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ABSTRACT

In recent years, progress in computing and networking has made it possible to collect large

volumes of data for various different applications in data mining and data analytics using machine

learning methods. Data may come from different sources and in different shapes and forms de-

pending on their inherent nature and the acquisition process. In this dissertation, we focus specifi-

cally on sequential data, which have been exponentially growing in recent years on platforms such

as YouTube, social media, news agency sites, and other platforms. An important characteristic

of sequential data is the inherent causal structure with latent patterns that can be discovered and

learned from samples of the dataset. With this in mind, we target problems in two different do-

mains of Computer Vision and Natural Language Processing that deal with sequential data and

share the common characteristics of such data. The first one is action recognition based on video

data, which is a fundamental problem in computer vision. This problem aims to find generalized

patterns from videos to recognize or predict human actions. A video contains two important sets

of information, i.e. appearance and motion. These information are complementary, and therefore

an accurate recognition or prediction of activities or actions in video data depend significantly on

our ability to extract them both. However, effective extraction of these information is a non-trivial

task due to several challenges, such as viewpoint changes, camera motions, and scale variations,

to name a few. It is thus crucial to design effective and generalized representations of video data
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that learn these variations and/or are invariant to such variations. We propose different models

that learn and extract spatio-temporal correlations from video frames by using deep networks that

overcome these challenges. The second problem that we study in this dissertation in the context of

sequential data analysis is text summarization in multi-document processing. Sentences consist of

sequence of words that imply context. The summarization task requires learning and understand-

ing the contextual information from each sentence in order to determine which subset of sentences

forms the best representative of a given article. With the progress made by deep learning, better

representations of words have been achieved, leading in turn to better contextual representations

of sentences. We propose summarization methods that combine mathematical optimization, De-

terminantal Point Processes (DPPs), and deep learning models that outperform the state of the art

in multi-document text summarization.
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CHAPTER 1
INTRODUCTION

Ever since the internet and handheld devices have become ubiquitous, huge number of se-

quential data have been generated and are being produced on daily basis by people and machines:

People take millions of videos of their families, friends, and gatherings to share on the internet

around the world; News media create daily articles and followup stories about new events; and

output of sensors such as webcams and surveillance cameras deployed for various applications,

such as security, weather monitoring, and manufacturing are continuously shared on the internet,

and often in real time. People frequently use or interact with various types of sequential data such

as videos, news, and emails on daily basis. It is therefore of paramount interest to not only under-

stand and make sense of such data over time, but also to distill and summarize the overwhelmingly

growing data for more efficient human consumption, while preserving integrity and faithfulness to

the original content and intent. The sequential data usually contain latent patterns that reflect their

essential underlying information. With the rise of deep neural networks [117, 210, 211], one can

effectively extract those important information with a data-driven training-based approach. In this

dissertation, we study the special nature of sequential data by investigating two different problems

that share the aforementioned characteristics of sequential data, i.e. video-based human action

recognition, and text summarization. Each problem takes as input some sequential data: a video
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is a collection of sequential frames; and text is a sequence of sentences, while a sentence is an

ordered group of words. To emphasize the shared nature of such sequential data, we show that

videos of human actions can be modeled in an abstract way in terms of what we refer to as “action

words” and “action sentences”.

We recognize that one common thread in better understanding of sequential data (regardless

of their superficial differences, e.g. videos versus text), is the effective extraction of their hidden

representations or contextual information. Therefore, we make the following important contribu-

tions in terms of the methods and results that are designed to extract such contextual information

in different problems and different domains.

• We propose neural network models that extract temporal correlation information of different

modalities in human action recognition. Temporal Convolutional Neural Networks (CNNs)

with various sizes of kernels are proposed to extract different local hidden patterns in order

to distinguish the semantically dissimilar human actions, effectively.

• To obtain spatio-temporal context information, we propose a novel approach to merge tem-

poral changes of appearance and motion data. The proposed network fuses the temporal

associations of appearances and motions leading to acquiring video-level context.

• In order to understand core hidden patterns of human actions, skeleton-based information is

often used. Unlike the CNN or recurrent neural networks that focus only on local relations,

self-attention networks consider all possible pairwise associations in temporal order. We
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propose Self Attention Networks that effectively obtains temporal correlations to understand

human movements based on skeleton information.

• There are many obstacles to achieve a quality multi-document summarization system since

the document contains excessive redundant information and text understanding is challeng-

ing. We present a system exploiting capsule networks for extracting context between pair

sentences. We model pairwise sentence similarity as Determinantal Point Processes (DPP)

that choose a set of summary sentences that are both representative and attain diversity.

• Language models are trained with a huge number of text data and contain abundant context

information that can be used in other tasks. To improve the similarity measure and the impor-

tance measure of sentences, we propose a model based on Bidirectional Encoder Represen-

tation from Transformers (BERT) to measure both similarity and importance effectively. By

combining DPP with the contextualized representations, we achieve summarization results

that outperform the state of the art.

• Amongst the best means to summarize text (which we believe could inspire video summa-

rization) is highlighting. We propose a method of generating summary highlights, over-

laid on the original documents, to make it easier for readers to sift through a large body of

text. The method allows for the summaries to be understood in context in order to prevent

the summarizer from distorting the original intent and meaning, a problem that abstractive

summarization methods are known for. In particular, we present a new method to produce

self-contained highlights that are understandable on their own to avoid any confusion.
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1.1 Temporal Context for Action Recognition and Prediction

Video-based action recognition is an active research area due to its important practical applications

in many areas, such as video surveillance, behavior analysis, and human-computer interaction. The

action recognition task is accomplished after acquiring the entire video, while action prediction is

different in the sense that it aims at classifying the action with shortest possible latency, i.e. classify

as early as possible as the frames come in. The capability of predicting an action early is crucial

in both surveillance systems and human-computer interaction. The two tasks of action prediction

and recognition have often been researched separately under different settings and constraints.

Figure 1.1: Given a partial or a full video frames, our goal is to classify the correct action. Each

frame is converted to a corresponding “action word” and the sequence of “action words” is trained

to predict an activity.
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A video contains two important pieces of information: appearance and motion. These infor-

mation are complementary, and therefore an accurate prediction relies on the ability to extract the

information with low latency, i.e. as early as possible in the temporal sequence. However, extract-

ing effective information (whether for prediction or recognition) is non-trivial, due to a number of

difficulties such as viewpoint changes, camera motions, and scale variations, to name a few. It is

thus crucial to design an effective and generalized representation of a video. Convolutaional Neural

Networks (ConvNets) [96] have been playing a key role in solving hard problems in various areas

of computer vision, e.g. image classification [96, 71, 221] and human face recognition [151]. Con-

vNets also have been employed to solve the problem of action recognition [164, 83, 191, 134, 212]

in recent literature.

Data-driven supervised learning enables to achieve discriminating power and proper repre-

sentation of a video from raw data. However, ConvNets for action recognition have not shown a

significant performance gain over the methods utilizing hand-crafted features [200, 141] or feature-

independent methods [175]. We speculate that the main reason for the lack of big impact is that

ConvNets employed in action recognition do not take full advantage of temporal sequencing or

order. Recently some methods [195, 36] attempted to capture long-term temporal information.

However, they require excessive computation for a long video.

Inspired by key ideas from Natural Language Processing (NLP), and as a contribution in this

dissertation for modeling temporal context, we represent each frame as a word and a video as a

sequence of such words. The sequence of words, or a sentence, is a new video representation as

shown in Fig. 1.1. We call this abstract representation an Action Word. We use the standard Bag of
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Words (BoW) [140] framework to encode each visual feature as an assigned word in a codebook.

The sequence of words then is learned with a simple but effective CNN architecture capturing

the sequential order of temporal information. This method is flexible to input size, and hence is

applicable to any length of videos. The capability to adopt a variable-size input, combined with

low latency versus high accuracy makes the method particularly powerful for both action prediction

and action recognition.

Our key contributions can thus be summarized as follows: (i) A new representation for video

data as a sequence of words that inherently captures temporal order and sequencing of information.

(ii) An effective ConvNet that learns such temporal sequencing to predict with low latency an

action. (iii) The ability of the method to maintain state-of-the-art accuracy in both prediction and

recognition with the challenging datasets, such as UCF101 and HMDB51. (iv) The entire system

is easy to implement and is trained with a small computational cost compared to other methods

employing ConvNets.

1.2 Spatio-Temporal Fusion Networks for Action Recognition

Video-based action recognition is an active research topic due to its important practical applications

in many areas, such as video surveillance, behavior analysis, and human-computer interaction.

Unlike a single image that contains only spatial information, a video provides additional motion

information as an important cue for recognition. Although a video provides more information, it

is non-trivial to extract the information due to a number of difficulties such as viewpoint changes,
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Figure 1.2: An illustration of spatio-temporal fusion network (STFN) for action recognition. Given

multiple segments of a video, the network extracts temporal dynamics of appearance and motion

cues and fuses them to build a spatio-temporal video representation via end-to-end learning. The

appearance and motion ConvNets share the same weights and are employed to extract appearance

and motion features, respectively.

camera motions, and scale variations, to name a few. It is thus crucial to design an effective and

generalized representations of a video.

In recent years, two-stream ConvNets [164] have become popular in action recognition, at-

tempting to exploit both the appearance and motion data. This, in a sense, is also aiming to in-

crease the performance gain by ConvNets over hand-crafted features [200, 141], as pointed out
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earlier. However, the two data streams are typically trained with separate ConvNets and only com-

bined by averaging the prediction scores. This approach is not helpful when the two information

are needed simultaneously, e.g. motions of brushing teeth and brushing hair are similar, and there-

fore appearance information is needed to discriminate them. Due to the lack of spatio-temporal

features for action recognition, several methods [192, 46, 26] have attempted to incorporate both

sources of information. They typically take frame-level features and integrate them using an RNN

[71] network and temporal feature pooling [47, 132, 206] in order to incorporate temporal infor-

mation. However, they still lack in extracting a representation that captures video-wide temporal

information.

As part of this dissertation, we investigate a proper model to fuse the appearance and motion dy-

namics to learn a video level spatio-temopral representation. The proposed spatio-Temporal Fusion

Network (STFN) aggregates different size of local temporal dynamics in multiple video segments

and combines them to obtain a video level spatio-temporal representation. STFN is mainly mo-

tivated by two components: a residual-inception module [134], and 1D convolution layers [106].

The former is suitable for extracting latent features and the latter works well in extracting temporal

dynamics. We modified the original residual-inception module [134] and designed a new block

for spatio-temporal fusion that achieves our research goals. The new residual-inception block pro-

cesses local and global temporal dynamics for each data. Given the extracted dynamic information,

appearance and motion dynamics are merged with fusion operations for spatio-temporal features.

This method overcomes the previous drawback, i.e. the lack of utilizing video-wide temporal infor-
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mation, and learning spatio-temporal features. We investigate a variety of different fusion methods

and perform ablation studies to find the best network.

Our key contributions in this part of the dissertation can thus be summarized as follows: (i) A

convolution block, effective to extract temporal representations, is proposed. (ii) A novel ConvNet

is introduced to learn spatio-temporal features effectively by fusing two different features properly.

(iii) the proposed STFN achieves state-of-the-art performance on the two challenging datasets,

UCF101 (95.4%) and HMDB51 (72.1%). (iv) The entire system is easy to implement and is

trained by an end-to-end learning of deep networks.

1.3 Skeleton-Based Action Recognition with Self-Attention Networks

Video-based action recognition has been an active research topic due to its important practical ap-

plications in many areas, such as video surveillance, behavior analysis, and video retrieval. Human

action recognition can also be applicable to human-computer interaction or human-robot interac-

tion to help machines understand human behaviors better [218, 145, 22]. Unlike a single image that

contains only spatial information, a video provides additional motion information as an important

cue for recognition. Although a video provides more information, it is non-trivial to extract the

information due to a number of difficulties such as viewpoint changes, camera motions, and scale

variations, to name a few. There has been extensive research in RGB video-based action recog-

nition and one of the mainstream methods is to employ both temporal optical flow and spatial

appearance to obtain spatial and temporal information [165] . The RGB video datasets typically

9



Figure 1.3: An example of self-attention response from the last self-attention layer. Eight frames

are uniformly sampled from an action with the class ‘put on jacket’ and illustrated as frame 0 to

7. Frame 0 has the strongest correlation with the last frame, frame 7, at the fourth head , and

attends heavily itself at the second head . Note that with the self-attention network each frame

is associated with other frames so that local and global context information can be acquired.

contain an extensive amount of data to process, hence require large models and resources to train

them properly. On the other hand, skeleton based action recognition comprises of only key joint

locations of human bodies [4, 158, 160, 161, 173, 174]. With the advent of cost-effective depth

cameras [232], stereo cameras, and the advanced techniques for human pose estimation [11, 159],

the cost to obtain key points has reduced. As a result, skeleton-based human action recognition

has regained and garnered increasing attraction in recent years [2, 39, 222]. Although, key joint
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locations do not include appearance information, humans are able to recognizing actions from the

motion of a few human skeleton joints according to Johansson [78]. In this part of the disserta-

tion, we further study temporal context in human action recognition, when focusing solely on 3D

skeleton sequences.

To extract information from skeleton sequences, many works naturally apply recurrent neu-

ral networks (RNNs) to model the temporal dynamics [154, 118, 231]. They also utilize CNNs

to model spatio-temporal dynamics by treating the 3D skeleton data as 2D pseudo images with

3 channels [110, 213]. Another method is to retrieve structure information of human body by

constructing a graph with human joints as edges [222], which is also based on CNNs. Despite

significant progress and improvements in performance, the problem as a whole and many as-

pects of it are still considered as not fully solved. Both recurrent and convolutional operations

are neighborhood-based local operations [216] either in space or time; hence local-range informa-

tion is repeatedly extracted and propagated to capture long-range dependencies. Many works have

designed networks with hierarchical structures [39, 109, 21] to obtain longer range and deeper

semantic information, but the problem still persists if there are back and forth semantic dependen-

cies.

In this dissertation, we propose a novel model based on a Self-Attention Network (SAN) to

overcome the above limitation and retrieve better semantic information (Fig. 1.3). Fig. 1.4 shows

the overall pipeline of our model. The framework is motivated by temporal segment network

[207] that extracts short-term information from each video sequence. Our model extracts semantic

information from each video sequence by SAN variants. SAN-Variants take a sequence of features
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from encoded signals and compute the response at each position as a weighted sum of features at all

positions. This operation enables SAN-Variants to correlate features in distance or even in opposite

directions. The predicted outputs based on each clip are merged with consensus operations to

capture deeper semantic understanding. Therefore, our model can effectively solve the problem

of acquiring long-term semantic information. Experimental results show that the learned SAN

variants outperform state of the art methods on challenging large scale datasets. We also visualize

the attention correlations trying to understand how the network works and provide some insights.

The main contributions of the dissertation here are summarized as follows:

1. We propose Self Attention Network (SAN) variants SAN-V1, SAN-V2 and SAN-V3 for

effectively capturing deep semantic correlations from action sequences involving human

skeleton.

2. We have integrated the Temporal Segment Network (TSN) with our SAN variants. We ob-

served improved performance because of this integration of TSN and SAN variants.

3. We visualize self-attention probabilities to show how each frame is correlated with other

frames.

4. Our proposed method achieves state-of-the-art results on two large scale datasets: NTU

RGB+D and Kinetics-skeleton
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Figure 1.4: The overall pipeline of the proposed model. The network takes as inputs temporally

segmented clips and extracts contextual information from each snippet by one of SAN variants

described in section 5.2.3. Predictions of each snippet are fused to compute the final prediction.

1.4 Text Summarization with Determinantal Point Processes and Capsule Networks

Multi-document summarization is arguably one of the most important tools for information aggre-

gation. It seeks to produce a succinct summary from a collection of textual documents created by

multiple authors concerning a single topic [131]. The summarization technique has seen growing

interest in a broad spectrum of domains that include summarizing product reviews [57, 223], stu-

dent survey responses [122, 123], forum discussion threads [35, 187], and news articles about a

particular event [72]. Despite the empirical success, most of the datasets remain small, and the

cost of hiring human annotators to create ground-truth summaries for multi-document inputs can

be prohibitive.
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Impressive progress has been made on neural abstractive summarization using encoder-decoder

models [147, 152, 139, 17]. These models, nonetheless, are data-hungry and learn poorly from

small datasets, as is often the case with multi-document summarization. To date, studies have

primarily focused on single-document summarization [152, 14, 98] and sentence summariza-

tion [128, 236, 12, 168] in part because parallel training data are abundant and they can be con-

veniently acquired from the Web. Further, a notable issue with abstractive summarization is the

reliability. These models are equipped with the capability of generating new words not present in

the source. With greater freedom of lexical choices, the system summaries can contain inaccurate

factual details and falsified content that prevent them from staying “true-to-original.”

In this dissertation, we instead focus on an extractive method exploiting the Determinantal

Point process (DPP; Kulesza and Taskar, 2012) for multi-document summarization. DPP can be

trained on small data, and because extractive summaries are free from manipulation, they largely

remain true to the original. DPP selects a set of most representative sentences from the given source

documents to form a summary, while maintaining high diversity among summary sentences. It is

one of a family of optimization-based summarization methods that performed strongest in previous

summarization competitions [58, 115, 100].

Diversity is an integral part of the DPP model. It is modelled by pairwise repulsion between

sentences. In this dissertation, we exploit the capsule networks [69] to measure pairwise sen-

tence (dis)similarity, then leverage DPP to obtain a set of diverse summary sentences. Tradi-

tionally, the DPP method computes similarity scores based on the bag-of-words representation of

sentences [100] and with kernel methods [62]. These methods, however, are incapable of cap-
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turing lexical and syntactic variations in the sentences (e.g., paraphrases), which are ubiquitous

in multi-document summarization data as the source documents are created by multiple authors

with distinct writing styles. We hypothesize that the recently proposed capsule networks, which

learn high-level representations based on the orientational and spatial relationships of low-level

components, can be a suitable supplement to model pairwise sentence similarity.

Importantly, we argue that predicting sentence similarity within the context of summarization

has its uniqueness. It estimates if two sentences contain redundant information based on both

surface word form and their underlying semantics. As an example, the two sentences “Snowstorm

slams eastern US on Friday” and “A strong wintry storm was dumping snow in eastern US after

creating traffic havoc that claimed at least eight lives” are considered similar because they carry

redundant information and cannot both be included in the summary. These sentences are by no

means semantically equivalent, nor do they exhibit a clear entailment relationship. The task thus

should be distinguished from similar tasks such as predicting natural language inference [9, 219]

or semantic textual similarity [15]. In this work, we describe a novel method to collect a large

amount of sentence pairs that are deemed similar for summarization purpose. We contrast this new

dataset with those used for textual entailment for modeling sentence similarity and demonstrate its

effectiveness on discriminating sentences and generating diverse summaries. The contributions of

this work can be summarized as follows:

• we present a novel method inspired by the determinantal point process for multi-document sum-

marization. The method includes a diversity measure assessing the redundancy between sen-
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tences, and a quality measure that indicates the importance of sentences. DPP extracts a set of

summary sentences that are both representative of the document set and remain diverse;

• we present the first study exploiting capsule networks for determining sentence similarity for

summarization purpose. It is important to recognize that summarization places particular em-

phasis on measuring redundancy between sentences; and this notion of similarity is different

from that of entailment and semantic textual similarity (STS);

• our findings suggest that effectively modeling pairwise sentence similarity is crucial for increas-

ing summary diversity and boosting summarization performance. Our DPP system with im-

proved similarity measure performs competitively, outperforming strong summarization base-

lines on benchmark datasets.

1.5 Text Summarization with DPP and Contextualized Representations

Determinantal point processes (DPP) are one of a number of optimization techniques that perform

remarkably well in summarization competitions [72]. These optimization-based summarization

methods include integer linear programming [58], minimum dominating set [157], maximizing

submodular functions under a budget constraint [115, 227], and DPP [101]. DPP is appealing to

extractive summarization, since not only has it demonstrated promising performance on summa-

rizing text/video content [62, 230, 156], but it has the potential of being combined with deep neural

networks for better representation and selection [54].
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The most distinctive characteristic of DPP is its decomposition into the quality and diversity

measures [101]. A quality measure is a positive number indicating how important a sentence is

to the extractive summary. A diversity measure compares a pair of sentences for redundancy.

If a sentence is of high quality, any set containing it will have a high probability score. If two

sentences contain redundant information, they cannot both be included in the summary, thus any

set containing both of them will have a low probability. DPP focuses on selecting the most probable

set of sentences to form a summary according to sentence quality and diversity measures.

To better measure quality and diversity aspects, we draw on deep contextualized represen-

tations. A number of models have been proposed recently, including ELMo [143], BERT [31],

XLNet [224, 27], RoBERTa [121] and many others. These representations encode a given text into

a vector based on left and right context. With carefully designed objectives and billions of words

used for pretraining, they have achieved astonishing results in several tasks including predicting

entailment relationship, semantic textual similarity, and question answering. We are particularly

interested in leveraging BERT for better sentence quality and diversity estimates.

This dissertation extends on previous work [23] by incorporating deep contextualized repre-

sentations into DPP, with an emphasis on better sentence selection for extractive multi-document

summarization. The major research contributions of this work include the following: (i) we make

a first attempt to combine DPP with BERT representations to measure sentence quality and diver-

sity and report encouraging results on benchmark summarization datasets; (ii) our findings suggest

that it is best to model sentence quality, i.e., how important a sentence is to the summary, by

combining semantic representations and surface indicators of the sentence, whereas pairwise sen-
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tence dissimilarity can be determined by semantic representations only; (iii) our analysis reveals

that combining contextualized representations with surface features (e.g., sentence length, posi-

tion, centrality, etc) remains necessary, as deep representations, albeit powerful, may not capture

domain-specific semantics/knowledge such as word frequency.

1.6 Text Summarization with DPP and Sub-Sentence Highlights

A summary is reliable only if it is true-to-original. Abstractive summarizers are considered to be

less reliable despite their impressive performance on benchmark datasets, because they can hal-

lucinate facts and struggle to keep the original meanings intact [153, 97]. In this dissertation,

we seek to generate summary highlights to be overlaid on the original documents to allow sum-

maries to be understood in context and avoid misdirecting readers to false conclusions. This is

especially important in areas involving legislation, political speeches, public policies, social me-

dia, and more [150, 95]. Highlighting is most commonly used in education to make important

information stand out and bring attention of readers to the essential topics [146].

The characteristics of summary highlights are: saliency, i.e., highlights must give the main

points of the documents; and non-redundancy, suggesting that redundant content cannot be re-

peated in a summary [131]. Importantly, a highlighted text should be self-contained, i.e., under-

standable on its own, without the need for specific information from surrounding context. Table 1.1

provides an example of sub-sentence highlights. As an example, “New Jersey is located in” hardly

constitutes a good highlight because the information it contains is incomplete and may confuse
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Table 1.1: An example of sub-sentence highlights overlaid on the original document; the highlights

are self-contained.

Original Document and Summary Highlights

Afghan opium kills 100,000 people every year worldwide – more

than any other drug – and the opiate heroin kills five times as many

people in NATO countries each year than the eight-year total of NATO

troops killed in Afghan combat, the United Nations said Wednesday.

About 15 million people around the world use heroin, opium or

morphine, fueling a $65 billion market for the drug and also fueling

terrorism and insurgencies... Drug money is funding insurgencies

in Central Asia, which has huge energy reserves, Costa said...

Europe and Russia together consume just under half of the heroin

coming out of Afghanistan, the United Nations concluded, and

Iran is by far the single largest consumer of Afghan opium.

readers. To date, there has not been any unified framework to account for all these characteris-

tics to generate highlights. We overcome the challenge by identifying self-contained sub-sentence

segments from documents, then combining determinantal point processes and deep contextualized

representations to produce highlights.

Determinantal point process belongs to a class of optimization methods that have had consider-

able success in summarizing text and video [101, 62, 156]. It selects a diverse subset from a ground

set of items, where an item is a candidate text segment in the context of generating summary high-

lights. An item is characterized by a quality score that indicates the salience of the segment and

a diversity score that models pairwise repulsion, suggesting that two segments carrying similar
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meaning cannot both be included in the summary to avoid redundancy. The quality and diver-

sity decomposition of DPP allows it to identify an optimal subset from a collection of candidate

segments.

We study sub-sentence segments as they strike a balance between the quality and amount of

highlights. Whole sentences often contain excessive or unwanted details; keywords are succinct

but less informative. We conjecture that sub-sentence segments can be identified from a document

similar to salient objects are identified from an image using bounding boxes [61]. To best estimate

the size of segments, we present a novel method to “overgenerate” a rich set of self-contained,

partially-overlapping sub-sentence segments from any sentence based on contextualized represen-

tations [225, 33], then leverage determinantal point processes to identify an essential subset based

on saliency and non-redundancy criteria. Our contributions of this work are summarized as fol-

lows.

• We propose to generate sub-sentence summary highlights to be overlaid on source documents

to enable users to quickly navigate through content. Comparing to keywords or whole sen-

tences, sub-sentence segments allow us to attain a good balance between quality and amount of

highlights.

• Importantly, sub-sentence segments are designed to be self-contained, and for which we in-

troduce a new algorithm based on deep contextual representations to obtain self-contained text

segments. All candidate segments are fed to determinantal point processes to identify an optimal

subset containing informative, non-redundant, and self-contained sub-sentence highlights.
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• We perform experiments on benchmark summarization datasets to demonstrate the flexibility

and modeling power of our approach. Our analysis provides further evidence that highlighting

offers a promising avenue of research.1

1.7 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we review existing literature

on video action understanding and text summarization. In Chapter 3, we present our proposed

approach for action recognition based on modeling actions as sentences of “action words” and

extraction of temporal information from appearances and motions. In Chapter 4, we describe a

novel approach for action recognition with a fused spatio-temporal information. In Chapter 5,

we present our proposed approach that leverages self-attention networks for skeleton-based action

recognition. In Chapter 6, we show our method for an extractive text summarization task based

on a mathematical optimization algorithm, DPP and a capsule network which can extract context

information from sentences. In Chapter 7, we depict our method for a text summarization task with

contextualized representations which benefit from a pre-trained language model. In Chapter 8, we

discuss a method of creating sub-sentence highlights for text summarization with DPP. Finally, in

Chapter 9, we present our concluding remarks and the lessons learned in this dissertation.

1We will release our source code publicly.
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CHAPTER 2
LITERATURE REVIEW

This chapter reviews the representative works in studying two types of important sequential

data, i.e. the literature related to video based action recognition and those related to text sum-

marization. We first present early works on video based action recognition and describe how they

obtain temporal cues for the same task. We then describe related works that employ CNNs or recur-

rent neural networks and two stream networks. We also review similar works trying to overcome

the shortcoming of two-stream networks and compare them with our proposed fusion network. In

the following section, we depict recent works using the skeleton data for action recognition. We

then present latest works that use the transformer network or self-attention network that can ex-

tract temporal relation information regardless of their positions. Lastly, we review extractive text

summarization methods and mathematical optimization methods including DPP that are exploited

for the summarization task. We also discuss recent abstractive text summarization methods based

on neural models and compare them with the extractive summarization method.
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2.1 Temporal Context for Action Recognition and Prediction

Several works using ConvNets to acquire temporal information for action recognition have been

studied. In [205], hand crafted features are used in the pooling layer of ConvNet to take advantage

of both merits of hand-designed and deep learned features. Temporal information from optical

flow is explicitly learned with ConvNets in [164] and the result is fused with the effect of the

trained spatial (appearance) ConvNet. [47] merges the ConvNet architecture of the two streams

ConvNets [164] to capture spatio-temporal information. Although the aforementioned approaches

capture temporal information in small time windows, they fail to capture long-range temporal

sequencing information that contain long-range ordered information.

Several works modeling a video-level representation or modeling long temporal information

with ConvNets have also been investigated. [48] proposes a method that employs a ranking func-

tion to generate a video-wide representation that captures global temporal information. In [182], a

HMM model is used to capture the appearance transitions and a max-margin method is employed

for temporal information modeling in a video. [36, 182, 133] utilize LSTM [71] units in their

ConvNets and attempt to capture long-range temporal information. However, the most natural way

of representing a video as long-range ordered temporal information is not fully exploited.

Action prediction is to recognize an action with a partial amount of video data. The task may

be considered as a subset of the action recognition problem, in a sense that the input data is limited.

[148] proposes the integral BoW and dynamic BoW to model an action in a particular stage. Sparse

coding is used to compute activity likelihood of video segments [10]. A max-margin learning
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method for prediction is proposed in [10], where human activity is represented in a hierarchical

way. [94, 74] employ structured SVM to detect an event and capture global and local dynamics of

motions. However, the performance of the above methods are not comparable to our results and

they are not applicable to large-scale datasets, such as UCF101 [170].

Our work is inspired by a key idea of sentence classification [235, 79, 81, 90] in NLP. We

convert from the domain of images to a domain of words to represent each frame as a word and

hence represent a video as a sequence of words, i.e. a sentence. In NLP, words in a sentence

are often represented in the form of vectors, see for instance word2vec [126] and Glove [142]. In

order to acquire a similar frame-level representation, we adopted the standard BoW [140] encoding

method to handle large variability of motions and appearances in video data. It is worth noting,

however, that our method can adopt any type of frame-level features to represent video frames as

words.

Various ConvNet arichitectures [235, 79, 81, 90] have been taken into account for sentence

classification. [81] utilizes dynamic pooling ConvNets for modeling sentences. In [79, 90], a

simple 1D ConvNet is employed to classify sentences, and LSTM units are additionally inserted

in [235]. Similarly, we utilize a simple but effective ConvNet for learning video word sequencing

for action prediction and recognition applicable to large-scale datasets.
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2.2 Spatio-Temporal Fusion Networks for Action Recognition

Several works using ConvNets to acquire temporal information for action recognition have been

studied. In [205], hand-crafted features are used in the pooling layer of ConvNet to take advantage

of both merits of hand-designed and deep learned features. Temporal information from optical

flow is explicitly learned with ConvNets in [164] and the result is fused with the effect of the

trained spatial (appearance) ConvNet. [47] connects several convolution layers of two stream Con-

vNets to capture spatio-temporal information. Although the aforementioned approaches capture

temporal information in small time windows, they fail to capture long-range temporal sequencing

information that contains long-range ordered information.

Several works modeling a video-level representation or modeling long temporal information

with ConvNets have also been investigated. [48] proposes a method that employs a ranking func-

tion to generate a video-wide representation that captures global temporal information. In [182], a

HMM model is used to capture the appearance transitions and a max-margin method is employed

for temporal information modeling in a video. [36, 182, 133] utilize LSTM [71] unit in their Con-

vNets and attempt to capture long-range temporal information. However, the most natural way of

representing a video as long-range ordered temporal information is not fully exploited.

Recently several researches [88, 106] have used frame level representations for predicting ac-

tions with temporal ConvNets. The rational behind these methods is to extract the temporal dy-

namics more directly by utilizing 1D convolution over time. This approach is widely used in

a sentence classification [235, 79, 81] problem in Natural Language Processing literature. Each
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word is encoded to vectors and 1D convolution over a sequence of words extracts semantic infor-

mation between words. For videos, two stream [164] ConvNets are typically employed to train

appearance and motion features separately. Once the two streams are trained, sampled RGB or

optical flow video frames are fed to each network to extract appearance and motion features re-

spectively. This is the standard feature extraction method and each frame can be represented in a

vector form. The biggest advantage of the feature representation is that the temporal information

distributed over entire videos can be effectively extracted by using 1D convolutions. Our work is

based on the 1D convolution layers to obtain temporal dynamics of appearance and motion cues.

Many ConvNets [166, 201, 237, 191] for image recognition are utilized for action recognition

as well. Among them, a concept known as the inception is useful to our encoded data to extract

more informative features. The encoded features are convoluted over time with different kernel

sizes and concatenated. This process extracts local and global temporal information similar to

extracting N-gram semantic information in NLP. [134] introduces an effective residual inception

module, which basically has another shortcut connection to the inception module. We employ

the residual inception module with 1D convolution layers as it is suitable for extracting temporal

dynamics.

The critical drawback of the two-stream [164] ConvNets is the two features cannot be integrated

in feature level. In order to solve this problem, different fusion methods are introduced. In [192]

they try to extract spatio-temporal features directly by applying 3D convolution to a stack of input

frames. [46, 45] connect learned two stream ConvNets to integrate the two stream signals gener-

ating the spatio-temporal features. [26] encodes local deep features as a super vector efficiently so
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that spatio-temporal information can be handled with spatio-temporal ConvNets. We utilize dif-

ferent basic fusion operations, average, maximum, and multiply, as investigated in [206, 46, 45].

Since we combine the appearance and motion features, we naturally take advantage of two stream

ConvNet architecture and connect them with different fusion methods. This work provides a sys-

tematic investigation of fusion methods and ablation studies to choose the best fusion methods for

better performance.

2.3 Skeleton-Based Action Recognition with Self-Attention Networks

Handcrafted features are used to represent the skeleton motion information in early works. [75]

computes covariance matrix for joint positions over time. [197] extracts 3D geometric relation-

ships of body parts in Lie group based on rotations and translations of joints. With further progress

in deep learning, researchers started using Recurrent Neural Networks (RNN) to extract temporal

dynamics between joints as RNNs use sequential processing. [39] proposes a hierarchical RNN

that splits the human body into five parts with each part fed into different subnetworks and fuses

them hierarchically. [154] splits a cell in an LSTM into part based cells and human body parts

are applied to each cell to learn a representation of each part over time. [238] proposes a spatio-

temporal LSTM network that learns the co-occurrence features of skeleton joints with a group

sparse regularization. [118] introduces trust gate to reduce the influence of noisy joints and em-

ploys a spatio-temporal LSTM network to explore the spatila and temporal relationships. [169]

introduces attention mechanism in the LSTM network to focus on more important joints at each
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time instances. In recent works, CNN based approaches [85, 38, 119, 214] are adopted to learn

skeleton features and achieves significant performance. They attempt to convert a skeleton se-

quence into pseudo images and utilize CNNs to learn. [38] maps a skeleton sequence to a tensor

with frames, joints, and xyz coordinates treating it as image and leverages CNNs to train. [85]

proposes a method to use relative positions between the joints and the reference joints based on

CNNs. [214] maps trajectories of joints to orthogonal planes by using the 2D projection. CNNs

are also employed in our method to obtain more informative features from the raw skeleton joints.

However, while the aforementioned RNNs and CNNs lack the ability to extract long-term correla-

tion between features, our proposed method fills the gap to obtain high-level semantic information

with long-range connections of features.

A self-attention network learns to generate hidden state representations for a sequence of input

symbols using a multi-layer architecture [196]. The hidden states of the upper layer are built from

the hidden states of the lower layer using a self-attention mechanism. It learns to aggregate infor-

mation from lower layer hidden states according to their similarities to the t-th hidden state. The

learned representations are highly effective because they capture deep contextualized information

of the input sequence. The self-attentive network with multi-head attention has demonstrated suc-

cess on a number of tasks including machine translation [196, 181], language modeling and natural

language inference [32], semantic role labeling [172], often surpassing recurrent neural networks

in terms of accuracy by a substantial margin. Particularly, [196] describes the Transformer model

that makes the self-attention mechanism an integral part of the architecture for improved sequence

modeling. [32] learns deep contextualized word representations that have led to state-of-the-art
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performance on question answering and natural language inference without task-specific archi-

tecture modifications. Despite the success, self-attentive networks have not been investigated for

the task of human action recognition and in particular skeleton-based action recognition. In this

dissertation, we introduce a novel self-attentive architecture to fill this gap.

Temporal information can be extracted from a sequence data such as a video. Many research

endeavors have introduced methods for modeling the temporal structure for action recognition

[135, 204, 49]. [135] proposes to employ latent variables to decompose complex actions in time

and [204] introduces a latent hierarchical model that extends the temporal decomposition of com-

plex actions. [49] utilizes a rank-SVM to model the temporal evolution of Bag of Visual Words

(BoVW) representations. [207] introduces a method to model a long-range temporal structure

by simply splitting a video into snippets and fusing CNN outputs from each part. We adopt this

method since it effectively extracts long-range temporal information and also is applicable to any

network with end-to-end training.

2.4 Text Summarization with DPP and Contextualized Representations

As a second category of sequential data we study text and in particular text summarization. Ex-

tractive summarization approaches are the most popular in real-world applications [13, 29, 52,

72, 227]. These approaches focus on identifying representative sentences from a single docu-

ment or set of documents to form a summary. The summary sentences can be optionally com-

pressed to remove unimportant constituents such as prepositional phrases to yield a succinct sum-

29



mary [93, 229, 125, 6, 189, 209, 111, 112, 51, 40]. Extractive summarization methods are mostly

unsupervised or lightly-supervised using thousands of training examples. Given its practical im-

portance, we explore an extractive method in this work for multi-document summarization.

It is not uncommon to cast summarization as a discrete optimization problem [58, 178, 115, 70].

In this formulation, a set of binary variables are used to indicate whether their corresponding source

sentences are to be included in the summary. The summary sentences are selected to maximize the

coverage of important source content, while minimizing the summary redundancy and subject to a

length constraint. The optimization can be performed using an off-the-shelf tool such as Gurobi,

IBM CPLEX, or via a greedy approximation algorithm. Notable optimization frameworks include

integer linear programming [58], determinantal point processes [101], submodular functions [115],

and minimum dominating set [157]. In this dissertation, we employ the DPP framework because

of its remarkable performance on various summarization problems [230].

Recent years have also seen considerable interest in neural approaches to summarization. In

particular, neural extractive approaches focus on learning vector representations of source sen-

tences; then based on these representations they determine if a source sentence is to be included

in the summary [19, 226, 127, 130]. Neural abstractive approaches usually include an encoder

used to convert the entire source document to a continuous vector, and a decoder for generating

an abstract word by word conditioned on the document vector [139, 179, 63, 86]. These neural

models, however, require large training data containing hundreds of thousands to millions of exam-

ples, which are still unavailable for the multi-document summarization task. To date, most neural

summarization studies are performed for single document summarization.
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Extracting summary-worthy sentences from the source documents is important even if the ul-

timate goal is to generate abstracts. Recent abstractive studies recognize the importance of sep-

arating “salience estimation” from “text generation” so as to reduce the amount of training data

required by encoder-decoder models [56, 108, 107]. An extractive method is often leveraged to

identify salient source sentences, then a neural text generator rewrites the selected sentences into

an abstract. Our pursuit of the DPP method is especially meaningful in this context. As described

in the next section, DPP has an extraordinary ability to distinguish redundant descriptions, thereby

avoiding passing redundant content to the abstractor that can cause an encoder-decoder model to

fail.

2.5 Text Summarization with DPP and Sub-Sentence Highlights

An abstract failing to retain the original meaning poses a substantial risk of harm to applications.

Abstractive summarizers can copy words from source documents or generate new words [153,

180, 18, 129, 55, 120, 102]. With greater flexibility comes increased risk. Failing to accurately

convey the original meaning can hinder the deployment of summarization techniques in real-world

scenarios, as inaccurate and untruthful summaries can lead the readers to false conclusions [12, 44,

97]. In this dissertation, we aim to produce summary highlights which will be overlaid on source

documents to allow summaries to be interpreted in context.

Generation of summary highlights is of crucial importance to tasks such as producing infor-

mative snippets for search outputs [80], summarizing viewpoints in opinionated text [138, 3], and
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Table 2.1: Examples of self-contained and non-self-contained segments extracted from a document

sentence.

Original Sentence

• Some interstates are closed and hundreds of flights have been

canceled as winter storms hit during one of the year’s busiest

travel weeks.

Self-Contained Segments

• Some interstates are closed

• hundreds of flights have been canceled as winter storms hit

• flights have been canceled as winter storms hit

• winter storms hit during one of the year’s busiest travel weeks

Non-Self-Contained Segments

• Some interstates are

• closed and hundreds of flights have been

• been canceled as winter storms hit during one of

• hit during one of the year’s

annotating website privacy policies to assist users in answering important questions [150]. De-

termining the most appropriate textual unit for highlighting, however, has been an understudied

problem. Extractive summarization selects whole sentences from documents; a sentence can con-

tain 20 to 30 words on average [82]. Keyphrases containing two to three words are much less

informative [65]. Neither are ideal solutions and there is a rising need for other forms of high-

lighting. We thus investigate sub-sentence highlights that strike a balance between the amount and

quality of emphasized content.
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It is best for highlighted segments to remain self-contained. In fact, multiple partially-

overlapping and self-contained segments can exist in a sentence, as illustrated in Table 2.1. Identi-

fying self-contained segments has not been thoroughly investigated in previous studies. Woodsend

and Lapata [220] propose to generate story highlights by selecting and combining phrases; Li

et al. [113] explore elementary discourse units generated using an RST parser as selection units;

Spala et al. [171] present a crowdsourcing method for workers to highlight sentences and compare

systems. Importantly, and distinguishing our work from earlier literature, we make a first attempt

to generate self-contained highlights, drawing on the successes of deep contextualized representa-

tions and their extraordinary ability of encoding syntactic structure [25, 68].

In the next few chapters, We discuss the methods proposed in this dissertation in greater detail,

in the context of two important types of sequential data, i.e. videos of human actions and text in

multiple documents.
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CHAPTER 3
A TEMPORAL SEQUENCE LEARNING FOR ACTION RECOGNITION

AND PREDICTION

3.1 Approach

In this section, we give a detailed description of the proposed “action word” encoding and “action

word” sequence learning. Note that we may often refer to “action words” as simply words in the

context of human action recognition. The pipeline of our method is illustrated in Fig. 3.1.

3.1.1 BoW Framework for Word Representation

Feature Extraction: Since the approaches based on ConvNets [164, 166, 47, 205] recently have

achieved competitive results, we utilize deep-learned features. In [164], a two-stream ConvNet

is trained with stacked optical flows and frames. We follow the two-stream ConvNet method

and extract N features {x1, · · · ,xN}, where xt ∈ RD, every T frame from all videos using the two

trained networks. The extracted features are the output vectors of fully connected (FC) layers

on both ConvNets and the dimension is D. Note that the input frames of consecutive temporal

features are overlapped by (L−T) frames, when L > T, as we train the temporal network with
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Figure 3.1: Pipeline of our method for action prediction/recognition. First, we extract features

from video frames using a trained CNN. We then generate a codebook to assign each feature as

Action Word as explained in section 3.1.1. Finally, a sequence of Action Words is learned with a

sequence learning CNN to classify actions, as described in section 3.1.2.

L stacked frames. The temporal ConvNet is trained with L = 10 and T is set to 5 to consider

partial overlap between consecutive temporal features. Also, it should be noted that any frame-

wise feature extraction techniques can be utilized to represent each frame as a vector.

Codebook Generation: A codebook is generated to represent each feature as an ActionWord.

A typical choice for constructing the codebook is k-means [8] or Gaussian Mixture Model

(GMM) [8]. In our method, we used the method of approximate k-means [144] to construct the

codebook with all extracted features from training videos. The generated K clusters {c1, · · · ,cK},

where ck ∈ RD, are employed to both training and testing videos.
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(a) Hard Assignment (b) k-Soft Assignment

Figure 3.2: Feature encoding methods

Codeword Assignment: For coding a video, every extracted video frame feature vector x needs

to be mapped to one of the vectors in the codebook, i.e. to one ActionWord that best represents

the frame-level visual information at time T. We consider two voting based assignment methods:

Hard assignment (HA) [167] (or Vector Quantization) and soft assignment (SA) [193], and a direct

assignment as described below.

- Hard Assignment: With HA, ActionWord A, is simply associated with its nearest codeword

to the feature as shown in Fig. 3.2a. The nearest codeword is determined as the one best correlated

with the feature vector xn. The assigned word number (label) for each feature is a sequential

number from 1 to K.

AHAi = argmin
i
‖x− ci‖2 (3.1)
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where i ∈ {1, · · · ,K} and a corresponding weight vector ω for each feature is associated with one

of codewords based on the assigned number.

ωxHA = ci, where i = AHAi . (3.2)

HA encoding enables reducing memory requirements by maintaining only codewords and the as-

signed codeword numbers instead of keeping all features. Moreover, the codeword can be ignored

and initialized with random values when learning a sequence of assigned numbers. Thus, a video

can be represented by a sequence of assigned numbers, leading to memory saving.

- Soft Assignment: The SA method considers k-nearest codewords to the feature. Fig. 3.2b

illustrates an example of 5 nearest neighbor (NN) codewords (5-SA). Five red nearest codewords

are correlated with the feature vector x and a weighted centroid vector colored in green is then

computed for assignment. The weight vector ω is computed as follows.

ωxSA =
K

∑
j=1

δ (x,c j) · c j ·dω j (3.3)

where dω j is the normalized inverse distance weight:

dω j =
δ (x,c j)exp(−β

∥∥x− c j
∥∥2

2)

∑
K
j=1 δ (x,c j)exp(−β

∥∥x− c j
∥∥2

2)
(3.4)

where δ (x,c j) is the indicator function for the k-NN codewords of x:

δ (x,c j) =


1, if ci ∈ k-NN(x),

0, otherwise.

(3.5)

Thus, the computed weight vector ω gives the weighted centroid of k-NN codewords based on

inverse distance between the feature and k nearest codewords. Each weight vector ω is unique, and
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therefore an assigned number for each weight vector ω is also unique. Hence, the total number of

assigned numbers is the same as the total number of extracted features in a dataset.

ASAi = i, where i ∈ {1, · · · ,N}. (3.6)

When learning an ActionWord encoded with SA, random vector initialization of the weight vectors

cannot be feasible as the assigned numbers are nothing but sequential numbers for each feature.

Note that HA can be regarded as a special case of k-SA, where k is 1.

- Direct Assignment: Instead of computing the codebook, Direct Assignment (DA) encoding

considers each video-frame feature as a weighted codeword and assign a unique number to it.

ωxDA = x (3.7)

ADAi = i, where i ∈ {1, · · · ,N}. (3.8)

Each frame feature vector is thus directly considered as an ActionWord. This method does not

require codebook generation leading to reduced computation time, but the memory requirement

increases.

3.1.2 Sequence Learning with Temporal ConvNet

With the proposed ActionWord coding, action prediction and action recognition can be regarded as

classification problems for a partial sentence or a sentence. By leveraging the success of sentence

classification using ConvNets [235, 79, 81, 90] in NLP, we apply similar ConvNet architectures
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(a) T-CNN Model

(b) Covolutional LSTM Model

Figure 3.3: ConvNet Architectures

to train and classify ActionWord sequences. We consider two ConvNet models: i) T-CNN, ii)

Covolutional LSTM (C-LSTM).

Word Embedding: The sequence of ActionWords is the input to the ConvNets shown in Fig. 3.3.

Since the length of the sequence for each video is different, a word embedding layer is utilized to

make the sequences of the same length. The length of each sequence li is truncated if li > lmax

whereas li is padded with a special codeword that corresponds to v = [0, · · · ,0] if li < lmax, where

v ∈ RD and lmax is a user-determined sequence length. The word embedding layer combines the

corresponding weight vector ω based on the assigned word number, and generates an D× lmax

39



matrix for each sequence. The weight vector can be initialized with a random number between

-0.05 and 0.05 for the HA random initialization encoding method.

T-CNN Model: Fig. 3.3a shows the overall structure of the T-CNN Model. T-CNN consists of

L one-dimensional convolution layers denoted by Cl ∈ RFl×T in parallel where Fl is the number

of convolution filters in the l-th layer and T is same as lmax. Each layer consists of temporal

convolution, a non-linear activation, and global max (1-max) pooling across time. The collection

of filters in each layer is defined as W = {W (i)}Fl
i=1 where W (i) ∈Rd×Fl and a window of d duration.

The corresponding bias vector is b ∈ RFl . Given the input sequence of weight vectors, Ω ∈ RD×T ,

the activation Cl is computed such that

Cl = ReLU(W∗Ω+b) (3.9)

where ∗ is the convolution operator. The convoluted signals can be viewed as N-gram in a sentence,

where N can be determined by the size of filters in the convolution layer. After the ReLU activation,

the global max pooling is applied to get the largest signal from the activation. Each layer produces

a ν vector where ν ∈ RFl by concatenating the global max signals. All vectors from L layers are

then concatenated generating a v vector where v = ∑
L
i=1 νi. The output size of the second FC layer

is the number of class in a dataset and Softmax activation is applied in the end.

Covolutional LSTM Model: C-LSTM Model consists of a convolution layer and a long short-

term memory recurrent neural network (LSTM) [71] designed for time-series data to learn long-

term information. Fig. 3.3b shows the overall architecture of the C-LSTM. The multiple parallel

convolution layer is not applied because the concatenation of the resulting vectors can break the

original sequence for the input of the LSTM layer. The global max pooling layer is also omitted for
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Table 3.1: Summary statistics of extracted features for each dataset. C: number of classes, ltrain:

average sequence length of training data (min / max), ltest : average sequence length of testing data

(min / max), N: number of training(testing) sequences(or videos) for each dataset

UCF101 HMDB51

C 101 51

ltrain 35.8 (4 / 354) 17.7 (2 / 211)

ltest 35.3 (4 / 177) 17.1 (3 / 128)

N 9537 (3783) 3570 (1530)

the same reason. We retain the original order of the sequence and extract more descriptive repre-

sentations by convolution computation for the sequence. The extracted local temporal information

is fed into the LSTM layer and the LSTM layer outputs a video level representation that captures

high level temporal information.

3.2 Experiments

3.2.1 Dataset and Statistics

We test our method on two action video datasets, HMDB51 [99] and UCF101 [170]. The HMDB51

dataset consists of 51 action classes with 6,766 videos and more than 100 videos in each class.
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All videos are acquired from movies or Youtube, and contain various human activities, including

interactions with other humans or objects. Each action class has 70 videos for training and 30

videos for testing. The UCF101 dataset consists of 101 action categories with 13,320 videos and

at least 100 videos are involved in each class. All videos are gathered from Youtube.

Both datasets provide three training and testing splits. We used the first split of each dataset

for validating our proposed models. The same parameters and models from split 1 are utilized

for other two splits. Table 3.1 shows the statistics of sequence lengths on each dataset for our

experiments. We extracted temporal features every 5 frames (T = 5) with 10 stacked input frames

(L = 10) and spatial features every 5 frames.

3.2.2 Implementation Details

Training Two-ConvNets: We use the VGG-16 model [166] for two-stream ConvNets training.

Both the temporal and the spatial network are initialized with the pre-trained weights trained with

ImageNet [30]. The networks are then fine-tuned with each dataset.

For the training of the spatial network, we use dropout ratios of 0.8 for two FC layers. The input

images are resized to make the smaller side as 256. We augment the input images by randomly

cropping 224×224 sub-images from the four corners and the center of the original images and

randomly flipping in horizontal direction. The learning rate is set to 10−3 initially and decreased

by a factor of 10 when the validation error saturates.
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For the training of the temporal network, we use dropout ratios of 0.9 for UCF101 and 0.9

and 0.8 for HMDB51. We pre-compute the optical flows using the TVL1 method [228] before

training to improve the training speed. The optical flow input is stacked with L = 10 frames

making a 224×224×20 sub-volume. Same data augmentation techniques are employed for the

sub-volume and the learning rate is initialized with 5× 10−4 and decreased in the same manner

of the spatial network training. A mini-batch of 128 samples are employed at each iteration, but

batch normalization method [77] is not used for all trainings.

Word Vector Representation: The dimension of temporal xt and spatial xs feature vectors is

4096. Since the two extracted feature vectors are complementary, we concatenate them with a data

ratio r, resulting in a combined feature vector x.

x = PCA(xt(1:rD))⊕PCA(xs(1:(1−r)D)) (3.10)

where D is the dimension of x, 0 ≤ r ≤ 1, ⊕ is a concatenation operation, and PCA(x1:n) is to

apply PCA to x and take the first n elements of the projected vector. The reduced dimension of x

is D′ ∈ {32,64,128,256,512,1024}. We use the output vector of the penultimate FC (FC7) layer,

since the performance with the FC7 vectors is consistently 2∼3% better than the one with the first

FC (FC6) layer. In addition, we take the output vector of FC7 with input images or optical flow

images that are cropped in the center area making size of 224×224. For the SA and HA feature

encoding method, we consider K = {5000,10000,20000} as the size of codebook.

Training T-CNN Model for Sequence Learning: We use three (L=3) parallel 1D convolution

layers whose filter sizes are 3,4,5 respectively and number of filters are 200. The first dropout rate

and the second one are 0.2 and 0.8, respectively. Since the model is simple, we use a somewhat
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strong dropout rate to prevent from overfitting. The T-CNN model is trained with a mini-batch

size of 64 and the training is terminated after 100 and 300 epochs for UCF101 and HMDB51,

respectively.

Training C-LSTM Model for Sequence Learning: The filter size of the 1D convolution layer is

5 and its filter count is 200. The number of hidden units of the first and second LSTM layers is 100

and the dropout rate is set to 0.6. Training is terminated after 100 and 200 epochs for UCF101 and

HMDB51, respectively. For both models, we use categorical cross entropy loss with Stochastic

Grandient Descent and RMSProp [190] step updates, whose learning rate is initialized with 10−4.

Tesing: Given the trained models (T-CNN, C-LSTM), we evaluate the accuracy with the full se-

quences for the action recognition task, as well as partial sequences for action prediction. Each

video sequence is divided into 10 segments creating the following sequences for action predec-

tion [148, 94, 103, 74]: 0∼10%, 0∼20%, · · · , 0∼100%.

Running Time: The running time of our method is compared with MTSSVM [94], MSSC [10],

and Two-stream Fusion [47] methods and the results are listed in Table 3.2. We executed au-

thors’ code on a 4.6GHz CPU with 32GB RAM and one TITAN-X GPU. With a sequence of 512-

dimension weight vectors, the training time is 51min(T-CNN) and 101min(C-LSTM) on UCF101,

and 10min(T-CNN) and 67min(C-LSTM) on HMDB51. Note that the testing time takes a few sec-

onds for each dataset. The T-CNN method is 170×, 507×, 425× faster than MTSSVM, MSSC,

Fusion methods, respectively on UCF101. For the HMDB51 dataset, the T-CNN method is 377×,

1150×, 945× faster than MTSSVM, MSSC, Fusion methods, respectively. The C-LSTM method
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Table 3.2: Training and testing time of comparison methods in hours on UCF101 and HMDB51.

Methods UCF101 (hrs) HMDB51 (hrs)

MTSSVM [94] 145 83

MSSC [10] 431 253

Fusion [47] (15 epoch) 362 208

Ours (T-CNN) 0.85 0.22

Ours (C-LSTM) 1.68 1.12

also spends much less time than compared methods. Note that training time of two-stream Con-

vNet and feature extraction is not included.

3.2.3 Baseline of Two-Stream ConvNets

Table 3.3 shows baseline accuracies for the spatial, temporal, two-stream networks on UCF101 and

HMDB51. The value is averaged over three splits and two-stream results are obtain by averaging

the prediction probabilities of the spatial and temporal ConvNets. The proposed methods leverage

thes baseline two-strema ConvNet and show improvement by taking the temporal information into

account.
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Table 3.3: Baseline mean performance of spatial, temporal, and two-stream ConvNet on UCF101

and HMDB51. (VGG-16 CNN model is employed.)

UCF101 HMDB51

Spatial 81.8 44.8

Temporal 84.9 55.0

Two-stream 90.1 61.4

3.2.4 Parameter Analysis

Effects of Dimension and Initialization of Weight Vector: We first investigate how the weight

vector initialization and feature vector size affect the performance. We experiment by setting

parameters: with equal data ratios (r = 0.5) for temporal and spatial features, with full testing

sequences, and with K = 20k. Fig. 3.4 shows the results with the T-CNN model. The vectors

initialized with weight vectors outperforms randomly initialized weight vectors on both datasets

and the performance margin is smaller, as the vector size increases. The randomly initialized vector

takes about twice more epochs to be fully trained but data storage can be saved substantially.

In addition, the performance on UCF101 increases as the feature vector dimension increases

until 512 with both HA and DA. We speculate this trend occurs because more data is generally

helpful but data of size larger than 512 can contain less important data from PCA, so the perfor-

mance is degraded thereafter. Similar trend happens on the HMDB51 dataset, but no significant

performance change is observed between feature vectors of 64 and 512. This means that our
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Figure 3.4: Accuracy based on different initialization and dimension of the weight vector ω . HARD

and HAWT denote random initialization and assigned codebook initialization, respectively.

method is robust to the choice of the vector dimension results except the 32-dim vector which

loses too much information.

Effects of Codebook Size and Encoding Methods. In this experiment, we observe the perfor-

mance given different codebook sizes and encoding methods. The dimension of the feature vector

is fixed to 512, since in the previous experiment the size 512 is found as the most optimal length.

The data ratio r is set to 0.5. Fig. 3.5 shows the results with the T-CNN model. The performance

of HA decreases as the codebook size increases, while the SA performance increases with larger

codebook. In order to investigate these trends, we reduce 128-dimensional 5k and 20k codebooks

on UCF101 to 2-dimensional vectors respectively and cluster them with k-means, where k = 101.

We employ the t-SNE dimensionality reduction technique [5], which is well suited for displaying
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Figure 3.5: Accuracy based on different size of codebook and different encoding methods.

high-dimensional data. As shown in Fig. 3.6, the 5k codebook has larger margin between clusters

than the 20k codebook. Therefore, with HA, it is less likely to mislabel with the 5k codebook than

the 20k codebook. On the other hand, with SA, the 5 NN codebooks can group more tightly with

the 20k codebook, so the centroid of 5NN is likely to be closer to the original feature vector than

the centroid in the 5k codebook. In any cases, since the performance gain of different codebook

sizes is small, we can argue that our method is robust to the choice of the codebook size. An-

other distinctive observation is that DA outperforms other encoding methods with relatively large

margin.
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Figure 3.6: Visualization of 5k and 20k codebooks (D= 2) of UCF101. Each codebook is clustered

with k-means (k = 101).

3.2.5 Optimal Data Ratio

The temporal and spatial feature vectors are concatenated based on the data ratio r in eq. (3.10).

As shown in Table 3.3, the temporal network outperforms the spatial network on both datasets.

In this analysis, we empirically find an optimal ratio that assigns higher weight to the temporal

feature vector.
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Figure 3.7: Histogram of average optical flow on UCF101 and HMDB51.

First, we compute the frame-wise average of optical flow magnitudes along the two axis as

follows:

fi =
1
2
(

∑
P
k=1 abs( fui,k−128)/P+∑

P
k=1 abs( fvi,k−128)/P

)
where fi is the average optical flow for the i-th frame in the video, P is the total number of pixels

in the i-th frame, and fu, fv are the horizontal and the vertical optical flow values, respectively. Of

course, the intuition is that frames with higher motion information can be identified using fi.
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Table 3.4: Performance based on different data ratios and feature dimensions on HMDB51 and

UCF101 split 1.

HMDB51 r = 0.5 r = 0.625 r = 0.75

64 65.2 65.2 66.0

128 65.0 65.6 65.0

256 64.6 65.7 64.6

512 64.8 66.4 65.1

UCF101 r = 0.5 r = 0.625 r = 0.75

512 91.5 91.8 92.7

We explain the choice of r using the histograms of fi shown in Fig. 3.7. The left column

shows that the frames in the green colored bins contain more motion cues than the frames in the

blue colored bins. Also, majority of the frames fall below the mean of the fi across all frames,

i.e. µall . These are frames that contain less motion information, and hence provide more spatial

appearance information. A first order estimate of r could then be given by the ratio of frames

above µall over total number of frames. However, since motion is a stronger cue,it is reasonable to

assume that better estimates of r would be given by the first quartile or the half of the first quartile.

Therefore, consider the graphs on the right column of Fig. 3.7, which show the histograms of fi

only for frames whose average optical flow is smaller than µall . We compute the mean of these

lower histograms, denoted as µunder, which determine the first quartile of the original histogram.
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Table 3.5: Action recognition performance comparison with State-of-the-art. (mean over three

splits)

HMDB51 UCF101

iDT+FV [201] 57.2 iDT+FV [136] 85.9

iDT+HSV [140] 61.1 iDT+HSV [140] 87.9

VideoDarwin [48] 63.7 LRCN [36] 82.9

Two stream [164] 59.4 Two stream [164] 88.0

TDD+FV [205] 63.2 TDD+FV [205] 90.3

KVMF [237] 63.3 KVMF [237] 93.1

Fusion [47] 65.4 Fusion [47] 92.5

Transformation [215] 62.0 Transformation [215] 92.4

Ours(C-LSTM) 62.4 Ours(C-LSTM) 90.9

Ours(T-CNN) 66.3 Ours(CNN) 92.5

Better estimates of the ratio r are then given by the ratio of frames above µunder or µunder/2 over

the total number of frames.

In our experiments, we found that the ratio r given by µunder is 0.529 on UCF101 and 0.505

on HMDB51 meaning that µunder is close to median of the average optical flows. The estimate

based on µunder/2, resulted in∼0.75 for UCF101 and ∼0.625 for HMDB51. One observation is that

the UCF101 dataset involves many sports and exercise videos [66] that generally contain larger
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Table 3.6: Action Prediction performance on UCF101 and HMDB51.

UCF101 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MOS [74] – 35.0 – 37.1 – 39.4 – 40.3 – 40.9

SMMED[74] – 40.6 – 40.6 – 40.6 – 40.6 – 40.6

Fusion [47] 82.8 85.5 87.5 88.8 89.2 90.4 90.7 91.0 91.5 92.5

Ours 82.2 86.7 88.5 89.5 90.1 91.0 91.5 91.9 92.4 92.5

HMDB51 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fusion [47] 44.8 51.5 54.5 58.0 61.0 62.9 64.9 65.2 65.4 65.4

Ours 38.8 51.6 57.6 60.5 62.9 64.6 65.6 66.2 66.3 66.3

motions, while the HMDB51 dataset consists of simple action videos [66] that have moderate

motion. The ratios computed with µunder/2 support this observation. Results using DA and T-CNN

for these ratios are shown in Table 3.4. The best performance is achieved with estimates based on

µunder/2, confirming that the estimated ratios are reliable.

3.2.6 Action Recognition Performance

Table 3.5 shows action recognition results of recent state-of-the-art methods. Our best result out-

performs other methods by 0.9% on HMDB51 and is compatible on UCF101. We conjecture

that [237] outperforms ours because they utilize GoogLeNet [177] with batch normalization [77],

which is a deeper network than VGG-16 [166]. Our result is on par with Fusion [47] on UCF101
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but its computational efficiency is much better due to the fast-trainable network as shown in Ta-

ble 3.2. The C-LSTM model, however, does not learn much comparing with the baseline accuracy.

We speculate this is because the temporal 1D convolution without pooling does not represent a

video effectively. Applying 1D convolution followed by max pooling over several small segments

may boost the performance for the C-LSTM model.

3.2.7 Action Prediction Performance

The goal in action prediction is the same as in action recognition, except that the input test video

is not a full video. Our method can take a variable size input so the partial input can be readily

handled. In order to compare with a method using T-CNN, we evaluate Fusion [47] with the partial

test video frames. We follow their testing procedure by taking 5 uniformly spaced frames from the

given range. The horizontally flipped input frame is augmented and the entire frame is used.

Table 3.6 show the action prediction results with comparing methods. Our results consistently

outperform the Fusion method as well as the previous best results: MOS and SMMED [48]. We

observe an interesting trend, in the sense that our result is only outperformed by Fusion in the first

10% range. We conjecture two reasons about the result: the length of the sequence is too short to be

fully trained, and noisy words are inserted to the sequence especially on HMDB51. On the other

hand, our method rapidly reaches to full accuracy with partial data. The prediction results with

half-video data reach 95% and 97% of full accuracy for the HMDB51 and UCF101, respectively.
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Also, the performance with 90% of frames is almost identical to full accuracy. These observations

show that our method is well suitable to detect actions with partial data.

3.3 Conclusion

We proposed an effective and efficient sequence learning method that captures global temporal

sequencing information of a video. This is achieved by means of a new video representation as a

sequence of visual words (a sentence). By training a ConvNet to learn the sequences corresponding

to different actions, we are able to accurately identify an action or predict it from a partial sentence.

The ConvNet architecture is simple and can be trained with minimum computational cost. We

also demonstrate how important hyper-parameters such as data ratio are determined automatically.

These parameters play significant roles in improving the accuracy. We achieve compatible state-

of-the-art results on both action recognition and action prediction.
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CHAPTER 4
SPATIO-TEMPORAL FUSION NETWORKS FOR ACTION

RECOGNITION

4.1 Approach

A video contains many redundant temporal information between consecutive frames. Instead of

densely sampled feature points [202], [208] samples frames in different video segments, while

[164] deals with multiple consecutive frames. These techniques train ConvNets for different

modalities, appearance and motion, and use late fusion to combine them. However, two issues

are raised from these methods: (1) multiple consecutive frames only cover local temporal dynam-

ics not global temporal dynamics over videos, and (2) the prediction score fusion only captures

dynamic of each appearance and motion cue separately not the spatio-temporal dynamics. In this

section, we propose a spatio-temporal fusion network (STFN) to extract temporal dynamic in-

formation over an entire video and combine appearance and motion dynamics, using end-to-end

ConvNets training, as shown in Fig. 4.1. The network has the following properties: (1) convo-

lutions are computed over time so that the temporal dynamic information is extracted; (2) each

convolution block extracts local and global temporal information with different feature map sizes;

and (3) the extracted appearance and motion dynamic features are integrated through an injection
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Figure 4.1: The proposed spatio-temporal fusion network. The number of segments is an arbitrary

number. We use three segments in the figure for illustration purpose.

from one to the other or with bi-direction way. More details about STFN are described in Section

4.1.1.

4.1.1 Spatio-Temporal Fusion Networks

We consider the output feature maps of CNNs for N segments from a video V . Each feature map

{F1,F2, · · · ,FN} is a vector of size F ∈ Rd , where d is the output feature map dimension. The

feature maps can be retrieved from different networks trained with different modalities such as

appearance and motion. Fa,Fm, where Fx ∈ RN×d , are the feature maps from appearance and
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motion networks, respectively. STFN is applied to the sequence of feature maps, Fa and Fm, to

extract temporal dynamics of each feature map and fuse them as follows:

STFN(Fa,Fm) = H (F (G (F (Fa;Wa),F (Fm;Wm));Wfa))+

H (F (G (F (Fa;Wa),F (Fm;Wm));Wfm))

(4.1)

F (Fx;Wx), where x ∈ {a,m, f a, f m} meaning appearance, motion, fused appearance, fused

motion sequences, is a ConvNet function with parameters Wx which produces sequences of same

input sizes for the given sequences. More details about the ConvNet are given in Section 4.1.2.1.

The fusion aggregation function G combines the output sequences of appearance and motion dy-

namic information. G and the follow-up ConvNets, F (Fx;Wfa), can be omitted depending on

the design choice of STFN. More details are provided in the next subsection. From the learned

sequences, the prediction function H predicts the probability of each activity class. Softmax

function, which is widely used for multi-class classification, is chosen for H .

The overall network is learned in an end-to-end scheme like TSN [208]. The sequences of

feature maps are X = Fa,Fm and the outputs of the F function are denoted by y. Also, let L

be the loss function. The gradient of the loss function with respect to X , dL
dX , during the training

process is defined as:

dL

dFx
k
= F (Fx

k′ ;Wx)
dL

dX
(4.2)

where k ∈ N and k′ = {1,2, · · · ,k−1,k+1, · · · ,N}. In the end-to-end training, the parameters

for the N segments are learned using stochastic gradient descent (SGD). The parameters are learned

from the entire video with segmented temporal inputs.
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Figure 4.2: A Residual Inception block. The res-inc block in the right figure shows the components

of the CNN in the left figure. The number in each module inside of the Res-Inc block depicts

convolution kernel size. conv b consists of the 1D convolution, batch normalization, and relu

activation layers. D represents the input vector dimension, d.

4.1.2 STFN Components

In this subsection, we describe the ConvNets, F , and the fusion aggregation function, G , in detail.

We also discuss different STFN architectures to find the most suitable model.

4.1.2.1 Residual Inception Block

A sequence of frame representations, Fa,Fm, inherently contains temporal dynamics between fea-

tures. The consecutive features are convoluted over time with different kernel sizes to extract local

temporal information. This operation is conceptually similar to an n-gram of a sentence that con-

tains local semantic information among n words. The convoluted features are then concatenated to
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formulate a hierarchical feature from each input. Motivated by an inception module [191, 134] that

convolves an input signal with different filters, we design an inception block with different kernel

sizes as shown in Fig. 4.2. The input signal Fx is convoluted across time using 1D convolution

with four different sizes of kernels, 2,3,4,5, whose filter size is a quarter of the input dimension, d.

The 1D convolution retains the same temporal length as the input. We did preliminary experiments

to find out the best combination of the kernel sizes and 2,3,4,5 shows the best performance. We

designed the filter size of each convolution to be a quarter of input dimension, making the concate-

nated feature have the same dimension as the input with same weight. We also used convolution

layers with kernel size of 1 [191, 134] before the conv b block to reduce the input dimension.

However, they decrease the performance since it perturbs the input signal that contains temporal

dynamics, so we decided not to include them.

The concatenated multi features and the input signal F are added for residual learning [36]. We

chose a convolution kernel size of 2 for the skip connection to capture the smallest local temporal

information. Formally, the Residual Inception (Res-Inc) block in this paper is defined as:

y = C (R (Fx,{Wi}))+R(Fx,{Wj}) (4.3)

where R is the convolution function with weights Wi, i ∈ {2,3,4,5} for the residual connection or

Wj, j ∈ {2} for the skip connection, and the function C (·) represents a concatenation operation.

In Fig. 4.2, x is identical to Fx in Equation 4.3. The convolution block, conv b, is composed of

Batch normalization [136] and ReLU [191], while the convolution block in skip connection lacks

the ReLU activation layer. The output signal is further activated with ReLU before it is aggregated

with the other signal. The output sequence of the Res-Inc block contains more discriminative
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temporal dynamic information than the input sequence. Since the Res-Inc block outputs signals of

same dimension of input signals, a series of Res-Inc block can be easily setup.

4.1.2.2 Spatio-Temporal Fusion

Despite the successful performance with the two-stream approach, a clear drawback is that a spatio-

temporal information is not achievable with separate training of the appearance and motion data.

The appearance and motion information are complementary to each other in order to discern an

action of similar motion or appearance patterns e.g. brushing teeth and hammering. In order

to overcome this deficiency, a number of researches have been looking into fusing two-stream

networks [46, 45, 47] directly and learning spatio-temporal features [192, 188] . Although, their

results show improved performance, their spatio-temporal features are limited to local snippets

of an entire video sequence. In contrast, STFN takes advantage of extracted temporal dynamic

features that capture long term temporal information over entire video to fuse them.

We investigate three different fusion operations G with the output sequences of two Res-Inc

blocks {Px
1 ,P

x
2 , · · · ,Px

N}, where Px
n ∈ Rd , and x ∈ {a,m} represent either appearance or motion

features.

Element-wise Average

P′n =
(Pa

n +Pm
n )

2
(4.4)
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where P′ is the aggregated sequence and n∈ {1,2, · · · ,N}. This operation leverages all information

and uses the mean activation for the fused signal. This operation may get affected by noisy input

signals but since we deal with highly informative features, it is a good choice for our architecture.

Element-wise Multiplication

P′n = Pa
n ×Pm

n
(4.5)

The intuition behind this operation is to amplify a signal when both signals are strong, i.e. similar

to attention mechanism. However, the noisy strong signal may affect heavily the fused signal

leading to performance decrease.

Element-wise Maximum

P′n = max(Pa
n ,P

m
n ) (4.6)

The idea of max pooling is to seek the most discriminative signal among inputs. It selects either

appearance or motion cue for each element of input signals. This operation may confuse the

following Res-Inc block since the aggregated vectors are mixed with the appearance and motion

signals.

We compare the performance of each operation in the ablation studies.

4.1.2.3 Architecture Variations of STFN

We propose different design architectures of STFN and investigate them in detail. Fig. 4.3b is a

variation of Fig. 4.3a where we want to learn how the additional Res-Inc blocks affect to the results.
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(a) (b) (c)

Figure 4.3: Different designs of spatio-temporal fusion architecture. (a) shows our proposed archi-

tecture; (b) lacks the follow-up Res-Inc blocks after fusion; and (c) concatenation of the appear-

ance and motion sequences in feature level before extracting temporal dynamics. The blue and red

arrows represent the appearance and motion sequence inputs, respectively.

The Res-Inc blocks after fusion extract temporal dynamics of spatio-temporal features leading to

better performance. In Fig. 4.3c, fusion is executed in feature-level by simply concatenating

appearance and motion signals. This fused signal is fed to the Res-Inc block to extract temporal

dynamic information.

4.1.2.4 Fusion Direction

As shown in Fig. 4.4, aggregating two signals can be three possible ways: appearance to motion,

motion to appearance, and bi-directional fusion. The fused signals are fed to the next Res-Inc

blocks and affect to the residual and skip connection along the forward an backward propagations
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(a) (b)

Figure 4.4: Two types of fusion methods: asymmetric and symmetric fusion. (a) shows asymmetric

fusion method and two fusions are possible with this method: appearance to motion features and

motion to appearance features. (b) shows symmetric fusion where each fused signal is further used

in following layers. Two signals are merged with the previous described fusion operations. Note

that this figure only illustrates the fusion connections between two Res-Inc blocks and the rest

layers are omitted.

when training. Considering the three fusion operations, only multiplication operation results in

byproduct signal from partial derivatives of the fused signals when signals are back-propagated.

This means the fusion with multiplication operation makes the input signal change rapidly than

other operations. Thus, it is not easy to learn proper spatio-temporal features especially when

there is significant gap between the discriminative abilities of appearance and motion features.
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4.2 Experiments

In this section, we first discuss the datasets and implementation details. Then we evaluate each

design choice for STFN. Finally, we compare our best performance with the state-of-the-art meth-

ods.

4.2.1 Datasets

We tested our method on two large action datasets, HMDB51 [99], UCF101 [170]. The HMDB51

datset consists of 51 action classes with 6,766 videos and more than 100 videos in each class. All

videos are acquired from movies or youtube and contain various human activities and interactions

with human or object. Each action class has 70 videos for training and 30 videos for testing.

The UCF101 dataset consists of 101 action categories with 13,320 videos and at least 100 videos

are involved in each classes. UCF101 provides large diverse videos with a fixed resolution of

320× 240 with 5 different types of actions. All videos are gathered from youtube. Both datasets

provide evaluation scheme for three training and testing splits and we follow the original evaluation

method.
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4.2.2 Implementation Details

Two-stream ConvNets: ResNet-101 [36] and Inception-V3 [83] are employed for the base net-

works to train appearance and motion networks. Both networks are initialized with the pre-trained

weights trained on the ImageNet [30] dataset. To fine-tune the networks, we replace the classifica-

tion layer with C softmax layer, where C is the number of action classes. The appearance network

takes RGB images, while the motion network a stack of 10 dense optical flow frames. The input

RGB or optical flow images are resized to make the smaller side as 256. We augment the input

image by cropping, resizing, and mirroring in horizontal direction. The width and height of the

cropped image are randomly sampled from {256,224,192,168}, and the input images are cropped

from the four corners and the center of the original images. The cropped images are then resized

to 224×224 for the network input. This augmentation considers both scale and aspect ratio. We

pre-compute the optical flows using the TVL1 method [228] before training to improve the train-

ing speed. The optical flow input is stacked with 10 frames making a 224×224×20 sub-volume

for x and y directions. Same data augmentation techniques are employed for the optical flow sub-

volume. We use mini-batch stochastic gradient descent (SGD) to learn models with a batch size of

32 and momentum of 0.9. The learning rate is set to 10−3 initially and decreased by a factor of 10

when the validation error saturates, for both networks.

STFN: In order to train STFN, we retain only convolutional layers and global pooling layer

of each network, similar to [34]. The feature maps for STFN are extracted from the output of

the global pooling layer. The output dimension is 2048 for both ResNet-101 and Inception-V3.
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We apply two step training process. We first fix the weights of trained appearance and motion

networks and train only STFN. Then we train the entire networks with same methods described

in Two-stream ConvNets training. For the first training, we initialize the learning rate with 10−4

and decrease it until 10−7 by a factor of 10 when the validation error saturates. RMSProp [190]

optimizer is used for the STFN training. The second training is executed with same setting of the

two-stream ConvNets training without fixing all weights. For training and testing, we divide the

videos into N = 5 segments with same lenghts. Note that we use N = 5 for all evaluation except

for the experiment in Section 4.2.6. A random frame is selected from each N segment and optical

flow stacks centered on the selected frames are associated for two input sequences. We apply same

augmentations for selected frames and optical flow stacks in an input sequence. When testing,

5 frames are uniformly sampled from each segment making 5 sequences and the final prediction

scores are averaged over each output. The experiments are performed with 5 segments, average

fusion operation, and bi-directional fusion as defualt except for each ablation study.

4.2.3 Evaluation of Different Designs

As we discussed in Section 4.1.2.3, the performances of three proposed STFN architectures are

presented in Table 4.1. Comparing Fig. 4.3a and Fig. 4.3b networks, we verify that the Res-Inc

blocks make important role extracting temporal dynamics. We conjecture that the consecutive

Res-Inc blocks extract temporal dynamics of fused features and they contain better video-wide

discriminative features. Another architecture design, Fig. 4.3c, is introduced to see how the feature
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Table 4.1: Prediction accuracy(%) on the first split of HMDB51 and UCF101 using different ar-

chitectures of STFN as shown in Fig. 4.3.

Design HMDB51 UCF101

Fig. 4.3a 70.4 93.5

Fig. 4.3b 69.6 93.2

Fig. 4.3c 69.2 92.0

level fusion affects to the performance as opposed to the baseline two-stream networks. We observe

the significant performance drop in both datasets and it proves the importance of the fusion scheme.

Since the architecture of Fig. 4.3a shows the best performance, we choose it as our default STFN

network.

The result with a single Res-Inc module (4.3b) outperforms the baseline late fusion results

shown in Table 4.5 by 8.1% on HMDB51 and 0.2% on UCF101. This shows the effectiveness of the

Res-Inc module. With another Res-Inc module and feature fusion, 0.8% and 0.3% additional gains

are obtained on HMDB51 and UCF101, respectively. Note that from a preliminary experiment by

increasing the number of consecutive Res-Inc blocks from two to four, we observe performance

drops: 3.8%, 6.5% on HMDB51, 4.1%, 6.9% on UCF101. The signals undergo the Res-Inc block

contain temporally convoluted information with different kernel sizes (from residual connection).

More Res-Inc blocks extract higher level temporal information, but we conjecture that signals

experienced more than two levels confuse the original temporal orders, introducing noise.
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Table 4.2: Prediction accuracy(%) on the first split of HMDB51 and UCF101 using different fusion

operations.

Fusion operation HMDB51 UCF101

Average 70.4 93.5

Maximum 69.5 92.9

Multiplication 68.3 92.6

4.2.4 Evaluation of Fusion Operations

This section presents the performances based on different fusion operations: Element-wise aver-

age, maximum, and multiplication. As shown in Table 4.2, the average operation outperforms

other methods. It is interesting to see the performance gap between the average and the multiplica-

tion operations, 0.9% and 2.1% for HMDB51 and UCF101 respectively. We speculate the reason

is due to the performance discrepancy of two networks as shown in Table 4.5. With multiplication,

the inferior feature (appearance cue on HMDB51) could harm the fused signal. Also, it is better

to take into account all data by averaging than picking the strongest signals since STFN deals with

highly pre-processed signals. From the results, we take the average operation as our default choice.

Note that we tried weighted average based on the normalized performances of baseline networks

and automatic scaling by appliying 1x1 2D conv to each signal before fusing. However simple

average results in the best performance.
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Table 4.3: Prediction accuracy(%) on the first split of HMDB51 and UCF101 using different fusion

directions. A and M represent the appearance and motion features, respectively. The bottom two

methods are asymmetric fusion methods whereas the top one is bi-direction fusion method.

Fusion direction HMDB51 UCF101

A↔M 70.4 93.5

A←M 70.3 93.4

A→M 70.1 93.2

4.2.5 Evaluation of Fusion Directions

In Table 4.3, we compare the performance variation with different fusion directions. Note that

A←M is a simply reflected network of A→M and we use 5 segments for all experiments. For

the asymmetric fusion methods, A←M connection outperforms the other way consistently on both

datsets. This effect is due to the fact that the motion stream overfits quickly with the A→M fusion

and no further spatio-temporal learning occurs. This comes from the base performance different

between appearance and motion features so that fusion injection to the higher discriminative fea-

ture leads to worse performance. The bi-direction fusion outperforms A←M with small margin,

0.1% on HMDB51 and 0.2% on UCF101. This makes sense since two spatio-temporal features

are learned simultaneously in two streams, whereas asymmetric fusion learns spatio-temporal in

the injected stream and the learned weights are propagated to the other stream only when back

propagating from the fused connection. However, we argue that our proposed STFN is robust to
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Table 4.4: Prediction accuracy(%) on the first split of HMDB51 and UCF101 using different num-

bers of segments in videos.

Number of segments HMDB51 UCF101

3 70.3 93.2

5 70.4 93.5

7 70.8 93.9

9 70.5 93.6

the fusion connection based on the small performance differences on both datasets. We choose the

bi-direction fusion as our base fusion method.

4.2.6 Evaluation of A Number Of Segments

We evaluate the number of segments according to the default fusion method and architecture.

One may assume that more segments result in better performance. However, as we discussed,

more redundant temporal dynamics are introduced when increasing the number of segments. The

performances based on different number of segments are shown in Table 4.4. It turns out that

7 segments performs best and 0.4% performance increases are observed on both datasets. The

STFN with 9 segments underperforms compared with the one with with 7 segments. We verify our
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Table 4.5: Performance comparison(%) of two-stream networks with ResNet-101 and Inception-

V3 on HMDB51 and UCF101 (split1). Inception-V3 shows consistently better prediction accura-

cies over ResNet-101 on both appearance and motion networks.

Dataset Network Appear. Motion Late Fusion

HMDB51
ResNet-101 48.2 58.1 61.1

Inception-V3 51.2 59.2 62.7

UCF101
ResNet-101 83.5 86.0 91.8

Inception-V3 84.8 88.1 92.3

hypothesis with this experiments that sparse sampling is necessary to avoid redundant temporal

dynamics over entire videos. For the best network, we determine the number of segments as 7.

4.2.7 Base Performance of Two-Stream Network

We compare the different ConvNet architectures for STFN. ResNet-101 [36] and Inception-V3

[83] networks are employed to train the two-stream networks. As shown in Table 4.5, the per-

formance with Inception-V3 is better than ResNet-101 on both datasets. The performance gaps

of the appearance and motion networks are 3.0%/1.1% on HMDB51 and 1.3%/2.1% on UCF101,

respectively.

72



4.2.8 Comparison with the State-of-the-art

We compare STFN with the current state-ot-the-art methods in Table 4.6. We report the mean ac-

curacy over three splits of the HMDB51 and UCF101. The first section of Table 4.6 consists of the

hand-crafted features with different encoding methods. The second and third sections describe ap-

proaches using ConvNets but the methods in third section utilize additional modalities for the final

prediction. STFN with the Inception-V3 achieves the best results: 72.1% on HMDB51 and 95.4%

on UCF101. There is 0.9%/1.1% performance increase from STFN with ResNet-101 architecture.

STFN with both networks shows the state-of-the-art performance. Comparing with baseline late

fusion performance of two-stream networks, performance increases are observed as follows: 9.4%,

10.1% on HMDB51 and 3.1%, 2.5% on UCF101 with Inception-V3 and ResNet-101, respectively.

Our best results outperform TSN [208] by 1.0% on HMDB51 and 0.5% on UCF101 with same

number of segments, 7. While TSN predicts scores with consensus operations and averages each

score, STFN extracts temproal dynamic information and aggregates signals in feature level leading

to better results. The results prove our method produces effective spatio-temporal features. DOVF

[105] and TLE [34] show better results than STFN with ResNet-101 but are outperformed by STFN

with Inception-V3. TLE [34] only outperforms our method with small margin, 0.2%, on UCF101

but the gap is reversed with additional hand-crafted feature score.

We combine our results with the hand-crafted MIFS1 [104] features by averaging prediction

scores. The performance gain on HMDB51, 3,0%, is larger than on UCF101, 1.6%. The combined

1The prediction scores of MIFS are downloaded from HERE.
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performances, 75.1% on HMDB51 and 96.0% on UCF101, outperform all state-of-the-arts and

even on par with [7, 176] which employ more prediction scores from additional modalities. Note

that we observe similar performance boost with iDT [200] but choose MIFS since the prediction

scores are available in public.

4.3 Conclusion

In this paper, we introduced the sptio-temporal fusion network (STFN), a network suitable for ex-

tracting temporal dynamics of features and learning spatio-temporal features by combining them.

The spatio-temporal features are learned effectively with STFN via an end-to-end learning method.

In the ablation studies, we show the best fusion methods and architecture and investigate the intu-

ition behind each method. STFN enables appearance and motion dynamic features integrate inside

of the networks in a highly abstract manner and overcomes the naive fusion strategy of late fusion.

STFN is applicable to any sequencial data with two different modalities and effectively fuses them

into highly discriminative feature that captures dynamic information over the entire sequence. The

best result of STFN achieves the state-of-the-art performance, 75.1% on HMDB51 and 96.0% on

UCF101. As future work, we consider scalability of our work with larger dataset and applying

more than two modalities.

74



Table 4.6: Comparison with state-of-the-art methods on HMDB51 and UCF101. Mean accuracy

over three splits. Numbers inside of parenthesis are classification accuracies with hand-crafted

features. (i: iDT [200], H: HMG [41], M: MIFS [104])

Methods HMDB51 UCF101

iDT+FV [202] 57.2 85.9

iDT+HSV [140] 61.1 87.9

Two-stream [164] 59.4 88.0

Transformation [215] 62.0 92.4

KVM [237] 63.3 93.1

Two-Stream Fusion [47] 65.4 (69.2 i) 92.5 (93.5 i)

ST-ResNet [45] 66.4 (70.3 i) 93.4 (94.6 i)

ST-Multiplier [46] 68.9 (72.2 i) 94.2 (94.9 i)

ActionVLAD [60] 66.9 (69.8 i) 92.7 (93.6 i)

ST-Vector [26] 69.5 (73.1 i+H) 93.6 (94.3 i+H)

DOVF [105] 71.7 (75.0 M) 94.9 (95.3 M)

ST-Pyramid [217] 68.9 94.6

I3D [1] 66.4 93.4

CO2FI [116] 69.0 (72.6 i) 94.3 (95.2 i)

TLE [34] 71.1 95.6

TSN [208] 71.0 94.9

Four-Stream [7] 72.5 (74.9 i) 95.5 (96.0 i)

OFF [176] 74.2 96.0

STFN (ResNet-101) 71.2 (73.3 M) 94.3 (95.1 M)

STFN (Inception-V3) 72.1 (75.1 M) 95.4 (96.0 M)

75



CHAPTER 5
SELF-ATTENTION NETWORK FOR SKELETON-BASED HUMAN

ACTION RECOGNITION

5.1 Self-Attention Network

In this section, we briefly review the Self-attention network. Self-attention network [196] is a

powerful method to compute correlation between arbitrary positions of a sequence input. An

attention function consists of a query AQ, keys AK , and values AV where query and keys have

same vector dimension dk, and values and outputs have same size of dimension dv. The output is

computed as a weighted sum of the values, and the weight assigned to each value is computed by

scaled dot-product of query and keys. The vectors of query AQ, keys AK and values AV are packed

in a matrix generating Q, K, and V matrices. Then the attention function is defined as

Attention(Q,K,V) = so f tmax

(
QKT
√

dk

)
V, (5.1)

where 1√
dk

is a scaling factor.The equation computes scaled dot-product attention and the network

computes the attention multiple times in parallel (multi-head) to extract different correlation in-

formation. The multi-head attention outputs are concatenated and transformed to the same vector

dimension the input sequence. A residual connection is adopted to take the input and output of

the multi-head self-attention layer and a layer normalization is applied to the summed output. A

76



(a) SAN-Block (b) SAN-V1 (c) SAN-V2

(d) SAN-V3

Figure 5.1: Different designs of Self-Attention Network architecture. (a) self-attention network

block (SAN) computing pairwise correlated attentions; (b) baseline model with early fused input

features; (c) model that learns movements of each person in a scene; (d) model that learn different

modalities for available people in a scene.

fully-connected feed-forward network with a residual connection is applied to the normalized self-

attention output. The entire network is illustrated as a self-attention layer in Fig. 5.1a and multiple

layers are repeated to extract better representation.
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5.2 Approach

In this section, we propose an effective model for skeleton-based action recognition, which is based

on Self-Attention Network. The overall framework of the model is shown in Fig. 1.4. Primarily

we have position and motion of joints. We can use raw position of the joints for figuring out the

motion/velocity of the joints. Our SAN variants operate on encoded representations of position

and motion sequences. We will be using simple non-linear projection (FCNN) and CNN based

encoders for encoding the raw position and velocity sequences. First we will explain the data

transformation from raw sequences of position and motion of the joints to encoded features. Once

features are encoded, we will make use of three different SAN based architectures for effectively

capturing the contextual information from the encoded features.

5.2.1 Raw Position and Motion Data

The raw skeleton position xp ∈ RF×J′×C in a video clip is defined with the number of frames F ,

the number of joints per person J, and the coordinates of each joint C. There may be S skeletons

in a frame so the total number of joints is J′ = S× J. The position data can be depicted for each

person as x(s)p , where s ∈ {1,2, · · · ,S}.

The motion or velocity data, xm ∈RF×J′×C, can be explicitly retrieved by taking differences of

each joint Jt
j ∈ RC, where j ∈ {1, · · · ,J} and t ∈ {1, · · · ,F}, between consecutive frames:

xt
m =

{
Jt+1

1 − Jt
1,J

t+1
2 − Jt

2, · · · ,Jt+1
J − Jt

J
}

(5.2)
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Similarly, the motion data for each person is represented as x(s)m .

5.2.2 Encoder

Our SAN variant models (Fig. 5.1) operate upon the encoded position x(p,enc) and motion features

x(m,enc). In this section, we describe two methods to encode the raw position xp and motion data

xm.

5.2.2.1 Non-Linear Encoder

A non-linear encoder simply uses a feed-forward neural network (FCNN) with a non-linear acti-

vation function for projecting the input vector to higher dimension. For example, when encoding

for SAN-V1 (Fig. 5.1b) we perform early fusion of xp and xm to get x ∈ RF×2J′×C and then use

our non-linear encoder to get x(ff) ∈ RF×2J′×C′ . On the other hand, encoding for SAN-V2 (Fig.

5.1c) and SAN-V3 (Fig. 5.1d) individual skeletons are incorporated. In this case non-linear en-

coding is used to extend the skeleton joint position and motion tensor to x(s)
(p,ff) ∈ RF×J×C′ , and

x(s)
(m,ff) ∈ RF×J×C′ , respectively.
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5.2.2.2 CNN Based Encoder

A CNN based encoder is employed for encoding low level features from raw joint position and

motion data xp, xm, or x(s)p , and x(s)m . 2D convolutions can serve the purpose of extracting features

from 3D tensors of raw skeleton data. Our encoder block consist of 4 convolutional layers as

evident from Fig. 5.2. We will explain the general encoding scheme by keeping in view the

encoding requirements for SAN-V1 architecture. As we mentioned earlier in 5.2.2.1, for SAN-V1,

x ∈ RF×2J′×C which is the output of early fusion of xp and xm. First layer uses 1× 1× 64 filters

with stride 1. Output of the first layer are the extended coordinates in the form of F× J′×64

tensor. Layer two operates with 3× 1× 32 filters and stride 1, and outputs a tensor of shape

F × J′× 32. Note that convolution window size for layer two is 3× 1 because we are interested

in extracting local contextual information over frames. Now, we transpose joints and cooridinates

making the tensor of shape F × 32× J′ in order to extract features from correlations of all joints

over local frames. Third layer uses 3× 3× 32 filters with stride 1 and max pooling with 1× 2

pooling window is also applied. Output of third layer is a tensor with shape F × 16× 32. Final

convolution layer applies 3×3×64 filters with stride 1. Similar to third layer, max pooling with

a pooling window of 1× 2 is also applied producing a F × 8× 64 tensor. Last two CNN layers

encode correlated local features from all joints of human body. For SAN-V2 (Fig. 5.1c) and SAN-

V3 (Fig. 5.1d) we encode x(s)p and x(s)m for individual skeletons in the frames. Note that F remains

the same so feature representations for each frame are acquired with encoders.
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5.2.3 SAN Variant Architecture

We investigate three SAN based network architectures as shown in Fig. 5.1 for skeleton based

action recognition. These architectures employ the same SAN architecture as shown in Fig. 5.1a

but operate upon varying combinations of encoded features, x(enc), x(p,enc), and x(m,enc). We first

discuss the SAN block used in the network in detail.

5.2.3.1 Self-Attention Network

SAN block operates on encoded representations of position and motion information. The input to

SAN block is x ∈ RF×H , where H is a feature representation per frame. The dimension of H relys

on the different encoders and model variants, and H = 512 = 8× 64 with the CNN encoder for

SAN-V1. The first layer of the SAN block is a position embedding generating p ∈RF×H . Position

embedding layer is used for providing a sense of order to the feature vectors. The ordering prior

knowledge is helpful for each feature vector at each time to capture overall contextual cues from

the input sequence. The output of the position embedding layer y is an element-wise addition of

the input sequence x and the position embedding p.

Output of position embedding layer y is fed to the first self-attention layer z1. Each SAN

layer consumes the output of the previous SAN layer. Each self-attention layer computes pairwise

attention probabilities and K,Q and V parameters described in Eq. 5.1 are learned. Each self-

attention layer outputs zi, i ∈ {1,2, · · · ,N} where N is the number of self-attention layers. We
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Figure 5.2: An input sequence of skeleton joints over frames, F× J′×C, is fed to the convolutional

blocks and output tensor size of F×8×64 is generated, which is denoted by . Each color

denotes the following layers: convolutional layer; ReLU activation; and max-pooling

layer.

concatenate the outputs from each SAN layer in order to gather all the attention probabilities as

shown below

c = concat([z1,z2, · · · ,zN ]) (5.3)

o = ReLU( flin( favg(c))) (5.4)

where concat layer concatenates zi ∈RF×H along the vector axis creating a concatenated sequence

c ∈ RF×HN . Then, a global average layer favg is applied to c along the frame axis to obtain video-

level features and a resulting dimension of the feature is RHN . Finally, a fully connected layer flin

with a non-linear activation, ReLU, projects the feature vector to the same input dimension H.
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5.2.3.2 SAN-V1

SAN-V1 (Fig. 5.1b) is a baseline network to understand how well the SAN block works for

this task. It takes a concatenated input of position (xp) and motion (xm) data generating an input

sequence x ∈ RF×2J′C. The concatenation is to achieve feature-level early fusion. x requires

encoding which is achieved using CNN encoder and non-linear encoder. The shape of the input

sequence to the encoders is RF×H where H = 2×J′×C. SAN block extracts latent local and global

context information out of the input encoded sequences xconv and xff. Note that J is the number of

joints for one person, hence J′ represent the joints belonging to all the poeple in the frame. Zero

paddings are applied in case that the number of valid people in a frame is less than a pre-defined

maximum number of people. The output of the SAN block is fed to a classification layer which

consists of a ReLU activation layer, a dropout layer, and a linear layer with softmax activation to

predict probabilities for each class. The network is trained with cross-entropy loss.

5.2.3.3 SAN-V2

SAN-V2 (Fig. 5.1c) is designed to extract contextual features with the SAN blocks for each subject

(skeleton) in a scene. This network computes actions for each skeleton and takes the strongest

signal from all available people in a video. Similar to SAN-V1, the encoded position and motion

skeleton data for each person is concatenated respectively and the concatenated input sequences

are fed to the corresponding SAN blocks. The input dimension for each SAN block is RF×2JC′ and

83



RF×2×512 with the non-linear and CNN encoder, respectively. SAN blocks share weights to learn a

variety of movements from different people. SAN outputs can be merged with different operations

such as element-wise max, mean or concatenation. According to our preliminary experiments,

element-wise max works the best as it captures the strongest action signal among people who may

not be available. The final classification layer is identical to the one in SAN-V1. Note that SAN-V2

leverages late fusion strategy and is scalable to arbitrary number of people.

5.2.3.4 SAN-V3

Lastly, SAN-V3 (Fig. 5.1d) is designed to deal with different data modalities: position and velocity

(or motion). The most prominent signals from all people are chosen by an element-wise max

operation for each modality. The input dimension for the SAN block is RF×JC′ and RF×512 for

the non-linear and CNN encoder, respectively. The output of each SAN block is fed to separate

classifiers and the concatenated signal from the SAN blocks is consumed by another classifier.

This network is also scalable to any number of people in a scene. The training losses of the model

are calculated by adding all cross entropy losses from each classifier.

5.2.4 Temporal Segment Self-Attention Network (TS-SAN)

The self-attention network can associate features in distance making it possible to capture long

range information. However, as the feature representations for same action can vary with many
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constraints (viewpoint change, different speed of action by different subjects, etc), the proposed

network may not learn well. Thus, we leverage the temporal segment network [207] to train the

network more effectively. As shown in Fig. 1.4, a video is divided into K clips and one of the SAN

variants in Fig. 5.1 is employed to learn temporal dynamics on each clip. Note that all layers share

weights for different clips. Formally, given K segments S1,S2, · · · ,SK of a video, the proposed

network models a sequence of clips as follows:

T S−SAN(S1,S2, · · · ,SK) = C (F (S1;W),F (S2;W), · · · ,F (SK;W)). (5.5)

where F denotes one of SAN-Variant models and W is its parameters. The predictions of each

SAN model from each snippet are aggregated based on different function C : element-wise max,

and average.

5.3 Experiments

We perform extensive experiments to evaluate the effectiveness of our proposed Self-Attention

frameworks on two large scale benchmark datasets: NTU RGB+D dataset [155], and Kinetics-

skeleton dataset [84]. We analyze the performance of our variant models and visualize self-

attention probabilities to understand its mechanism.
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Table 5.1: Results of our method in comparison with state-of-the-art methods on NTU RGB+D

with Cross-Subject(CS) and Cross-View(CV) benchmarks.

Methods CS CV

H-RNN [39] (2015) 59.1 64.0

PA-LSTM [154] (2016) 62.9 70.3

TG ST-LSTM [118] (2016) 69.2 77.7

Two-stream RNN [203] (2017) 71.3 79.5

STA-LSTM [169] (2017) 73.4 81.2

Ensemble TS-LSTM [109] (2017) 74.6 81.3

VA-LSTM [231] (2017) 79.4 87.6

ST-GCN [222] (2018) 81.5 88.3

DPRL [183] (2018) 83.5 89.8

HCN [110] (2018) 86.5 91.9

SR-TSL [163] (2018) 84.8 92.4

TS-SAN (Ours) 87.2 92.7
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5.3.1 Datasets

5.3.1.1 NTU RGB+D

NTU RGB+D is the current largest action recognition dataset with joints annotations that are col-

lected by Microsoft Kinect v2. It has 56,880 video samples and contains 60 action classes in total.

These actions are performed by 40 distinct subjects. It is recorded with three cameras simulta-

neously in different horizontal views. The joints annotations consist of 3D locations of 25 major

body joints. [155] defines two standard evaluation protocols for this dataset: Cross-Subject (CS)

and Cross-View (CV). For Cross-Subject evaluation, the 40 subjects are split into training and test-

ing groups. Each group consists of 20 subjects. The numbers of training and testing samples are

40,320 and 16,560, respectively. For Cross-View evaluation, all the samples of cameras 2 and 3

are used for training while the samples of camera 1 are used for testing. The numbers of training

and testing samples are 37,920 and 18,960, respectively.

5.3.1.2 Kinetics

Kinetics [84] contains about 266,000 video clips retrieved from YouTube and covers 400 classes.

Since no skeleton annotation is provided, the skeleton is estimated by an OpenPose toolbox [11]

from the resized videos of 340×256 resolution. The toolbox estimates 2D coordinates (x,y) of

18 human joints and confidence scores c for each joint. Each joint is represented as (x,y,c) and
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2 people are selected at most for each frame based on the highest average joint confidence score.

The total number of frames for all clips is fixed to 300 by repeating the sequence from the start.

We employ the released skeleton dataset to train our model and report the performance of top-1

and top-5 accuracies as introduced in [222]. The numbers of training and validation samples are

around 246,000 and 20,000, respectively.

5.3.2 Implementation Details

We resize the sequence length to a fixed number of F=32/64 (NTU/Kinetics) with bilinear interpo-

lation along the frame dimension. We use K=3 of temporal segments and 32 frames are sampled

from each clip. The numbers of self-attention layers and multi-heads used for NTU RGB+D and

Kinetics datasets are 4, 8 and 8, 8, respectively.

To alleviate the problem of overfitting, we append dropout with a probability of 0.5 before the

last prediction layer and after the last convolution layer. For the self-attention network, a 0.2 ratio

of dropout is utilized. We employ a data augmentation scheme by randomly cropping sequences

with a ratio of uniform distribution between [0.5, 1] for training. We center crop sequence with a

ratio of 0.9 when testing. The learning rate is initialized with 1e−4 and reduced by half in case no

improvement of accuracy is observed for 5 epochs. Adam optimizer [91] is applied with weight

decay of 5e−5. The model is trained for 200/100 (NTU/Kinetics) epochs with a batch size of 64.
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Table 5.2: Results of our method in comparison with state-of-the-art methods on Kinetics.

Methods Top-1 Top-5

Feature Enc. [50] (2015) 14.9 25.8

Deep LSTM [154] (2016) 16.4 35.3

Temporal Conv [89] (2017) 20.3 40.0

ST-GCN [222] (2018) 30.7 52.8

TS-SAN (Ours) 35.1 55.7

5.3.3 Comparison to State of the art

We compare the performance of the proposed method to the state-of-the-art methods on NTU

RGB+D and Kinetics datasets as shown in Table 5.1 and Table 5.2. The compared methods are

based on CNN, RNN (or LSTM), and graph structure and our method consistently outperform

state-of-the-art approaches. This demonstrates the effectiveness of our proposed model for the

skeleton-based action recognition task.

As shown in Table 5.1, our proposed model achieves the best performance with 87.2% with

CS and 92.7% with CV. Our model and [169] have common in a sense that attention mechanism is

used. By comparing with STA-LSTM [169], our model performs 13.8% with CS and 11.5% with

CV. Our model encodes the raw skeleton data with CNNs similar to HCN [110] but outperforms
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by 0.7% with CS and 0.8% with CV. Comparing our model with SR-TSL [163] which is one of

the best-performed methods, the performance gaps are 2.4% with CS and 0.3% with CV.

On the Kinetics dataset, we compare with four methods which are based on handcraft features,

LSTM, temporal convolution, and graph-based convolution. As shown in Table 5.2, our method

attains the best performance with a significant margin. The proposed method outperforms by 4.4%

on top-1 and 2.9% on top-5 accuracies. We observe that CNN based methods [110, 163, 222, 89]

are superior to LSTM based methods [231, 109, 154] based on both Table 5.1 and Table 5.2, and

our model outperforms the CNN based methods.

5.3.4 Ablation Study

We analyze the proposed network by comparing it with baseline models. We compare SAN vari-

ants with hyperparameter options for encoders, self-attention network, and temporal segment net-

work. Each experiment is evaluated on the NTU RGB+D dataset.

5.3.4.1 Effect of SAN Variants with Different Encoders

Table 5.3 shows the results with different SAN variants and different inputs to them. The SAN-V2

model performs the best and the SAN-V1 model the worst. The gap between the SAN-V2 model

and the SAN-V3 model is minimal. We observe that the CNN encoder boosts the performance

accuracy by up to 7.3% for SAN-V3. It shows that the CNN encoder effectively generates rich
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Table 5.3: The comparison results of SAN variants shown in Fig. 5.1 with different encoder inputs

on NTU dataset (%).

Methods CS CV

SAN-V1 + FF 75.4 79.8

SAN-V1 + CNN 80.1 86.2

SAN-V2 + FF 80.3 85.2

SAN-V2 + CNN 85.9 91.7

SAN-V3 + FF 78.6 84.1

SAN-V3 + CNN 85.5 91.4

Table 5.4: The comparison results of effectiveness of temporal segment on NTU dataset (%).

Methods CS CV

SAN-V2 (seq=96) 86.1 92.0

SAN-V3 (seq=96) 85.9 91.7

TS (seg=3) + SAN-V2 (seq=32) 87.2 92.7

TS (seg=3) + SAN-V3 (seq=32) 86.8 92.4
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feature representations for the SAN models and plays a significant role in the network. From

the observation that SAN-V2 slightly outperforms SAN-V3, we conclude two facts: late fusion

performs better than early fusion; and sharing weights of SAN blocks resulting in better trained

models.

5.3.4.2 Effect of Temporal Segment

The self-attention network is suitable for connecting both short and long-range features and is

capable of capturing higher-level context from all correlations. We compare the TS-SAN and SAN

variants to see how they perform differently if two networks have the same sequence length. As

shown in Table 5.4, TS-SAN outperforms. This proves that our design goal to make use of the

temporal segment is correct. However, the SAN variants without the temporal segment network

have an advantage of having less parameters with a small sacrifice of performance. Although

TS-SAN models outperform, we observe that the SAN variants perform well for long-range input

sequences, F=96.

5.3.4.3 Effect of Consensus Function

We consider element-wise operations for the consensus function to compute the final prediction.

Two operations are valid: element-wise average, element-wise maximum. Table 5.5 shows the

performances of TS-SAN-V2 and TS-SAN-V3 with the above operations. The element-wise av-
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Table 5.5: The comparison results of different aggregation methods for TS network on NTU dataset

(%).

Methods CS CV

TS(Avg) + SAN-V2 87.2 92.7

TS(Max) + SAN-V2 86.1 91.9

TS(Avg) + SAN-V3 86.8 92.4

TS(Max) + SAN-V3 85.9 91.1

Table 5.6: The comparison results of the number of attention layers and multi-heads on NTU

dataset (%).

Methods CS CV

TS + SAN-V2 (L2H2) 86.7 92.1

TS + SAN-V2 (L4H4) 86.9 92.5

TS + SAN-V2 (L4H8) 87.2 92.7

TS + SAN-V2 (L8H8) 87.0 92.4

erage consensus function outperforms the element-wise max operation in both SAN variants. The

TS-SAN model with the element-wise max operation is outperformed by the SAN model without
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the temporal segment as shown in Table 5.4. We conjecture that since the self-attention output

signals are based on weighted average computation, it makes more sense to use the element-wise

average aggregation function for the collected outputs from each snippet. By doing so, the video

level self-attention can be computed properly leading to the best performance.

5.3.4.4 Effect of Number of Layers and Mutli-Heads in SAN Block

We compare TS-SAN-V2 model with different number of layers and multi-heads. The results are

shown in Table 5.6. By comparing the row 2 and 3, we observe that the number of heads affect

the performance marginally. From the results of the row 3 and 4, we also observe that the network

underperform if it contains too many paramerters. On the contrary, the network also underperforms

when the number of parameters are not enough (row 1). According to the results, we argue that the

proposed model requires a proper number of layers and heads for a cetrain dataset to perform the

best.

5.3.5 Visualization of Self-Attention Layer Response

The self-attention network determines where each frame correlates to other frames. We visualize

the self-attention response from the last self-attention layer with a visualization tool [198] to un-

derstand how each frame is correlated for a certain action video. As shown in Fig. 5.3, the vertical
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axis shows the sampled 32 frames. Self-attention responses for eight multi-heads are displayed

and each column shows the coarse shape of the attention pattern between two frames.

The model used for this visualization attains four layers and eight heads, and takes 32 sampled

frames as the input sequence. No temporal segment network is used to train the network. The

self-attention probabilities are calculated by the equ. 5.1 in the self-attention layer described in

Fig. 5.1a. For example, from Fig. 5.3a, one of the strongest correlation in the third head can be

found from a connection between frame 31 to frame 0 (a line across from bottom left to top right).

From the above example, we can check the long range correlation is achieved and the proposed

method captures a variety of correlations in both short and long distance.

We observe that the overall self-attention response patterns of the same action class (‘put on

jacket’) resembles each other as shown in Fig. 5.3a and Fig. 5.3b. The repsonses of head 1

and head 6 from two videos especially shows similar pattern. Although two videos are taken by

different subjects, duration, and views, we can see that the self-attention catches a certain latent

similarity. Comparing Fig. 5.3a and Fig. 5.3b with Fig. 5.3c, there is not much similar response

pattern between them due to different action classes (‘put on jacket’ vs ‘reading’). We also learn

that the proposed model is robust to subtle motion or speed of action changes from difference

subjects or even views.
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(a) ‘Put on jacket’ action with subject 1

(b) ‘Put on jacket’ action with subject 2

(c) ‘Reading’ action with subject 1

Figure 5.3: Self-attention probabilities from the last self-attention layer for three test videos on

NTU RGB+D are visualized. The brighter color denotes the higher probability or the stronger

connection.

5.4 Conclusion

In this paper, we propose three novel SAN variations in order to extract high-level context from

short and long-range self-attentions. Our proposed architectures significantly outperform state-
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of-the-art methods. CNN employed in our model is effective to extract feature representations

for the input sequence of the self-attention network. SAN can capture the temporal correlations

regardless of distance, making it possible to obtain high-level context information from both short

and long-range self-attentions. We also propose an effective integration of SAN and TSN which

results in observable performance boost. We perform extensive experiments on two large scale

datasets, NTU RGB+D and Kinetics-skeleton, and verify the effectiveness of our proposed models

for the skeleton-based action recognition task. In the future, we will apply our model to video-

based recognition tasks with key point annotations, such as facial expression recognition. We will

also explore different methods to extract effective feature representations for the input sequence of

SAN.
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CHAPTER 6
IMPROVING THE SIMILARITY MEASURE OF DETERMINANTAL

POINT PROCESSES FOR EXTRACTIVE MULTI-DOCUMENT

SUMMARIZATION

6.1 The DPP Framework

Let Y = {1,2, · · · ,N} be a ground set containing N items, corresponding to all sentences of the

source documents. Our goal is to identify a subset of items Y ⊆ Y that forms an extractive sum-

mary of the document set. A determinantal point process (DPP; Kulesza and Taskar, 2012) defines

a probability measure over all subsets of Y s.t.

P(Y ;L) =
det(LY )

det(L+ I)
, (6.1)

∑
Y⊆Y

det(LY ) = det(L+ I), (6.2)

where det(·) is the determinant of a matrix; I is the identity matrix; L∈RN×N is a positive semidef-

inite matrix, known as the L-ensemble; Li j measures the correlation between sentences i and j; and

LY is a submatrix of L containing only entries indexed by elements of Y . Finally, the probability of

an extractive summary Y ⊆ Y is proportional to the determinant of the matrix LY (Eq. (6.1)).
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Kulesza and Taskar [101] provide a decomposition of the L-ensemble matrix: Li j = qi ·Si j ·q j

where qi ∈ R+ is a positive real number indicating the quality of a sentence; and Si j is a measure

of similarity between sentences i and j. This formulation separately models the sentence quality

and pairwise similarity before combining them into a unified model. Let Y = {i, j} be a summary

containing only two sentences i and j, its probability P(Y ;L) can be computed as

P(Y = {i, j};L) ∝ det(LY )

=

∣∣∣∣∣∣∣∣
qiSiiqi qiSi jq j

q jS jiqi q jS j jq j

∣∣∣∣∣∣∣∣
= q2

i ·q2
j · (1−S2

i j). (6.3)

Eq. (6.3) indicates that, if sentence i is of high quality, denoted by qi, then any summary containing

it will have high probability. If two sentences i and j are similar to each other, denoted by Si j, then

any summary containing both sentences will have low probability. The summary Y achieving

the highest probability thus should contain a set of high-quality sentences while maintaining high

diversity among the selected sentences (via pairwise repulsion). det(LY ) also has a particular

geometric interpretation as the squared volume of the space spanned by sentence vectors i and j,

where the quality measure indicates the length of the vector and the similarity indicates the angle

between two vectors (Figure 6.1).

We adopt a feature-based approach to compute sentence quality: qi = exp(θ>xi). In particular,

xi is a feature vector for sentence i and θ are the feature weights to be learned during training.

Kulesza and Taskar [100] define sentence similarity as Si, j = φ
>
i φ j, where ‖φ i‖2 = 1 (∀i) is a sen-
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Figure 6.1: The DPP model specifies the probability of a summary P(Y = {i, j};L) to be propor-

tional to the squared volume of the space spanned by sentence vectors i and j.

tence TF-IDF vector. The model parameters θ are optimized by maximizing the log-likelihood of

training data (Eq. (6.4)) and this objective can be optimized efficiently with subgradient descent.1

θ=argmax
θ

M

∑
m=1

logP(Ŷ (m);L(Y (m);θ)) (6.4)

During training, we create the ground-truth extractive summary (Ŷ ) for a document set based on

human reference summaries (abstracts) using the following procedure. At each iteration we select

a source sentence sharing the longest common subsequence with the human reference summaries;

the shared words are then removed from human summaries to avoid duplicates in future selection.

Similar methods are exploited by Nallapati et al. [127] and Narayan et al. [130] to create ground-

truth extractive summaries. At test time, we perform inference using the learned DPP model

to obtain a system summary (Y ). We implement a greedy method (Kulesza and Taskar, 2012) to

1The sentence features include the length and position of a sentence, the cosine similarity between sentence and
document TF-IDF vectors [100]. We refrain from using sophisticated features to avoid model overfitting.
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iteratively add a sentence to the summary so that P(Y ;L) yields the highest probability (Eq. (6.1)),

until a summary length limit is reached.

For the DPP framework to be successful, the sentence similarity measure (Si j) has to accu-

rately capture if any two sentences contain redundant information. This is especially important

for multi-document summarization as redundancy is ubiquitous in source documents. The source

descriptions frequently contain redundant yet lexically diverse expressions such as sentential para-

phrases where people write about the same event using distinct styles [73]. Without accurately

modelling sentence similarity, redundant content can make their way into the summary and further

prevent useful information from being included given the summary length limit. Existing cosine

similarity measure between sentence TF-IDF vectors can be incompetent in modeling semantic

relatedness. In the following section we exploit the recently introduced capsule networks [69] to

measure pairwise sentence similarity; it considers if two sentences share any words in common

and more importantly the semantic closeness of sentence descriptions.

6.2 An Improved Similarity Measure

Our goal is to develop an advanced similarity measure for pairs of sentences such that semantically

similar sentences can receive high scores despite that they have very few words in common. E.g.,

“Snowstorm slams eastern US on Friday” and “A strong wintry storm was dumping snow in eastern

US after creating traffic havoc that claimed at least eight lives” have only two words in common.

Nonetheless, they contain redundant information and cannot both be included in the summary.

101



E
L

E
L

d
5

d3

d4

d
6

d

7

5dL

5d

Capsnet

B
M

5dL

5d

L
1

L

5dL

256
1

1

256
1

1

LSTM-256

50K
1

1

4×
5d

+
2L

+
B

1

100
1

1

1
1

1

Figure 6.2: The system architecture utilizing CapsNet for predicting sentence similarity. de-

notes the inputs and intermediate outputs; the convolutional layer; max-pooling layer;

fully-connected layer; and ReLU activation.

Let {xa,xb} ∈ RE×L denote two sentences a and b. Each consists of a sequence of word

embeddings, where E is the embedding size and L is the sentence length with zero-padding to the

right for shorter sentences. A convolutional layer with multiple filter sizes is first applied to each

sentence to extract local features (Eq. (6.5)), where xa
i:i+k−1 ∈ RkE denotes a flattened embedding

for position i with a filter size k, and ua
i,k ∈ Rd is the resulting local feature for position i; f is a

nonlinear activation function (e.g., ReLU); {Wu,bu} are model parameters.

ua
i,k = f (Wuxa

i:i+k−1 +bu) (6.5)

We use ua
i ∈ RD to denote the concatenation of local features generated using various filter

sizes. Following Kim et al. [87], we employ filter sizes k ∈ {3,4,5,6,7} with an equal number

of filters (d) for each size (D = 5d). After applying max-pooling to local features of all posi-

tions, we obtain a representation ua = max-pooling(ua
i ) ∈ RD for sentence a; and similarly we
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obtain ub ∈ RD for sentence b. It is not uncommon for state-of-the-art sentence similarity clas-

sifiers [16] to concatenate the two sentence vectors, their absolute difference and element-wise

product [ua;ub; |ua−ub|;ua ◦ub], and feed this representation to a fully connected layer to predict

if two sentences are similar.

Nevertheless, we conjecture that such representation may be insufficient to fully characterize

the relationship between components of the sentences in order to model sentence similarity. For ex-

ample, the term “snowstorm” in sentence a is semantically related to “wintry storm” and “dumping

snow” in sentence b; this low-level interaction indicates that the two sentences contain redundant

information and it cannot be captured by the above model. Importantly, the capsule networks pro-

posed by Hinton et al. [69] are designed to characterize the spatial and orientational relationships

between low-level components. We thus seek to exploit CapsNet to strengthen the capability of

our system for identifying redundant sentences.

Let {ua
i ,u

b
i }Li=1 ∈RD be low-level representations (i.e., capsules). We seek to transform them to

high-level capsules {v j}Mj=1 ∈ RB that characterize the interaction between low-level components.

Each low-level capsule ui ∈RD is multiplied by a linear transformation matrix to dedicate a portion

of it, denoted by û j|i ∈RB, to the construction of a high-level capsule j (Eq. (6.6)); where {Wv
i j} ∈

RD×B are model parameters. To reduce parameters and prevent overfitting, we further encourage

sharing parameters over all low-level capsules, yielding Wv
1 j = Wv

2 j = · · · , and the same parameter

sharing is described in [234]. By computing the weighted sum of û j|i, whose weights ci j indicate

the strength of interaction between a low-level capsule i and a high-level capsule j, we obtain an

(unnormalized) capsule (Eq. (6.7)); we then apply a nonlinear squash function g(·) to normalize
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the length the vector to be less than 1, yielding v j ∈ RB.

û j|i = Wv
i jui (6.6)

v j = g
(
∑

i
ci jû j|i

)
(6.7)

Routing [149, 233] aims to adjust the interaction weights (ci j) using an iterative, EM-like

method. Initially, we set {bi j} to be zero for all i and j. Per Eq. (6.8), ci becomes a uniform

distribution indicating a low-level capsule i contributes equally to all its upper level capsules. Af-

ter computing û j|i and v j using Eq. (6.6-6.7), the weights bi j are updated according to the strength

of interaction (Eq. (6.9)). If û j|i agrees with a capsule v j, their interaction weight will be increased,

and decreased otherwise. This process is repeated for r iterations to stabilize ci j.

ci← softmax(bi) (6.8)

bi j← bi j + û j|iv j (6.9)

The high-level capsules {v j}Mj=1 effectively encode spatial and orientational relationships of

low-level capsules. To identify the most prominent interactions, we apply max-pooling to all high-

level capsules to produce v = max-pooling j(v j) ∈ RB. This representation v, aimed to encode

interactions between sentences a and b, is concatenated with [ua;ub; |ua−ub|;ua ◦ub] and binary

vectors [za;zb] that indicate if any word in sentence a appears in sentence b and vice versa; they

are used as input to a fully connected layer to predict if a pair of sentences contain redundant

information. Our loss function contains two components, including a binary cross-entropy loss

indicating whether the prediction is correct or not, and a reconstruction loss for reconstructing a

sentence a conditioned on ua by predicting one word at a time using a recurrent neural network,
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and similarly for sentence b. A hyperparameter λ is used to balance contributions from both

sides. In Figure 6.2 we present an overview of the system architecture, and hyper-parameters are

described in the supplementary.

6.3 Datasets

To our best knowledge, there is no dataset focusing on determining if two sentences contain redun-

dant information. It is a nontrivial task in the context of multi-document summarization. Further,

we argue that the task should be distinguished from other semantic similarity tasks: semantic

textual similarity (STS; Cer et al., 2017) assesses to what degree two sentences are semantically

equivalent to each other; natural language inference (NLI; Bowman et al., 2015) determines if

one sentence (“hypothesis”) can be semantically inferred from the other sentence (“premise”).

Nonetheless, redundant sentences found in a set of source documents discussing a particular topic

are not necessarily semantically equivalent or express an entailment relationship. We compare

different datasets in §6.4.

Sentence redundancy dataset A novel dataset containing over 2 million sentence pairs is in-

troduced in this paper for sentence redundancy prediction. We hypothesize that it is likely for a

summary sentence and its most similar source sentence to contain redundant information. Because

humans create summaries using generalization, paraphrasing, and other high-level text operations,

a summary sentence and its source sentence can be semantically similar, yet contain diverse ex-

pressions. Fortunately, such source/summary sentence pairs can be conveniently derived from
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single-document summarization data. We analyze the CNN/Daily Mail dataset [67] that contains a

massive collection of single news articles and their human-written summaries. For each summary

sentence, we identify its most similar source sentence by calculating the averaged R-1, R-2, and

R-L F-scores [114] between a source and summary sentences. We consider a summary sentence

to have no match if the score is lower than a threshold. We obtain negative examples by ran-

domly sampling two sentences from a news article. In total, our training / dev / test sets contain

2,084,798 / 105,936 / 86,144 sentence pairs and we make the dataset available to advance research

on sentence redundancy.

Summarization datasets We evaluate our DPP-based system on benchmark multi-document

summarization datasets. The task is to create a succinct summary with up to 100 words from a

cluster of 10 news articles discussing a single topic. The DUC and TAC datasets [137, 28] have

been used in previous summarization competitions. In this paper we use DUC-03/04 and TAC-

08/09/10/11 datasets that contain 60/50/48/44/46/44 document clusters respectively. Four human

reference summaries have been created for each document cluster by NIST assessors. Any system

summaries are evaluated against human reference summaries using the ROUGE software [114]2,

where R-1, -2, and -SU4 respectively measure the overlap of unigrams, bigrams, unigrams and skip

bigrams with a maximum distance of 4 words. We report results on DUC-04 (trained on DUC-03)

and TAC-11 (trained on TAC-08/09/10) that are often used as standard test sets [72].
2w/ options -n 2 -m -w 1.2 -c 95 -r 1000 -l 100
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Table 6.1: ROUGE results on DUC-04. † indicates our reimplementation of Kulesza and

Taskar [100].

DUC-04

System R-1 R-2 R-SU4

Opinosis [53] 27.07 5.03 8.63

Extract+Rewrite [168] 28.90 5.33 8.76

Pointer-Gen [152] 31.43 6.03 10.01

SumBasic [194] 29.48 4.25 8.64

KLSumm (Haghighi et al., 2009) 31.04 6.03 10.23

LexRank [42] 34.44 7.11 11.19

Centroid [72] 35.49 7.80 12.02

ICSISumm [58] 37.31 9.36 13.12

DPP [100]† 38.10 9.14 13.40

DPP-Capsnet (this work) 38.25 9.22 13.40

DPP-Combined (this work) 39.35 10.14 14.15

6.4 Experimental Results

In this section we discuss results that we obtained for multi-document summarization and deter-

mining redundancy between sentences.

6.4.1 Summarization Results

We compare our system with a number of strong summarization baselines (Table 6.1 and 6.2).

In particular, SumBasic [194] is an extractive approach assuming words occurring frequently in a
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Table 6.2: ROUGE results on the TAC-11 dataset.

TAC-11

System R-1 R-2 R-SU4

Opinosis [53] 25.15 5.12 8.12

Extract+Rewrite [168] 29.07 6.11 9.20

Pointer-Gen [152] 31.44 6.40 10.20

SumBasic [194] 31.58 6.06 10.06

KLSumm (Haghighi et al., 2009) 31.23 7.07 10.56

LexRank [42] 33.10 7.50 11.13

DPP [100]† 36.95 9.83 13.57

DPP-Capsnet (this work) 36.61 9.30 13.09

DPP-Combined (this work) 37.30 10.13 13.78

document cluster are more likely to be included in the summary; KL-Sum [64] is a greedy approach

adding a sentence to the summary to minimize KL divergence; and LexRank [42] is a graph-based

approach computing sentence importance based on eigenvector centrality.

We additionally consider abstractive baselines to illustrate how well these systems perform

on multi-document summarization: Opinosis [53] focuses on creating a word co-occurrence

graph from the source documents and searching for salient graph paths to create an abstract; Ex-

tract+Rewrite [168] selects sentences using LexRank and condenses each sentence to a title-like

summary; Pointer-Gen [152] seeks to generate abstracts by copying words from the source docu-

ments and generating novel words not present in the source text.

Our DPP-based framework belongs to a strand of optimization-based methods. In particular,

ICSISumm (Gillick et al., 2009) formulates extractive summarization as integer linear program-
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Table 6.3: Example system summaries and the human reference summary. LexRank extracts long

and comprehensive sentences that yield high graph centrality. Pointer-Gen (abstractive) has diffi-

culty in generating faithful summaries (see the last bullet “all 3-year-olds ... have been given to a

child”). DPP is able to select a balanced set of representative and diverse sentences.

LexRank Summary

• The official, Dr. Charles J. Ganley, director of the office of

nonprescription drug products at the Food and Drug Admin-

istration, said in an interview that the agency was “revisiting

the risks and benefits of the use of these drugs in children”

and that “we’re particularly concerned about the use of these

drugs in children less than 2 years of age.”
• The Consumer Healthcare Products Association, an indus-

try trade group that has consistently defended the safety of

pediatric cough and cold medicines, recommended in its own

156-page safety review, also released Friday, that the FDA con-

sider mandatory warning labels saying that they should not

be used in children younger than two.
• Major makers of over-the-counter infant cough and cold

medicines announced Thursday that they were voluntarily

withdrawing their products from the market for fear that they

could be misused by parents.

Pointer-Gen Summary

• Dr. Charles Ganley, a top food and drug administration

official, said the agency was “revisiting the risks and benefits

of the use of these drugs in children,” the director of the FDA’s

office of nonprescription drug products.
• The FDA will formally consider revising labeling at a meet-

ing scheduled for Oct. 18-19.
• The withdrawal comes two weeks after reviewing reports

of side effects over the last four decades, a 1994 study found

that more than a third of all 3-year-olds in the United States

were estimated to have been given to a child.

DPP-Combined Summary

• Johnson & Johnson on Thursday voluntarily recalled cer-

tain infant cough and cold products, citing ”rare” instances of

misuse leading to overdoses.
• Federal drug regulators have started a broad review of the

safety of popular cough and cold remedies meant for children,

a top official said Thursday.
• Safety experts for the Food and Drug Administration urged

the agency on Friday to consider an outright ban on over-the-

counter, multi-symptom cough and cold medicines for chil-

dren under 6.
• Major makers of over-the-counter infant cough and cold

medicines announced Thursday that they were voluntarily

withdrawing their products from the market for fear that they

could be misused by parents.

Human Reference Summary

• On March 1, 2007, the Food/Drug Administration (FDA)

started a broad safety review of children’s cough/cold reme-

dies.
• They are particularly concerned about use of these drugs by

infants.
• By September 28th, the 356-page FDA review urged an out-

right ban on all such medicines for children under six.
• Dr. Charles Ganley, a top FDA official said “We have no

data on these agents of what’s a safe and effective dose in

Children.” The review also stated that between 1969 and

2006, 123 children died from taking decongestants and anti-

histimines.
• On October 11th, all such infant products were pulled from

the markets.
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Table 6.4: Sentence similarity datasets and CapsNet’s performance on them. SNLI discriminates

between entailment and contradiction; STS is pretrained using Src-Summ pairs and fine-tuned on

its train split.

Dataset Train Dev Test Accu.

STS-Benchmark [15] 5,749 1,500 1,379 64.7%

SNLI [9] 366,603 6,607 6,605 93.0%

Src-Summ Pairs (this work) 2,084,798 105,936 86,144 94.8%

ming; it identifies a globally-optimal set of sentences covering the most important concepts of the

source documents; DPP [100] selects an optimal set of sentences that are representative of the

source documents and with maximum diversity, as determined by the determinantal point process.

Gong et al. [62] show that the DPP performs well on summarizing both text and video.

We experiment with several variants of the DPP model: DPP-Capsnet computes the similarity

between sentences (Si j) using the CapsNet described in Sec. §6.2 and trained using our newly-

constructed sentence redundancy dataset, whereas the default DPP framework computes sentence

similarity as the cosine similarity of sentence TF-IDF vectors. DPP-Combined linearly combines

the cosine similarity with the CapsNet output using an interpolation coefficient determined on the

dev set3.

Table 6.1 and 6.2 illustrate the summarization results we have obtained for the DUC-04 and

TAC-11 datasets. Our DPP methods perform superior to both extractive and abstractive baselines,

3The Capsnet coefficient λc is selected to be 0.2 and 0.1 respectively for the DUC-04 and TAC-11 dataset.
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Table 6.5: Example positive (3) and negative (7) sentence pairs from the semantic similarity

datasets.

STS-Benchmark (a) Four girls happily walk down a sidewalk.

(b) Three young girls walk down a sidewalk. 7

SNLI (a) 3 young man in hoods standing in the middle of a quiet

street facing the camera. (b) Three hood wearing people pose

for a picture. 3

Src-Summ Pairs (a) He ended up killing five girls and wounding

five others before killing himself. (b) Nearly four months ago, a

milk delivery-truck driver lined up 10 girls in a one-room school-

house in this Amish farming community and opened fire, killing

five of them and wounding five others before turning the gun on

himself. 3

indicating the effectiveness of optimization-based methods for extractive multi-document summa-

rization. The DPP optimizes for summary sentence selection to maximize their content coverage

and diversity, expressed as the squared volume of the space spanned by the selected sentences.

Further, we observe that the DPP system with combined similarity metrics yields the highest

performance, achieving 10.14% and 10.13% F-scores respectively on DUC-04 and TAC-11. This

finding suggests that the cosine similarity of sentence TF-IDF vectors and the CapsNet semantic

similarity successfully complement each other to provide the best overall estimate of sentence

redundancy. A close examination of the system outputs reveal that important topical words (e.g.,
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“$3 million”) that are frequently discussed in the document cluster can be crucial for determining

sentence redundancy, because sentences sharing the same topical words are more likely to be

considered redundant. While neural models such as the CapsNet rarely explicitly model word

frequencies, the TF-IDF sentence representation is highly effective in capturing topical terms.

In Table ?? we show example system summaries and a human-written reference summary. We

observe that LexRank tends to extract long and comprehensive sentences that yield high graph

centrality; the abstractive pointer-generator networks, despite the promising results, can some-

times fail to generate meaningful summaries (e.g., “a third of all 3-year-olds · · · have been given

to a child”). In contrast, our DPP method is able to select a balanced set of representative and

diverse summary sentences. We next compare several semantic similarity datasets to gain a better

understanding of modeling sentence redundancy for summarization.

6.4.2 Sentence Similarity

We compare three standard datasets used for semantic similarity tasks, including SNLI [9], used

for natural language inference, STS-Benchmark [15] for semantic equivalence, and our newly-

constructed Src-Summ sentence pairs. Details are presented in Table 6.4.

We observe that CapsNet achieves the highest prediction accuracy of 94.8% on the Src-Summ

dataset and it yields similar performance on SNLI, indicating the effectiveness of CapsNet on

characterizing semantic similarity. STS appears to be a more challenging task, where CapsNet

yields 64.7% accuracy. Note that we perform two-way classification on SNLI to discriminate
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entailment and contradiction. The STS dataset is too small to be used to train CapsNet without

overfitting, we thus pre-train the model on Src-Summ pairs, and use the train split of STS to fine-

tune parameters.

Table 6.5 shows example positive and negative sentence pairs from the STS, SNLI, and Src-

Summ datasets. The STS and SNLI datasets are constructed by human annotators to test a system’s

capability of learning sentence representations. The sentences can share very few words in com-

mon but still express an entailment relationship (positive); or the sentences can share a lot of

words in common yet they are semantically distinct (negative). These cases are usually not seen

in summarization datasets containing clusters of documents discussing single topics. The Src-

Summ dataset successfully strike a balance between sharing common words yet containing diverse

expressions. It is thus a good fit for training classifiers to detect sentence redundancy.

Figure 6.3 compares heatmaps generated by computing cosine similarity of sentence TF-IDF

vectors (Cosine), and training CapsNet on SNLI and Src-Summ datasets respectively. We find

that the Cosine similarity scores are relatively strict, as a vast majority of sentence pairs are as-

signed zero similarity, because these sentences have no word overlap. At the other extreme, Cap-

sNet+SNLI labels a large quantity of sentence pairs as false positives, because its training data

frequently contain sentences that share few words in common but nonetheless are positive, i.e.,

expressing an entailment relationship. The similarity scores generated by CapsNet+SrcSumm are

more moderate comparing to CapsNet+SNLI and Cosine, suggesting the appropriateness of using

Src-Summ sentence pairs for estimating sentence redundancy.
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Figure 6.3: Heatmaps for topic D31008 of DUC-04 (cropped to 200 sentences) that shows the

cosine similarity score of sentence TF-IDF vectors (Cosine, left), and the CapsNet output trained

respectively on SNLI (right) and Src-Summ (middle) datasets. The short off-diagonal lines are

near-identical sentences found in the document cluster.

6.5 Conclusion

We strengthen a DPP-based multi-document summarization system with improved similarity mea-

sure inspired by capsule networks for determining sentence redundancy. We show that redundant

sentences not only have common words but they can be semantically similar with little word over-

lap. Both aspects should be modelled in calculating pairwise sentence similarity. Our system

yields competitive results on benchmark datasets surpassing strong summarization baselines.
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CHAPTER 7
MULTI-DOCUMENT SUMMARIZATION WITH DETERMINANTAL

POINT PROCESSES AND CONTEXTUALIZED REPRESENTATIONS

7.1 DPP for Summarization

Determinantal point process (Kulesza and Taskar, 2012) defines a probability measure P over all

subsets (2|Y |) of a ground set containing all document sentences Y = {1,2, · · · ,N}. Our goal is

to identify a most probable subset Y , corresponding to an extractive summary, that achieves the

highest probability score. The probability measure P is defined as

P(Y ;L) =
det(LY )

det(L+ I)
, (7.1)

∑
Y⊆Y

det(LY ) = det(L+ I), (7.2)

where det(·) is the determinant of a matrix; I is the identity matrix; L ∈ RN×N is a positive semi-

definite (PSD) matrix, known as the L-ensemble; Li j indicates the correlation between sentences i

and j; and LY is a submatrix of L containing only entries indexed by elements of Y . As illustrated in

Eq. (7.1), the probability of an extractive summary Y ⊆ Y is thus proportional to the determinant

of the matrix LY .

Kulesza and Taskar [101] introduce a decomposition of the L-ensemble matrix: Li j = qi ·Si j ·q j

where qi ∈ R+ is a positive number indicating the quality of a sentence and Si j is a measure
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of similarity between sentences i and j. The q and S model the sentence quality and pairwise

similarity respectively and contribute to the L-ensemble matrix. A log-linear model is used to

determine sentence quality: qi = exp(θ>f(i)), where f(i) is a feature vector for sentence i and θ are

feature weights to be learned during DPP training. We optimize θ by maximizing log-likelihood

with gradient descent, illustrated as follows:

L (θ)=
M

∑
m=1

logP(Ŷ (m);L(m)(θ)), (7.3)

∇θ=
M

∑
m=1

∑
i∈Ŷ (m)

f(i)−∑
j

f( j)K(m)
j j , (7.4)

where M is the total number of training instances; Ŷ (m) is the ground-truth summary of the m-

th instance; K = L(L+ I)−1 is the kernel matrix and P(Ŷ (m);L(m)(θ)) is defined by Eq. (7.1).

We refer the reader to [101] for details on gradient derivation (Eq. (7.4)). In the following we

describe two BERT models to respectively estimate sentence pairwise similarity and importance.

The trained models are then plugged into the DPP framework for computing S and q.

7.1.1 BERT Architecture

We introduce two models that fine-tune the BERT-base architecture [31] to calculate the similarity

between a pair of sentences (BERT-sim) and learn representations that characterize the importance

of a single sentence (BERT-imp). Importantly, training instances for both BERT models are derived

from single-document summarization dataset [67] by Lebanoff et al. [107], containing a collection
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Figure 7.1: Position of summary-worthy sentences in a document for single-doc (CNN/DM) and

multi-doc datasets (DUC-04, TAC11). ‘pos’ are summary-worthy document sentences; ‘neg’ are

sentences that are randomly sampled from the same document.

Table 7.1: BERT-sim and BERT-imp utilize embeddings for tokens, segments, token position in

a sentence and sentence position in a document. These embeddings are element-wisely added up

then fed into the model.

CNN/DM mean min max

train-pos 13.95 1 318

train-neg 21.90 1 337

DUC-04 2.22 1 5

TAC-11 1.67 1 5

of single sentences (or sentence pairs) and their associated labels. During testing, the trained BERT
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models are applied to single sentences and sentence pairs derived from multi-document input to

obtain quality and similarity measures.

BERT-sim takes as input a pair of sentences and transforms each token in the sentence into an

embedding using an embedding layer. They are then passed through the BERT-base architecture

to produce a vector representing the input sentence pair. The vector, denoted by u∈Rd , is the final

hidden state corresponding to the “[CLS]” token (d=768), which is used as the aggregate sequence

representation. u is passed through a feed-forward layer with the same dimension d, followed by

a dropout layer, and a final softmax prediction layer to classify whether a pair of sentences contain

redundant information or not. Once the model is trained, we can apply it to a pair of sentences i

and j to obtain the similarity score Si j.

BERT-imp uses a similar architecture to predict if any single sentence is important to the sum-

mary. Once the model is trained, we can apply it to the i-th sentence to generate a vector ui which

is used as the feature representation f(i) for the i-th sentence when computing qi.

The embedding layer, illustrated in Fig. 7.1, consists of several types of embeddings, respec-

tively representing tokens, segments, the token position in a sentence and sentence position within

a given document. These embeddings are element-wisely added up then fed to the model. The

sentence position embeddings are incorporated in this work to capture the position of a sentence

in the article. It is utilized only by BERT-imp, as position matters for sentence importance but not

quite so for pairwise similarity. As shown in Table 7.1, positive sentences in the training data (see

§7.2.1) tend to appear at the beginning of an article, consistently more so than negative sentences.

Further, ground-truth summary sentences of the DUC and TAC datasets are likely to appear among
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the first five sentences of an article, indicating position embeddings are crucial for training the

BERT-imp model.

7.1.2 DPP Training

DPP training focuses on estimating the weights of features used in qi = exp(θ>f(i)), which is a log-

linear model used for computing sentence quality. The sentence similarity scores Si j are produced

by BERT-sim; they do not change during DPP training. We obtain contextualized representations

for the i-th sentence, i.e., f(i) ∈ Rd , from the penultimate layer (ui) of BERT-imp.

In addition, a number of surface indicators1, denoted by vi ∈ Rd′ , are extracted for sentence

i. To combine surface indicators and contextualized representations, we concatenate ui and vi as

sentence features. We also take a weighted average2 of Si j and Ci j as an estimate of pairwise sen-

tence similarity, where Ci j is the cosine similarity of sentence TF-IDF vectors. DPP training learns

feature weights θ ∈ RD, where D = d + d′ if the sentence features are concatenated, otherwise

D = d. DPP is trained on multi-document summarization data with gradient descent (Eq. (7.4)).

1The sentence features include the length and position of a sentence, the cosine similarity between sentence and
document TF-IDF vectors [100]. We abstain from using sophisticated features to avoid model overfitting.

2The coefficient is set to be 0.9 for both datasets.
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7.2 Experiments

In this section we describe the dataset used to train the BERT-sim and BERT-imp models, bench-

mark datasets for multi-document summarization, and experimental settings. Our system shows

competitive results comparing to state-of-the-art methods. Example summaries are provided to

demonstrate the effectiveness of the proposed method.

7.2.1 Dataset

CNN / DailyMail This dataset [67] is utilized to train the BERT-sim and BERT-imp models. For

BERT-sim, we pair each human summary sentence with its most similar document sentence to

create a positive instance; negative instances are randomly sampled sentence pairs. For BERT-imp,

the most similar document sentence receives a label of 1; randomly sampled sentences are labelled

as 0. In total, our training / dev / test sets contain 2,084,798 / 105,936 / 86,144 sentence pairs and

the instances are balanced.

DUC/TAC We evaluate our DPP approach (§7.1) on multi-document summarization datasets

including DUC and TAC [137, 28]. The task is to generate a summary of 100 words from a

collection of news articles. We report ROUGE F-scores [114]3 on DUC-04 (trained on DUC-03)

and TAC-11 (trained on TAC-08/09/10) following standard settings [72]. Ground-truth extractive

summaries used in DPP training are obtained from Cho et al. [23].

3with options -n 2 -m -w 1.2 -c 95 -r 1000 -l 100
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7.2.2 Experiment Settings

We implement our system using TensorFlow on an NVIDIA 1080Ti GPU. We consider the max-

imum length of a sentence to be 64 or 128 words. The batch size is 64 for the 64 max sentence

length and 32 for 128. We use Adam optimizer [92] with the default setting and set learning rate

to be 2e-5. We train BERT-imp and BERT-sim on CNN/DM. The prediction accuracy of BERT-

sim and BERT-imp (with length-128) are respectively 96.11% and 69.05%. Similar results are

observed with length-64: 95.79% and 69.63%.

7.2.3 Summarization Results

We compare our system with strong summarization baselines (Table 7.2 and 7.3). SumBasic [194],

KL-Sum [64], and LexRank [42] are extractive approaches; Opinosis [53], Extract+Rewrite [168],

and Pointer-Gen [152] are abstractive methods; ICSISumm [59] is an ILP-based summarization

method; and DPP-Caps-Comb, DPP-Caps are results combining DPP and capsule networks re-

ported by Cho et al. [23] w/ and w/o using sentence TF-IDF similarity (Ci, j).

We experiment with variants of our DPP model: DPP-BERT, DPP-BERT-Combined. The

former utilizes the outputs from BERT-sim and BERT-imp to compute Si j and qi, whereas the latter

combines BERT-sim output with sentence TF-IDF similarity (Ci, j), and concatenates BERT-imp

features with linguistically informed features.
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Table 7.2: Results on the DUC-04 dataset evaluated by ROUGE. † indicates our reimplementation

of Kulesza and Taskar [101] system.

DUC-04

System R-1 R-2 R-SU4

Opinosis [53] 27.07 5.03 8.63

Extract+Rewrite [168] 28.90 5.33 8.76

Pointer-Gen [152] 31.43 6.03 10.01

SumBasic [194] 29.48 4.25 8.64

KLSumm(Haghighi et al., 2009) 31.04 6.03 10.23

LexRank [42] 34.44 7.11 11.19

ICSISumm [58] 37.31 9.36 13.12

DPP [101]† 38.10 9.14 13.40

DPP-Caps [23] 38.25 9.22 13.40

DPP-Caps-Comb [23] 39.35 10.14 14.15

DPP-BERT (ours) 38.14 9.30 13.47

DPP-BERT-Comb 64 (ours) 38.78 9.78 14.04

DPP-BERT-Comb 128 (ours) 39.05 10.23 14.35

Our DPP methods outperform both extractive and abstractive baselines, indicating the effec-

tiveness of optimization-based methods for extractive multi-document summarization. Further-

more, we observe that DPP-BERT-Combined yields the best performance, achieving 10.23% and

11.06% F-scores respectively on DUC-04 and TAC-11. This finding suggests that sentence simi-

larity scores and importance features from the DPP-BERT system and TF-IDF based features can
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Table 7.3: ROUGE results on the TAC-11 dataset.

TAC-11

System R-1 R-2 R-SU4

Opinosis [53] 25.15 5.12 8.12

Extract+Rewrite [168] 29.07 6.11 9.20

Pointer-Gen [152] 31.44 6.40 10.20

SumBasic [194] 31.58 6.06 10.06

KLSumm (Haghighi et al., 2009) 31.23 7.07 10.56

LexRank [42] 33.10 7.50 11.13

DPP [101]† 36.95 9.83 13.57

DPP-Caps [23] 36.61 9.30 13.09

DPP-Caps-Comb [23] 37.30 10.13 13.78

DPP-BERT (ours) 37.04 10.18 13.79

DPP-BERT-Comb 64 (ours) 38.46 10.79 14.45

DPP-BERT-Comb 128 (ours) 38.59 11.06 14.65

complement each other to boost system performance. We conjecture that TF-IDF sentence vectors

are effective at representing topical terms (e.g., 3 million), thus helping DPP better select represen-

tative sentences. Another observation is that DPP-BERT and DPP-BERT-Combined consistently

outperform DPP-Caps and DPP-Caps-Comb, indicating its excellence for DPP-based summariza-

tion.

In Table 7.4 we show example system summaries and a human-written reference summary.

DPP-BERT and DPP-BERT-Combined both are capable of selecting a balanced set of represen-
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tative and diverse summary sentence from multi-documents. DPP-BERT-Combined selects more

relevant sentences than DPP-BERT comparing to the human summary, leading to better ROUGE

scores.

7.3 Conclusion

In this paper we describe a novel approach using determinantal point processes for extractive

multi-document summarization. Our DPP+BERT models harness the power of deep contextu-

alized representations and optimization to achieve outstanding performance on multi-document

summarization benchmarks. Our analysis further reveals that, despite the success of deep contex-

tualized representations, it remains necessary to combine them with surface indicators for effective

identification of summary-worthy sentences.

124



Table 7.4: Example system summaries and their human reference summary. Sentences selected

by DPP-BERT-Combined are more similar to the human summary than those of DPP-BERT; both

include diverse sentences.

Human Reference Summary

• On March 1, 2007, the Food/Drug Administration (FDA)

started a broad safety review of children’s cough/cold remedies.

• They are particularly concerned about use of these drugs by

infants.

• By September 28th, the 356-page FDA review urged an out-

right ban on all such medicines for children under six.

• Dr. Charles Ganley, a top FDA official said “We have no data

on these agents of what’s a safe and effective dose in Children.”

The review also stated that between 1969 and 2006, 123 children

died from taking decongestants and antihistimines.

• On October 11th, all such infant products were pulled from the

markets.

DPP-BERT Summary

• The petition is far from the first warning about children using

the medicines.

• The FDA will formally consider revising labeling at a meeting

scheduled for Oct. 18-19.

• Federal drug regulators have started a broad review of the

safety of popular cough and cold remedies meant for children,

a top official said Thursday.

• Similarly, hydrocodone has never been shown to be safe and

effective in children, and its dangers as a powerful and poten-

tially addictive narcotic are clear.

DPP-BERT-Combined Summary

• The U.S. government is warning parents not to give cough and

cold medicines to children under 2 without a doctor’s order, part

of an overall review of the products’ safety and effectiveness for

youngsters.

• Drug makers on Thursday voluntarily pulled kids’ cold

medicines off the market less than two weeks after the U.S. gov-

ernment warned of potential health risks to infants.

• Safety experts for the Food and Drug Administration urged

the agency on Friday to consider an outright ban on over-the-

counter, multi-symptom cough and cold medicines for children

under 6.

• In high doses, cold medicines can affect the heart’s electrical

system, leading to arrhythmias.
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CHAPTER 8
BETTER HIGHLIGHTING: CREATING SUB-SENTENCE SUMMARY

HIGHLIGHTS

8.1 Method for Creating Sub-Sentence Segments

We present a new method to identify self-contained segments, then select important and non-

redundant segments to form a summary, as text fragments containing incomplete and disorganized

information are hardly successful summary highlights.

8.1.1 Self-Contained Segments

A self-contained segment is, in a sense, a miniature sentence; a sentence containing incomplete or

ungrammatical constructions is incomprehensible to human inspection. Table 2.1 shows examples

of self-contained and non-self-contained segments. Since its very inception [199], the concept

of “semantically self-contained segment” has not been sufficiently examined in the literature and

lacks an universal definition. We argue in this paper that a self-contained segment shall conform to

certain syntactic validity constraints and there exists only weak dependencies between words that

belong to the segment and those do not.
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Figure 8.1: The XLNet architecture with two-stream attention mechanism is leveraged to estimate

whether a segment is self-contained or not. A self-contained segment is assumed to be preceded

and followed by end-of-sentence markers (eos).

The automatic identification of self-contained segments requires more than segmentation or

parsing sentences into tree structures [37]. Self-contained segments do not necessarily correspond

to constituents in the tree and further, there is no guarantee that tree constituents are self-contained.

In this paper, we define a segment to be a consecutive sequence of words, excluding segments

formed by concatenating non-adjacent words from consideration. We perform exhaustive search

to analyze every segment of a given sentence to determine if it is self-contained or not.

Let x = [x1, . . . ,xN] be a document sentence. We present a method to estimate whether an

arbitrary segment xi: j of the sentence is semantically self-contained or not. Our method is inspired

by XLNet [225] that introduces a novel architecture with two-stream attention mechanism for

autoregressive language modeling. Pretrained contextualized representations such as BERT and

XLNet have demonstrated remarkable success on language understanding tasks. We expect the
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 Powerful winter storm rolls in Midwest 

 storm rolls in Midwest 

 Thanksgiving plans for millions of people  

 bringing havoc to the Rocky Mountains  

 a powerful winter storm  

 threatens to scramble Thanksgiving travel plans  

 one of the busiest travel weeks of the year  

Pairwise SimilarityQuality 
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Self-Contained Segments from Sentence A
Self-Contained Segments from Sentence B

Quality 

Figure 8.2: DPP selects a set of summary segments (marked yellow) based on the quality and

pairwise dissimilarity of segments.

representations to encode the syntactic validity of segments, as similar findings are seen in recent

structural probings [68].

We hypothesize that a self-contained segment, similar to a miniature sentence, can be preceded

and followed by end-of-sentence (eos) markers without sacrificing grammatical correctness. We

follow the convention of Clark et al. [25] of defining end-of-sentence markers (eos) to include

periods and commas. Our method inserts hypothetical tokens xs and xe to the beginning and end

positions of a segment xi: j, then constructs contextualized representations for these positions, de-

noted by g(xi: j, pstart) and g(xi: j, pend), based on which we estimate how likely xs is an end-of-

sentence marker p(xs=eos|xi: j), similarly for p(xe=eos|xi: j). Their average probability indicates

self-containedness. A higher score of p(z|xi: j) suggests xi: j has a higher likelihood of being self-

contained.

p(z|xi: j)=
1
2

(
p(xs=eos|xi: j)+p(xe=eos|xi: j)

)
p(xs=eos|xi: j)=

exp(e(xs)
>g(xi: j ,pstart))

∑x′ exp(e(x′)>g(xi: j ,pstart))
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It is important to induce contextualized representations for the augmented segment without us-

ing the content of hypothetical tokens xs and xe. We leverage XLNet with two-stream attention

mechanism for this purpose, as illustrated in Figure 8.1. For the k-th position (k={i:j, start, end})

of the l-th layer, a content stream builds representation h(l)
k by attending to all tokens of the seg-

ment, whereas a query stream builds representation g(l−1)
k simultaneously without incorporating

the content of the current token xk, following the equations given below. Our method builds on the

pretrained XLNet model without fine-tuning. It relies on two-stream attention to construct deep

contextualized representations g(xi: j, pstart) and g(xi: j, pend), respectively for the beginning and end

positions.

h(l)
k = Attention(Q = h(l−1)

k ,KV = h(l−1)
i: j )

g(l)k = Attention(Q = g(l−1)
k ,KV = h(l−1)

i: j\k )

Our method is the first attempt to extract semantically self-contained segments from whole

sentences. Segments that do not resemble “miniature sentences” will be given low probabilities

by the method. E.g., “closed and hundreds of flights have been” is scored low, not only because

an end-of-sentence marker rarely occurs after “have been,” but also the syntactic structure of the

segment does not resemble that of a well-formed sentence.

We split a sentence at punctuation and extract a number of segments from each sentence chunk.

A segment is discarded if its start (or end) probability is lower than the upper quartile value, indi-

cating an inappropriate start (or end) point. The remaining segments are ordered according to the
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average probability. This process produces a collection of self-contained and partially-overlapping

segments from a set of documents. Next, we assess the informativeness of the segments and lever-

age DPP to identify a subset to form the summary highlights.

8.1.2 Segment Selection with DPP

We employ the modeling framework proposed by Cho et al. [24] to model determinantal point

processes. DPP [101] defines a probability measure P over all subsets (2|Y |) of a ground set con-

taining a collection of N segments Y = {1,2, · · · ,N}. The probability of an extractive summary,

containing a subset of the segments Y ⊆Y , is defined by Eq. (8.1), where det(·) is the determinant

of a matrix; L ∈ RN×N is a positive semi-definite matrix and Li j indicates the correlation between

segments i and j; LY is a submatrix of L containing only entries indexed by elements in Y ; I is the

identity matrix. This definition suggests that the probability of a summary P(Y ;L) is proportional

to the determinant of LY .

P(Y ;L) =
det(LY )

det(L+ I)
, (8.1)

L (θ) =
N

∑
i=1

logP(Ŷ (i);L(i)(θ)) (8.2)

A decomposition exists for the L-ensemble matrix: Li j = qi ·Si j ·q j where qi ∈ R+ is a quality

score of the i-th segment and Si j is a pairwise similarity score between segments i and j. If q

and S are available, P(Y ) can be computed using Eq. (8.1). Estimating the pairwise similarity S is

trivial, we refer the reader to [24] for details. In this paper, we present a inverted pyramid method to
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estimate the quality of segments q. The quality model is parameterized by θ , thus the L-ensemble

is parameterized the same, denoted by L(i)(θ) for the i-th instance of the dataset. Ŷ (i) represents

the ground-truth summary (Eq. (8.2)). The model is optimized by maximizing the log-likelihood,

where parameters θ are learned during training. As illustrated in Figure 8.2, DPP allows us to

identify a set of salient and non-redundant summary segments.

Inverted pyramid We describe a classifier to predict if a segment of text is summary-worthy or

not according to the inverted pyramid principle.1 It is a way of front loading a story so that the

reader can get the most important information first. E.g., the most newsworthy information such

as who, what, when, where, etc. heads the article, followed by important details, and finally other

general and background information. The inverted pyramid explains the common observation

that lead baselines consisting of the first few sentences of an article perform strongly in the news

domain.

Our classifier assigns a high score to a segment if its content is relevant to the lead paragraph,

and a low score if its content overlaps with the bottom paragraph of a news article, which usually

contains trivial details. Importantly, the classifier is trained using CNN/DM [153], rather than any

multi-document summarization data.

During training, we obtain the ground-truth summary of each article. A summary sentence is

paired with the lead paragraph of the article that contains the top-5 sentences to form a positive

instance and similarly, with bottom-5 sentences to form a negative instance. If a summary sentence

appears as-is in the top or bottom paragraph, we exclude the sentence from the paragraph to avoid

1https://en.wikipedia.org/wiki/Inverted pyramid (journalism)
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overfitting the classifier. At test time, the classifier learns to distill the essential content of the

segment and assigns a high score to it if its content is similar to the lead paragraph, indicating the

segment is relevant and summary-worthy.

For each instance, we obtain deep contextualized representation for it using the BERT archi-

tecture, where a segment and a lead (or bottom) paragraph is used as the input and the top layer

hidden vector of the [CLS] token is extracted as the representation. It is fed to a feedforward, a

dropout and a softmax layer to predict a binary label for the segment. Once the model is trained,

we apply it to a segment and its lead paragraph to produce a vector which is used as part of the

features for computing q.

DPP training. We obtain feature representations for the i-th segment by concatenating the pre-

vious vector and a number of surface features extracted for segment i. The features include the

length and position of the segment within a document, the cosine similarity between the segment

and document TF-IDF vectors [100]. We abstain from using sophisticated features to avoid model

overfitting. The features parameters θ are to be learned during DPP training.

DPP is trained on multi-document summarization data by maximizing log-likelihood. At each

iteration, we project the L-ensemble onto the positive semi-definite (PSD) cone to ensure that it

satisfies the PSD property (§8.1.2). This is accomplished in two steps, where L′ is the new L-

ensemble.
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Figure 8.3: Example of a constituent parse tree, from which tree segments are extracted.

L =
n

∑
i=0

λiviv>i (Eigenvalue decomposition)

L′ =
n

∑
i=0

max{λi,0}viv>i (PSD projection)

8.2 Experiments

8.2.1 Data Sets

Our data comes from NIST. We use them to investigate the feasibility of the proposed multi-

document summarization method. Particularly, we use DUC-03/04 [137] and TAC-08/09/10/11

datasets [28], which contain 60/50/48/44/46/44 document sets respectively. These datasets are

previously used as benchmarks for multi-document summarization competitions.2 Our task is to

generate a summary of less than 100 words from a set of 10 news documents, where a summary

2https://tac.nist.gov/data/
https://duc.nist.gov/data/
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contains a set of selected text segments. There are four human reference summaries for each

document set, created by NIST evaluators.

A system summary is evaluated against human reference summaries using ROUGE [114]3,

where R-1, R-2, and R-SU4 respectively measure the overlap of unigrams, bigrams and skip

bigrams (with a maximum gap of 4 words) between system and reference summaries. In the

following sections, we report results on DUC-04 (trained on DUC-03) and TAC-11 (trained on

TAC-08/09/10) as they are the standard test sets [72].

8.2.2 Experimental Settings

Our method for predicting self-containedness uses the pretrained XLNet-LARGE [225] to estimate

the probability of end-of-sentence markers. We require a candidate segment to contain five or more

words. Our classifier is based on the BERT-BASE model and it is fine-tuned for two epochs on the

training data. The maximum sequence length of the model is 512 tokens and the batch size is set to

16. We use the Adam optimizer with an initial learning rate of 5e−5, a warm-up period of 24,400

steps, corresponding to 10% of the training data, and linear decay after that.

3w/ options -n 2 -m -w 1.2 -c 95 -r 1000 -l 100
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Table 8.1: Results on DUC-04 dataset evaluated by ROUGE.

DUC-04 Test Set R-1 R-2 R-SU4

DPP-BERT [24] 39.05 10.23 14.35

DPP [101] 38.10 9.14 13.40

SumBasic [194] 29.48 4.25 8.64

KLSumm(Haghighi et al., 2009) 31.04 6.03 10.23

LexRank [42] 34.44 7.11 11.19

Centroid [72] 35.49 7.80 12.02

ICSISumm [58] 37.31 9.36 13.12

Opinosis [53] 27.07 5.03 8.63

Pointer-Gen [153] 31.43 6.03 10.01

CopyTrans [55] 28.54 6.38 7.22

Hi-MAP [43] 35.78 8.90 11.43

HL-TreeSegs (Our work) 39.18 10.30 14.37

HL-XLNetSegs (Our work) 39.26 10.70 14.47
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Table 8.2: ROUGE results on the TAC-11 dataset.

TAC-11 Test Set R-1 R-2 R-SU4

DPP-BERT [24] 38.59 11.06 14.65

DPP [101] 36.95 9.83 13.57

SumBasic [194] 31.58 6.06 10.06

KLSumm (Haghighi et al., 2009) 31.23 7.07 10.56

LexRank [42] 33.10 7.50 11.13

Opinosis [53] 25.15 5.12 8.12

Pointer-Gen [153] 31.44 6.40 10.20

HL-XLNetSegs (Our work) 36.50 9.76 13.34

HL-TreeSegs (Our work) 37.24 10.04 13.49

8.2.3 Ground-Truth Segments

Our DPP framework is fully supervised and ground-truth summary segments are required for train-

ing the DPP. In an ideal scenario, we would have human annotators to label the ground-truth sum-

mary segments for each document set. It is akin to label bounding boxes for objects, which allows

an object detector to be trained on millions of training examples [61]. Nonetheless, human anno-
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tation is tedious, expensive and time-consuming. We cannot afford to have human annotators to

label a large number of segments.

We introduce an approximation method instead. First, we greedily select a set of summary

sentences from a document set that achieve the highest R-2 F-score with human reference sum-

maries. Secondly, for every summary sentence, we identify a single segment from a collection of

over-generated and self-contained segments (§8.1.1), such that the selected attains the highest R-2

F-score with human summaries. Such segments are labelled as positive. This two-step process

allows for easy generation of ground-truth summary segments.

8.2.4 Summarization Results

Highlighting sub-sentence segments is particularly suited for multi-document summarization, as

it allows summaries to be understood in context. We compare our method with strong baselines

using extractive and abstractive methods, results are shown in Table 8.1 and 8.2. DPP [101] and

its variant DPP-BERT [24] use determinantal point processes to extract whole sentences from

document sets. SumBasic is an extractive approach leveraging the fact that frequently occurring

words are more likely to be included in the summary [194]. KL-Sum is a greedy approach that

iteratively adds sentences to the summary to minimize KL divergence [64]. LexRank [42] is a

graph-based approach estimating sentence importance based on eigenvector centrality. All of these

methods extract whole sentences rather than segments from sets of documents.
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Table 8.3: Examples of system output for a topic of DUC-04. Our highlighting method is superior

to sentence extraction as it can help readers quickly sift through a large amount of texts to grasp

the main points. The XLNet segments are better than subtrees. Not only can they aid reader

comprehension but they are also self-contained and more concise.

Human Abstract

• Exxon and Mobil discuss combining business operations.

• A possible Exxon-Mobil merger would reunite 2 parts of Standard Oil broken up by the Supreme Court in 1911.

• Low crude oil prices and the high cost of exploration are motives for a merger that would create the world’s largest oil company.

• As Exxon-Mobil merger talks continue, stocks of both companies surge.

• The merger talks show that corporate mergers are back in vogue.

• Antitrust lawyers, industry analysts, and government officials say a merger would require divestitures.

• A Mobil employee worries that a merger would put thousands out of work, but notes that his company’s stock would go up.

Highlighting (Tree Segments)

•Whether or not the talks between Exxon and Mobil lead to a merger or some other business combination, America’s economic history is already

being rewritten.

• The boards of Exxon Corp. and Mobil Corp. are expected to meet Tuesday to consider a possible merger agreement that would form the world’s

largest oil company, a source close to the negotiations said Friday.

• Exxon Corp. and Mobil Corp. have held discussions about combining their business operations, a person involved in the talks said Wednesday.

• News that Exxon and Mobil, two giants in the energy patch, were in merger talks last week is the biggest sign yet that corporate marriages are

back in vogue. (Rest omitted.)

Highlighting (XLNet Segments)

•Whether or not the talks between Exxon and Mobil lead to a merger or some other business combination, America’s economic history is already

being rewritten.

• Still, it boggles the mind to accept the notion that hardship is driving profitable Big Oil to either merge, as British Petroleum and Amoco have

already agreed to do, or at least to consider the prospect, as Exxon and Mobil are doing.

• Oil stocks led the way as investors soaked up the news of continuing talks between Exxon and Mobil on a merger that would create the world’s

largest oil company.

• Although the companies only confirmed that they were discussing the possibility of a merger, a person close to the discussions said the boards of

both Exxon and Mobil were expected to meet Tuesday to consider an agreement.

• Analysts predicted that there would be huge cuts in duplicate staff from both companies, which employ 122,700 people. (Rest omitted.)
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We further consider abstractive summarization methods. Opinosis [53] creates a word co-

occurrence graph and searches for a graph path to generate an abstract. PointerGen [153] learns

to reuse source words or predict new words. The documents are concatenated to serve as input.

CopyTrans uses a 4-layer Transformer for the encoder and decoder [55]. Hi-MAP introduces an

end-to-end hierarchical attention model [43] to generate abstracts from multi-document inputs.

We explore two variants of our proposed method, called HL-XLNetSegs and HL-TreeSegs, fo-

cusing on highlighting summary segments. The former utilizes XLNet to extract a set of partially-

overlapping segments from a sentence; the latter decomposes a sentence constituent parse tree into

subtrees and collect segments governed by the subtrees. An illustration is shown in Figure 8.3.

Constituent parse trees are obtained using the Stanford parser [124]. In both cases, the segments

are passed to DPP, which identifies a set of important and non-redundant segments as highlights.

As shown in Tables 8.1 and 8.2, we find both methods to perform competitively when com-

pared to the leading extractive and abstractive systems, while generating segments with simpler

structure. Our HL-XLNetSegs method achieves the highest scores among all systems on DUC-04

and it achieves comparable results to others on TAC-11. Breaking a sentence into smaller segments

expands the search space dramatically, making it a challenging task to accurately identify summary

segments. The degree of difficulty involved in generating sub-sentence highlights is thus beyond

that of sentence selection. A similar finding is noted in other studies [20].

Table 8.5 presents a direct comparison of XLNet and tree segments on DUC and TAC datasets.

We find that XLNet segments are more concise than tree segments. A tree segment contains 13 to-

kens on average, while an XLNet segment contains 9.6 tokens on DUC-04. Both methods produce
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Table 8.4: Examples of segments generated by XLNet and their scores of self-containedness.

Segments and Scores of Self-Containedness

1. 0.646 winter storms hit during one of the year’s busiest

travel weeks

2. 0.644 storms hit during one of the year’s busiest travel weeks

3. 0.584 of the year’s busiest travel weeks

4. 0.525 one of the year’s busiest travel weeks

. . . . . . . . .

10. 0.132 and hundreds of flights have been canceled as winter

storms hit during one of the year’s busiest travel weeks

11. 0.122 and hundreds of flights have been canceled

as winter storms hit

. . . . . . . . .

150. 0.0019 of flights have been canceled as winter

151. 0.0014 Some interstates are closed and hundreds of flights

have been canceled as winter

152. 0.0013 hundreds of flights have been canceled as winter

153. 0.0008 are closed and hundreds of flights have been

canceled as winter

a large number of candidate segments, ranging from 350 to 550 segments per document set, with

only 9 to 17 ground-truth summary segments per document set. The small ratio poses a substantial

challenge for DPP. Not only must it identify salient content but it has to accurately identify the

segments worthy of being included in the summary. In Table 8.3, we show example highlighting

of both methods; more examples are available in the supplementary.
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Table 8.5: Statistics of text segments generated by XLNet and the constituent parse tree method

on DUC/TAC datasets.

DUC TAC

# Words per XLNet segment 9.55 8.05

# XLNet segments per sentence 2.48 2.49

# Total segments per document set 398 352

# Summary segments per document set 9.62 9.09

# Words per tree segment 12.89 13.94

# Tree segments per sentence 3.31 3.33

# Total segments per document set 549 478

# Summary segments per document set 13.68 16.56

Segments generated by XLNet are sorted according to their scores of self-containedness,

p(z|xi: j). In Table 8.4, we provide examples of segments and their scores. The higher the score,

the more likely the segment resembles a “miniature sentence.” We are particularly interested in un-

derstanding where the original sentence is placed according to XLNet; this is shown in Figure 8.4.

We observe that in 60% of the cases, the original sentence is placed among the top-10 candidates,

suggesting the effectiveness of the XLNet model. As segments are shorter and occur more often in

natural language texts, it is possible that they are considered more self-contained than the original

sentence.
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Figure 8.4: Absolute position of the whole sentence among all segments sorted by XLNet scores

of self-containedness.

Segments extracted from subtrees are sorted by the depth of tree nodes. The higher nodes are

informative constituents denoting complex noun phrases and sentential clauses [76]. An important

caveat of the tree segments is their lack of coverage. E.g., “4,645 people died” is a valid self-

contained segment, but it does not belong to a tree constituent, as seen in Figure 8.3. Given that

drawback, we focus on segments created by XLNet in our experiments.

8.2.5 Self-Containedness

We perform further analysis to investigate the effectiveness of our method on generating self-

contained segments (§8.1.1). It is impractical to create a gold-standard by exhaustively enumer-

ating all segments then asking human raters to judge each of them, as the number of segments is

polynomial. Instead, we perform post-hoc evaluation on segments generated by our XLNet algo-
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Table 8.6: Human evaluation of the self-containedness of text segments. The top-3 segments of

XLNet exhibit a high degree of self-containedness: 61% of them have an average score of 3 or

above, 34% have ≥4 score, and 12% receive the full score.

Self-Containedness Score

XLNet ≥3(%) ≥4(%) =5(%) Average

All Segments 54.86 30.00 10.68 2.80

Top-5 Segments 55.25 30.24 10.78 2.81

Top-3 Segments 61.04 34.04 12.42 2.95

rithm, which are used as input to DPP. We sample 20 topics from TAC-11, with 3 sentences per

document for a total of 585 sentences and 1,792 system-generated segments. A human rater is pro-

vided with the original sentence and its segments and asked to score each segment on a Likert scale

of 1 (worst) to 5 (best) for self-containedness. We employ 5 human raters to judge each segment,

the average scores are reported in Table 8.6. We observe that 61% of top-3 segments have an aver-

age score of ≥3; 34% have a score ≥4; and 12% receive the full score. The human raters are able

to achieve a moderate level of agreement, 44% of the segments have their majority score agreed

by three or more raters. Table 8.7 presents example segments and their human assessment scores

(more in supplementary). Our sub-sentence segments allow the reader to grasp the main points

while remaining succinct and accessible. It thus offers a promising avenue of future research.

143



Table 8.7: Examples of text segments produced by the XLNet algorithm. Human assessment

scores of self-containedness are shown in the parentheses (1 being worst & 5 being best).

[Original Sentence] District Attorney David Roger agreed

to drop charges including kidnapping, armed robbery, as-

sault with a deadly weapon and conspiracy against both

men.

• District Attorney David Roger agreed to drop charges includ-

ing kidnapping, armed robbery, assault with a deadly weapon

and conspiracy against both men. (4.0)

• District Attorney David Roger agreed to drop charges includ-

ing kidnapping, armed robbery, assault with a deadly weapon

and conspiracy against both men. (3.8)

• District Attorney David Roger agreed to drop charges includ-

ing kidnapping, armed robbery, assault with a deadly weapon

and conspiracy against both men. (3.6)

8.3 Conclusion

We make a first attempt to create sub-sentence summary highlights that are understandable and

require minimum information from the surrounding context. Highlighting is important to help

readers sift through a large amount of texts and quickly grasp the main points. We describe a

novel methodology to generate a rich set of self-contained segments from the documents, then

use determinantal point processes to identify summary highlights. The method can be extended

to other text genres such as public policies to aid reader comprehension, which will be our future

work to explore.

144



CHAPTER 9
CONCLUSION

In this dissertation, we study the problem of sequential data understanding. We hypothesized

and demonstrated that indeed sequential data share some common characteristics that would allow

one to borrow ideas from one domain to solve problems in others. A great example of this, as

we thoroughly discussed throughout this dissertation, is the shared characteristics of video and

text. For instance, we modeled videos of human actions as a sequence of “words” that can be

explored to discover latent information, in a manner very much similar to text, e.g. in terms

of building codebooks, sequence learning, summarization, etc. Thus, this dissertation used two

different problems of action recognition and text summarization, in different domains of Computer

Vision and Natural Language Processing, to demonstrate and exploit this latent common thread.

In essence, once encoded in the feature space, for understanding and summarizing sequential

data, we strive to discover their contextual information, regardless of the modality. The following

is a summary of our findings and proposed models on the two sets problems that we studied in this

context.
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9.1 Summary

For action recognition, we present a novel method for learning video-level features in a data-

driven manner and evaluate it on large-scale action recognition datasets. The temporal CNNs

with different sizes of kernels can extract quality features and are shown to outperform existing

approaches. The extracted features contain information on how the input sequence is changed over

time, which is the key to attaining the state-of-the-art results.

The two stream network that is employed in many works lacks the spatio-temporal cues for

the action recognition task. We propose a fusion network that takes temporal changes of two

modalities, appearance and motion, to obtain spatio-temporal features. The proposed network

utilizes the temporal CNNs with a residual connection and is applied to low-level features from

appearance and motion data to extract temporal information. The network then fuses the two

different temporal information to obtain spatio-temporal features. This fusion strategy is shown to

be effective for action recognition in two action recognition benchmarks.

The shortcomings of local attention by using CNNs or recurrent neural networks can be over-

come with self-attention networks. The self-attention network can correlate short and long term

temporal sequences so that a variety of features can be retrieved to understand sequential data. The

skeleton-based videos are processed with conventional CNNs to extract low-level features. Then,

the self-attention networks extract temporal associations between pairwise features for the action

recognition task. A diversity of models utilizing the self-attention networks are introduced that

outperform the state-of-the-art approaches in two large-scale datasets.
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While the video is a sequence of frames and it is important to extract temporal information,

text is a sequence of words and context from each sentence is the key information to understand

better the relations among sentences. Our proposed method of extracting context information are

combined with the DPP framework to outperform the state of the art in multi-document summa-

rization. For obtaining context, we employ two different methods. The first one is the capsule

network that detects transformations of features, so that correlations among word features can be

discovered. The association of each word feature is the context in a sentence. The other approach

is to employ the language models that are trained on huge amount of text data with the transformer

based models. As the data-driven language model performs well on many NLP tasks, and holds

rich context information, we use the pretrained network to obtain contextualized representations of

each sentence. The proposed models outperform the state of the art on two multi-document bench-

marks and show the quality summaries that are faithful representatives, while avoiding redundant

sentences.

We make a first attempt in the literature to create sub-sentence summary highlights that are

understandable and require minimum information from the surrounding context. Highlighting is

important to help readers sift through a large amount of texts and quickly grasp the main points. We

describe a novel methodology to generate a rich set of self-contained segments from the documents,

then use determinantal point processes to identify summary highlights.
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9.2 Future Work

In this dissertation, we have shown that sequential data in different modalities can be processed in

a similar way. The most important information to be retrieved from sequential data is the latent

temporal relation information, or context information. Different methods are introduced to extract

the context information: 1D CNN, Self-Attention Network, Capsule Network, and pretrained Lan-

guage Models. Nevertheless, there is still need for further investigation of different approaches

to discover the context information, and potentially many other interesting questions. Follow-up

future work to this dissertation may include the following:

The first promising direction is to explore self-supervised or unsupervised methods to learn

spatio-temporal context information [184] for the action recognition task. Data driven machine

learning methods require more and more data for training, but the annotation cost is expensive and

it is hard to get good quality annotations. Thus, unsupervised learning methods without annotation

data will contribute to learn more basic principle of human body movement. The trained model

would also be beneficial to different, but related tasks, such as facial expression recognition, or

gesture recognition [162].

Another direction for the text summarization task could be to expand to other text genres such

as public policies to aid reader comprehension, or multi-lingual applications [186]. Transcripts, for

example, can be extracted automatically and the proposed summarization systems can be used to

highlight some of important sentences or segments. There are many different genres to be explored:

policies, contracts, and medical prescriptions. Also, the introduced methods can be employed to
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be compared to the ones generated by an abstractive summarization system to evaluate the factual

consistency of the abstractive summary.

Finally, given the confluence of different modalities in sequential data, as demonstrated in

this dissertation, one could really attempt to literally bring the two worlds together. As we are

living in the era of big data, different types of multi-modal and multimedia data are generated

every second, e.g. live-streaming videos from numerous streamers, with associated textual and

other met-data. One could thus look at joint summarization problems [185], using a common

underlying framework, or joint highlights of video and associated text. To conclude, we hope that

by emphasizing the common nature of sequential data in this dissertation, we opened new doors to

explore different disparate modalities jointly for discovering knowledge from big sequential data.
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[218] Daniel Weinland, Rémi Ronfard, and Edmond Boyer. A survey of vision-based methods for
action representation, segmentation and recognition. Computer Vision and Image Under-
standing, 115(2):224–241, 2011.

[219] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge cor-
pus for sentence understanding through inference. In Proceedings of the North American
Chapter of the Association for Computational Linguistics (NAACL), 2018.

[220] Kristian Woodsend and Mirella Lapata. Automatic generation of story highlights. In Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
565–574, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

[221] Yuanjun Xiong, Kai Zhu, Dahua Lin, and Xiaoou Tang. Recognize complex events from
static images by fusing deep channels. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1600–1609, 2015.

[222] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks
for skeleton-based action recognition. In AAAI, 2018.

[223] Min Yang, Qiang Qu, Ying Shen, Qiao Liu, Wei Zhao, and Jia Zhu. Aspect and sentiment
aware abstractive review summarization. Proceedings of the International Conference on
Computational Linguistics (COLING), 2018.

[224] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. XLNet: Generalized autoregressive pretraining for language understanding.
https://arxiv.org/abs/1906.08237, 2019.

[225] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
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