse tree of the summary, represented by yT . We expect a summary to

contain a single sentence, as our focus is to improve sentence grammaticality.2 We use dependency

2When a multi-sentence summary is desired, it is possible to generate summary sentences repeatedly from selected
subsets of source sentences, as suggested by recent studies [86, 94].
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grammar as syntactic representation of the summary. Dependency is useful for semantic tasks and

transition-based parsing algorithms are efficient, linear-time in the sequence length.3

Problem formulation Our target sequence yT consists of interleaved GEN(w) and REDUCE-

L/R operations that incrementally build a dependency parse tree. Table 3.2 shows an example. The

second column contains yT and the third column contains partial dependency trees stored in a

stack. A GEN(w) operation pushes a summary word w to the stack; REDUCE-L creates a left arc

between the top and second top word in the stack, where the top word is the head; REDUCE-R

creates a right arc where the top word is the dependent. We choose not to label the arcs, as this

work focuses on generating well-structured sentences but not on predicting labels. The decoding

process comes to an end when there is a single tree remaining in the stack. A summary y can be

obtained from yT by retrieving all GEN operations.

We aim to predict the target sequence yT conditioned on the source x. The process proceeds

incrementally. As illustrated in Eq. (3.1), P(yT |x) is factorized over time steps. P(yT
t = o|yT

<t ,x)

denotes the probability of a parsing operation, where o ∈ {REDUCE-L, REDUCE-R, GEN} and GEN

is unlexicalized. P(yT
t = w|yT

<t ,x) represents the probability of generating a summary word w at

the t-th step; the word can either be copied from the source text or selected from the vocabulary.

P(yT |x) = ∏
t

[
P(yT

t = o|yT
<t ,x)︸ ︷︷ ︸

parsing

(3.1)

×P(yT
t = w|yT

<t ,x)
1[o=GEN]︸ ︷︷ ︸

summarization

]
(3.2)

3Our method is also general enough to allow other syntactic/semantic formalisms such as the constituency grammar
or abstract meaning representation [116, 117] to be exploited in future work.
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Table 3.2: Illustration of the decoding process. A summary sentence “a man escaped from prison”

and its dependency structure are simultaneously generated. The second column shows the target

sequence yT and the third column contains partial parse trees stored in a stack.

t yT Stack

1 – R (root node)

2 GEN(a) R a

3 GEN(man) R a man

4 REDUCE-L R a man

5 GEN(escaped) R a man escaped

6 REDUCE-L R a man escaped

7 GEN(from) R a man escaped from

8 GEN(prison) R a man escaped from prison

9 REDUCE-L R a man escaped from prison

10 REDUCE-R R a man escaped from prison

11 REDUCE-R R a man escaped from prison

At training time, the ground-truth sequence ŷT is available, P(ŷT
t = w|ŷT

<t ,x) needs only be

computed for certain steps where the parsing operation is GEN, as indicated by 1[o = GEN]. Our

loss term corresponds to the conditional log-likelihood which can be separately calculated for

parsing and summarization operations (Eq. (3.3)). During inference, we calculate P(yT
t |yT

<t ,x) as

a joint distribution over parsing and summarization operations, where yT
t ∈ {REDUCE-L, REDUCE-

R, GEN(w)}.
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Figure 3.1: fdecoder tree (top) consumes the partial tree representations of time t one by one to build

hidden representation hT
t ; fdecoder seq (bottom) consumes the embeddings of summary words to

build partial summary representation hy
t .

logP(ŷT |x) =
[
∑
t

logP(ŷT
t = o|ŷT

<t ,x)
]

(3.3)

+
[

∑
t:ot=GEN

logP(ŷT
t = w|ŷT

<t ,x)
]

(3.4)

Neural representations A crucial next step is to build neural representations to support both

tasks. Predicting the next parsing operation requires us to build an effective representation for

partial parse trees, denoted by hT
t at the t-th step, whereas predicting the next summary word

suggests an effective representation for the partial summary, represented by hy
t . We envision both

tasks to benefit from a context vector cx
t that encodes source content that is deemed important for

the t-th decoding step. We next describe a new architecture building representations for hT
t , hy

t ,

and cx
t .
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We model partial trees using stack-LSTM [107, 111]. Our stack maintains a set of partial

trees at any time t; they are shown in the t-th row of Table 3.2. For each partial tree, we build a

vector representation for it by recursively applying a syntactic composition function (Eq. (3.5)).

The representation is built from bottom up, shown in the dotted circle of Figure 3.1. A left arc

(REDUCE-L) pops two elements from the stack. It then applies the composition function to create

a new representation gnew head and push it onto the stack; similarly for right arc (REDUCE-R).

A GEN(w) operation pushes the embedding of a summary word e(w) to the stack.4 Kuncoro et

al. [112] report that the composition function learns to compute a tree representation by preserving

the semantics of the head word, which fits our task.

gnew head = tanh(Wg[ghead||gdependent]+bg) (3.5)

We introduce an LSTM, denoted by fdecoder tree, to consume the partial tree representations of

time t one by one to build the hidden representation hT
t . An illustration is presented in Figure 3.1.

E.g., when t=7, the stack contains 3 partial trees and we build a vector representation for each.

fdecoder tree is unrolled 3 steps and its last hidden state is hT
t . Similarly, we build the partial sum-

mary representation hy
t using an LSTM denoted by fdecoder seq, which consumes the embeddings

of summary words. For example, when t=7, there are 5 words in the partial summary. fdecoder seq

is unrolled 5 steps and its last hidden state is used as hy
t . Note that for some steps, e.g., t=9, no

summary words are generated, we copy hy
t from its previous step hy

t−1.

4e(w) has the same size as partial tree representations g.
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A context vector (cx
t ) encoding the source content that is deemed important for the t-th decoding

step is crucial to our method. Important source content can not only aid in the prediction of future

summary words but also parsing operations. We build the context vector cx
t in two steps. First, we

encode the source text x using a two-layer bidirectional LSTM denoted by fencoder. We use {hx
i } to

denote the encoder hidden states, where i is the index of source words. Next, we characterize the

interaction between encoder and decoder hidden states using an attention mechanism (Eq. (3.6)).

We concatenate the partial tree and partial summary representations [hT
t ||hy

t ] to form the decoder

state. The score St,i measures the importance of the i-th source word to the t-th decoding step. A

context vector cx
t is then constructed as the weighted sum of source representations (Eq. (3.7)).

St,i = w> tanh(Wd[hT
t ||hy

t ]+Wehx
i ) (3.6)

cx
t = softmax(St)hx (3.7)

Prediction We predict summary words P(yT
t = w|yT

<t ,x) and parsing operations P(yT
t =

o|yT
<t ,x) with these representations. We expect historical parsing operations to be helpful for the

latter task, i.e., the sequence of {REDUCE-L, REDUCE-R, GEN(w)} operations shown in Table 3.2.

We thus use an LSTM to encode the sequence of past operations and its last hidden state is denoted

by hO
t . A parsing operation is predicted based on [hT

t ||hO
t ||cx

t ], and we apply the softmax to obtain

a distribution over parsing operations (Eq. (3.9)).

h̃T
t = tanh(Wa[hT

t ||hO
t ||cx

t ]+ba) (3.8)

P(yT
t = o|yT

<t ,x) = softmax(Woh̃T
t ) (3.9)
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A summarizer should allow a summary word to be copied from the source text or gen-

erated from the vocabulary. We implement a soft switch following See et al. [29], where

λ = σ(Wz[hy
t ||hT

t ||cx
t ]) + bz) is the likelihood of generating a summary word from the vocabu-

lary. The generation probability is defined in Eqs. (3.10-3.11). If a word w occurs once or more

times in the source text, its copy probability (∑i:wi=w αt,i) is the sum of its attention scores over all

the occurrences, where αt,i=softmaxi(St). If a word w appears in both the vocabulary and source

text, P(yT
t = w|·) is a weighted sum of the generation and copy probabilities.

h̃y
t = tanh(Wc[hy

t ||hT
t ||cx

t ]+bc) (3.10)

P̃(yT
t = w|yT

<t ,x) = softmax(Wwh̃y
t ) (3.11)

P(yT
t = w|·) = λ P̃(yT

t = w|·)+(1−λ )∑i:wi=w αt,i (3.12)

Acceleration Obtaining partial tree representations (hT
t ) can be computationally expensive, be-

cause hT
t has to be computed bottom-up according to the topology of a parse tree. Further, parse

trees in a mini-batch exhibit distinct topology, making it difficult to execute parallely; frameworks

such as DyNet [118] often process one instance at a time. In this work we instead propose to

arrange the tree nodes of all instances into groups according to their topological order; representa-

tions for nodes of the same group (hT
t ) are computed in parallel. For example, in Figure 3.1, the

nodes marked with “1” are first processed, followed by nodes marked with “2” and so forth. This

strategy allows for mini-batch training with parse trees of distinct topology and maximizing the

usage of computing resources.

42



3.4 Experiments

We present our datasets, settings, baselines, qualitative and quantitative evaluation of our proposed

method. We then discuss our findings and shed light on future work.

3.4.1 Data and Hyperparameters

We conduct experiments on a variety of datasets to gauge the effectiveness of our proposed method.

We experiment with GIGAWORD [77] and NEWSROOM [119]. GIGAWORD contains about 10M

articles gathered from seven news sources (1995-2010); NEWSROOM is a more recent effort con-

taining 1.3M articles (1998-2017) collected from 38 news agencies. We use the standard data splits

and follow the same procedure as Rush et al. [27] to process both datasets. The task of GIGAWORD

and NEWSROOM is to reduce the first sentence of a news article to a title-like summary.

The CNN/DM dataset [120] has been extensively studied. We use the version provided by

See et al. [29] but formulate it as a sentence summarization task. We aim to condense a source

sentence to a well-formed summary sentence. The source sentences are obtained by pairing each

summary sentence with its most similar sentence in the article according to averaged R-1, R-2, and

R-L F-scores [42]. We denote this reduced dataset as “CNN/DM-R.” It is distinct from GIGAWORD

and NEWSROOM because its ground-truth summaries are full grammatical sentences, whereas the

latter are article titles that appear enticing but not necessarily be full sentences.
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Table 3.3: Statistics of our datasets. |y| is number of words.

|y| Train Dev Test

GIGAWORD 8.41 4,020,581 4,096 1,951

NEWSROOM 10.18 199,341 21,530 21,382

CNN/DM-R 13.89 472,872 25,326 20,122

WEBMERGE 31.43 1,331,515 40,879 43,934

We further experiment on many-to-one sentence summarization, where the goal is to fuse mul-

tiple source sentences to a summary sentence. Existing datasets for sentence fusion are often

small, containing thousands of instances [121]. In this work we present a novel use of a newly

released dataset—WebSplit [122]. The dataset was originally developed for sentence simplifica-

tion, where a lengthy source sentence is to be converted to multiple, simpler sentences for ease of

understanding. Importantly, we swap the source and target sequences, so that the task becomes

fusing multiple source sentences to a well-formed summary sentence. We name this task WEB-

MERGE to avoid confusion. On average, a source text contains 4.4 sentences and the target is a

single sentence. A (source, target) pair is accompanied by a set of semantic triples in the form of

“subject|property|object” and the semantics remain unchanged during merging. We utilize these

triples for human evaluation (§3.4.2). In Table 3.3, we provide statistics of all datasets used in this

study.
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Hyperparameters We create an input vocabulary to contains word appearing 5 times or more

in the dataset; the output vocabulary contains the most frequent 10k words. We set all LSTM

hidden states to be 256 dimensions. Because datasets containing both summaries and human-

annotated dependency parses are unavailable, we use the Stanford parser [78] to obtain parse trees

for reference summaries. During training, we use a batch size of 64 and Adam [80] for parameter

optimization, with lr=1e-3, betas=[0.9,0.999], and eps=1e-8. We apply gradient clipping of [-5,5],

and a weight decay of 1e-6. At decoding time, we apply beam search with reference [46] to

generate summary sequences. K=10 is the beam size.

3.4.2 Experimental Results

Summarization We present summarization results on all datasets. Evaluation is performed using

the automatic metric of ROUGE [42], which measures the n-gram overlap between system and

reference summaries, as well as human evaluation of grammaticality and preservation of meanings.

We discuss our findings at the end.

In Table 3.4, we present summarization results on the Gigaword test set containing 1951 in-

stances. We are able to compare our system, denoted by GenParse, with a variety of state-of-the-art

neural abstractive summarizers; they are described below. Our system can be a valuable addition to

existing neural summarizers, as it performs summarization and parsing jointly on the target-side to

improve sentence grammaticality. We explore two variants of our system: GenParse-FULL repre-

sents the full model; GenParse-BASE is an ablated model where we drop the tree-decoder to test its
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impact on summarization performance; this corresponds to removing hT
t and hO

t in all equations.

All other components remain the same. As shown in Table 3.4, our GenParse system performs on

par with or superior to state-of-the-art systems on the standard Gigaword test set. The full model

yields the highest R-2 score of 18.85. It outperforms the GenParse-BASE model, demonstrating

the effectiveness of coupling a sequential decoder with a tree-based decoder in a synchronized

manner.

• ABS and ABS+ [27] are the first work using an encoder-decoder architecture for summarization;

• Luong-NMT [81] re-implements the attentive encoder-decoder of Luong et al. [?];

• RAS-LSTM and RAS-Elman [81] describe a convolutional attentive encoder that ensures the decoder

focuses on appropriate words at each step of generation;

• ASC+FSC1 [82] presents a generative auto-encoding sentence compression model jointly trained on

labelled/unlabelled data;

• lvt2k-1sent and lvt5k-1sent [28] address issues in the encoder-decoder model, including modeling

keywords, capturing sentence-to-word structure, and handling rare words;

• Multi-Task w/ Entailment [123] combines entailment with summarization in a multi-task setting;

• DRGD [84] describes a deep recurrent generative decoder learning latent structure of summary se-

quences via variational inference;

• Struct+2Way+Word [88] describes a structure infused copy mechanism for sentence summarization;

• EntailGen+QuesGen [124] is a multi-task architecture to perform summarization with question gen-

eration and entailment generation in one framework.
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In Table 3.5 we present summarization results on the NEWSROOM, CNN/DM-R, and WEB-

MERGE datasets. The task of WEBMERGE is to fuse multiple source sentences to a well-formed

summary sentence while keeping the semantics unchanged; the task of NEWSROOM and CNN/DM-

R is sentence summarization, but not document summarization. Because of that, the ROUGE

scores presented in Table 3.5 should not be directly compared with other published results. In-

stead, we train the pointer-generator networks with coverage mechanism (PointerGen)[29], one of

the best performed neural abstractive summarizers, on the train split of each dataset, then report

results on the test split; we apply a similar process to our GenParse systems. We observe that the

GenParse-FULL model consistently outperforms strong baselines across all datasets. The results

are outstanding because our system jointly performs summarization and dependency parsing; it

involves an increased task complexity than performing summarization only; and our full model is

able to excel on this task.

Dependency parsing We expect dependency relations of a summary to be the same or simi-

lar to those of the source text or reference summary in order to preserve the original meanings.

Generating a summary word means certain dependency relations are simultaneously added to the

summary. For example, in Table 3.2, generating the word escaped leads a dependency relation

man←escaped to be included in the summary. In this section we demonstrate that by learning to

jointly summarize and parse, our system can effectively improve the preservation of dependency

relations.5

5We cannot compute parsing accuracy, because system and reference summaries use different words and their
dependency structures are not directly comparable.
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Figure 3.2: F-scores of systems on preserving relations of reference summaries (top) and source

texts (bottom). We vary the threshold from 1.0 (strict match) to 0.7 in the x-axis to allow for strict

and lenient matching of dependency relations.

In Figure 3.2 we demonstrate to what extent system summaries preserve relations of source

texts and reference summaries. We contrast our system GenParse-BASE and GenParse-FULL that

jointly performs summarization and parsing, against the strong baseline of PointerGen that first

generates abstractive summaries then parses them using the off-the-shelf Stanford parser [78]. De-

pendency relations of source texts and reference summaries are also obtained using the Stanford

parser. We calculate F-scores on preserving reference summary relations (top) and source rela-

tions (bottom) and on CNN/DM-R and NEWSROOM dataset, respectively. As shown in Figure 3.2,

GenParse-FULL consistently outperforms other systems on preserving source and reference sum-

mary relations.
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Abstractive summaries can contain paraphrases of source descriptions and we thus compare

relations using both strict and lenient measures. A strict measure requires exact match of words.

E.g., two relations w1A←w1B and w2A←w2B are equal if w1A is the same as w2A, and w1B is

the same as w2B. A lenient measure computes Sim(w1A,w2A) and Sim(w1B,w2B) and it requires

both scores to be greater than a threshold σ . We vary the threshold value along the x-axis to

produce the plots in Figure 3.2. We define Sim(·,·) as the cosine similarity of word embeddings;

and a value of 1.0 corresponds to strict match. Overall, we notice that the GenParse-FULL method

performs exceptionally well on retaining relations on the CNN/DM-R dataset. It achieves an F-

score of 56.7% (σ=1) / 67.8% (σ=0.7) for source relations, and 28.5% (σ=1) / 46.8% (σ=0.7)

for reference summary relations. This finding suggests that the proposed joint summarization and

parsing method performs the best on summaries that contain full grammatical sentences, as is the

case with CNN/DM-R, and this matches our expectation.

Human evaluation We proceed by introducing a novel human evaluation protocol assessing

system summaries for grammaticality and preservation of original meanings. A quantitative mea-

sure is important because it allows us to compare different systems regarding to what extent their

abstractive summaries preserve the original meanings and whether the summaries contain any fal-

sified content that are nonexistent in the original texts. The latter is particularly under-investigated

in the past. Our evaluation is made possible by utilizing RDF triples provided in WEBMERGE.

Table 3.6 illustrates the evaluation process. We present a summary to a group of human judges.

They are instructed to rank this summary among four peers for grammaticality. Next, we require
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the judges to answer a set of binary questions on (Q2) if the summary has conveyed the meaning

of a given RDF triple, and (Q3) if the summary has conveyed any additional meanings that are not

in the collection of triples. In particular, an RDF (Resource Description Format) triple is of the

form subject | property | object and it is used for meaning representation [122]. The number of

triples per instance varies from 1 to 7. A successful summary should preserve the meanings of all

RDF triples and it shall not introduce any additional meanings. As an example, the summary A in

Table 3.6 has introduced undesired content during abstraction (died on July), it thus makes factual

errors that can mislead the reader.

Peer summaries are generated by GenParse-BASE, PointerGen, and GenParse-FULL. We fur-

ther include human summaries for comparison; the order of presentation of summaries is random-

ized. We sample 100 instances from the test set of WEBMERGE and employ 5 human judges on

Amazon mechanical turk (mturk.com) to perform the task; they are rewarded $0.1 per HIT. Im-

portantly, we are able to filter out low-quality responses from AMT judges using their answers

for human summaries, as they are expected to answer unanimously yes for Q2 and no for Q3. We

expect this method to improve the quality and objectivity of human evaluation.

We present evaluation results in Table 3.7. It is not surprising that human summaries are ranked

1st on grammaticality. Our GenParse-FULL method consistently outperforms its counterparts and

it is ranked 2nd best followed by PointerGen and GenParse-BASE.6 We report the system accuracy

on preserving source semantics (Q2) and preventing system summaries from changing original

6We perform pairwise comparisons between systems. Results reveal that there is no significant difference between
GenParse-BASE and PointerGen. All other differences are statistically significant according to a one-way ANOVA
with posthoc Tukey HSD test (p <0.01).

50



meanings (¬Q3). Our method (GenParse-FULL) again excels in both cases. But the scores (46.8 and

53.4) suggest that ensuring abstractive summaries to preserve source content remains a challenging

task, and similar findings are revealed by Cao et al. [67] and See et al. [29]. Our results are highly

encouraging. The human evaluation protocol is particularly meaningful to quantitatively measure

to what extent system-generated abstractive summaries remain true-to-original.

3.5 Conclusion

We propose to jointly summarize and parse to improve the grammaticality and truthfulness of sum-

maries. We introduce a neural model combining a sequential decoder with a tree-based decoder

and ensure both work in a synchronized manner. Experimental results show that our method per-

forms on par with or superior to state-of-the-art systems on standard test sets. It surpasses strong

baselines on human evaluation of grammaticality and preservation of meanings.
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Table 3.4: Summarization results on Gigaword dataset. Our GenParse systems perform on par with

or superior to state-of-the-art systems on the standard test set.

Gigaword Test Set

System R-1 R-2 R-L

ABS 29.55 11.32 26.42

ABS+ 29.76 11.88 26.96

Luong-NMT 33.10 14.45 30.71

RAS-LSTM 32.55 14.70 30.03

RAS-Elman 33.78 15.97 31.15

ASC+FSC1 34.17 15.94 31.92

lvt2k-1sent 32.67 15.59 30.64

lvt5k-1sent 35.30 16.64 32.62

Multi-Task 32.75 15.35 30.82

SEASS 36.15 17.54 33.63

DRGD 36.27 17.57 33.62

Struct+2Way+Word 35.47 17.66 33.52

EntailGen+QuesGen 35.98 17.76 33.63

GenParse-BASE (This work) 35.21 17.10 32.88

GenParse-FULL (This work) 36.61 18.85 34.33
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Table 3.5: Summarization results on Newsroom, CNN/DM-R, and WebMerge datasets. Our

GenParse-FULL method jointly decodes a summary and its dependency structure using a novel

architecture that performs competitively against strong baselines. It outperforms both pointer-

generator networks and the ablated model GenParse-BASE without using the tree-decoder.

ROUGE-1 ROUGE-2 ROUGE-L

System P R F P R F P R F

NEWSROOM

PointerGen [29] 43.73 38.83 39.94 21.82 18.97 19.56 40.15 35.65 36.66

GenParse-BASE (This work) 41.88 36.00 37.65 20.04 16.90 17.70 38.73 33.33 34.84

GenParse-FULL (This work) 45.17 39.77 41.06 23.48 20.17 20.89 41.82 36.81 38.01

CNN/DM-R

PointerGen [29] 50.91 49.82 49.26 34.73 33.32 33.16 48.10 46.95 46.49

GenParse-BASE (This work) 48.24 46.52 46.46 31.44 29.62 29.82 45.43 43.72 43.71

GenParse-FULL (This work) 50.15 53.11 50.49 34.51 35.99 34.38 47.33 50.00 47.60

WEBMERGE

PointerGen [29] 54.73 49.22 50.90 25.80 23.08 23.89 40.60 36.67 37.84

GenParse-BASE (This work) 37.79 35.86 36.23 12.63 11.99 12.09 28.87 27.59 27.77

GenParse-FULL (This work) 62.26 54.69 57.24 32.10 28.41 29.58 48.13 42.54 44.41
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Table 3.6: We present a summary to a group of human judges. They are instructed to assess the

summary for grammaticality and preservation of original meanings.

Albert B White was born in 1856 and died on July

in Parkersburg, West Virginia.

Q1 How would you rank this summary for grammaticality?

� 1st (best) 2�2nd � 3rd � 4th (worst)

Q2a Does this summary convey the following meaning?

(Albert B. White | birthYear | 1856)

2�Yes � No

Q2b Does this summary convey the following meaning?

(Albert B. White | deathPlace | Parkersburg, West Virginia)

2�Yes � No

Q3 Does this summary convey any additional meanings not

covered by the above triples?

2�Yes � No

Table 3.7: Human assessment of grammaticality and semantic accuracy of various summaries. Our

GenParse-FULL achieves the best results on both aspects among all systems.

Grammaticality Meaning

1st 2nd 3rd 4th Q2 ¬Q3

Human 73.7 15.3 5.9 5.1 100 100

GenParse-BASE 8.5 23.7 30.5 37.3 15.8 12.7

PointerGen 5.1 18.6 35.6 40.7 38.5 50.8

GenParse-FULL 12.7 42.4 28.0 17.0 46.8 53.4
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CHAPTER 4
CONTROL COPYING BEHAVIOR: CONTROLLING THE AMOUNT OF

VERBATIM COPYING IN ABSTRACTIVE SUMMARIZATION

In this Chapter, I will describe methods for controlling the copying behavior in different stages

of summarization: training, decoding and re-ranking. The proposed methods are flexible for bal-

ancing the trade-off between remaining true-to-original and being creative while generating sum-

maries.

4.1 Background

An ideal summarizer should provide the flexibility to generate summaries with varying proportions

of reused text. Such summaries are required to cater to diverse usage scenarios. E.g., system

abstracts may not contain excessive copied content without proper permission—11 consecutive

words or longer are considered by EU standards as the author’s intellectual creation and it is thus

protected by copyright law [125]. Without proper control over copying, commercial summarizers

can be held liable for copyright infringements. Moreover, system abstracts with an appropriate

amount of copied content are more desirable than highly abstractive ones, as they are less likely to

suffer from content hallucination [126] and better at preserving the meaning of the original text.
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To date, it remains poorly understood whether modern abstractive summmarization can provide

the needed flexibility to control over copying and generate diverse abstracts. Abstractive summa-

rizers using encoder-decoder architectures can either copy words from the source text or generate

new words unseen in the source [29, 86, 94]. Recent work further attempted to increase the use

of unseen words in summaries [127, 87]. However, in all cases, the summarizers are trained on

single-reference abstracts to produce single outputs with a fixed (corpus-level) copy rate. It can

take multiple reference abstracts, created for the same input text with varying degrees of copying,

to teach the system to generate abstracts with similar amounts of copying. However, not only can

it be time-consuming and costly to create human abstracts, but this is unlikely to be how humans

learn to exercise control over copying. Without an understanding of the copy mechanism of neural

abstractive models, producing abstracts with varying degrees of copying can prove daunting at best

and a “mission impossible” at worst.

In this paper, our goal is to generate abstractive summaries with varying amounts of reused text

by developing a general framework that learns from single reference summaries. We define copy

rate as the percentage of summary n-grams appearing in the source text. A high copy rate suggests

that the summary is generated largely by copying verbatim from the source text. Conversely, a low

copy rate indicates there are more text shortening, word reordering, paraphrasing and abstraction

involved in the generation process. We argue that abstractive summarizers are not necessarily

trained on every word of reference summaries but they ought to separate the prediction of summary

words that are seen in the source text from those unseen. The underlying principle is simple and

intuitively appealing. If a summarizer is trained to predict only seen words, it learns to copy them
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from the source text, producing extractive summaries. As more unseen words are used for training,

the summarizer gradually transforms from copying only to both copying and generating new words

not present in the source text. By employing a “mix-and-match” strategy, we enable an abstractive

summarizer to generate summaries with more, or less, copying.

We frame abstractive summarization as a language modeling task and present a decoder-only

framework for it. It uses the same Transformer architecture [128] to both encode the source text

and decode the summary. All network parameters are warm-started using pretrained deep repre-

sentations. In contrast, in a typical encoder-decoder architecture, only parameters of the encoder

and decoder can be warm-started but not those of the attention/copy mechanism [129]. Further,

our method allows for control over copying during both training and decoding stages of the neural

model. We experiment with varying proportions of seen and unseen summary words in training to

teach the summarizer to favor, or not to favor, copying. At decoding time, we compare different

search strategies (best-first search vs. beam search) and reranking methods to encourage system

abstracts to use wording similar to the original. Despite that only single reference summaries are

available in benchmark evaluations, we are able to evaluate summary quality along multiple di-

mensions, using automatic metrics based on lexical similarity (ROUGE; Lin, 2004) and semantic

similarity (BERTScore)[130], and through human assessment of grammaticality, informativeness,

and whether system abstracts remain true-to-original. Our method demonstrates strong perfor-

mance, either outperforming or performing on par with the best published results. The research

contributions are summarized as follows:
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• we introduce a new summarization method that provides the needed flexibility to produce

a spectrum of summaries for the same input and with a varying amount of copied content.

Such summaries are highly desirable to cater to diverse real-world scenarios;1

• our method emphasizes on in-depth analysis of the copy behavior in summarization. It

frames abstractive summarization as a language modeling task and exploits multiple strate-

gies at training and decoding stages to generate diverse summary hypotheses. We show

competitive results and demonstrate the effectiveness of the proposed method on exercising

control over copying.

4.2 Related Work

The significance of controlling over the copying behavior in summarization should not be under-

estimated. Human editors often reuse the text in the original article to produce a summary [44].

But they can adjust the degree of copying to produce a wide spectrum of summaries. E.g., human-

written summaries for newswire [131, 120], meetings [132, 23], scientific articles [133] and online

forums [134] contain varying amounts of reused text. Moreover, the degree of copying can have a

direct impact on scores of automatic evaluation metrics. ROUGE was reported to favor summaries

that use the same wording as the original [135]. If reference summaries are made by copying, sys-

tem summaries with less copying and perhaps more abstraction, compression, and paraphrasing

will be disadvantaged when compared against other system summaries with substantial copying.
1We make our implementation and models publicly available at

https://github.com/ucfnlp/control-over-copying
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There is thus an urgent need, and this paper makes a first attempt to present a summarization

framework that is capable of producing summaries with varying amounts of reused text.

To date, various extractive and abstractive summarization techniques have been investi-

gated [43]. However, rarely has one technique been utilized to produce both extractive and abstrac-

tive summaries for any given text. Extractive summarization selects important and non-redundant

sentences from the original document(s). The sentences can be optionally compressed to remove

inessential phrases, leading to compressive summaries [100, 22, 56, 53, 50]. Abstractive summa-

rization distills the source text into its essential meanings, then performs language generation from

the representation to produce an abstract [136, 64, 105, 106]. These systems rarely provide the

flexibility for an end user to indicate the desired amount of reused text in the summary. To elimi-

nate the need to develop multiple systems for extractive and abstractive summarization, we attempt

to introduce control into the copying behavior of a neural abstractive summarization system.

Neural abstractive summarization has demonstrated considerable recent success. It often uti-

lizes an encoder-decoder architecture [27, 29, 86, 93, 90]; and more recently, studies have at-

tempted to use deep contextualized representations such as BERT [30] and ELMo [137] to give a

further boost to it. An encoder network converts the source text to a fix-length vector, conditioned

on which a decoder network unrolls the summary one word at a time. While it is tempting to use

pretrained deep representations to “warm-start” the encoder/decoder, Khandelwal et al. [129] find

that results can be less satisfying as the attention weights are still not pretrained. In this paper we

adopts a decoder-only framework [35] where the same Transformer architecture is used for both

encoding the source text and decoding the summary.
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Copying can help produce unseen words. It was originally introduced to the seq2seq frame-

work for neural machine translation [72] and later for abstractive summarization [29]. Particularly,

Knowles and Koehn [138] examine the influence of context and sub-words on the copying behavior

of an NMT system. To suppress copying, Kryściński et al. [87] introduce a novelty metric which is

to be optimized during policy learning; and Weber et al. [127] modify the scoring function of the

summary sequence at decoding time. Fan, Grangier, and Auli [139] attempt to control over sum-

mary length, entities, source style and portions. But they do not address copying. In this paper, we

focus on better understanding the copying behavior of a summarization system and present effec-

tive mechanisms to control the amount of reused text. We discuss what it takes for a summarizer

to copy a word without an explicit copying mechanism, and how we may control the behavior to

produce summaries with more, or less, copying. In the following we describe our model in great

detail.

4.3 Our Approach

We frame abstractive summarization as a language modeling task and present a decoder-only

framework for it. It uses the same Transformer architecture [128] to both encode the source text

and decode the summary. Let x = {x1,x2, . . . ,x|x|}, xi ∈ V be a sequence of source tokens and

y = {y1,y2, . . . ,y|y|}, y j ∈ V be summary tokens. Our goal is to model the conditional probability

distribution P(y j|y< j,x) using a Transformer-inspired architecture.
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Figure 4.1: An illustration of our CopyTrans architecture. The self-attention mechanism allows

(i) a source word to attend to lower-level representations of all source words (including itself) to

build a higher-level representation for it, and (ii) a summary word to attend to all source words,

summary words prior to it, as well as the token at the current position (‘MASK’) to build a higher-

level representation.

We use byte-pair-encoding (BPE; Sennrich et al., 2016) for tokenization, with a vocabulary size

of |V | = 30,522 tokens. BPE has been shown to improve the robustness and accuracy of neural

model training. We use parameter tying, allowing the same token embeddings to be used in both

the input layer and final softmax layer of the Transformer model. Our method also includes three

special tokens: START, END, and MASK, which respectively denote the start/end of a sequence

and a “masked out” token. An illustration of our system architecture is provided in Figure 4.1.
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4.3.1 Training

We construct the source sequence x by prepending ‘START’ and appending ‘END’ to the input text.

E.g., x = START Elizabeth was taken to the hospital END, illustrated in Figure 4.1. Similarly, the

target sequence y is constructed by appending ‘END’ to the summary. E.g., y = Elizabeth was

hospitalized END. Our system learns to predict the target sequence one word at a time until the

‘END’ token has been reached. The conditional probability is shown in Eq. (4.1-4.2).

P(y|x) =
|y|
∏
j=1

P(y j|y< j,x) (4.1)

=
|x|+|y|
∏

i=|x|+1
P(zi|z<i) (4.2)

However, at training time, we argue that the system is not necessarily trained to predict every

word of target sequences but a selected collection might suffice. Using selected target tokens

provides important potential to steer the system to be more extractive than abstractive, or vice

versa. We divide all tokens in the sequence z = [x;y] into three categories: (a) summary tokens

seen in the source text, (b) summary tokens unseen in the source, and (c) source tokens, with

the expectation that training the system to predict only seen summary tokens may reinforce the

copying behavior, unseen tokens allow for generation, and source words enable the system to learn

better token representations. By mix and matching target tokens from three categories, we enable

a summarizer to generate summaries with more, or less, copying.

We randomly sample a set of tokens from each category using a Bernoulli distribution with

probability p. The value of p varies by category and more analysis is provided in the experiments

62



section. Let mi ∈ {0,1} denote whether the i-th token of z is selected; its probability is defined as

P(mi; p) = pmi(1− p)1−mi . (4.3)

A selected token is replaced by ‘MASK’ 80% of the time, meaning that the token has been

‘masked out’ from the sequence z. For 10% of the time, it is replaced by a random token from the

vocabulary V . It remains unchanged for the final 10%. In the following, we use z to represent the

masked sequence, whose selected tokens are to be predicted during model training. Our loss term

is defined as follows:

L (θ) =− ∑
i:mi=1

log P(zi|z≤max(i,|x|)). (4.4)

It is important to note that we apply a binary mask to the self-attention mechanism of the

Transformer architecture to allow (a) a source token to attend to all source tokens including itself,

and (b) a summary token to attend to all source tokens, summary tokens prior to it, as well as the

current token (‘MASK’) in order to learn deep contextualized representations. The formulation

is similar to [35]. Our binary mask is defined by Eq. (4.5). It is a square matrix whose i-th row

represents the mask of the i-th token of z. If it is a source token (i ≤ |x|), the mask allows it to

attend to all source tokens (Matt
i, j = 1 for j ≤ |x|). If it is a summary token (i > |x|), it can attend to

all tokens prior to it as well as the current token (Matt
i, j = 1 for j ≤ i).

Matt
i, j =


1 if j ≤max(i, |x|)

0 otherwise

(4.5)

The input of Transformer consists of embedding matrices: We, Wp, and Ws respectively denote

the token, position, and segment embeddings [?]. Z , P and S are one-hot matrices used to
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retrieve embeddings for tokens in sequence z. The token, position, and segment embeddings for

the i-th token are then added up element-wisely.

E(z) = Z We +PWp +SWs (4.6)

Our Transformer model takes as input embeddings E(z) and the binary mask Matt to produce

a sequence of deep contextualized representations h = [h1,h2, . . . ,h|z|]. Particularly, hi is used to

predict the i-th ‘missing’ token in the sequence. We use parameter tying, allowing the same token

embeddings We to be used in both the input layer (Eq. (4.6)) and final softmax layer of the model

(Eq. (4.8)).

h = Transformer(E(z),Matt) (4.7)

P(zi|z≤max(i,|x|)) = softmax(W>e hi) (4.8)

4.3.2 Decoding

Given a trained model and an input text, the decoding stage searches for a summary sequence that

maximizes P(y|x). We present two search algorithms for this stage.

Best-first search uses a priority heap to keep partial summaries, which are scored according

to a heuristic function f . At each iteration, the search algorithm takes the highest-scoring partial

summary, extends it by one word, then pushes new summary sequences back to the priority heap.

We generate k new summary sequences by selecting k words that give the highest probability

of logP(y j|y< j,x) (Eq. (4.9)) then iteratively appending the words to the partial summary. If

64



the highest-scoring summary in the heap concludes with an end-of-sentence symbol, it is moved

to a pool of “completed summaries” for later reranking. The heap thus keeps a collection of

partial summaries of varying lengths, which are visited according to their scores.2 We provide an

illustration of our best-first search algorithm in Algorithm 1.

In contrast, beam search is essentially breadth-first search. It maintains a beam of size k at

any time step, containing partial summaries of the same length. For each partial summary, the

algorithm extends it by one word, producing k new sequences by appending each of the k words

that give the highest probability of logP(y j|y< j,x) to the partial summary. This process generates

a total of k ∗ k new summary sequences by extending on each of the k partial summaries. The

algorithm then selects k-best candidates, which are put in the beam for next iteration. If a candi-

date summary concludes with the end-of-sentence symbol, it is moved to the pool of “completed

summaries”.

Both best-first search and beam search employ the same scoring function that scores a candi-

date summary by the sum of log-likelihoods (Eq. (4.9)). However, the two differ in their search

strategies—beam search visits candidate summaries according to the summary length, whereas

best-first search favors candidates attaining higher scores.

y∗ = argmax
y∈Y

|y|
∑
j=1

logP(y j|y< j,x)

s.t. y|y| = END

(4.9)

2The size of the priority heap is capped at 1e5. If the heap has reached capacity and a new summary sequence
needs to be pushed in, the lowest-scoring one will be removed from the heap.
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Algorithm 1 Best-First Search
1: procedure BEST-FIRST(src, M ,K)

. Input sequence, model and beam size

2: init← [START||src||END]

3: H .push((0, init)) . The priority queue

4: A .reset() . The answer collector

5: while (H is not Empty)and(A is not full) do

6: current←H .pop()

7: if current ends with END then

8: A .append(current)

9: Continue

10: Candidates.reset()

11: for each w ∈ V do

12: extended← current⊕ c

13: S ←−logM (w|current⊕MASK)

14: Candidates.append((S ,extended))

15: topK← K-argmin (Candidates)

16: H .pushAll(topK)
return A

We compute P(y j|y< j,x) using our trained CopyTrans model. Importantly, the ‘MASK’ token

is used as a prompt for the model to predict the next word. E.g., “START Elizabeth was taken

to the hospital END Elizabeth was MASK” is a concatenation of the source text, partial summary

and ‘MASK’ token; it is fed to the CopyTrans model where the contextualized representation of

‘MASK’ is used as input to a softmax layer to predict the next token y j ∈V . In experimental results,

we demonstrate that a dynamic, contextualized representation of ‘MASK’ performs reliably at

predicting the next token. This represents an important distinction from shifting the target sequence

by one position for prediction, which is common in encoder-decoder models.
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Reranking A reranking step is necessary, in part because candidate summaries decoded using

beam search or best-first search do not always meet the length requirement. E.g., an overly short

summary containing only two words is rarely an informative summary, despite that it may give a

high log-likelihood score. Below we compare three reranking strategies to offset this limitation.

Length normalization is adopted by See et al. [29] and it is frequently used in many other

systems. It divides the original log-likelihood score, denoted as S (x,y) = logP(y|x), by the total

number of tokens in the summary to effectively prevent a long summary from being penalized.

Ŝln(x,y) = S (x,y)/|y| (4.10)

BP-norm introduces a brevity penalty to summaries that do not to meet length expectation. As

illustrated in Eq. (4.11), BP-norm performs length normalization, then adds a penalty term logbp

to the scoring function. We modify the original penalty term of [141] to make it favor summaries

using more copying. In Eq. (4.12), we define r to be the copy rate, i.e., the percentage of summary

tokens seen in the source text, scaled by a factor c. When the copy rate r is set to 1, the penalty is

dropped to 0. Yang, Huang, and Ma [141] provides a nice proof showing that this penalty term can
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directly translate to a coefficient multiplied to the log-likelihood score (Eq. (4.14)).

Ŝbp(x,y) = logbp+S (x,y)/|y| (4.11)

bp = min(e1−1/r,1) (4.12)

exp(Ŝbp(x,y)) = bp · exp(
|y|
∑
j=1

logP(y j|y< j,x))1/|y| (4.13)

= bp ·
[ |y|
∏
j=1

P(y j|y< j,x)
]1/|y|

(4.14)

Soft-bounded word reward (SBWR) is a newly introduced method by us that assigns a per-word

reward to the summary. If the decoded summary is longer than expected (i > Lpred), the added

words receive a diminishing reward of σ(Lpred− i). If the summary is shorter (i ≤ Lpred), every

word of it will receive a reward. The method thus promotes summaries of similar length to the

predicted Lpred. A sigmoid function is used to smooth the reward values. r is a coefficient to scale

the total reward and it is tuned on the validation data.

Ŝsbwr(x,y) = S (x,y)+ r
|y|
∑
i=1

σ(Lpred− i) (4.15)

We obtain the predicted length Lpred using greedy search, then empirically offset the predicted

length by three words according to validation set. In all cases, we force the decoder to never

output the same trigram more than once during testing, which is a common practice to avoid

repetitions [45].

4.4 Experiments
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4.4.1 Data and Evaluation Metrics

We evaluate our proposed method on the sentence summarization task. The goal is to condense

a lengthy source sentence to a title-like summary. Comparing to single-document summarization,

sentence summarization deals less with content selection; its ground-truth summaries also contain

more paraphrasing and abstraction. We conduct experiments on the Gigaword [77] and News-

room [119] datasets. Gigaword articles were collected during 1995-2010 and Newsroom spans the

range of 1998-2017. We pair the first sentence of each article with its title to form an instance.

The train/valid/test splits contain 4 million/10k/1951 instances for Gigaword and 199k/21k/21k

instances for Newsroom. We experiment with both datasets to understand not only the copying

behavior, but also domain adaptation effects for various models. Despite that only single refer-

ence summaries are available in benchmark evaluations, we are able to evaluate summary quality

along multiple dimensions, using automatic metrics based on lexical similarity (ROUGE)[42] and

semantic similarity (BERTScore)[130], and through human assessment of grammaticality, infor-

mativeness, and whether system abstracts remain true-to-original.

4.4.2 Experimental Settings

We initialize the model parameters using pretrained BERT-BASE (uncased) model. The model is

fine-tuned on the training split of the Gigaword (or Newsroom) dataset for abstractive summariza-

tion. Our model uses a 12-layer Transformer architecture. Its hidden state size is 768 and has 12
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attention heads. We use the Adam optimizer with β1 = 0.9,β2 = 0.999. The learning rate is set to

lr=4e-5 and it is halved whenever the validation loss does not change after 40,000 training steps.

We set the weight decay to be 0.01 for regular layers and no weight decay for dropout and layer-

normalization. The sampling rate p is set to 0.1 for source words and 0.9 for summary words, both

seen and unseen. Each model is fine-tuned for 6 epochs; an epoch takes about 5 hours on a Tesla

V100 GPU. Our batch size is set to be 32.

4.5 Summarization Results

Control over copying Could we bias a summarizer to produce summaries that are more extrac-

tive than abstractive, or vice versa? If the summarizer is trained solely on summary words seen in

the source text, will it only learn to copy words during testing but not generate new words? We

seek to answer these questions in this section. Particularly, we divide all tokens selected for train-

ing into three categories: (a) summary tokens seen in the source text, (b) summary tokens unseen

in the source, and (c) source tokens, with the expectation that training the system to predict only

seen summary tokens may reinforce the copying behavior, unseen tokens allow for generation, and

source words enable the system to learn richer representations. By mix-and-matching tokens, we

enable a summarizer to copy more, or less.

We analyze the copy rate of various summarization models in Table 4.3. Copy rate is defined as

the percentage of summary n-grams appearing in the source text. We set n=1/2/3/4 and the average

of them. A high copy rate suggests that the summary is generated largely by copying verbatim
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from the source text. We experiment with selecting varying amounts of seen summary tokens ( hx
), unseen summary tokens ( h), and source tokens ( hq ) for training, where the number of circles is

proportional to the number of tokens used in computing the loss term. All summaries in Table 4.3

are decoded using beam search (k=5) without reranking.

Our findings suggest that, the factor that makes the most impact on the copying behavior of

a summarizer is the proportion of seen and unseen summary words used for training the model.

If the summarizer is trained on purely seen words (case a. in Table 4.3), it only reuses source

words during testing, despite that there is nothing to prevent the system from generating new

words. The 1-gram copy rate for case a. is about 99% for both datasets, with the minor gap due to

tokenization discrepancies. As more unseen words are used for training, the summarizer gradually

transforms from copying only to both copying and generating new words not present in the source

text. We observe that the ratio of seen vs. unseen words in ground-truth summaries is about 2:1 in

both datasets, and NEWSROOM is slightly more extractive than GIGAWORD. Our analysis reveals

that it is important to maintain a similar ratio during training in order to achieve high ROUGE

scores. Pure extracts do not attain high ROUGE scores, as ground-truth summaries themselves

are abstracts. Our analysis further suggests that training on source words has little impact on the

copying behavior of the system, but it improves representation learning and has lead to consistently

improved ROUGE-2 F-scores.

System comparison Table 4.4 shows results on benchmark summarization data containing

1951 testing instances from Gigaword. We contrast our system with summarization baselines
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developed in recent years. They include lvt5k-1sent [28], Multi-Task w/ Entailment [123],

SEASS (Zhou et al., 2017), DRGD [84], EntailGen+QuesGen [124], PG Networks [29],

Struct+2Way+Relation [88], R3Sum [142], and BiSET [143]. Output summaries from the last

four systems are graciously provided to us by the authors. We evaluate summary quality using two

automatic metrics, including ROUGE3 (Lin, 2004) that measures n-gram overlap between sys-

tem and reference summaries, and BERTScore (Zhang et al., 2019) that quantifies their semantic

similarity using BERT-based contextualized representations.

Results show that our system achieves competitive performance, surpassing strong systems

having reported results on this dataset, as judged by both metrics. These results demonstrate the

effectiveness of our Transformer-based decoder-only architecture for abstractive summarization.

We observe that using beam search with reranking yields the highest results (using case g. in

Table 4.3 for training). Both BP-Norm and SBWR appear to be outstanding reranking methods,

better than length normalization. Our observation also suggests that best-first search and beam

search can produce similar outcome, despite that the two differ in their search strategies, with beam

search visiting candidates according to summary length and best-first search favoring candidates

having high log-likelihood scores. We suggest future work to explore other search methods such

as A* search.

Domain adaptation We investigate the effect of domain adaptation by training the model on

Gigaword then testing it on Newsroom test set. Results are reported in Table 4.5. Not surprisingly,

3w/ options “-c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m”
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there is a performance degradation when testing the model in a cross-domain setting. We observe

that the model with more copying (pure-extract, case e.) seem to degrade more gracefully than its

counterpart (best-abstract, case f.), with a smaller performance gap in cross-domain settings. Both

of our models perform competitively comparing to other baseline methods.

Human Evaluation To thoroughly analyze the quality of summaries, we ask human annotators

to assess system outputs along three dimensions, including informativeness (Has the summary

covered important content of the source text?), grammaticality (Is the summary sentence gram-

matically correct?), and truthfulness (Has the summary successfully preserved the meaning of the

original text?). Both system and human summaries are scored according to these criteria using a

Likert scale from 1 (worst) to 5 (best). We compare variants of our method generating (a) pure ex-

tracts (case e.) and (b) best abstracts (case g.), baselines of (c) PG networks, (d) R3Sum, (e) BiSET,

and (f) human abstracts. Following [144], we perform Best-Worst Scaling where a human selects

the best and worst summary among six candidates. The final rating of the system is computed as

the percentage of times it was selected as the best minus that of the worst. We sample 200 instances

from the Gigaword test set for evaluation. Each instance was assessed by five human evaluators

from Amazon mechnical turk where low-quality annotations are manually removed. The results

are presented in Table 4.6. We observe that human summaries (article titles) are imperfect. They

can contain details that are nonexistent in the source (see Table 4.2), although they provide a means

for researchers to train neural models without re-annotating reference summaries. In contrast, both

of our systems perform slightly but consistently better than other baselines.
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4.6 Conclusion

In this paper we present a Transformer-based, decoder-only framework to generate summaries

with more, or less, copying. The proposed method can be used to generate both extractive and

abstractive summaries. Our method emphasizes on in-depth analysis of the copy behavior in sum-

marization. It exploits multiple strategies at training and decoding stages to generate diverse sum-

mary hypotheses. We show competitive results and demonstrate the effectiveness of the proposed

method on exercising control over copying.
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Table 4.1: Formulating summarization as a language modeling task. The first model predicts only

summary words that are seen in the source text; the second model predicts only unseen words.

Our method provides flexibility to control over copying by mix-and-matching the two types of

behaviors.

Question: What is the most probable next word?

Hint: the word is *seen* in the source text.

A 23-month-old toddler who was reportedly abducted in

Pennsylvania has been found dead, a district attorney said.

Missing ?

Missing Pennsylvania ?

Missing Pennsylvania toddler ?

Missing Pennsylvania toddler found ?

Reference Summary: Missing Pennsylvania toddler found dead

Question: What is the most probable next word?

Hint: the word is *unseen* in the source text.

Rescuers have suspended their search off the coast of Santa

Cruz Island for passengers who were trapped aboard the

Conception when the diving boat caught fire and sank.

Search ?

Search has ?

Search has been suspended ?

Search has been suspended in the ?

Search has been suspended in the dive boat fire off ?

Reference Summary: Search has been suspended in the dive

boat fire off California coast
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Table 4.2: Example system summaries produced by 1: pointer-generator networks; 2: our method

(best abstract), 3: our method (pure extract), and 4: human abstract.

Source Text: Premier Chang Chun-hsiung said Thursday he is

enraged and saddened by the snail-paced progress of the

reconstruction of areas hardest hit by a disastrous earthquake

that rattled Taiwan on Sept. 21 , 1999 .

Summary:

1: premier expresses condolences for taiwan quake victims

2: premier angry over reconstruction of quake - hit areas

3: premier enraged and saddened by earthquake reconstruction

4: premier enraged by slow progress of post-quake reconstruction

Source Text: A blue-ribbon panel of experts said on Wednesday

that German economic growth will grind to a halt next year ,

raising doubts about Berlin ’s plans to shield Europe ’s biggest

economy from the global turmoil .

Summary:

1: german experts raise doubts about economic recovery

2: experts say german growth will grind to a halt next year

3: german experts to grind to halt next year

4: german economy will grind to halt in 2009 , say experts
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Table 4.3: The copy rate and ROUGE-2 of various summarization models. We define copy rate

as the percentage of summary n-grams appearing in the source text, where n=1/2/3/4 as well as an

average of them. We experiment with selecting varying amounts of seen summary tokens (dark

circle), unseen summary tokens (light circle), and source tokens (dot circle) for training. A circle

corresponds to about 5 million tokens for GIGAWORD and 385k tokens for NEWSROOM, which

are used to compute the loss term.

GIGAWORD NEWSROOM

Training Loss 1-gram 2-gram 3-gram 4-gram Average R-2 1-gram 2-gram 3-gram 4-gram Average R-2

a. hxhxhxhx 98.90 55.92 33.85 20.32 52.25 14.51 99.19 65.28 45.25 31.16 60.22 21.51

b. hxhxhxhxh 86.74 46.14 27.15 16.14 44.05 19.37 92.32 57.60 38.14 25.11 53.29 23.93

c. hxhxhxhxhh 80.96 40.58 23.08 13.15 39.44 20.00 87.80 52.67 33.84 21.17 48.87 23.90

d. hxhxhh 73.98 34.89 19.19 10.55 34.65 19.20 82.23 46.55 28.54 17.37 43.67 22.97

e. hxhxhxhxhq hq 98.57 56.33 35.10 21.72 52.93 15.21 98.71 64.35 44.61 30.69 59.59 21.81

f. hxhxhxhxhhq hq 86.29 45.91 27.07 16.06 43.83 19.55 91.52 56.36 36.93 24.12 52.23 24.14

g. hxhxhxhxhhhq hq 80.56 40.32 22.66 12.87 39.10 20.37 87.59 52.25 33.50 21.43 48.69 24.04

h. hxhxhhhq hq 74.22 35.09 19.13 10.49 34.73 19.39 82.41 47.16 29.16 17.92 44.16 23.10
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Table 4.4: Summarization results on the Gigaword test set. The lower part of the table contains

results from our system.

System R-1 R-2 R-L BERT-S

lvt5k-1sent 35.30 16.64 32.62 –

Multi-Task w/ Entailment 32.75 15.35 30.82 –

SEASS 36.15 17.54 33.63 –

DRGD 36.27 17.57 33.62 –

EntailGen+QuesGen 35.98 17.76 33.63 –

PG Networks 34.19 16.92 31.81 58.32

Struct+2Way+Relation 35.61 18.02 33.45 58.84

R3Sum 36.36 18.23 33.85 56.74

BiSET 38.45 19.53 36.04 57.10

Best-first Search 39.07 20.28 36.49 61.27

Beam Search 38.87 20.37 36.52 61.47

Beam+LengthNorm 39.10 20.25 36.55 61.41

Beam+BPNorm (c=0.55) 39.19 20.38 36.69 61.46

Beam+SBWR (r=0.25) 39.08 20.47 36.68 61.51
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Table 4.5: Summarization results on the Newsroom test set. The top four systems are trained on

Newsroom training data, whereas the bottom two systems are trained on Gigaword.

System R-1 R-2 R-L BERT-S

N
e w

sr
oo

m
PG Networks 39.86 19.51 36.61 62.01

Struct+2Way+Rel. 40.54 20.44 37.40 62.05

Ours (pure-ext) 43.21 21.81 40.05 63.68

Ours (best-abs) 45.93 24.14 42.51 66.20

G
ig

a Ours (pure-ext) 39.44 17.32 36.10 61.00

Ours (best-abs) 40.89 19.11 37.60 62.74

Table 4.6: Human assessment of informativeness, grammaticality, truthfulness, and best-worst

scaling.

System Inform. Gramm. Truthful. Bst-Wst

Human 2.801 2.831 2.778 -0.001

PG Networks 2.768 2.697 2.678 -0.058

R3Sum 2.748 2.680 2.709 -0.009

BiSET 2.740 2.634 2.738 -0.006

Ours (pure-ext) 2.846 2.817 2.785 0.032

Ours (best-abs) 2.843 2.855 2.865 0.042
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CHAPTER 5
CONTROL OVER DESIRED PROPERTIES: A NEW APPROACH TO

OVER-GENERATING AND SCORING ABSTRACTIVE SUMMARIES

In this Chapter, I will demonstrate a more general approach suitable for varying desired sum-

mary properties. It over-generates summaries with different lengths and then passes those sum-

maries to a selector for selecting admissible summaries. Particularly, in this work we designed

two selectors the ”best-overall quality” selector and the ”optimal-length” selector for quality and

length controlling.

5.1 Background

The learning objective of a modern abstractive summarizer is to produce system outputs that re-

semble reference summaries on a word-to-word basis. It does not promote outputs that possess

multiple desirable properties, i.e., capturing the most important information, being faithful to the

original text, grammatical and fluent, though some of these properties are exhibited by system ab-

stracts as a natural outcome of a learned summarizer [29, 65, 46, 86, 90, 94, 144, 91, 145, 146].

Without direct optimization of desired properties, system abstracts often change the meaning of

the original document or fail to convey the main concepts [147].
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Table 5.1: Example of alternative summaries generated from the source text Admissible summaries

are marked by 4. System summaries that fail to preserve the meaning of the source input are

marked by 8.

Source Text

• Police arrested five anti-nuclear protesters Thursday after they

sought to disrupt loading of a French Antarctic research and

supply vessel, a spokesman for the protesters said.

Summary

4 Police arrest anti-nuclear protesters

4 Protesters target French research ship

8 French police arrest five anti-nuclear protesters

8 Police arrest five anti-nuclear protesters in Antarctica

8 Police arrest five anti-nuclear protesters at French Antarctic
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Table 5.2: An example of the difference between left-to-right and confidence-driven summary

generation (LEFT) A single summary is produced in a left-to-right order. (RIGHT) Four summaries

are generated in a confidence-driven mode. The most confident words are generated first, less vital

ones later. Our generator learns to dynamically add or remove content given a target length to

produce summaries of varying lengths—short, medium and long. The output is a diverse set of

alternative summaries.

Source Text: A court here Thursday sentenced a 24-year-old man to 10 years in jail after he admitted pummelling his baby

son to death to silence him while watching television.

Left to Right Generation (1 Summary) Confidence Driven Generation (4 Summaries)

Man who Man gets 10 years

Man who killed [. . . ] Man who kill the baby gets 10 years

Man who killed baby to hear television better gets 10 Man who kill the baby to hear television gets 10 years

Man who killed baby to hear television better gets 10 years Man who kill the baby to hear television better gets 10 years

In this paper, we propose a new approach to over-generate and select admissible summaries,

which allows a summarizer to juggle multiple objectives and strike a good balance between

them [148]. Our approach consists of two stages. Given a source text, a generator explores the

space of all possible lengths to produce multiple variants of the target summary that contain di-

verse content. We then devise selectors to validate the quality of alternative summaries to predict

whether they are admissible. Our selection mechanism can be customized to suit particular needs

without changing the generation space. Both stages can be effectively trained, optimized and eval-

uated.

82



Crucially, we take a confidence-driven approach to summary generation rather than using a left-

to-right order. Beginning writers and language learners do not write in a strict sequential manner.

In a similar vein, our generator produces a summary by “filling-in-the-blanks” with appropriate

words. The most confident words are generated first, less vital ones later. With confidence-driven

generation, our summarizer learns to dynamically add or remove content, and even paraphrase to

produce a summary of a given length. In Table 5.2, we show an example illustrating the difference

between our method and left-to-right generation. Our method dramatically enhances the capability

of the generator, making it possible to explore summaries of varying lengths.

Identifying admissible summaries with desired properties is critical for a summarizer. Sum-

maries of very short lengths may fail to capture the main concepts, and this kind of incomplete

or partial information can lead to false assumptions about the original content. Moreover, sum-

maries of moderate lengths may still contain hallucinated content that is nonexistent in the source

text [149]. We present two summary selectors to combat these issues. Our first selector aims to

predict what summary length is most suitable for a source text, whereas a second selector puts

special emphasis on the overall quality of the system summary, in particular its faithfulness to the

original text [150, 151].

A novel dataset has been introduced in this work where we associate a source text with multiple

summaries, and admissible ones are manually labelled by human annotators. Not only can the

dataset be used to judge the effectiveness of summary selectors, but it provides a new testbed for

future summarizers to compare their outputs against multiple reference summaries, which is key

to improve the reliability of evaluation results [152]. We have focused on generating abstractive
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summaries from single source sentences, but the insights gained from this study could inform the

design of summarizers of all forms. Our method also has a great potential to incorporate human-

in-the-loop to teach the model to select the best summary. The main contributions of this paper

are:

• We propose a new approach to generate multiple variants of the target summary that have

varying lengths, then score and select the best summaries according to our needs.

• Our generator controls over the length of the summary, which is especially well-suited when

space is limited. Our selectors are designed to predict the optimal summary length and put

special emphasis on faithfulness to the original text.

• Our experiments on benchmark summarization datasets suggest that this paradigm can sur-

pass results of previous studies or rival state-of-the-art. We conclude with a discussion of

our key findings, which has implications for the development of robust abstractive summa-

rizers. 1

5.2 Related Work

It is important for neural abstractive summarizers to produce summaries that are faithful to the

original texts [67, 153, 89, 154, 155, 156]. However, it remains questionable as to whether a

summarizer must acquire that ability by learning from human reference summaries, or possibly

1Our code and annotated data are made available on Github at https://github.com/ucfnlp/

varying-length-summ
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[SEP]
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[SEP]
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[SEP]

the

dog

[MASK]

…

0.10 0.380.52

Step 1 Step 2 Step 3

Vocabulary Vocabulary Vocabulary

So
u

rc
e

Su
m

m
ar

y

barks

the

Figure 5.1: An illustration of the generation process. A sequence of placeholders (“[MASK]”) are

placed following the source text. Our model simultaneously predicts the most probable tokens for

all positions, rather than predicting only the most probable next token in an autoregressive setting.

We obtain the token that has the highest probability, and use it to replace the [MASK] token of that

position. Next, the model makes new predictions for all remaining positions, conditioned on the

source text and all summary tokens seen thus far. Our generator produces a summary having the

exact given length and with a proper endpoint.

through external resources such as textual entailment predictions [150]. In this paper, we present

a two-stage strategy to over-generate, then score system summaries externally for faithfulness and

overall quality.

Previous work has sought to control various aspects of the generated summary, including the

style, length and amount of reused text [58, 157, 139, 158, 159, 97]. In contrast, our genera-

tor focuses on producing multiple variants of the target summary that have diverse content and

varying lengths. It offers precise control over the length of the summary, which has an important

implication for fair comparison between different summarization systems [160, 161].

Our methodology allows for greater flexibility in designing summary selectors. The selectors

may allow multiple admissible summaries to be identified for any source input according to users’
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needs. On the contrary, post-editing of system summaries through a set of basic operations such as

insertion and deletion [162, 163, 164, 165] may have intrinsic limitations by learning from single

reference summaries to produce single outputs. In this paper, we provide a new dataset where each

source text is associated with multiple admissible summaries to encourage diverse outputs.

Our generator is inspired by unsupervised pretraining of deep neural models [137, 33, 30,

39, 38, 37] and non-autoregressive machine translation [166, 167]. Distinct from these is our

confidence-driven generation that goes beyond left-to-right order. It uses a denoising objective

during training and is conveniently transformed into a semi-autoregressive generator at test time.

We introduce a customized beam search algorithm to promote the generation of diverse outputs.

In the following section, we describe in detail our two-step strategy.

5.3 A Confidence-Driven Generator

We seek to produce a highly diverse set of alternative summaries from any source input, but stan-

dard neural language generators with beam search only produce high-likelihood sequences rather

than diverse ones [168]. To address this limitation, we devise a new generator that is capable of

producing summaries of varying lengths. A long summary can cover more important information

of the source text, whereas a short summary is easy-to-read. Moreover, it produces a summary

having the exact given length and with a proper endpoint. This is achieved by shifting away from

left-to-right generation but building a summary using a confidence-driven approach.
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Our generator is illustrated in Figure 5.1. To generate a summary of L tokens, we place a

number of [MASK] tokens following the source text, which serve as “placeholders” for summary

tokens. Importantly, our generator simultaneously predicts the most probable tokens for all po-

sitions, as opposed to predicting only the most probable next token in an autoregressive setting.

We obtain the token that has the highest probability across all positions, and use it to replace the

[MASK] token of that position. Next, the model continues to make predictions for all remaining

positions, conditioned on the source text and the summary tokens seen thus far of varying positions.

Let x = {xi}N
i=1 be the source and y = {y j}M

j=1 the summary sequence. Our confidence-driven

generation process defines a new order of summary tokens, o = {o j}M
j=1, o j ∈ [M], according to

which Pθ (y|x) is factorized into a product of conditional probabilities Pθ (yo j |yo< j ,x) (Eq. (5.1)),

where θ are model parameters to be optimized during training. Our learning objective is to mini-

mize the negative data log-likelihood (Eq. (5.2)) to predict missing tokens y∗o j
conditioned on the

source text x and the summary tokens seen thus far yo< j .

Pθ (y|x;o) =
M

∏
j=1

Pθ (yo j |yo< j ,x) (5.1)

L (θ) =−
M

∑
j=1

logPθ (y∗o j
|yo< j ,x) (5.2)

Our generator is trained with a denoising objective. It consists of a decoder-only architecture

with 12 Transformer blocks [35]. Given a source text and a summary, we replace a portion of

their tokens by the [MASK] token, and the model is trained to reconstruct the original data from the

corrupted text. It differs from autoregressive models in that the context of each position can consist

of tokens from both left and right—a source word can attend to other source words and a summary
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word can attend to source words and summary words seen thus far of varying positions—hence

capturing a bidirectional context. The training procedure is thus analogous to that of permutation-

based language modeling [169].

Our training schedule begins with masking out 10% of source tokens and linearly decreases

it to 0% throughout training steps. Masking out a portion of source tokens helps the model learn

contextualized representations given bidirectional context. On the target side, the schedule begins

with masking out 90% of summary tokens and linearly decreases it to 60%. It allows the model to

learn to predict missing summary tokens and copy source tokens to the summary. When a token is

chosen, it is replaced with the [MASK] token 80% of the time, a random token of the vocabulary

10% of the time, and remains unchanged otherwise.

In Table 5.3, we present example summaries produced by our new confidence-driven generator

for a source input. The summaries have varying lengths and degrees of details. Our generator

learns to add or remove content, and even paraphrase to produce a summary of a given length.

We adjust the target summary length (L) to produce diverse summaries. Moreover, there exists

more than one admissible summaries that capture the important information of the source text,

while being grammatical and faithful to the original. It is important to note that, to decode the best

summary of length L, our generator requires a position-aware beam search algorithm to explore

the space of candidate summaries, which is described next.
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Algorithm 2 Position-Aware Beam Search
1: procedure POSAWAREBEAM(SourceText, L, K)

2: . L is the summary length and K is the beam size.

3: S0←{[MASK]×L} . Initial summary.

4: M0← [1]L×|V | . A binary mask of L positions.

5: H ←{(0,S0,M0)} . A priority queue.

6: for j = 1, . . . ,L do

7: Candidates←{}

8: for hyp ∈H do

9: score′,S ′,M ′← hyp

10: . Estimate token probabilities.

11: PL×|V |← Gen(SourceText,S ′)

12: P ′←P�M ′

13: . Record K-best tokens and positions.

14: for sk,wk, pk ∈ Top-K-Scores(P ′) do

15: score′′← score′+ sk

16: S ′′← replace(S ′, pk,wk)

17: M ′′← replace(M ′, pk, [0]1×|V |)

18: Candidates.add((score′′,S ′′,M ′′))

19: H ← Top-K-Scores(Candidates)

20: return H0 . The best summary of length L.
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5.3.1 Position-Aware Beam Search

A position-aware beam of size K not only contains the K-best candidate summaries having the

highest log-likelihood at any time step, but it also records the positions of summary tokens seen

thus far for each candidate summary. The tokens of candidate summaries can be decoded in any

order and occur in different positions, marking an important distinction between position-aware

and traditional beam search [170]. The method is realized by associating each candidate summary

with a binary matrix M ∈ {0,1}L×|V |, which records what positions have been filled by which

summary tokens and what positions remain available.

Concretely, we use S ′ to denote a candidate summary, score′ is its data log-likelihood and

M ′ is a binary mask (Line 9). Our generator predicts the token probabilities PL×|V | for all po-

sitions, conditioned on the source text and the summary tokens seen thus far. The binary mask

M ′ indicates positions that remain available (Line 11–12). We obtain the top-K tokens that have

the highest probability scores across all positions, record their summary hypotheses and likelihood

scores. These positions are then marked as taken (Line 14–18).

The decoding process continues until all of the L positions are filled by summary tokens. This

makes our method different from traditional beam search, the latter terminates when an end-of-

sequence symbol [SEP] is generated for the summary. Particularly, our method is advantageous

as it exerts precise control over the summary length. The model learns to decide what content to

be included in the summary given the limited space available, yielding summaries with varying

degrees of details.
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5.4 The Selectors

We present two selectors to respectively assess the overall quality of the summary and predict the

optimal summary length. Our selectors assume the role of a responsible agent that, when provided

with a source text and multiple alternative summaries, can effectively recognize the admissible

ones. It has the potential to incorporate human-in-the-loop in future to teach the model to select

best summaries.

5.4.1 Best Overall Quality

Our goal is to build a selector to discern the difference between high and low-quality summaries.

In an ideal scenario, we have human annotators to vet each source text/summary pair, the annotated

data are used to train the selector. The process, however, is both expensive and time-consuming.

Inspired by Kryściński et al. [147], we automatically construct a large number of minimally differ-

ent pairs, where a positive instance comprises of the source text and its ground-truth summary, and

a negative instance includes the source text and a corrupted summary. We experiment with various

means to generate corrupted summaries from a ground-truth summary. The corruptions should re-

semble common mistakes made by neural abstractive summarizers, including generating factually

incorrect details, failing to convey the main points of the source text, and being ungrammatical.

The corruption types experimented in this paper are illustrated in Table 5.4.
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Distinguishing our work from that of Kryściński et al. [147] are (i) Search and Replace, we

swap the ground-truth summary with a similar summary in the training set that have ≥4 common

bigrams to form a negative instance. (ii) Swap Segments splits a ground-truth summary into two

parts of similar lengths, then swaps them to produce an ungrammatical summary. (iii) Incomplete

Summary replaces a ground-truth summary by one of its sentence constituents, yielding a corrupted

summary that fails to convey the main ideas. These corruptions are designed to emulate system

summaries that are too short to capture the main concepts, or contain hallucinated content that is

not found in the source text.

We next build a binary classifier to predict if a summary is admissible given the source text.

To distill information from the source text and the summary, we encode them into hidden vectors

using RoBERTa [31]. These are denoted by hx and hy, respectively. We create a vector for the

pair, h = hx⊕hy⊕ (hx−hy)⊕ (hx ∗hy), consisting of a concatenation of the two hidden vectors,

their absolute difference (hx−hy) and their element-wise product (hx ∗hy). ⊕ is a concatenation

of vectors. The output vector h is expected to capture the gist of the source text and the summary,

and a similar approach is being used for natural language inference [86]. The vector h is fed

to a feed-forward layer to predict whether the summary is admissible given the source text. We

have chosen to design the selector as a classifier rather than a ranking model because there can

exist multiple, equally valid summaries for any source input. The classifier allows us to identify

admissible summaries that are not only true-to-original but has the best overall quality.
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5.4.2 Best Summary Length

Finding a suitable length for the summary is one of the most important open problems in automatic

summarization [161, 171]. A summary should be shorter than the original, but long enough to

include the most important information. Length normalization seeks to rescale the log-likelihood

score of a summary, denoted by S (x,y) = log pθ (y|x), by its length |y|, with an exponent p

(Eq. (5.3)). It is used by some neural abstractive summarizers [29, 37]. However, the method

does not consider the density of information in the source text and it may still generate ultra-short

summaries.

Sln(x,y) = S (x,y)/|y|p (5.3)

Instead, we attempt to estimate the appropriate length of the summary given a source text,

denoted by Lpred, and reward a system summary if it stays close to the estimated length [172]. Con-

cretely, we assign a per-word reward to the summary, represented by r min(|y|,Lpred) (Eq. (5.4)).

A system summary continues to be rewarded until it reaches the predicted length (|y| ≤ Lpred).

Beyond that, increasing the length of the summary does not lead to additional rewards. We obtain

the predicted length Lpred using a baseline abstractive summarizer, which takes the source text as

input and greedily decodes a summary in a left-to-right manner until an end-of-sequence symbol

is predicted; Lpred is the length of the decoding sequence. r is a coefficient to scale the reward and

it is tuned on the validation data. Finally, the reward-augmented log-likelihood Srwd(x,y) is used
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as a scoring function to rank all summary hypotheses of varying lengths.

Srwd(x,y) = S (x,y)+ r min(|y|,Lpred) (5.4)

5.5 Experiments

Datasets We perform extensive experiments on Gigaword [77] and Newsroom [119] datasets.

The goal is to generate an abstractive summary from a lengthy source sentence. For each article,

we pair its first sentence with the title to form a summarization instance. Both datasets contain large

collections of news articles. Gigaword (1995–2010) contains 3,810,674 / 10,000 / 1,951 instances,

respectively, in the train, validation and test splits. Newsroom (1998–2017) contains 199,341 /

21,530 / 21,377 instances, respectively. We conduct experiments on both datasets to demonstrate

the generality of our two-staged strategy. Our method generates a diverse set of summaries from a

source sentence in stage one, then score and select admissible summaries in stage two.

The system summaries are evaluated using both automatic metrics (ROUGE; Lin, 2004) and

human evaluation of information coverage, grammaticality and faithfulness to the original text.

We introduce a new dataset where a source sentence is associated with multiple summaries, and

admissible ones are labelled by human annotators (§5.5.1). The dataset will serve as a useful

testbed for future summarization research, where multiple reference summaries is key to improve

the reliability of evaluation results [152]. This paper focuses on generating abstractive summaries

2Our experiments are performed on the original Gigaword dataset [77] without anonymization. The data provided
by Rush et al. [27] replaced all digit characters with # and replaced word types seen less than 5 times with UNK.
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from single source sentences. However, we expect the insights gained from this study to inform

the design of future summarizers of different kinds.

Experimental Setup Our generator is initialized with RoBERTa-BASE [31] due to its high per-

formance on generation-related tasks. We use Byte Pair Encoding [140] with a vocabulary of

50,265 tokens. The model contains 12 Transformer blocks [15], with a hidden size of 768 and

12 attention heads, for a total of 110M parameters. We fine-tune the model on the train split of

Gigaword and Newsroom, respectively, before applying it to the test sets. The model is fine-tuned

for 20 epochs. Each epoch contains 24k / 1.5k batches and our batch size is 128. The model uses

10k / 1k warm-up steps, respectively, for Gigaword and Newsroom. We use the AdamW [173]

optimizer with an initial learning rate of 1e-4. The momentum parameters are set to 0.9 and 0.999.

On a deep learning workstation equipped with 2x Titan RTX GPUs, our model takes 64 and 5.5

hours to fine-tune on Gigaword and Newsroom. At test time, our beam size is K=20. The model

produces summaries ranging from L = 7 to 16 tokens for a given source sentence.

Our selector for best overall quality is trained using 1.8M instances automatically constructed

from the train split of Gigaword. The set is balanced with an equal number of positive and negative

instances. 226k instances are created with the type of Search and Replace, and 400k instances are

created using each of the four remaining corruption types. Our selector for best summary length is

unsupervised and requires no training. The reward coefficient r is set to 2.0 across all experiments.
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5.5.1 Experimental Results

Automatic Evaluation In Table 5.6, we present results on Gigaword and Newsroom test sets

evaluated by ROUGE [42]. We report R-1, R-2 and R-L F1-scores that respectively measure the

overlap of unigrams, bigrams, and longest common subsequences between system and reference

summaries. For each summarization instance, our generator produces multiple alternative sum-

maries, ranging from L=7 to 16 tokens. E.g., “Daiwa Bank.” corresponds to four tokens, ‘Dai’,

‘wa’, ‘Bank’ plus an ending period. Our BEST-QUALITY and BEST-LENGTH selectors each identi-

fies a single best summary from the set of alternative summaries for each summarization instance.

We observe that the BEST-LENGTH selector has achieved the highest scores. It performs better

than using any single target length for all summaries. Among summaries of different lengths, the

highest R-2 F1-scores are obtained when the target summary length is set to 11 and 12 tokens,

respectively, for Gigaword and Newsroom. This is close to the median length of reference sum-

maries, which are 12 and 13 tokens for these datasets. Our findings show that, the target summary

length can make a non-negligible impact on automatic evaluation results. It is best for system sum-

maries to be long enough to include the most important information to achieve satisfying results.

In Table 5.5, we report results on the Gigaword test split that contains 1,951 instances.

Our approach is compared against strong neural abstractive systems, including PEGASUS [38],

UniLM [35] and MASS [36]. These systems draw on large-scale unsupervised pretraining to im-

prove the quality of summaries, yielding some of the best reported results. In comparison, our

BEST-LENGTH selector either surpasses or performs comparably to these systems. The summaries
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Figure 5.2: Effectiveness of position-aware beam search (§5.3.1). A larger beam tends to give

better results.

selected by it achieve the highest R-2 F1-score of 20.4%. We further choose the summary that

yields the highest score for each instance, creating an oracle set of summaries, which yield a R-

2 F1-score of 33.4%. The results indicate that, with better summary selectors, there is a great

potential that we can further boost summarization performance.

In Figure 5.2, we investigate the effectiveness of our position-aware beam search (§5.3.1). The

beam size K is set to {1,5,10,15,20}. We report the average R-2 F1-score across summaries of all

lengths. Results show that our position-aware beam search is effective at decoding summaries and

works robustly across a range of beam sizes. A larger beam (K=20) tends to give better results.

Human Evaluation We are interested in a holistic evaluation of the multiple alternative sum-

maries produced by the generator. To accomplish this, we develop a new dataset containing 500

summarization instances randomly sampled from the Gigaword test set. Our generator produces

7 alternative summaries for each instance, which have varying lengths that range from L= 7 to 13

tokens. We recruit human evaluators to judge the quality of each summary given its source text.3

3Our annotated dataset is available on Github at https://github.com/ucfnlp/varying-length-summ
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Our annotation interface is presented in Table 5.7. A human annotator is instructed to read

over all summaries before seeing the source text. It allows him/her to effectively recognize any

hallucinated content that is not found in the source text. The annotator is asked to answer three yes-

no questions. They include (a) has the summary successfully convey the main points of the source

text? (b) does the summary preserve the meaning of the source? (c) is the summary grammatical?

A native speaker creates gold-standard annotations for multiple instances, they are shared with

all annotators to provide guidance. Our annotators are recruited using Appen (appen.com). It is

a crowdsourcing platform similar to Amazon Mechanical Turk (mturk.com), but provides great

quality control mechanisms to ensure high-quality work.

We recruit 5 annotators to judge the quality of each summary. A summary is deemed admissi-

ble under a criterion if the majority answer is yes. We observe that, 74.2% of summaries produced

by our generator are admissible under all three criteria. The results suggest that our generator is

able to produce multiple, equally valid summaries for a given source text. We additionally exam-

ine the percentage of admissible summaries under each criterion, results are shown in Table 5.8.

Grammaticality has the best performance (96.5%), followed by truthfulness (82.6%) and content

coverage (80.7%). There appears to be room for improvement for the latter two aspects. Moreover,

the summaries chosen by our BEST-QUALITY selector demonstrate a high admissible rate—93%,

90.8% and 97%—respectively for the three criteria, suggesting the effectiveness of the selector.

Further, we observe a discrepancy between ROUGE and human judgments [174] as summaries

yielding highest ROUGE scores are not always deemed admissible by human evaluators. We hope
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this dataset provides a testbed for future summarizers to be judged on their ability to produce

multiple summaries per instance rather than a single summary.

In Table 5.3, we show example system summaries and the order in which summary tokens are

produced. E.g., {2,5} indicate the two tokens “Bo-J” (Bank of Japan) are generated the 2nd and

5th place in the summary. We find that our generator can effectively decide what content should

be included in the summary given the limited space available, yielding summaries with varying

degrees of details. Important spans such as “calls for calm” tend to be generated first, less vital

ones later. Our findings corroborate the hypothesis that a masked language model may enable

generation in a flexible word order [175]. Further, we observe that the order in which tokens are

generated is related to their dependencies (“call→for”), which supports the findings of Clark et

al. [176].

5.6 Conclusion

We investigate a new approach to neural abstractive summarization that focuses on producing

multiple summary hypotheses with varying lengths and diverse content. Our selectors are designed

to identify summaries that have the optimal length and the best overall quality. The approach

obtains state-of-the-art results on summarization benchmarks and opens up a potential new avenue

for customizing summary selectors to suit users’ needs.

Future work includes extending this research to long documents. Our confidence-driven gen-

erator and the selectors could potentially be extended to operate on spans of text [177] rather than
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individual tokens, thus allowing for efficient generation of summary hypotheses that have varying

degrees of details and identification of admissible summaries or summary segments.
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Table 5.3: An example of generated summaries with varying lengths. The target summary length

L is adjusted to produce alternative summaries that have diverse content. Our generator can dy-

namically add or remove content, and paraphrase to produce a summary of a given length. The

numbers indicate the order in which the summary tokens are generated. “BoJ” stands for “Bank

of Japan”. It maps to two tokens according to Byte Pair Encoding (BPE). Each summary has an

ending period, so the last word also maps to two tokens.

Input The Bank of Japan appealed to financial

markets to remain calm Friday following the US decision

to order Daiwa Bank Ltd. to close its US operations.

L=6 BoJ
2,5

calls
4

for
6

calm.
3,1

L=7 BoJ
3,7

calls
4

for
5

market
6

calm.
2,1

L=8 BoJ
5,7

urges
6

markets
4

to
3

remain
1

calm.
8,2

L=9 BoJ
6,2

urges
7

financial
4

markets
5

to
9

remain
1

calm.
8,3

L=10 BoJ
1,2

calls
6

for
7

calm
5

after
8

Daiwa
10,4

closure.
9,3

L=11 BoJ
1,2

calls
6

for
7

calm
5

after
8

Daiwa
11,4

Bank
3

closure.
10,9

L=12 BoJ
2,3

calls
5

for
6

calm
1

after
11

Daiwa
8,7

Bank
9

closure
12

order.
10,4

L=13 BoJ
6,13

urges
8

markets
7

to
9

remain
11

calm
4

after
10

Daiwa
5,2

Bank
1

closure.
12,3

L=14 BoJ
3,4

calls
7

for
8

calm
2

after
14

Daiwa
13,6

Bank
5

’s
10,9

US
11

closure.
12,1

L=15 BoJ
10,3

calls
4

for
5

calm
2

after
15

US
8

order
13

for
14

Daiwa
9,6

Bank
7

to
11

close.
12,1

L=16 BoJ
3,5

calls
4

for
7

calm
2

after
16

US
13

order
12

on
14

Daiwa
8,6

’s
11,10

US
9

operations.
15,1
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Table 5.4: A positive instance for the selector consists of a ground-truth summary (marked by 4) and its source text. A negative instance

consists of a corrupted summary (8) and its source text. Entity Replacement: replacing a named entity of the ground-truth summary with a random

entity. Negation: negating a ground-truth summary sentence. Incomplete Summary: replacing the ground-truth summary with one of its sentence

constituents to produce a corrupted summary that contains 5 words or less. Search and Replace: swapping the ground-truth summary with a similar

summary in the training set that have 4 or more common bigrams. Swap Segments: splitting the ground-truth into two parts of similar length, the

parts are swapped to produce an ungrammatical summary.

Entity Replacement

• German art experts have authenticated a painting believed to be

the last portrait ever made of the composer Wolfgang Amadeus

Mozart, the body which runs Berlin’s museums said on Thursday.

4 German experts identify last known portrait of Mozart

8 German experts identify last known portrait of Mount Mayon’s

Negation

• US Secretary of State Condoleezza Rice suggested Tuesday that

International Atomic Energy Agency chief Mohamed ElBaradei

should not interfere in diplomatic issues after he warned against

the hasty use of force in the Iranian nuclear dispute.

4 Rice suggests IAEA chief should stay clear of diplomacy

8 Rice suggests IAEA chief shouldn’t stay clear of diplomacy

Incomplete Summary

• Total Hong Kong dollar deposits grew 2.2 percent in March, com-

pared to 2.1 percent in February, according to the Hong Kong

Monetary Authority.

4 HK Bank Deposits Increase in March

8 Increase in March

Search and Replace

• Israel is on course to complete the main tranche

of its controversial West Bank security barrier

in 2004 and wrap up the project in the following

year, the defence ministry said Wednesday

4 Israel surges ahead with West Bank barrier

construction

8 Soul-searching in Israel over shooting of West

Bank barrier protestor

Swap Segments

• The Security Council on Thursday voted unan-

imously to extend the mandate of the UN mis-

sion in Georgia for four months ahead of next

week’s international talks on the fallout of the

recent Caucasus conflict.

4 Security Council extends mandate of UN mis-

sion in Georgia

8 UN mission in Georgia Security Council ex-

tends mandate of
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Table 5.5: Results on the Gigaword test set evaluated by ROUGE [42].2

System R-1 R-2 R-L

lvt2k-1sent [28] 32.67 15.59 30.64

SEASS [60] 36.15 17.54 33.63

DRGD [84] 36.27 17.57 33.62

Pointer-Gen [29] 34.19 16.92 31.81

R3Sum [142] 37.04 19.03 34.46

EntailGen [124] 35.98 17.76 33.63

BiSET [143] 38.45 19.53 36.04

MASS [36] 38.73 19.71 35.96

UniLM [35] 38.90 20.05 36.00

PEGASUS [38] 39.12 19.86 36.24

Ours (Average) 35.51 16.33 32.75

Ours (Best Quality) 36.71 17.27 33.63

Ours (Best Summary Length) 39.27 20.40 36.76
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Table 5.6: Results on Gigaword and Newsroom datasets where the generator produces summaries

of varying lengths.

Summary Length (L) Best Best

Gigaword 7 8 9 10 11 12 13 14 15 16 Avg. Quality Length

R-1 F1 (%) 32.01 35.42 37.05 37.95 38.05 37.79 37.27 36.66 35.75 35.13 36.31 36.71 39.27

R-2 F1 (%) 13.47 15.68 17.39 18.31 18.24 18.22 17.85 17.19 16.63 16.00 16.90 17.27 20.40

R-L F1 (%) 29.76 32.85 34.46 35.31 35.10 34.87 34.21 33.53 32.71 32.02 33.48 33.63 36.76

Summary Length (L) Best Best

Newsroom 7 8 9 10 11 12 13 14 15 16 Avg. Quality Length

R-1 F1 (%) 40.99 43.38 44.94 46.06 46.57 46.77 46.53 46.25 45.76 45.21 45.25 45.77 46.60

R-2 F1 (%) 19.15 20.99 22.11 23.02 23.47 23.59 23.38 23.15 22.79 22.33 22.40 22.58 23.85

R-L F1 (%) 38.24 40.34 41.56 42.36 42.69 42.68 42.31 41.88 41.29 40.63 41.40 41.48 43.07
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Table 5.7: Example annotation interface. A human annotator is instructed to read over the sum-

maries before seeing the source text to effectively recognize any hallucinated content that is not

found in the source text. A native English speaker creates annotations for multiple instances, which

are shared with all annotators to provide guidance.

Candidate Summary Contains the main idea? Is true-to-original? Is grammatical?

(1) Izetbegovic blasts Karadzic � Yes �x No �x Yes � No �x Yes � No

(2) Karadzic accused of swaying US Congress �x Yes � No �x Yes � No �x Yes � No

(3) Karadzic seeks to sway US Congress �x Yes � No �x Yes � No �x Yes � No

(4) Karadzic seeks to sway Congress �x Yes � No �x Yes � No �x Yes � No

(5) Karadzic misleading US Congress � Yes �x No � Yes �x No � Yes �x No

(6) Monday’s international soccer scores � Yes �x No � Yes �x No � Yes �x No

Source Text: Bosnian President Alija Izetbegovic on Monday accused Bosnian Serb leader Radovan Karadzic of seeking

to sway the US Congress against approving US troops to help enforce peace in the former Yugoslavia.

Table 5.8: Results of human assessment. BEST-QUALITY summaries have a higher likelihood of

being admissible according to the criteria, suggesting the effectiveness of the method.

Content Truthful Grammatical Overall

Average 80.7 82.6 96.5 74.2

Best Length 82.8 86.0 97.4 77.8

Best Quality 93.0 90.8 97.0 88.2
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CHAPTER 6
CONCLUSION

6.1 More Challenges and Future Works

Current summarization systems remain imperfect, and they are still suffering from hallucination

and lack of flexibility. Moreover, they may miss the most important information. On the one hand,

current abstractive methods tend to generate some ”Jack of all trades” that are commonly seen

in the training data. These methods will miss important but rare content. This conflicts the goal

of figuring out the key messages. On the other hand, retrieving those important fragments using

extractive method is not easy either, especially in long documents. A potential way is to incorporate

extractive and abstractive methods within an affordable length. For longer documents, we may also

need to study how different genres of languages are structured and the ways of modeling them. This

will help summarization task in some specific domains.

In addition, different people have different flavors of summary. Some people would like to read

the summary without thorough understanding while others may require more details. Moreover,

people may have their own perspectives and questions before reading the summary. All of the

above makes it harder to evaluate a summary. It will get better after new evaluation metrics and

new dataset that support diverse demands are purposed.
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6.2 Future Expectation

In the next 3 to 5 years, there will be multiple customized applications for domain specific sce-

narios, e.g. sport games reporting, news feeding, meeting highlights. It will save human efforts in

those scenarios.

In the next 6 to 10 years, summarization technologies will become an important component of

cloud services provided to business users even for open-domain scenarios, just like speech recog-

nition and translation services. Everyone can get access to it and can benefit from it.

6.3 Conclusion

In my five years of research on summarization, I find summarization is an important technology

for information processing. It helps people in fast browsing the key messages they need to know

and saves their time. Though, it is still a challenging task, I feel much more confident that with

more advanced technologies being discovered, and they will become robust and flexible for use.

More people will benefit from this technology.
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