
PREDATOR: A Cache Side-Channel Attack
Detector Based on Precise Event Monitoring

Minjun Wu
University of Minnesota
Minneapolis, MN, USA

wuxx1354@umn.edu

Stephen McCamant
University of Minnesota
Minneapolis, MN, USA
mccamant@cs.umn.edu

Pen-Chung Yew
University of Minnesota
Minneapolis, MN, USA

yew@umn.edu

Antonia Zhai
University of Minnesota
Minneapolis, MN, USA

zhai@umn.edu

Abstract—Recent work has demonstrated the security risk associated
with micro-architecture side-channels. The cache timing side-channel is
a particularly popular target due to its availability and high leakage
bandwidth. Existing proposals for defending cache side-channel attacks
either degrade cache performance and/or limit cache sharing, hence,
should only be invoked when the system is under attack. A light-
weight monitoring mechanism that detects malicious micro-architecture
manipulation in realistic environments is essential for the judicious
deployment of these defense mechanisms.

In this paper, we propose PREDATOR, a cache side-channel attack
detector that identifies cache events caused by an attacker. To detect
side-channel attacks in noisy environments, we take advantage of the
observation that, unlike non-specific noises, an active attacker alters
victim’s micro-architectural states on security critical accesses and thus
causes the victim extra cache events on those accesses. PREDATOR
uses precise performance counters to collect detailed victim’s access
information and analyzes location-based deviations. PREDATOR is
capable of detecting five different attacks with high accuracy and
limited performance overhead in complex noisy execution environments.
PREDATOR remains effective even when the attacker slows the attack
rate by 256 times. Furthermore, PREDATOR is able to accurately report
details about the attack such as the instruction that accesses the attacked
data. In the case of GnuPG RSA [20], PREDATOR can pinpoint the
square/multiply operations in the Modulo-Reduce algorithm; and in the
case of OpenSSL AES [45], it can identify the accesses to the Te-Table.

I. INTRODUCTION

Recently, numerous work has demonstrated the severity of micro-
architectural side channels that widely exist but have been hidden in
plain sight for decades. Among them, various cache timing side-
channels can leak information from commonly deployed security
libraries [35], [69] on different cache-related micro-architectural
components [10], [21], [47], [51], [64], [66], [68]. These work shows
that such cache timing side-channels are particularly important due
to their availability, high leakage bandwidth and feasibility. During
a cache side-channel attack, a victim’s cache access patterns are
leaked through the hardware cache micro-architectural states. Various
optimization features in cache hierarchy that are integrated on modern
micro-processors have created more vulnerabilities for hackers to
exploit, and that made them difficult to mitigate completely.

Researchers have proposed various countermeasures, such as ran-
domized caches [6], [33], [34], [50], [52], [58], hardware/OS resource
partitioning [32], [57], [60], [72] and execution obfuscation [5],
[7], [46] to defend against cache side-channel attacks. However,
enabling these mechanisms unconditionally can either degrade cache
performance and/or limit necessary data sharing. Therefore, dynamic
approaches such as run-time attack detectors [2], [9], [13], [25], [28],
[30], [41]–[43], [48], [70], [71] that monitor cache micro-architectural
behavior to identify suspicious manipulations have been proposed to
effectively address the security concerns with minimal overheads.

When attackers attempt to exploit micro-architecture side-channels,
they must manipulate and monitor certain shared micro-architecture

structures, and thus potentially leave behind some clues. In addition,
when the attacker manipulates shared micro-architecture resources, it
can also affect the victim’s micro-architecture states in those shared
resources, such as cache-line existence. They provide opportunities
for run-time detectors to catch active attacks. For example, in the
Prime+Probe attack [35], it evicts victim’s cache lines by accessing
a pre-determined eviction set. When the victim accesses the evicted
cache-line, it observes a cache miss that otherwise will not occur.
When malicious events are initiated by the attacker (i.e. attacker
events), such as eviction set accesses, it can potentially create a side
effect on the victim (i.e. victim events), such as unexpected cache
misses. These events can be captured by hardware performance coun-
ters when they are deployed to monitor run-time micro-architecture
events.

Existing work attempts to detect either attacker events [41] and/or
victim events [43]. However, those approaches are not very effec-
tive in realistic execution environments. In realistic environments,
precisely identifying attacker/victim events requires techniques that
can effectively filter out noises. On modern computing platforms,
multiple applications are often running on the same processor, and
potentially can share the same library. The cache contention among
these applications can generate noises (i.e.noise events) such as
massive cache misses. Noise events can mask victim/attacker events
and make them difficult to identify. However, existing work has not
provided a comprehensive analysis and methodology for handling
noises in detectors. To the best of our knowledge, this is the first
paper to thoroughly address the side-channel attack-detection problem
in noisy environments.

Compared to environmental noises, both attacker initiated events
and their corresponding victim events are highly correlated with
victim’s security-critical information. In particular, for a run-time
detector that are monitoring a victim’s execution, noise events are
often non-specific, but suspicious victim events are usually concen-
trated on a few locations that reflect the victim’s security-critical
information. For example, to attack the Modulo-Reduce operation
in a vulnerable RSA implementation, the attacker must monitors
instruction accesses after the secret-related branch in the code, and
the victim will experience suspicious instruction-cache misses only
on certain functions. But cache misses caused by environmental
noises are non-location specific and can appear quite random. While
identifying those victim events is key to distinguish the interferences
caused by an attack from those by the environmental noises, most
existing detectors are built on statistical performance counters that
can only provide numerical profiling and lack the precise location
information to identify victim events.

In this work, we propose a new cache side-channel detector, named
PREDATOR, that uses precise performance counters rather than
statistical counters to detect victim events. The precise performance



counters sample the execution and returns detailed information such
as the target addresses. With the help of precise counters, PREDA-
TOR is able to monitor the user’s run-time micro-architecture events
and identify suspicious victim events caused by an attack.

PREDATOR’s detection algorithm is based a signal-noise analysis
that differentiates the location-based deviation from application’s
noise events. In a normal environment, each cache-line has certain
chance to be evicted by other applications. When side-channel attacks
occur, security-critical accesses will be affected by the attacker and
show abnormal cache events that deviate from normal noise events.
To measure this deviation, PREDATOR first builds the application’s
clean-room cache profile for necessary cache events. Then PREDA-
TOR measures extra cache events under different noise environments
and records the access candidates that are sensitive to noise. At
run-time, PREDATOR estimates cache events expectation under the
current noise level and compares with its observation. If certain
accesses significantly exceed the expectation, PREDATOR will raise
an alarm and report these suspicious cache events.

PREDATOR is implemented concisely in C with careful optimiza-
tion to reduce its overhead. We demonstrate that PREDATOR can
detect several attacker/victim scenarios in complex execution envi-
ronments: 1) multiple applications with large memory footprints, and
2) multiple processes sharing the same security critical information.
We show that PREDATOR can achieve high accuracy in detecting
various attacks, including hard-to-detect Reload+Refresh [10] and the
directory-based attacks [66]. We also demonstrate that PREDATOR
can detect slow-rate attacks that reduce the attack bandwidth by 256
times in a noisy environment with limited performance overhead.

We would like to mention that PREDATOR is based on existing
performance counters, and we demonstrate the advantage of using
precise counters instead of statistical counters in realistic noisy
environments. We also discuss the limitation of sampling-based
performance monitoring and advocate that additional hardware can be
used to encapsulate and improve precise counters for various micro-
architecture events. We also suggest that the side-channel attack
detector should be implemented with software to handle various
configuration information and updated for new attacks.

In summary, we have proposed PREDATOR, a practical side-
channel detector that is built on existing hardware performance
counters to monitor the onset of an attack in noisy environments.
In the context of using side-channel detectors, this paper has made
the following contributions:

1) It demonstrates the feasibility of building practical side-channel
detectors using precise micro-architecture event counters. It
shows that, comparing with the non-specific environmental
noises, victim events are highly correlated to where the vulner-
abilities are, thus it can effectively deal with the environmental
noises.

2) It proposes a signal-noise analysis for cache events to identify
the location-based deviation (victim events) from noise events.

3) It provides an evaluation of the proposed detection schemes
in a wide variety of execution environments, with detailed
vulnerability results and analysis.

II. BACKGROUND AND RELATED WORK

In this section, we first review existing work on different types
of cache side-channel attacks, and then review the mechanisms
that detect and defend against those attacks. We focus on run-time
detection techniques that attempt to capture the onset of an attack.
Finally, we provide a brief introduction on the precise event sampling
mechanisms that are available on most modern microprocessors.

A. Cache Timing Side-Channels

Numerous cache side-channel attacks that exploit various aspect
of micro-architecture states have been proposed [4], [10], [21], [23],
[24], [35], [51], [64], [69]. The Flush+Reload [69] attack creates a
high-bandwidth cache-side channel but relies on the ability to flush
the memory with the clflush instruction and page sharing between
the attacker and the victim. The Prime+Probe [35] attack eliminates
these constraints by creating an eviction set. Several proposals, such
as Flush+Flush [23] and Evict+Reload [24], extend the concept of
the eviction-set to build successful attacks.

More recently, researchers have demonstrated how cache side-
channel attacks can be launched without directly monitoring the
cache presence states. Rather, these attacks monitor secondary micro-
architecture effects of cache accesses. TLBleed [21] creates attacks
on the private Translate Look-aside Buffer (TLB) when the victim
and the attacker are co-located on the same core. Yan et al. [66]
proposes an attack targeting cache coherence directory, instead of
caches in server microprocessors that use non-inclusive caches.
Reload+Refresh [10] attacks the last-level cache replacement state
rather than data presence, consequently, the victim only suffers
cache misses in the private cache rather than the last-level cache.
Prime+Scope [51] not only primes the cache sets, but also the
replacement states. It creates a scope cache line that has high priority
in the higher-level caches and low priority in the lower-level caches.
Once these cache lines are replaced in the lower-level caches, the
attacker will observe a cache miss in the higher-level cache. This
allows the side-channel to be constantly open and increases the attack
efficiency.

Similar to side-channel attacks, recent work on covert-channel
attacks [12], [29], [31] has also been extended to exploit micro-
architecture states that are not directly related to the presence of data
in the cache. Previous work has shown that LRU states [64], cache
coherence states [68], and network-on-chip contention [47] can be
exploited to construct covert-channels.

B. Defend Against Cache Side-Channel Attacks

Defending against cache side-channel attacks can be achieved
through hardware isolation, operating system resource management,
as well as code hardening. Secure cache micro-architectures [27],
[33], [34], [52], [56], [58], [61], [65] can close the cache side-
channel via mechanisms such as random indexing, robust replacement
policies, and partitioning. However, advances in hardware support
are often challenged by emerging attacks. For example, some secure
randomization cache designs are still vulnerable to schemes that use
a probability analysis [6], [50]. When new classes of attacks emerge,
existing hardware solutions often lack the flexibility to adapt.

System-level solutions for defending cache side-channel at-
tacks [17], [22], [32], [36], [39], [44], [57], [60], [72] close the side-
channel by creating isolation between the victim and the attacker
through intelligent resource management, such as cache partition-
ing [32], [60], memory mapping [57], [72] and process schedul-
ing [36]. While partitioning offers strong isolation and achieves
relatively low performance overhead, one challenge is the scalability
when the number of cores/processes/security-regions increases. Cache
side-channel can also be closed by code obfuscation, either through
the source code re-implementation [8], compile-time randomiza-
tion transformation [7] and constant-timing transformation [5], [46].
However, these software-based approaches often incur significant
performance overhead when applied indiscriminately.

Another approach is to detect potential cache side-channels by
either identifying vulnerabilities on the victim or by detecting the



presence of attackers. For the former, the detector analyzes the
data-flow characteristics and demonstrates potential leakage on given
cache models [11], [54], [55], [59]. Brotzman et al. [11] explored run-
time execution flow through symbolic execution. Wang et al. [59]
targeted compiled cryptography libraries and recovered data-flow
through reverse-engineering. Weiser et al. [63] improved detection
accuracy using a differential address-trace analysis.

C. Run-time Detection

In cache side-channel attacks, the attackers perform a sequence
of well-designed memory operations to interfere with the victim’s
cache states and infer cache access patterns of the victim. However,
such attacker’s memory operations in active side-channels can also
be detected using Performance Monitoring Unit (PMU) [14]. We
can infer an attacker’s presence and behavior through the changes
in victim’s cache states.

Various cache side-channel detectors that identify suspicious at-
tackers or attack behavior have been proposed [2], [9], [13], [25],
[28], [30], [41]–[43], [48], [70], [71], and they can be categorized in
several ways. First, detectors can choose to detect an attacker’s events
such as eviction-set accesses or the cache calibration process [41],
victim’s events such as unexpected cache misses during the execution
of security critical regions [43], or both [25]. Since a detector should
not raise the alarm to the attacker or any process other than the
victim’s, detectors that identify attacker events should best report
their results to some special hardware. Therefore, most detectors
collect cache-related statistics and report to the victim using existing
Hardware Performance Counters (HPCs) such as Whisper [43], or use
special hardware to analyze and detect side-channel leakage [25],
[41]. Second, based on detector’s classification algorithm, existing
detectors can be either signature-based [9], [13], [43], [48], [70]
that use benign/attack scenarios to train the classifier, or anomaly-
based [2], [13], [28], [30], [41], [70], [71] that raise alarms to
all abnormal behavior based on the execution profile. Lastly, for
detection algorithms, most existing approaches use machine-learning
based techniques such as Support Vector Machine (SVM) [2], [13],
[43], [48], decision tree [43], [71], random-forest [2], [43] and
Perceptron/Neuron Network [2], [41], [71].

The effectiveness of a detection scheme can be evaluated using
different metrics, which include precision (false positive/negative,
precision/recall and F1 score), timeliness, runtime overhead, noise
tolerance, as well as the classes of attacks that can be detected [1].
It is very challenging for a detection scheme to do well on all these
metrics. Also, most existing detection schemes lack the analysis and
discussions on complex issues in execution environments such as
noises in the detection. We will present how PREDATOR handles
the noise issues in Section III-C.

D. Precise Event Sampling

Existing Intel and AMD PMU support can be configured in a
counting mode or a sampling mode. The counting (or statistical) mode
reports the total number of occurrences on some specific events. The
sampling mode reports detailed information of one sample after a
pre-specified number of such events. Precise sampling, such as Intel
Processor Event-Based Sampling (PEBS) or AMD Instruction-Based
Sampling (IBS), is an extension of the sampling mode in which
the processor reports additional information along with the collected
sample.

The Intel precise event sampling feature was first introduced in the
Intel NetBurst micro-architecture (2000) [49] and is referred to as
Data Event Address Registers (DEAR) in the Itanium processor [37]

prior to the Intel Core series. The precise event sampling feature is
widely used in performance profiling tools such as Intel VTune [53],
PAPI [62], and Linux perf [15]. Previously, precise sampling has
been used to detect false sharing in Intel’s Haswell architecture [38].
Ferracci [19] suggests using Intel PEBS to detect cache side-channel
attacks, but provides no details on how it can be achieved. To the
best of our knowledge, our work is the first attempt to use precise
event sampling to detect cache side-channel attacks.

As an advanced performance monitoring mechanism, precise sam-
pling only captures a portion of the hardware events, but with much
more detailed information on the collected samples. Therefore, it
provides a new perspective to address the environmental noise issue
in detecting cache side-channel attacks. In the following sections, we
discuss how the precise sampling mechanism can be used to detect
cache side-channel attacks.

III. PREDATOR: TECHNIQUE OVERVIEW

In a cache side-channel attack, the attacker performs a sequence of
well-designed cache manipulations to probe the victim’s cache states
and infer its cache access patterns. The attacker’s probing affects
the victim’s cache states, and thus can be detected using micro-
architecture performance counters that monitor and report cache
events to determine an active side-channel attack. However, in a real-
istic execution environment, attacker-issued probings can hide among
cache accesses generated by other co-located benign applications,
which we refer to as environmental noises. Unlike environmental
noises that tends to be more random, attacker cache probings often
target specific security-critical data or code regions. Therefore, given
the detailed information provided by precise performance counters,
such as the addresses of cache misses, we can identify victim events
caused by the attacker even in a noisy execution environment. This
section introduces PREDATOR’s techniques that use existing precise
counter mechanisms to detect run-time cache side-channel attacks.

A. Threat Model

For the purpose of our discussion, we classify side-channel at-
tacks along two axes. An attack is active if the attacker affects
and monitors the victim’s micro-architecture states. On the other
hand, if the attacker only monitors (but is not affecting) the micro-
architecture states, the attack is considered passive. An attack can
also be classified based on the micro-architecture states it affects and
monitors. Most existing side-channel attacks are active attacks on
cache memories [10], [23], [35], [51], [66], [69], while some target
the port contention [3]. There are relatively few examples of passive
side-channel attacks as they are more challenging to construct [47].
This paper focuses on active attacks that affect and monitor cache-line
states. Although it is possible to extend the proposed mechanisms to
active/passive attacks on other micro-architectural components, the
required precise counter information, such as access latencies, is not
widely available on current processors.

In the threat model that we address, the attacker and the victim
share one or more levels of the cache memory. This most often
occurs when the attacker and the victim reside on the same CPU
processor but running on different cores. Due to the availability of
limited counters, the existing precise event sampling schemes only
support limited event types per configuration. In this work, we only
attempt to detect cache side channels at the shared last-level cache.
With an enhanced counter configuration, it is feasible to detect attacks
at the first-level cache LRU state [64] or the Translation Look-
aside Buffer (TLB) [21]. If future microprocessors can relax the
constraints on existing precise event counters, it is even feasible



to simultaneously detect attacks at multiple levels of the cache
memory. The applicability of our technique is thus quite general, but
is currently limited by the capability of existing available hardware.

PREDATOR relies on trusted performance counter information.
In existing systems, this implies that the operating system and the
virtualization layers must be trusted not to tamper with performance
counter information. Performance counters are often considered as
performance enhancing tools, and thus their security implication is
not thoroughly evaluated. In response to the increasing concern over
micro-architecture side-channel attacks, we believe that hardware
performance monitors can play a significant role. Without additional
support, we must include the OS that manages the hardware perfor-
mance counter in the trusted computing base. However, we believe
it is possible to relax this constraint in the future if the hardware
manufacturers can include performance counters in the same security
domain as the victim’s process. A discussion on how to support
performance counters inside a security domain is beyond the scope
of this paper.

B. Interference in the Last-Level Cache

In this section, we discuss how the presence of an attacker can
affect the victim’s behavior. When the victim and the attacker are
located on different cores within the same processor, the closest
shared resource is the last-level cache. Hence, we focus our effort on
collecting precise last-level cache events and argue that it is sufficient
to detect all existing eviction-based cross-core side-channel attacks.

For a cross-core side-channel attack, there is usually a bi-
directional contention between the attacker and the victim. This
contention is built on a shared micro-architectural resource with
limited capacity, such as the last level cache and coherence directory.
Both the attacker and the victim can infer the other’s behaviors
by monitoring the shared state. The victim’s behavior breaks the
attacker’s manipulation, thus the attacker could probe this change to
infer the victim’s action. Correspondingly, the attacker’s manipulation
and/or probing will cause victim a different micro-architectural event,
thus it could be captured by a detector.

While existing attacks implement different manipulation tech-
niques, most of them generate the bi-directional last-level cache-
related contention between the victim and the attacker. For example,
Flush+Reload [69] and Prime+Probe [35] monitor the target cache
line and evict it with clflush instruction or the eviction set.
While Flush+Flush [23] hides the attacker’s cache behavior, it also
evicts the victim’s target cache line with the clflush instruction.
Similar to Prime+Probe, coherence directory attack [66] applies the
same eviction-set idea on the coherence extended directory for non-
inclusive caches and leads to victim’s private cache misses due to
directory contention. Reload+Refresh [10] manipulates the last-level
cache set with specific replacement states. To ensure that the victim
accesses then changes those replacement states, Reload+Refresh
evicts the victim’s target cache line from the private cache and keeps
it in the last-level cache, which results in victim’s last-level cache hit
events.

Some researchers propose covert-channels targeting micro-
architectures such as the coherence states [68] and the Network-on-
Chip [47] before a request arriving the last-level cache. However,
monitoring a cross-core victim without interfering the last-level
cache is challenging, the attacker still needs to prevent the victim
from accessing cache lines in its private cache if these attacks are
encapsulated for side-channel purposes.

On the victim side, absence of the attacker, there are three cases
of security-critical accesses: 1) private cache hits, 2) last-level cache

hits, and 3) last-level cache misses. For the most common case such
as a private-cache hit, if the attacker is present, the targeted cache line
will be evicted and accessed from the last-level cache or the main
memory. Therefore, once it is under a cross-core attack, the victim
will observe a distinguishable longer access latencies comparing to
a no-attack scenario. We call these unexpected cache events victim
events, and PREDATOR will try to detect such victim events, and
raise an alarm for a potential attack.

If a victim’s normal execution shows a pattern of heavy last-level
cache accesses, which means the victim has a memory access pattern
of excessive private-cache misses, known as self conflicts [67], we
argue that this access pattern will be hard for an attacker to launch a
cross-core side-channel attack because such heavy cache contention
will also hinder the attacker’s last-level cache manipulation. In this
case, it is hard to differentiate the target cache-line accesses from
victim accesses for both the detector and the attacker.

From the perspective of designing an effective detector, detecting
attacker events is challenging because of various attacker techniques
such as the eviction set, the clflush instruction, and the manipula-
tion of replacement states or the coherence directory. It is possible to
detect them with new improved hardware (e.g. PerSpectron [41]), but
they often require a large number of performance counters to have
a comprehensive defense. We observe that, given the constraints of
launching an effective cross-core attack, manipulating and monitoring
micro-architectural states in the shared last-level cache is unavoidable
because it is where the attacker and the victim have a commonly-
shared system resource. If that is the case, the victim will be able
to observe unexpected last-level cache events caused by the attacker.
Therefore, monitoring a victim’s last-level cache events such as cache
hits/misses is effective and necessary to identify any potential cross-
core cache side-channel attack.

C. Precise Counters in Realistic Environments

Noises appear widely in a computer system. For a cache side-
channel attack, micro-architectural cache events generated by other
actively running programs affect both the attacker and the victim.
For a security-critical code region such as a cryptographic library,
the environmental noises come mainly from two sources: programs
running by other applications, and other programs accessing the same
library. The first source of noises may create heavy cache contention,
evicting the victim’s cache lines inadvertently and triggering the
attack detector with a false alarm. However, such heavy contention
may also disturb an attacker’s micro-architectural manipulation and
result in a failure of the attack.

With the second source of noises, an attacker’s evicted cache
lines may be loaded back to the cache hierarchy, and thus mislead
the victim’s detector with a false-negative error (see Section V-C).
However, the attacker will also be affected by such noises, and
will observe a confusing cache behavior that comes from a mix
of several programs. The attacker thus cannot identify the expected
target behavior (Section VI-B), which can result in a failed attack,
i.e. the failed detection by the detector is actually not a false-negative
error in the sense that it is a failed attack by the attacker.

In this section, we will discuss the first kind of noises in detail,
and assume that the victim only accesses the security-critical regions
on its own. Existing detectors evaluate noise conservatively. Many
detectors did not evaluate co-running applications such as PerSpec-
tron [41]. Some detectors only evaluate a limited number (≤6) of co-
running SPEC applications and no co-running application sharing the
same library [25], [43]. Furthermore, statistical performance counters
that are widely used in existing detectors [2], [9], [13], [30], [41]–



Fig. 1. Detect the cache side-channel attack with different hardware performance counters under different environments. Both statistical and precise performance
counters measure the L2 cache miss event. The statistical counter records the event occurrence and the precise counter records the precise access location
information. The experiments are evaluated on the Xeon machine in Table II and the noisy environment is simulated with 10 co-running SPEC applications.
The attacker attacks 4 Te-Table accesses in a vulnerable OpenSSL AES implementation [45].

[43], [70], [71], such as those counting the number of cache misses,
are subject to error depending on the execution environment.

There are two problems with statistical performance counters
that are used to detect a cache side-channel attack in a complex
environment. First, many performance counters cannot differentiate
between benign cache contention and victim events caused by the
attacker. Figure 1 shows some examples of using statistical vs. precise
performance counters in different environments. While the cache
side-channel attack incurs distinguishable cache misses (a.1 and a.3),
the noisy environment can also exhibit high cache misses and lead to
potential false positives (a.2 and a.3). Second, statistical performance
counters lack methods to measure the environmental noises. A
detector based on statistical counters cannot dynamically adjust its
threshold and categorize different scenarios, such as grouping a.1/3
and a.2/4 in Fig 1a.

We observe that the attacker’s manipulation is strongly correlated
to victim’s security-critical accesses, but environmental noises are
not. In (b.1) through (b.4), if we can obtain precise information about
those cache-miss events, such as their addresses, we can effectively
differentiate the victim events caused by the attacker (b.3) from
the non-specific noises (b.2), even in a noisy environment (b.4).
This shows the advantage of using precise performance counters to
detect the cache side-channel in a noisy environment over existing
statistical counter-based detectors. Furthermore, a precise counter-
based detector can calculate the on-going noise level in collected
noise samples, and tune the detector’s threshold for more precise
victim-event recognition.

While an attacker must monitor victim’s security-critical accesses
to infer the secret, a more advanced attacker has several known
techniques to hide its behavior and confuse the detector, e.g. poly-
morphic attacks, noise injection and slow-rate attacks. A polymorphic
attack uses different but equivalent attack operations to vary the
attack patterns, such as using the instruction clflush instead of
eviction-set accesses [16], [41]. However, polymorphic attacks incur
the same micro-architectural side effects on the victim, therefore,
they are still detectable by the victim-event detector. Noise injection

can mislead the detector for the current noise level or leaving a
false victim pattern. However, the precise counter-based detector has
the capability to handle the noises, and identify both true victim
events for security-critical accesses and fake victim events. Later,
the detector can record the false victim patterns that are irrelevant
to the security critical accesses and prevent denial-of-service attacks.
Lastly, the attacker can slow down the attack and reduce the attack
bandwidth. It is possible that the sparse victim events may hide
the attack within the environmental noises, but an accumulated
sample record can eventually distinguish victim events from noises
(Section V-D).

D. Processing Sampled Precise Information

A precise event-sampling record contains a rich source of in-
formation that may include the instruction pointer (IP), target data
address for load/store, access latency, and the event/source type such
as hit/miss/pre-fetching in any of L1/L2/LLC/DRAM. From (b1)
through (b4) in Fig 1, identifying victim events requires the event type
and precise address information. However, processing such precise
information in PREDATOR has two challenges.

First, comparing with the statistical sampling techniques, PREDA-
TOR needs to process multi-dimensional data such as sample ID,
instruction pointer and access address. Instead of using existing
machine learning based detection algorithms such as the decision
tree, a new analysis method is required to handle cache-event samples
and their spatial information. Second, PREDATOR should provide a
way to describe a ”normal” execution profile so as to identify an
”anomaly” when under an attack, especially, in a complex execution
environment. Therefore, the detection algorithm should calibrate the
normal execution profile and dynamically measure the environment
to adjust run-time estimation. Existing detectors based on statistical
counters do not provide such a mechanism.

IV. PREDATOR DESIGN AND IMPLEMENTATION

As an anomaly-oriented cache side-channel attack detector,
PREDATOR performs run-time signal-noise analysis on data col-



Fig. 2. PREDATOR design overview. PREDATOR consists of three com-
ponents: 1) a run-time cache-event model, 2) static application profiles,
and 3) a dynamic calibration process. In this figure, PREDATOR reads the
application profile that indicates necessary cache events on address 0x0040
(approximately 10x more frequent compared to the default). During the
detection window, besides of address 0x0040, PREDATOR also observes
frequent accesses to address 0x0c40 and reports it as a suspicious signal.

lected by the performance counters to identify irregular cache be-
havior. As shown in Figure 2, PREDATOR is built based on a run-
time cache-event model that calculates the expected cache events,
as well as an acceptable range of variances in the presence of
environmental noises. PREDATOR compares the observed events and
the events predicted by the model to detect anomalies. To compute the
expected cache events, the model requires two inputs: static profiles
and run-time factors. The static profile describes the application’s own
cache access characteristics. To effectively handle various execution
environments, PREDATOR keeps run-time factors and processes a
dynamic calibration that adjusts the expected events based on the
observation.

A. Cache-Event Model

The cache-event model in PREDATOR focuses on predicting last-
level cache events and comparing with collected samples (Fig 2 1©). If
a particular address location shows an abnormally high cache sampled
occurrences, that could be due to 1) victim’s self cache contention, 2)
noise-sensitive accesses or 3) a sign of the potential attack behavior.

To model total last-level cache events (Events), we introduce four
variables: normalized noise-affected cache events (N), the run-time
noise factor (r), required cache events in the normalized execution
(E), and the relative execution time (t). These variables describe the
victim’s own necessary and noise-affected cache events. Then, we
consider the sampling process, which records precise event samples
with a fixed event interval (details in Appendix A). In Equation 1,
we describe the collected cache event samples (S) in the sampling
period (T ) and cache events from all accesses (a).

S =
Events

T
=

∑a(Ea +Nar)t
T

(1)

Among these samples, the probability of seeing a target access
sample (tar) is shown in Equation 2, and then we can compute the
expectation and variance of the target access samples. If any access
shows an abnormally large number of samples, it indicates suspicious
victim events and a potential run-time attack.

p =
(Etar +Ntarr)t

ST
(2)

To make Equation 2 valid, we apply two conservative assumptions,
and these assumptions infer a binomial distribution B(S, p). First, we
assume that the victim’s execution is steady, such as in a repeated
program structure (e.g. a loop/recursion), to avoid glitch events.
For example, the GnuPG RSA uses a loop/recursion structure to
access the secret, which creates an iterative and steady execution.
We argue that if the victim’s behavior is not repeatable, the attacker
will have a difficulty in synchronizing with the victim. In addition,
PREDATOR implements a sliding window to filter out occasionally-
appeared glitch samples. Second, for a large number of independent
processes running on different cores, we assume the overall cache
contention is statistically random. Modeling other applications’ effect
on the cache is difficult. For example, the last-level cache noise model
should consider several factors that include execution patterns, private
cache locality, and the mix of applications’ execution traces. Despite
our best effort, we cannot find an exact model in the prior work for
our purpose.

To compute the expectation and the variance, PREDATOR needs
to know all the variables. The sampling period (T ) and the collected
samples (S) are known in the precise counter configuration and at
run-time. There are four remaining factors: required cache events in
normalized execution (E), normalized noise-affected events that are
related to noise-sensitive accesses (N), the noise factor (r) and the
relative execution time (t). They are determined by a static profiling
and run-time calibration presented in the following sections.

B. Static Profiling

An application profile contains information about the victim’s own
necessary cache events (E) and noise-affected events (N) (Fig 2 2©).
To collect this information, we set PREDATOR in a profiling mode
and measure the victim execution’s behavior in the absence of any
attack. Necessary cache events are thus collected in a ”clean room”
environment. For noise-affected events, different victim accesses
show different sensitivities to the cache contention. For example, if
several victim’s accesses coincidentally form an eviction set, these
accesses are more sensitive to the environmental cache contention. To
measure this sensitivity, we run the application in a noisy environment
that is created by randomly running 5 SPEC applications with large
memory footprints.

Although the victim application appears to have different cache
access patterns on different inputs, in the case of the applications
we use, which include OpenSSL AES and GnuPG RSA, random
inputs are sufficient to collect cache-event profiles. We repeat the
measurements 1000 times, and summarize the collected events with
a histogram. To save the profiled information storage, we only record
significant events by median-absolute-deviation, and the average of
the remaining as default values. It turns out the PREDATOR’s
calibration file is relatively small: it takes 500 bytes for the OpenSSL
AES library and 300 bytes for the GnuPG RSA library.

Lastly, the confidentiality of the profiling file is not an issue
because attackers can perform a similar measurement to get this
information. The profiling file contains the application’s normal
cache-event information under clean and noisy environments, and
thus not a secret. The integrity of the profile file, in which the attacker
modifies the content of the file, is beyond the scope of this paper.

C. Dynamic Calibration

The purpose of the dynamic calibration is to measure the relative
execution time (t) and the noise factor (r). They are then used
to adjust the PREDATOR’s expectation about observed cache-event



Noise Level rcurr ∗ tcurr tcurr rcurr

0 0.000483 0.553181 0.000873
1 0.000322 0.168115 0.001915
2 0.000226 0.052765 0.004283
3 0.000156 0.033269 0.004689
4 0.000151 0.028548 0.005289
5 0.000155 0.025884 0.005988

Table I. Run-time factors rcurr ∗ tcurr and tcurr in OpenSSL AES. Noise level
represents the number of co-running SPEC 2017 505.mcf applications. The

factor rcurr is computed from rcurr ∗ tcurr and tcurr . Each number is
experimented with 1,000 repeats and averages the last dynamic calibration

result.

samples (Fig 2 3©). PREDATOR maintains a window that keeps sev-
eral precise samples. Therefore, instead of starting from the beginning
of the execution, PREDATOR’s dynamic calibration estimates the
relative execution time (tcurr) and noise factor (rcurr) in the current
window.

To compute these factors, as shown in Equation 1, the idea is
that the expectation from all accesses should match the observed
event samples. For example, if PREDATOR observes fewer samples
than expected, it might indicate a shorter execution time or a clean
environment. In case the attacker is causing abnormal victim events,
we can detect them based on noises and victim’s necessary cache
events.

We use the accesses in profile files (a) to calculate these two
factors because they represent the necessary and cache contention-
related events. We name the profiled necessary accesses as SetE , and
the cache contention-sensitive accesses as SetN . For the noise factor
(rcurr), we calculate its related factor (rcurr ∗ tcurr) with SetN , then the
relative execution time (tcurr) can be obtained by SetE as shown in
Equation 3.

rcurr ∗ tcurr =
∑a∈SetN (SaT )

∑a∈SetN (Na)

tcurr =
∑a∈SetE (SaT −Na(rcurr ∗ tcurr))

∑a∈SetE (Ea)

(3)

We verify our model with the OpenSSL AES application running
under different noise environments and present the results in Table I.
It shows that with more noises, on average, the application makes
relatively slower progress, and the noise factor goes higher.

D. PREDATOR Implementation

PREDATOR is implemented based on the Intel Precise
Event-Based Sampling (PEBS) technique. In the set of coun-
ters, PREDATOR chooses frontend_retired.l2_miss and
mem_inst_retired.all_loads/all_stores for instruc-
tion fetching and data accessing (load/store) events. While both
counters cover last-level cache events, they are not perfect: 1) current
instruction-fetching counter cannot differentiate a hit from a miss
in the last-level cache (only the L2 cache miss), and 2) current
data-accesses counter collects all cache hierarchy events from L1
cache hits to the last-level cache misses, which incurs extra sampling
overhead and requires a run-time filtering process.

PREDATOR utilizes a helper thread to read and process PMU
collected precise samples by periodically waking up the helper thread
using the alarm signal. The helper thread maintains a hash table
indexed by the event address to record events from the precise
counters. It computes the expected occurrence for new recorded
sample addresses as described in Section IV-A. PREDATOR keeps a
window to avoid glitch spikes and reports suspicious cache events if

Machine 1 Machine 2
Processor Intel i7-6700HQ Intel Xeon Silver 4310
Micro-architecture Skylake Icelake
Core Number 8 24
Last-level Cache 6MB inclusive 18MB non-inclusive
OS Ubuntu 18.04 Ubuntu 20.04

Table II. Experiment Set-up

they have been captured several times. PREDATOR also accumulates
the hash-table content as a stateful record to defend against slow-rate
attacks (Section V-D).

For the user interface, PREDATOR is implemented as a library that
provides APIs for the victim. The API includes detector initialization,
start/stop, and final report functions. PREDATOR is initialized with
the PMU configuration, the helper thread, and the detection data
structure. Start and stop APIs assign the alarm signal, and thus
these two functions should wrap the execution of the security-
critical region. Lastly, PREDATOR reports the detection result such
as suspicious accesses, timeliness and overhead.

V. EVALUATION

In this section, we evaluate PREDATOR in terms of performance
overheads, detection accuracy, detection timeliness and noise tol-
erance. The experiment set-up is summarized in Table II. Unless
otherwise specified, all results are measured and averaged over 1,000
experiments.

1) Attack Techniques: PREDATOR is evaluated with five differ-
ent types of side-channel attacks on two micro-architectures (Sec-
tion V-A), and some with a slow-rate attack variation (Section V-D).
Xeon 4310 processor provides the non-inclusive last-level cache, and
is used to evaluate PREDATOR for the directory-based side-channel
attacks [66]. We evaluate PREDATOR’s detection capabilities on
eviction-set-based side-channel attacks that include Prime+Probe [35]
and Reload+Refresh [10] on Intel i7-6700HQ (Skylake) processor
because of the known last-level cache hashing functions [40]. Due to
the cache’s non-inclusiveness, Prime+Probe/Reload+Refresh cannot
be implemented on the Xeon machine, and the directory-based attacks
are also a challenge on the Skylake machine. Lastly, Flush+Flush [23]
and Flush+Reload [69] attacks are evaluated on both machines.

2) Side-Channel Attack Victims: We choose a vulnerable OpenSSL
AES implementation [45] (version 1.0.1f) and a vulnerable GnuPG
RSA implementation [20] (version 1.4.13) to evaluate PREDATOR’s
effectiveness. For the AES encryption, the attacker monitors 4 Te-
Tables and attacks 40 thousand rounds of AES encryption to collect
statistical information for recovering the key [26]. For the GnuPG
RSA, the attacker monitors Square-and-Multiply functions to deter-
mine the control flow and to infer individual key bits [69]. We focus
on cryptographic applications that have shown to be vulnerable to
side-channel attacks for evaluating PREDATOR. Collecting cache
side-channel attacks on non-cryptographic applications and evaluating
the effectiveness of PREDATOR on these application will be explored
in our future work.

3) Execution Environments: To emulate environmental noises, we
co-locate multiple memory intensive SPEC 2017 INT benchmarks on
the same processor with the attacker and the victim both running. In
each experiment, we randomly select N (0≤ N ≤ 20) benchmarks to
meet the required noise level, and randomly assign these benchmarks
to different cores. This process ensures that the environmental noise
is different during the profiling and detection runs. With a 24-core
Xeon processor, we are able to simulate a wide-range of noise levels.
The following benchmarks are used for noise generation because of



Machine 1: Skylake, n=5, slow=1
OpenSSL AES GnuPG RSA

Flush+Flush [23] 99.8%/45% 100%/20%
Flush+Reload [69] 99.9%/44% 100%/21%
Prime+Probe [35] 99.4%/53% 99.2%/38%
Reload+Refresh [10] 97.1%/65% 98.6%/58%

Machine 2: Xeon, n=20, slow=32
OpenSSL AES GnuPG RSA

Flush+Flush [23] 99.7%/31% 98.8%/8%
Flush+Reload [69] 99.9%/34% 98.8%/8%
Directory Attack [66] 95.2%/64% 100%/22%

Table III. PREDATOR’s accuracy (F1 score) and timeliness in detecting
various attacks under noisy environments. The timeliness is measured by the

ratio between reported time and execution completion. All other cores are
scheduled with SPEC applications (n=5,20) to generate noise, and

PREDATOR is configured with around 10% overhead. On the Xeon
machine, the attacker slows down 32 times (slow=1,32). Since it takes a
long time constructing the directory eviction-set, the non-inclusive cache

directory attack [66] detection only performs 40 experiments.

their large memory footprints: 502.GCC, 505.MCF, 520.OMNETPP,
523.XALANCBMK and 531.DEEPSJENG.

4) Deployment: PREDATOR is implemented based on Intel Per-
formance Monitoring Unit (PMU) and Precise Event-Based Sampling
(PEBS). Our experiments are run on two different generations of the
Intel processors that use the same PMU configuration and application
profiles because the two performance monitoring interfaces are suffi-
ciently consistent. Performing experiments on microprocessors with
significant different performance counter interfaces will necessitate
re-configuration and additional profile collection.

A. PREDATOR Detection Overview

There are four aspects to evaluate a cache side-channel attack
detector. First, it should detect various types of cache side-channel
attacks. Second, it should detect the slow-rate attacks with little cache
interference (Section V-D). Third, it should detect attacks in a noisy
environment (Section V-C). Lastly, it should keep a relatively low
performance overhead (Section V-B). PREDATOR achieves all these
aspects together with a high detection accuracy.

Table III shows the results of PREDATOR detecting five differ-
ent kinds of cache side-channel attacks in noisy environments as
described in Section V-3. PREDATOR is configured with reduced
sampling rates to lower the performance overhead to around 10%.
Furthermore, results on the Xeon machine are evaluated with slow-
rate attacks that reduces its attack bandwidth by 32 times. PREDA-
TOR achieves low false positives and false negatives on all attacks,
and in most scenarios, it is able to detect the attack before the
completion of half of the execution. Along with the high accuracy,
PREDATOR can also report detailed information about the attack,
such as the instructions being attacked.

B. Performance/Timeliness Trade-offs

PREDATOR enables trade-offs between performance and timeli-
ness by tuning the sampling periods of various performance counters.
A sampling period for a precise event counter is the event interval
between two recorded cache events (see Appendix A). The timeliness
is measured by the ratio between the attack report time and the
execution completion time when we evaluate an active attack. While
late reporting implies more security critical information is being
leaked, PREDATOR always detects the attack before the execution of
the security region has been completed. For PREDATOR, increasing
the sampling period reduces the performance overhead at the cost
of the detection timeliness; while decreasing the sampling period
leads to a more sensitive detector but incurs a higher overhead.

Fig. 3. PREDATOR’s performance overhead of OpenSSL AES and GnuPG
RSA application on machine 2 (Xeon processor). Results are evaluated in
a clean environment. The sampling period shows the slowdown in PMU’s
shortest performance event sampling period. The overhead is measured as the
slowdown when PREDATOR is enabled. For each application, the right side
figure shows the overhead-timeliness trade-offs on different sampling periods.

Thus, a trade-off curve between the timeliness and the overhead will
determine the optimal sampling period.

Fig 3 shows similar performance/timeliness trade-off character-
istics for the two cache side-channel attack victims. Performance
results are compared with a baseline in which the application is run
with neither PREDATOR nor the attacker. PREDATOR is evaluated
for the false positive/negative rates as well as the performance
overheads over the increasing PEBS sampling periods until the
prediction accuracy dramatically decreases. The false positive rate
is evaluated with PREDATOR activated without the attacker, and the
false negative rate is evaluated with both PREDATOR and the attacker
enabled.

The F1 scores are calculated using both false-positive and false-
negative rates [18]. In Fig 3, both OpenSSL AES and GnuPG RSA
show high F1 scores until the sampling period is too large to
collect sufficient events. PREDATOR protects GnuPG RSA with a
minimal overhead of around 2.2% and a sampling period of 52 events
(100% F1 score). But, a slow sampling rate leads to late detection
with a timeliness of 97% (just before one encryption). Since the
experiments of the OpenSSL AES are implemented with frequent
process synchronization, it incurs extra performance overhead on
sampling the blocked processes.

Fig 3 also shows trade-off curves between timeliness and per-
formance overhead. To target the performance overhead of around
10%, we choose a sampling period of 1200 events per sample
for OpenSSL AES, and 2300 events per sample for GnuPG RSA.
The sampling periods are 12 and 23 times longer than the shortest
available sampling period, respectively (see Appendix A). Thus, they
will have a corresponding detection overhead of 12.2% and 10.7%
with a timeliness value of 44% and 57%, respectively. In GnuPG
RSA, that timeliness means that PREDATOR will report anomaly at
around half of the encryption process. Although the user can choose
a different trade-off, unless otherwise specified, all the results in the
evaluation sections are conducted with these two sampling periods.



Noise level, #SPEC apps 0 4 8 12 16 20
OpenSSL AES 99.4%/44% 99.0%/43% 99.1%/41% 99.7%/39% 99.8%/37% 99.9%/35%
GnuPG RSA 100%/59% 100%/59% 100%/59% 99.9%/60% 100%/63% 99.9%/61%

Table IV. PREDATOR’s accuracy (F1 score) and timeliness detecting the Flush+Flush attack under different noise levels (number of SPEC applications) on
machine 2 (Xeon processor).

Fig. 4. PREDATOR detecting slow-rate Flush+Flush on GnuPG RSA encryption on machine 2 (Xeon processor). Bar graphs show the accuracy F1 score and
plot lines show the timeliness. For detecting within 1 round encryption, PREDATOR fails if the attacker slows down 16 times. But PREDATOR keeps the
effectiveness with a stateful record crossing multiple encryption rounds. Round number k in this figure equals to the attack bandwidth slow-down. Evaluation
stops at 256 times slow-down due to a long execution time for each experiment.

#shared lib apps 0 3 6
OpenSSL AES 99.8%/37% 91.9%/73% 88.8%/76%
GnuPG RSA 100%/61% 100%/60% 100%/60%

Table V. PREDATOR’s accuracy (F1 score) and timeliness detecting the
Flush+Flush attack with co-running applications sharing the same library.
There are another 15 SPEC applications that run simultaneously to create
environmental noises. The experiment is conducted on machine 2 (Xeon

processor).

C. Noise Tolerance

In a realistic setting, there are two scenarios that other applications
can generate noise events: 1) they are running other programs at the
same time that create cache contention, and 2) they are accessing the
same security critical information such as security critical libraries.
Noise events challenge both the attacker who is observing the side-
channel and the defender who is detecting an active attack.

For the noises from cache contention, Table IV shows PREDA-
TOR’s F1 scores and timeliness at different noise levels. PREDATOR
maintains high accuracy with a similar timeliness in all environments.
This confirms our key observation that the environmental noises
are non-specific, thus the precise information collected at runtime
can effectively differentiate the victim events from the noises. For
applications sharing the same security critical information, they may
bring the attacker’s evicted cache-lines back to the cache hierarchy
and affect both the attacker and the victim. While PREDATOR’s
accuracy decreases as a result as shown in Table V, but attackers
are also affected significantly under this scenario. We evaluate and
discuss the noise effect on attackers in Section VI-B.

D. Slow-Rate Attacks

The slow-rate attack is a challenging variation for detection be-
cause the attacker leaves only a small trace of micro-architecture
interference. As mentioned in Section IV-A, if the attacker reduces
its attack bandwidth, PREDATOR will have less expectation on the
number of abnormal cache event samples, and thus the samples could
be hidden in the environmental noises. As shown in the 1 round

results of Fig 4, we can see that PREDATOR has a dramatic decrease
in detection accuracy when the attacker is 16 times slower than the
baseline attack resolution, especially in a noisy environment.

While a slow-rate attack can hide its trace with less micro-
architecture interference, it also pays the price of less information
collected in each attack. Therefore, instead of launching a successful
attack within one round, the attacker will need multiple rounds of
attacks to gain more complete information. PREDATOR can thus
detect such multiple attacks with a more stateful detection record.
Fig 4 shows that PREDATOR can successfully and accurately detects
all slow-rate attacks with a slow-down rate from 1 to 256x within k
rounds, which means that if the attacker slows down the attack by
k times, PREDATOR is able to detect it within k rounds of attacks.
This is because accumulated victim events will slowly become
distinguishable from the noises. As the victim events are caused by
the attacker’s probing, such interference monitored by PREDATOR
will match the information leakage sought by the attacker. Similar
results also observed in the OpenSSL AES scenario, as shown in
Table III.

VI. DISCUSSION

Precise performance monitoring shows a great potential in detect-
ing abnormal cache events in complex execution environments. In
this section, we discuss several related issues about PREDATOR’s
performance, the attacks in realistic environments, and possible
hardware improvement for precise monitoring.

A. Comparison With Existing Detectors

There are several prior work using statistical PMU counters to
detect cache side-channel attacks. Whisper [43] detects three attacks
(Flush+Reload [69], Flush+Flush [23] and Prime+Probe [35]) under
different attack rates and environments. PREDATOR and Whisper
both achieve high accuracy in attack detection in the OpenSSL
AES application, and PREDATOR is comparable to Whisper in both
detection timeliness and overhead. For example, Whisper detects
Flush-based attacks [23], [69] on AES with less than 40% timeliness



Attacks Noise #apps sharing the lib
(#SPEC) 0 1 2

Flush+Reload 0 92.1% 71.8% 70.8%
3 79.2% 64.5% 63.9%

Prime+Probe 0 69.7% 59.5% 59.5%
3 63.5% 59.0% 58.5%

Reload+Refresh 0 70.5% 70.2% 69.6%
3 64.5% 63.4% 63.4%

Table VI. Noise effect on several attack techniques. We measure success
rates for the attacker inferring victim one bit correctly under different

environments. Note that the 50% success rate means random guess. This
experiemnt is conducted on machine 1 (Skylake processor).

(40% and 25% for various attack implementations) and incurs less
than 8% overhead.

However, PREDATOR outperforms Whisper in four aspects. First,
PREDATOR provides much more detailed information than Whisper.
In addition to raising an alarm, PREDATOR can also report attacked
victim accesses, which can be efficiently used in defense mechanisms.
Second, Whisper is a signature-based detector. It trains a detection
model using known attacks, and thus may fail to detect new and
unknown side-channels. In addition, Whisper requires training for
different attacks and noise environments, which can lead to different
configurations. PREDATOR only requires the victims’ original exe-
cution profiles. Third, Whisper does not demonstrate its effectiveness
on Reload+Refresh [10] and directory-based attacks [66], which are
challenging for detectors. Lastly, Whisper did not evaluate its ability
to detect slow-rate attacks, especially in more complex execution
environments. Using statistical counters to detect slow-rate attacks
and noises is quite challenging as they show much less interference
and hide under noises.

Hardware-based detectors, such as PerSpectron [41] and Cy-
clone [25] achieve high accuracy and low overhead with special-
purpose hardware support. However, PerSpectron only demonstrates
its effectiveness in a clean environment with a single core simulation.
It will be much more complex to detect various attacks in more
realistic environments. Cyclone detects the cycle interference between
the victim and the attacker. It does not provide results detecting slow-
rate attacks, and it will be challenging for it to detect the multi-party
cycles in which multiple attackers are attacking one victim.

PREDATOR detects anomaly by identifying unexpected spikes in
cache events that may indicate the onset of a run-time side-channel
attack. However, applications may generate spikes in different cache
events with different inputs and/or in different phases of a program
execution. To handle input-dependent and phase-varying scenarios,
PREDATOR collects application profiles that are averaged over
multiple runs with different inputs. In the case of OpenSSL AES
and GnuPG RSA, random inputs are used. This approach is resilient
to input variations and phase changes. However, it may reduce
sensitivity to attacks. More future work is needed to allow more
effective detection of phase changes and input variations and apply
corresponding profiles.

B. Noise Effect on Attackers

In a realistic execution environment, cache behavior caused by
other applications might disturb an attacker’s cache manipulation.
Table VI shows some experimental results of the attacker’s success
rate in probing the victim in noisy environments, and there are two
observations. First, Flush-based attacks are less sensitive to noises
compared with techniques that require eviction-sets because noises
are more likely to invalidate the eviction sets manipulated by the at-
tacker. Second, when the environment has other running applications

that are also accessing the same security critical information, they
can create interference that invalidates the attacker’s probing. The
attacker will observe one of them accessing the target cache-line, but
cannot determine whether it comes from the victim or not. In this
case, the side-channel still exists, but the mixed behavior of multiple
applications can obfuscate the information leakage sought out by the
attacker.

C. Security in Performance Monitoring

Existing hardware performance counters are limited in their quan-
tity and thus are shared among physical cores. While this creates
a security concern, the sharing problem can be eliminated if per-
core performance monitoring hardware is available. For example, to
monitor cache accesses through the memory hierarchy, the hardware
can implement an extra performance monitoring bit in the Network-
on-Chip packet that can trigger the hardware to record additional
information. Later, a per-core performance information handler can
collect this extra information and process them.

A more challenging issue is related to the untrusted-OS/hypervisor
because the software requires OS support to access the PMU. One
way to mitigate this issue is to allow direct control of the PMU inside
security enclaves. Thus, the previously-mentioned per-core PMU can
be configured for an enclave, and the PMU data can be directly writen
into the enclave memory for secure recording. In a cloud environment,
a virtualized PMU is also possible with the hardware per-core PMU
and appropriate context-switching support.

D. Generic Counters for Security

While Cyclone [25] and PerSpectron [41] use hardware detectors
to capture micro-architecture attacks, they propose to use specific
hardware to detect specific known attacks. To defend against un-
known future attacks and to provide flexibility, we advocate using
generic counters and applying software-assisted defense mechanisms.
By updating the software, information collected by the generic
performance counters can be analyzed for defending against new
emerging attacks.

VII. CONCLUSIONS

In this paper, we propose to build detectors that can capture
micro-architecture side-channel attacks using precise event sampling
mechanisms. We demonstrate the feasibility of such detectors by
building PREDATOR, an effective and efficient cache side-channel
attack detector. PREDATOR achieves high accuracy in detecting
different types of side-channel attacks, and remains effective even
when the attacker attempts to reduce interference by drastically
slowing-down the attack bandwidth. PREDATOR also maintains its
effectiveness with limited overhead in complex environments with
significant noise interference. We believe that processor vendors
can enable software-based solutions for countering micro-architecture
side-channel attacks by providing precise counters on shared micro-
architecture resources. Furthermore, migrating such event counting
mechanisms inside the enclave can enable software developers to
counter side-channel attacks without relying on the trusted OS and/or
virtualization layer.

ACKNOWLEDGEMENT

We are very grateful to Professor Huiyang Zhou and the anony-
mous reviewers for their valuable suggestions and comments. This
research was supported in part by NSF under Grants CNS-1514444
and CNS-2106771.



REFERENCES

[1] A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat, “Meet
the Sherlock Holmes’ of Side Channel leakage: a survey of cache SCA
detection techniques,” IEEE Access, vol. 8, pp. 70 836–70 860, 2020.

[2] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance Counters to Rescue: A Machine Learning based safeguard
against Micro-architectural Side-Channel-Attacks,” IACR Cryptol. ePrint
Arch., vol. 2017, p. 564, 2017.

[3] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port contention for fun and profit,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 870–887.

[4] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
[5] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine:

Automatic Side-Channel Resistance Using Efficient Control and Data
Flow Linearization,” 2021.

[6] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan,
“CaSA: End-to-end Quantitative Security Analysis of Randomly Mapped
Caches,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 1110–1123.

[7] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “DR.SGX: automated and adjustable side-channel
protection for SGX using data location randomization,” in Proceedings
of the 35th Annual Computer Security Applications Conference, 2019,
pp. 788–800.

[8] E. Brickell, G. Graunke, and J. Seifert, “Mitigating cache/timing attacks
in AES and RSA software implementations,” in RSA Conference 2006,
San Jose, session DEV, vol. 203, 2006.

[9] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth, “Cacheshield:
Detecting cache attacks through self-observation,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
2018, pp. 224–235.

[10] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“Reload+Refresh: Abusing cache replacement policies to perform
stealthy cache attacks,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 1967–1984.

[11] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “Casym:
Cache aware symbolic execution for side channel detection and mitiga-
tion,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 505–521.

[12] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 249–266.

[13] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[14] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“SoK: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 20–38.

[15] A. C. De Melo, “The new linux ’perf’ tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1–42.

[16] S. Deng, W. Xiong, and J. Szefer, “A Benchmark Suite for Evaluating
Caches’ Vulnerability to Timing Attacks,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2020, pp. 683–697.

[17] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas, “Shielding
software from privileged side-channel attacks,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1441–1458.

[18] “F1 score,” https://en.wikipedia.org/wiki/F-score.
[19] S. Ferracci, “Detecting Cache-based Side Channel Attacks using Hard-

ware Performance Counters,” Master’s thesis, Sapienza, University of
Rome, 2019.

[20] “GnuPG 1.4.13,” https://gnupg.org/ftp/gcrypt/gnupg/, 2012.
[21] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside

buffer: Defeating cache side-channel protections with TLB attacks,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp. 955–
972.

[22] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 217–233.

[23] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: a fast
and stealthy cache attack,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2016,
pp. 279–299.

[24] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security
Symposium, 2015, pp. 897–912.

[25] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari,
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 57–72.

[26] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, Cross-VM attack on AES,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2014, pp. 299–319.

[27] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “RIC: relaxed inclusion caches
for mitigating LLC side-channel attacks,” in Design Automation Con-
ference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

[28] S. Khan, G. Mruru, and S. Pande, “A Compiler Assisted Scheduler for
Detecting and Mitigating Cache-Based Side Channel Attacks,” arXiv
preprint arXiv:2003.03850, 2020.

[29] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[30] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “SpyDetector: An
approach for detecting side-channel attacks at runtime,” International
Journal of Information Security, vol. 18, no. 4, pp. 393–422, 2019.

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 973–990.

[32] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. IEEE, 2016, pp. 406–418.

[33] F. Liu and R. B. Lee, “Random fill cache architecture,” in Microarchitec-
ture (MICRO), 2014 47th Annual IEEE/ACM International Symposium
on. IEEE, 2014, pp. 203–215.

[34] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, 2016.

[35] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy. IEEE, 2015, pp. 605–622.

[36] F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel Attack
on Multiple Tenants Cloud Platform,” JCP, vol. 9, no. 4, pp. 1005–1013,
2014.

[37] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen,
“The performance of runtime data cache prefetching in a dynamic opti-
mization system,” in Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36. IEEE, 2003, pp.
180–190.

[38] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn,
and J. Devietti, “Laser: Light, accurate sharing detection and repair,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 261–273.

[39] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2012, pp. 118–129.

[40] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering Intel last-level cache complex addressing using
performance counters,” in International Symposium on Recent Advances
in Intrusion Detection. Springer, 2015, pp. 48–65.

[41] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza,
N. Abu-Ghazaleh, and D. A. Jiménez, “PerSpectron: Detecting invari-
ant footprints of microarchitectural attacks with perceptron,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1124–1137.

[42] M. Mushtaq, P. Benoit, and U. Farooq, “Challenges of Using Perfor-
mance Counters in Security Against Side-Channel Leakage,” in 5th
International Conference on Cyber-Technologies and Cyber-Systems
(CYBER 2020), 2020.



[43] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, “Whisper: A tool for run-time detection of side-channel
attacks,” IEEE Access, vol. 8, pp. 83 871–83 900, 2020.

[44] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting SGX Enclaves from Practical Side-Channel Attacks,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp.
227–240.

[45] “OpenSSL 1.0.1f,” https://www.openssl.org/source/old/1.0.1/, 2014.
[46] M. Orenbach, Y. Michalevsky, C. Fetzer, and M. Silberstein, “CoSMIX:

a compiler-based system for secure memory instrumentation and ex-
ecution in enclaves,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019, pp. 555–570.

[47] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the Ring(s): Side
Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
645–662.

[48] A. W. Paundu, D. Fall, D. Miyamoto, and Y. Kadobayashi, “Leveraging
KVM events to detect cache-based side channel attacks in a virtualization
environment,” Security and Communication Networks, vol. 2018, 2018.

[49] “Intel® 64 and IA-32 Architectures Software Developer Manuals, Vol-
ume 3B,” https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html.

[50] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 42th IEEE
Symposium on Security and Privacy, vol. 5, 2021.

[51] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Overcoming
the Observer Effect for High-Precision Cache Contention Attacks,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2906–2920.

[52] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 775–787.

[53] J. Reinders, “Vtune performance analyzer essentials,” Intel Press, 2005.
[54] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse

representation of implicit flows with applications to side-channel detec-
tion,” in Proceedings of the 25th International Conference on Compiler
Construction, 2016, pp. 110–120.

[55] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “SCADET: a side-channel
attack detection tool for tracking Prime+Probe,” in Proceedings of the
International Conference on Computer-Aided Design, 2018, pp. 1–8.

[56] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 2010, pp. 187–198.

[57] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“SGX-Shield: Enabling Address Space Layout Randomization for SGX
Programs,” in NDSS, 2017.

[58] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
last-level caches are still vulnerable to cache side-channel attacks! but
we can fix it,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 955–969.

[59] S. Wang, Y. Bao, X. Liu, P. Wang, D. Zhang, and D. Wu, “Identifying
cache-based side channels through secret-augmented abstract interpreta-
tion,” in 28th USENIX Security Symposium (USENIX Security 19), 2019,
pp. 657–674.

[60] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: secure dynamic cache partitioning for efficient timing chan-
nel protection,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[61] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ACM SIGARCH Computer Archi-
tecture News, vol. 35, no. 2. ACM, 2007, pp. 494–505.

[62] V. M. Weaver, “Advanced hardware profiling and sampling (PEBS,
IBS, etc.): creating a new PAPI sampling interface,” Technical Re-
port UMAINE-VMWTR-PEBS-IBS-SAMPLING-2016-08. University
of Maine, Tech. Rep., 2016.

[63] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl,
“DATA - Differential Address Trace Analysis: Finding Address-based
Side-Channels in Binaries,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 603–620.

[64] W. Xiong and J. Szefer, “Leaking information through cache LRU
states,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 139–152.

Fig. 5. Relationship between sampling periods and event numbers on Intel
PEBS. Longer sampling period will cause larger micro-archiecture events
interval between two samples. The experiment is conducted on machine 1
(Skylake processor).

[65] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-
Aware Cache Replacement Policy (SHARP): Defending Against Cache-
Based Side Channel Atacks,” in Proceedings of the 44th Annual In-
ternational Symposium on Computer Architecture. ACM, 2017, pp.
347–360.

[66] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 888–904.

[67] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas, “Secdir: a secure
directory to defeat directory side-channel attacks,” in Proceedings of
the 46th International Symposium on Computer Architecture, 2019, pp.
332–345.

[68] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence pro-
tocol states vulnerable to information leakage?” in 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 168–179.

[69] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719–732.

[70] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[71] B. Zheng, J. Gu, and C. Weng, “CBA-Detector: An Accurate De-
tector Against Cache-Based Attacks Using HPCs and Pintools,” in
International Symposium on Advanced Parallel Processing Technologies.
Springer, 2019, pp. 109–122.

[72] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 871–882.

APPENDIX A
INTEL PEBS SAMPLING PERIOD

For a sampling based performance monitoring, PMU records one
event information on certain amount of micro-architecture events
(sampling). The sampling period is the number of events between
two recorded micro-architecture events. The sampling period can be
programmed and we perform an experiment measuring the relation-
ship between sampling periods and event numbers on Intel PEBS,
as shown in Fig 5. For each sampling period, the data point shows
the ratio between collected samples and created cache events. If we
set the sampling period with 1, Intel PEBS will roughly collect one
sample on every 100 micro-architecture events. Adding sampling
period by 1 will increase the cache event interval by 100 between two
samples (slope=90.14 without considering other accesses and noise).


