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ABSTRACT
Datacenters execute large computational jobs, which are composed of smaller tasks. A job completes when all its
tasks finish, so stragglers—rare, yet extremely slow tasks—are a major impediment to datacenter performance.
Accurately predicting stragglers would enable proactive intervention, allowing datacenter operators to mitigate
stragglers before they delay a job. While much prior work applies machine learning to predict computer system
performance, these approaches rely on complete labels—i.e., sufficient examples of all possible behaviors,
including straggling and non-straggling—or strong assumptions about the underlying latency distributions—e.g.,
whether Gaussian or not. Within a running job, however, none of this information is available until stragglers
have revealed themselves when they have already delayed the job. To predict stragglers accurately and early
without labeled positive examples or assumptions on latency distributions, this paper presents NURD, a novel
Negative-Unlabeled learning approach with Reweighting and Distribution-compensation that only trains on
negative and unlabeled streaming data. The key idea is to train a predictor using finished tasks of non-stragglers
to predict latency for unlabeled running tasks, and then reweight each unlabeled task’s prediction based on a
weighting function of its feature space. We evaluate NURD on two production traces from Google and Alibaba,
and find that compared to the best baseline approach, NURD produces 2—11 percentage point increases in the F1

score in terms of prediction accuracy, and 4.7-8.8 percentage point improvements in job completion time.

1 INTRODUCTION

Stragglers impede job completion in datacenter-scale com-
puting. Here, a computational job is split into many tasks,
each of which is executed in parallel on different machines
before their results are aggregated when the last task com-
pletes. Stragglers are rare, extremely slow tasks within a
job that can degrade overall performance—by as much as
30-50% (Ananthanarayanan et al., 2013; Reiss et al., 2011;
Zheng & Lee, 2018). A straggler is commonly defined as
a task with at least 90th percentile (p90) latency; i.e., at
least 90% of tasks finish earlier than the straggler (Hao
et al., 2017; 2020). We refer to stragglers as the positive
class since they are the minority and abnormal, and non-
stragglers are the negative class since they are the majority
and expected (Chandola et al., 2009).

Mitigating stragglers is a fundamental problem in datacen-
ters (Zhou et al., 2021; Belay et al., 2014; Adya et al., 2016;
Handley et al., 2017; Haque et al., 2015; Nelson et al., 2015;
Ayers et al., 2019). Recent work uses predictive models to
monitor executing tasks and predict stragglers before they

'MIT CSAIL 2University of Chicago *Pennsylvania State Uni-
versity. Correspondence to: Yi Ding <dingl @csail.mit.edu>.

Proceedings of the 5™ MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

reveal themselves with long run times (Ananthanarayanan
et al., 2010; Ren et al., 2015; Yadwadkar et al., 2014; Zhou
et al., 2020). Once a straggler is correctly predicted, proac-
tive interventions—such as relaunching the same task on a
different machine—will be triggered to mitigate the strag-
gling behavior (Ananthanarayanan et al., 2013; Aktas et al.,
2017; Aktas & Soljanin, 2019). Machine learning tech-
niques have been applied to model the complicated, non-
linear relationships between features (e.g., CPU utilization)
and computation behavior (e.g., latency)—a recent survey
has details (Penney & Chen, 2019). However, most existing
work either heavily relies on complete labels—i.e., observ-
ing labeled samples from all classes at training—or strong
assumptions about the underlying latency distribution—e.g.,
whether Gaussian or not. When predicting stragglers on live
data—i.e., running jobs in the datacenter—stragglers are
not revealed early because they finish last. Therefore, there
are insufficient labels in the training set due to a lack of
positive examples of stragglers, and it is hard to pre-specify
the latency distribution for each job, which render most
learning methods ineffective for straggler prediction within
a running job. Moreover, since the characteristics of each
job are usually unique in datacenters (Reiss et al., 2012; Guo
et al., 2019), it is difficult to train a model on one job and
apply it to another directly. Therefore, this paper proposes
a technique that constructs a unique predictive model for
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each job on the fly—that is, as the job is running and before
stragglers reveal themselves with long completion time.

We present NURD, a novel negative-unlabeled learning ap-
proach for online straggler prediction that requires no la-
beled positive examples or assumptions on the latency distri-
butions. NURD uses finished tasks (i.e., negative examples,
non-stragglers) to train a model to predict latency as a func-
tion of observed task features for running tasks. NURD’s
key insight is that this predictor will be biased towards non-
stragglers, so it then reweights these latency predictions
using a function of task features—i.e., each running task’s
probability of being included in the set of finished tasks
given its observed features. Intuitively, this weighting func-
tion indicates how dissimilar a particular running task’s
features are from those that are finished; i.e., it preserves
latency predictions for tasks that are similar to finished
tasks (i.e., non-stragglers), and increases predicted latency
for those that are different. With this reweighting scheme,
NURD predicts stragglers early and accurately by reducing
the prediction bias due to a lack of stragglers at training.

To summarize, our main contributions are as follows:

* We propose a novel negative-unlabeled learning approach
based on reweighting predictions and demonstrate its ef-
ficacy for online straggler prediction when no labeled
stragglers exist in the training set.

* We evaluate NURD on Google production traces (Reiss
et al., 2011), where we observe an 11 percentage point
increase in the F1 score and 4.7 percentage point improve-
ment in job completion time relative to the best baseline
approach. Similarly, on Alibaba production traces (Al-
ibaba), we see a 2 point increase in the F1 score and an
8.8 point improvement in job completion time.

e We release the code in https://github.com/
y—ding/nurd-mlsys22-code.

Stragglers significantly hamper system performance in mod-
ern datacenters. By identifying stragglers accurately and
early for running jobs, NURD provides a novel online learn-
ing approach that does not require labeled positive examples
of stragglers or assumptions on latency distributions. This
work offers a new direction in which systems community
can apply machine learning techniques that can generalize
without heavy reliance on carefully curating training sets.

2 BACKGROUND

Datacenter terminology. Datacenter-scale computations,
or jobs, are composed of sub-computations called rasks.
Because datacenter performance is critical, jobs are continu-
ally monitored and tasks’ behavior in a variety of metrics
are recorded at regular time checkpoints (Reiss et al., 2011;
2012). These recorded measurements are a set of features
that characterize each task. The choice of metrics to monitor

(and thus features to capture) depends on the specific system
on which the job is deployed. Ideally, datacenters would
record metrics related to resource usage, microarchitectural
behavior, and job scheduling (Zheng & Lee, 2018). In such
scenario, a straggler prediction algorithm could be applied at
each checkpoint using the features from each task to predict
its future latency. If a particular task is expected to straggle—
i.e., exceed an operator-specified latency threshold—then
the job scheduler or human operator could be alerted to
trigger intervention to mitigate stragglers.

Straggler mitigation. Straggler mitigation is an impor-
tant part of datacenter scheduling (Dean & Barroso, 2013;
Schwarzkopf & Bailis, 2018; Aktas & Soljanin, 2019; Dean
& Ghemawat, 2004; Zaharia et al., 2008; Ananthanarayanan
etal., 2011). Performance-aware schedulers predict which
tasks are likely to straggle and then allocate additional re-
sources to them (Ananthanarayanan et al., 2010; Yadwadkar
et al., 2014; Ren et al., 2015). Wrangler is a typical system
like this, using linear support vector machines to classify
stragglers by oversampling stragglers to deal with imbal-
anced labels in the training set (Yadwadkar et al., 2014).
Another example is LinnOS, which uses neural networks to
predict anomalous I/O latency by training on tens of thou-
sands of I/O operations from a single hardware device with
known latency (Hao et al., 2020). A clear limitation of
these approaches is that they require positive examples of
stragglers. To the best of our knowledge, prior performance-
aware schedulers assume that they have access to at least
some examples of stragglers to train a model. This is a
strong assumption that does not hold if users develop new
jobs that are different from existing jobs (which is the com-
mon case for datacenter jobs (Reiss et al., 2012; Guo et al.,
2019)) or if datacenters install new hardware that induces
new causes of straggling behavior. Thus, there is a need
for performance-aware scheduling approaches that produce
accurate predictions without positive examples of stragglers.

Problem formulation. Given the above discussion, we
formalize the online straggler prediction problem as follows.
Imagine we have T time checkpoints. At the 7-th checkpoint
where t € [T], n tasks are observed for a job, and the i-th
task is associated with a feature vector x; € RY, where d
is the number of features (measurements) that characterize
the task. Task i has true latency y; € R,. Let 8™ denote
the target latency threshold that denotes straggling (e.g., the
p90 latency), and S := {i € [n] : y; > "} denote the set
of tasks that are true stragglers. Our goal is to identify the
straggler set S. The challenge is that we do not observe y;
for all tasks at the #-th checkpoint. Rather, we only observe
yi when y; < 7" < ™% where 7;"" is the latency at r-th
time checkpoint. Let F, := {i € [n] : y; < 7}*"} denote the
tasks that finish before #-th time checkpoint, and R, be the
list of tasks that are still running at the #-th time checkpoint.
At each #-th checkpoint, given x;; for i € [n] and y; fori € F;,
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we estimate a set of stragglers § from the unfinished tasks
at *". Our goal is to correctly identify stragglers, so that
intervention can occur as early as possible.

3 RELATED WORK

We notice the following limitations from the existing ap-
proaches applied to online straggler prediction:

* Difficulty of accounting for the drift between training and
test distribution (supervised learning in §3.1).

* Only using information from the feature space and ignor-
ing the observed latency (outlier detection in §3.2).

* Incorrect independence assumptions on labels given fea-
tures (PU learning in §3.3).

* Heavy reliance on pre-specified latency distribution (cen-
sored and survival regression in §3.4).

3.1 Supervised Learning

Supervised learning uses labeled samples to learn a predic-
tor A, so that §,; = h,(x;) for i-th task at r-th checkpoint;
this predictor could estimate the latency of the unlabeled
samples. Critically, however, the distribution of the unla-
beled samples is different from that of the labeled samples;
that is, the nature of the straggler prediction problem neces-
sitates a distribution drift between training and prediction,
and we must be robust to that drift. Without accounting for
this drift, latency predictions for stragglers will be heavily
biased (Quifionero-Candela et al., 2009; Zhang et al., 2013).

3.2 Outlier Detection (Unsupervised Learning)

Outlier—or anomaly—detection is a family of unsupervised
learning techniques that identifies rare events which differ
from the general distribution of a population (Chandola
et al., 2007; Alam et al., 2019; Sipple, 2020). These tech-
niques separate nominal and anomalous distributions based
on the observations in the feature space only. Although strag-
glers can be thought of as outliers, our online straggler pre-
diction problem is critically different from outlier detection
problems studied in the literature because stragglers—by
definition—are outliers in latency, which are not necessarily
outliers in the feature space. As such, while we have access
to each task’s features at 7-th time checkpoint, their latency
values are revealed only up to time 7. To address the issue of
only using information from feature space, NURD proposes
to reweight the predicted latency with a weighting function
to reduce the prediction bias in latency due to a lack of
stragglers at training. Empirically, we evaluate fourteen
existing outlier detection methods in §7 to demonstrate that
outlier detection methods have limited discriminative power
in identifying stragglers within running jobs.

3.3 PU Learning (Semi-supervised Learning)

Positive-unlabeled (PU) learning is a family of semi-
supervised learning techniques that use both labeled and
unlabeled samples to train a classifier (Bekker & Davis,
2020). PU learning approaches learn from the two sets of
examples, where the first set (positive) only contains ex-
amples from the first class, while the other set (unlabeled)
contains examples from both classes. Existing PU learn-
ing (Lee & Liu, 2003; Elkan & Noto, 2008; Mordelet &
Vert, 2014; Kiryo et al., 2017) assumes that observations of
the labels are independent of the features given the classes
(positive or negative); that is, the labeled examples are a
random sample from the positive examples. However, this
assumption is violated in online straggler prediction because
only some non-stragglers with lower latency values have
a chance to be sampled, while other non-stragglers with
higher latency values are not included in the labeled set.

3.4 Censored and Survival Regression

Censored regression is a family of techniques to handle the
situation where the value to be predicted (latency in this
case) is censored; i.e., some values are missing but known
to exceed certain thresholds (Powell, 1986). Survival re-
gression is a related field that predicts when a system will
survive beyond a certain time point. The latency variable in
the online straggler prediction problem can be viewed as be-
ing censored at each checkpoint 7 because the latency values
above ¢ are not revealed. There are both linear (Tobit (Tobin,
1958)) and non-linear (Grabit (Sigrist & Hirnschall, 2019))
methods for censored regression. The Cox proportional
hazard (CoxPH) model is a popular approach for survival
analysis (Cox, 1972). All three methods can be used to
estimate latency with incomplete labels: latency can be
viewed as being censored at each checkpoint # because the
latency values above ¢ are not revealed; alternatively, we
could cast the problem as estimating whether a task will
survive beyond the designated straggling latency. While the
technical details of all three models differ greatly, they share
a common assumption: that the underlying task latency
behavior is known a priori. Tobit and Grabit assume the
latency follows a Gaussian distribution, and they predict cen-
sored values according to this assumption. CoxPH makes a
more relaxed assumption: rather than assuming a particular
distribution, it assumes that all task’s transformed survival
curves (survival probability over time) have the same shape
(Hosmer et al., 2008), an assumption that does not hold in
the online straggler prediction problem as heterogeneous
behavior (either in the tasks themselves or the machines
executing those tasks) is a common cause of straggling. In
addition, the CoxPH model assumes that the relationship
between a task’s features and straggling behavior does not
change over time, but this is not true in practice and NURD
explicitly accounts for this behavior (§4.3).
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3.5 Summary

To address all the issues from the existing approaches ap-
plied to online straggler prediction, we propose NURD, a
negative-unlabeled learning approach that requires no la-
beled positive examples of stragglers or assumptions on the
latency distributions. NURD incorporates a data-driven way
to learn the weighting function from feature space that can
easily adapt to different types of distributions. Specifically,
NURD uses the fact that unlabeled samples satisfy y; > 7;*",
rather than relying on any assumptions about the latency
distribution. The next section describes how NURD learns
a weighting function based on task features to mitigate the
bias of supervised learning on the labeled samples.

4 THE PROPOSED APPROACH: NURD

NURD is a novel negative-unlabeled learning approach for
online straggler prediction without positive examples at
training or assumptions on latency distributions. Specifi-
cally, NURD trains a new predictor for each job, customiz-
ing to that job’s unique properties. The key idea is to
first train a latency predictor using only finished tasks (i.e.,
non-stragglers), and then reweight those latency predictions
based on a function of dissimilarity between finished and
running tasks from the feature space. Algorithm | summa-
rizes NURD. In particular, there are three key components:

1. Training with finished tasks (§4.1).
2. Reweighting based on feature space (§4.2).
3. Updating models online (§4.3).

Next, we describe each in detail.

4.1 Training with Finished Tasks

NURD starts by training a latency predictor using the labeled
finished tasks (i.e., non-stragglers, or negative examples).
While any regression model can be applied, NURD uses gra-
dient boosting trees due to its high predictive power in many
settings (Chen & Guestrin, 2016). At the #-th time check-
point for the i-th task, NURD trains the regression model #,
so that the predicted latency is ;; = h(x;;). However, since
it only trains on negative examples, the predictions will be
heavily biased towards finished tasks (i.e., non-stragglers).
To reduce such bias, NURD reweights the predictions, lead-
ing to the next step.

4.2 Reweighting Based on Feature Space.

To reduce the bias from training on finished tasks only,
NURD reweights J;;. At the ¢-th time checkpoint for the i-th
task, NURD uses a weighting function w;; € (0, 1] such that

cadj _ i
Si =% (M
n

where 5)?? is the adjusted latency prediction for the i-th
task. Intuitively, when a running task’s features are similar
to finished tasks (i.e., non-stragglers), we want wy; to be
relatively large (close to 1) such that jzi,dj does not change
much from y,;. When a running task’s features are different
from finished tasks, we want w;; to be relatively small (close
to 0) such that 51?;1] will be enlarged and more likely to exceed
the latency threshold and be classified as a straggler.

To find a weighting function that matches our intuition,
NURD uses propensity score (PS), which is defined as
the conditional probability of assignment to a particular
group given a set of observed features (Rosenbaum & Rubin,
1983). In our case, we denote z;; as PS; i.e., the conditional
probability that a task belongs to the class of finished tasks
given its features at time checkpoint #:

Zi = PO < 7" |x4). 2

In practice, z; is usually estimated using logistic regres-
sion (Cepeda et al., 2003) because we have two known
classes at the 7-th checkpoint: finished tasks and running
tasks. When z; has relatively higher probability value (close
to 1), it indicates that the i-th task has higher chances that
it will finish soon (i.e., a non-straggler), and thus using it
to reweight 9;; will not cause a large change in the latency
prediction. In contrast, when z;; has a relatively low proba-
bility value (close to 0), it indicates that the i-th task has a
higher chance that it will keep running (i.e., straggle), and
thus using it to reweight y; will dilate the latency prediction
and make it more likely to exceed the latency threshold.

Calibration. Different jobs have different latency distri-
butions, and thus have different target latency thresholds
to determine stragglers. To account for such difference,
NURD adds a calibration term § to the propensity scores
to construct the final weighting function and balance the
tradeoffs between true and false positives. Specifically, this
calibration term is a function of the latency threshold; i.e.,
whether the latency threshold (e.g. p90) is greater than the
half of the maximum latency.
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Figure 1. Latency distributions for two Google jobs. The vertical
dashed yellow line is half of the maximum normalized latency 0.5,
and the dashed black line is the latency threshold (e.g. p90).

e If the latency threshold is less than the half of the maxi-
mum latency (left side of Figure 1), the latency threshold



NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction

Algorithm 1 Online straggler prediction with NURD.

Input: 7: number of time checkpoints; Fy: list of tasks finished at initial checkpoint # = 0; Ry: list of tasks running at initial checkpoint
t = 0; 78 > 0: latency threshold; « > 0: calibration parameter; € > 0: minimum positive weight.

> Compute latency indicator
> Compute calibration term

> Update tasks finished between 7 — 1 and #-th checkpoint
> Update sets of finished and running tasks

> Construct final weighting function

Output: $
1: Initialize Xj, and X,,, with features from tasks in Fjy and R, i.e., Xg, = {x0i; i € Fo}, Xrun = {X0i31 € Ro}.
2: Initialize Yg, in Fo, i.e., Yan = {yi;1 € Fo}.
3: Straggler set S « 0.
4: Compute centroids of Xg, and the rest running tasks X;,,, denoted as cg, and cpyy.
5: pP= ||Cﬁn||2/||crun - Cﬁn”2~
6: = Tp -
7: for each time checkpointt =1,...,7 do
8 A —{ieR 3y <™}
9: Fie—F UM, R < R\ A
10: Xgn < X Ulxis i € A}, Yin < Yan Uiz € Ad, and Xy < {x4371 € R,}.
11:  Update latency prediction model 4, and PS estimation model g, using updated X4y, Yin, and Xy
12:  for eachtaski € R, do
13: Get initial latency prediction y,; = h,(xy).
14: Get PS estimation z,; = g,(xy).
15: w; = max(e, min(z,; + 6, 1))
16: Get adjusted latency prediction jzj‘l.dj = »‘ﬁ
17: if 59 > " then
18: S« S ULt R« RN}

19: return S

> Terminate the task i if a straggler is predicted

Algorithm 2 Scheduling with more machines than tasks.

Algorithm 3 Scheduling with fewer machines than tasks.

Input: 7: number of time checkpoints; [r]: set of running
tasks

1: for each time checkpoint # € [T] do

2:  for each running task i € [n] do

3 if task i is predicted to be a straggler then

4: Terminate i and relaunch it on a new machine.
5: Update set of running tasks [n] « [n] \ {i}.

6 else

7 Go to next task.

is relatively small compared to the maximum latency.
To reduce the false positives in predictions, we hope to
increase the weighting value such that $,; will not be en-
larged too much. Therefore, ¢ should be relatively large
but not exceed 1; i.e., w; = min(z; + 6, 1).

o If the latency threshold is greater than the half of the
maximum latency (right side of Figure 1), the latency
threshold is relatively large. To reduce the false negatives
in predictions, we hope to decrease the weighting value
such that ,; will be enlarged enough. Therefore, 6 should
be relatively small but not make w; negative; i.e., w,; =
max (e, min(z;; + J, 1)), where € is a small positive scalar.

With this insight, we address the remaining questions as
follows: (1) how to determine whether the latency threshold
is relatively large or small when the job is still running (since
the actual task latencies are unknown), and (2) how to set d.

Determining whether latency threshold is relatively
large or small. As noted in §3 prior work for outlier detec-
tion and censored regression assumes a distribution (almost
always Gaussian) for the values (in this case latency) they

Input: 7: number of time checkpoints; [n]: set of running tasks;
[m]: set of available machines.

1: for each time checkpoint # € [T] do

2:  if new machine k available then

3 Update set of available machines [m] « [m] |J{k}.

4 for each running task i € [n] do

5 if task i is predicted to be a straggler then

6 if machines are available [m] # 0 then

7: Terminate i and relaunch it on a new machine j.
8 Update set of running tasks [n] < [n] \ {i}.

9 Update set of available machines [m] « [m] \ {j}.
0 else

1 Go to next task.

—_—

are trying to predict. Such an assumption makes determin-
ing the relative size of the latency threshold trivial. A key
distinction of NURD is that it makes no such assumption
(and Figure 1 shows that no single assumption would suf-
fice). Specifically, NURD estimates the relative magnitude
of the latency threshold from tasks’ observed features, rather
than from assumptions about the latency distribution. In-
spired by the insight that running tasks’ features are different
from those of finished tasks, NURD compares the feature
centroids of finished tasks (non-stragglers) cg, and those of
running tasks cp, before starting prediction. Empirically,
NURD computes p = ||¢ginl*/llcrun — ¢anl*-

The intuition is that p indicates how far potential stragglers
are from non-stragglers. If potential stragglers are far from
non-stragglers (left side of Figure 1), ¢y, is likely to be far
from cqy and p < 1. In this case, the unweighted latency
prediction ¥;; is easily pushed over the threshold, which
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makes PS overcorrect the latency predictions. Therefore,
increasing the weight by making ¢ relatively large has little
effect on true positives, but decreases false positives. In
contrast, if potential stragglers are close to non-stragglers
(right side of Figure 1), ¢y is likely to be close to cg, and
p > 1. In this case, true stragglers may not be easily pushed
over the threshold by ¥,; because the features of all tasks
are not so different, which makes PS alone not enough for
reweighting. Therefore, reducing the weight by making
¢ relatively small increases the true positives significantly,
despite a possible small increase in false positives.

Setting 6. Assuming 6 € (—a,a), where @« > 0. As
discussed above, ¢ is a function of p. When the latency
threshold is relatively small (p < 1), ¢ is relatively large.
When the latency threshold is relatively large (o > 1),
¢ is relatively small. Therefore, NURD uses a function
f iRy XR = (—a,a) such that § = f(p, @):

8= - a. 3)

With z;;, 6, and $;;, NURD obtains

cadj _ Jii 4
Yii max(e, min(z; + 6, 1)) @

NURD identifies stragglers if 92.‘“ > 7812 i e., the predicted
latency exceeds the latency threshold. Since the exact value
of 78" is unknown a priori, it can either be selected manually
by users or automatically by techniques such as those in
LinnOS (Hao et al., 2020) that estimate the inflection point
in the latency CDF. Determining the latency threshold is
beyond the scope of this work. Tests with a wide variety of
thresholds show that NURD produces results that are robust

to the different latency thresholds.

4.3 Updating Models Online

As the job is running, NURD accumulates examples of fin-
ished tasks at each checkpoint and NURD uses these new
examples to update both the latency predictor %, and propen-
sity score model in Equation 2 once the true task latencies
are known. Thus, NURD improves prediction results as it
collects more finished tasks.

5 SCHEDULING

After NURD predicts a straggler, it can trigger the sched-
ulers to mitigate straggling behavior, e.g., relaunching the
predicted stragglers on other machines. To demonstrate how
NURD can be used to reduce job completion time, we de-
sign schedulers to reassign tasks once a task is predicted to
straggle. Our schedulers are based on the common strategy
of relaunching predicted straggling tasks on new machines
since it has been proved to be effective at mitigating strag-
glers (Ananthanarayanan et al., 2013; Lee et al., 2015; Ren

et al., 2015). We consider two different situations: more
machines than tasks and fewer machines than tasks.

* More machines than tasks. When more machines are
available than tasks, a task that is predicted to be a strag-
gler can be terminated and reassigned to a new machine
immediately. Algorithm 2 summarizes the scheduling
procedure when more machines are available than tasks.

* Fewer machines than tasks. When fewer machines are
available than tasks, it is possible that not all predicted
stragglers can be reassigned to new machines immediately.
The scheduler needs to regularly check if there are new
machines that just finished running tasks at each check-
point. Should that be the case, these machines will also
be considered for future assignment. Then, NURD will
evaluate each running task and predicts if it will straggle.
If that is the case and there are machines available, this
task will be terminated and relaunched on a new machine
immediately. Otherwise, the scheduler will move on to
the next active task and wait for new machines at the next
time checkpoint. Algorithm 3 summarizes the scheduling
procedure when fewer machines are available than tasks.

6 EXPERIMENTAL SETUP

Evaluation methodology. We evaluate NURD’s ability to
predict stragglers as jobs are running. We construct a simu-
lator by parsing publicly available data traces and converting
them into a time-series format; i.e., a series of the statis-
tics available for each timestamp. The simulator replicates
real execution by sending NURD the features that would
be available at each time checkpoint. We use two public
production traces from Google (Reiss et al., 2011) and Al-
ibaba (Alibaba) to demonstrate generality:

* Google traces. The Google traces include 29 days of data
from 12.5K machines (Reiss et al., 2011; goo). The trace
consists of a number of jobs, each of which has tasks from
100 to 9999. We filter to only include production jobs with
100 or more tasks, which reduces the 650K jobs and 25M
tasks to 8425 jobs and 1.1M tasks. There are 15 features
per task including resource usage, microarchitectural, and
scheduling behavior, shown in Table 1.

¢ Alibaba traces. The Alibaba traces include two subsets
of traces (Alibaba; ali): (1) 2017 traces consisting of 1.3K
machines over 12 hours; (2) 2018 traces consisting of 4K
machines over 8 days. The trace consists of a number of
tasks, each of which has numerous instances. We filter the
tasks to those with at least 100 instances, reducing to 1M
tasks. There are 4 features per instance including CPU
and memory usages, shown in Table 2.

For all evaluations, NURD works on live data and makes
predictions about which tasks will straggle without seeing
any stragglers at training. The evaluations are run on a dual



NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction

Table 1. Task features used in the Google Traces.

Feature | Description

MCU Mean CPU usage

MAXCPU | Maximum CPU usage

SCPU Sampled CPU usage

CMU Canonical memory usage

AMU Assigned memory usage
MAXMU | Maximum memory usage

UPC Unmapped page cache memory usage
TPC Total page cache memory usage
MIO Mean disk I/O time

MAXIO Maximum disk I/O time

MDK Mean local disk space used

CPI Cycles per instruction

MAI Memory accesses per instruction
EV Number of times task is evicted
FL Number of times task fails

Table 2. Instance features used in the Alibaba Traces.

Feature | Description

cpu_avg Avg. CPU numbers of instance running
cpu_max Max. CPU numbers of instance running
mem_avg | Avg. normalized memory of instance running
mem_max | Max. normalized memory of instance running

socket server with two 32-core Intel Xeon Gold 6242 pro-
cessors, 192 GB RAM, and 2.80GHz clock speed. Several
parameters are set as follows:

Initial training data. For each job, we first wait for 4% of
the entire tasks to complete as the initial training set, which
are all non-stragglers. As the job is running, the training
size increases as more tasks finish and are added to the
training set. We only wait for a small amount of tasks to
finish because we aim to mimic the real online experiments
and start predicting as early as possible.

Latency threshold. We tested latency thresholds from p70
to p95 and the p90 results are representative of the average
behavior over all those data points. We present results that
use p90 as the latency threshold, i.e., any task’s latency
higher than 90th percentile latency is considered a straggler.

Comparisons. We compare to the following approaches:

* Supervised learning: we compare to gradient boost-
ing trees (GBTR), a widely-used regression model that
achieves high predictive power in various prediction
tasks (Chen & Guestrin, 2016).

* Outlier detection: we compare to fourteen existing out-
lier detection methods with implementations available
including ABOD (Kriegel et al., 2008), CBLOF (He
et al., 2003), HBOS (Goldstein & Dengel, 2012), IFOR-
EST (Liu et al., 2008), KNN (Ramaswamy et al., 2000),
LOF (Breunig et al., 2000), MCD (Hardin & Rocke,
2004), OCSVM (Scholkopf et al., 2001), PCA (Shyu
et al., 2003), SOS (Janssens et al., 2012), LSCP (Zhao

et al., 2019a), COF (Tang et al., 2002), SOD (Kriegel
et al., 2009), and XGBOD (Zhao & Hryniewicki, 2018),
for which we use implementations from a state-of-the-art
outlier detection library PyOD (Zhao et al., 2019b) '.

* PU learning: we compare to two PU learning methods
with implementations available including PU-EN (Elkan
& Noto, 2008) and PU-BG (Mordelet & Vert, 2014), for
which we use implementations from pulearn package °.

* Censored and survival regression: we compare to three
censored and survival regression methods with imple-
mentations available including Tobit (Tobin, 1958), Gra-
bit (Sigrist & Hirnschall, 2019), and Cox proportional
hazard model (Tian et al., 2005), for which we use imple-
mentation from the author ® and 1ifelines library *.

* Wrangler: we compare to Wrangler (Yadwadkar et al.,
2014), a systems solution for straggler prediction by over-
sampling stragglers to address the issue of training set
imbalance. It uses linear support vector machines for
interpretability. Since Wrangler assumes positive exam-
ples of stragglers at training, we randomly sample 2/3
non-stragglers and stragglers from each job as training to
mimic the same situation in the original paper.

* NURD-NC: we compare to NURD-NC, a variant of NURD
that does not including reweighting based on latency
space, i.e., w; = z; in Algorithm 1. This comparison
aims to demonstrate the significance of accounting for the
differences in latency thresholds for different jobs.

Hyperparameter tuning. Since different jobs have dif-
ferent optimal hyperparameter settings, it is challenging
to tune hyperparameters for each job individually for each
method. To do a fair comparison, we select 6 jobs from
each dataset to be used for hyperparameter tuning. For the
Google traces, We choose the same 6 representative jobs
analyzed by humans in prior work (Zheng & Lee, 2018) as
they are known to have mixed causes for straggling behavior.
For the Alibaba traces, we choose the first 6 tasks in the
dataset. Then for each learning method evaluated, we man-
ually tune these jobs to find the optimal hyperparameters
and apply them to all jobs. For NURD in particular, we set
a = 0.5 and € = 0.05 in Algorithm 1.

7 EXPERIMENTAL EVALUATION

The key takeaways of our evaluation are as follows. Com-
pared to the best baseline approach:

* NURD achieves 11 and 2 percentage point increases in
the F1 score for Google and Alibaba production traces,

'https://github.com/yzhao062/pyod

’https://pulearn.github.io/pulearn/

3https://github.com/fabsig/KTBoost

“https://github.com/CamDavidsonPilon/
lifelines/
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Table 3. Averaged results over all jobs for Google (15-dimensional features) and Alibaba (4-dimensional features) trace datasets. Higher
is better for TPR and F1. Lower is better for FPR and FNR. The best F1 is in bold.

| | Google Alibaba
| | TPR FPR FNR Fl1 | TPR FPR FNR Fl
Supervised | GBTR | 046 0.01 054 057 | 0.16 0.01 048 0.27
ABOD 095 056 005 029 ] 002 0.01 098 0.04
CBLOF 0.99 0.69 0.01 024069 050 031 033
HBOS 099 0.68 001 024 ] 05 039 044 0.32
IFOREST | 094 0.52 0.06 031 | 058 045 042 0.29
KNN 097 049 003 032] 057 042 043 029
LOF 090 045 0.10 033039 024 061 025
Outlier detection MCD 099 052 0.01 0311|075 045 025 042
OCSVM 091 047 0.09 032056 041 044 029
PCA 0.61 027 039 026|003 002 097 0.05
SOS 022 024 078 0.2 ] 0.08 0.08 092 0.11
LSCP 096 051 004 029 ] 065 044 035 035
COF 027 021 073 0.14 | 010 0.07 090 0.14
SOD 025 008 075 0.19]0.18 028 0.82 0.18

XGBOD 058 0.18 041 028 | 048 0.14 0.67 0.38

PU-EN 099 067 0.01 027|072 012 028 0.54
PU-BG 099 099 0.01 0.16 | 086 0.16 0.14 0.57

Tobit 097 052 003 046|035 002 015 032
Grabit 091 0.17 0.04 070|072 0.19 028 049
CoxPH 0.87 028 0.11 0.61 | 045 010 021 045

Positive-unlabeled

Censored and
survival regression

Systems | Wrangler | 095 042 0.15 046 | 083 046 0.18 038
Ours NURD-NC | 096 0.60 0.14 042 | 098 057 0.12 0.37
NURD 095 0.11 0.09 0.81 | 0.87 0.13 0.17 0.59
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Figure 2. F1 scores at different normalized time checkpoints for online straggler identification on Google traces (higher is better).
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Figure 3. F1 scores at different normalized time checkpoints for online straggler identification on Alibaba traces (higher is better).

respectively (Table 3). * NURD has 3.8 and 3.5 percentage point improvements in
* NURD identifies stragglers earlier (Figure 2 and 3). job completion time when more machines are available



NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction

vﬁﬂﬂﬁﬂﬂmﬂﬂﬁﬂ ﬁﬁﬁﬂ H

LOI

Figure 4. Average reduction in job completion time with unlimited
machines on Google traces (higher is better).

20 18.6

il
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than tasks (Figure 4 and 5).

* NURD has 4.7 and 8.8 percentage point improvements in
job completion time when fewer machines are available
than tasks (Figure 6, 7, 8, and 9).

7.1 How accurate are NURD’s predictions?

Table 3 shows the average prediction results over all jobs.
If a task is predicted to be a non-straggler at the ¢-th time
point, it will be evaluated again at (¢ + 1)-th time point if it
is not finished. If a task is predicted to be a straggler, it will
not be evaluated again. We use F1 score as the evaluation
metric, and also show true positive rate (TPR), false positive
rate (FPR), and false negative rate (FNR) to illustrate the
tradeoffs between these metrics.

We can see that the supervised learning method GBTR
achieves low TPR and FPR because it is greatly impacted by
a lack of stragglers at training: i.e., it predicts most tasks to
be non-stragglers. The outlier detection methods have either
both high TPR and FPR or both low TPR and FPR, which
lead to low F1. It is not surprising since as unsupervised
learning methods, the outlier detection methods do not uti-
lize the knowledge of the observed latency. Therefore, it is
difficult to assign an explicit separation boundary between
stragglers and non-stragglers. As semi-supervised learning
methods, PU-EN and PU-BG achieve impressive TPR, but
fail to keep FPR consistently low. We notice that they tend
to predict all tasks to be stragglers in early time checkpoints.
Remember that there is a training and test distribution drift
between training and test set for online straggler prediction.
As classifiers rather than regressors, PU learners aggres-
sively classify tasks that are different from training tasks
(non-stragglers) to be stragglers.

Censored and survival regression methods including Tobit,
Grabit, and CoxPH are better than outlier detection and PU

methods since they incorporate both features and latency
at training. They are worse than NURD mainly due to the
fact that they heavily rely on pre-specified distribution (e.g.,
Gaussian), while the latency distributions for different jobs
are hard to specify in advance (e.g., some are long-tailed).
Wrangler achieves both high TPR and FPR, mainly because
its offline oversampling makes the prediction biased towards
stragglers. Also, its linear classifier is limited in characteriz-
ing the nonlinear relationships between features and latency.
Regarding our methods, both NURD-NC and NURD have
high TPRs, but NURD-NC fails to keep FPR low while
NURD does, which demonstrates the effectiveness of the
calibration that accounts for the latency threshold in the
weighting function. Overall, NURD has the best F1 scores:
at least 11 and 2 percentage point increases relatively to the
other methods for Google and Alibaba traces, respectively.

Furthermore, we note that the best prior approaches are
different on Google and Alibaba, while NURD achieves the
best results on both datasets indicating its approach is more
generalizable: Grabit’s F1 score is second best (after NURD
on Google, but 10 points worse than NURD on Alibaba,
while PU-BG’s F1 is second best for Alibaba, but 65 points
worse on Google. These results demonstrate that NURD’s
reweighting strategy has a dramatic positive effect on online
straggler prediction because it makes no assumptions about
the underlying data distributions or the existence of labels.

7.2 Does NURD identify stragglers early?

To illustrate the streaming results when the jobs are running,
we compute F1 scores at different time checkpoints. Since
different jobs have different total running time, we sample
results from 10 time checkpoints for each job and regard
them as normalized time. Figure 2 and 3 show the results
averaged over all jobs from Google and Alibaba traces,
respectively, where the x-axis represents the normalized
time between 0 and 1, and y-axis represents the F1 scores.
We can see that, for Google traces, NURD outperforms all
other methods at all time points except the very beginning.
For Alibaba traces, NURD outperforms all other methods
throughout the run time. These results show that NURD
identifies more stragglers earlier than other methods.

7.3 Does NURD improve completion time?

We evaluate how NURD contributes to reducing job comple-
tion time by augmenting existing schedulers with improved
straggler predictions. The key idea of the schedulers de-
scribed in §5 is to relaunch the task on a new machine once
the task is predicted to straggle. In our experiments, the new
completion time for a rescheduled task is randomly sampled
from the existing execution times. We show results in the
following two different situations.

More machines than tasks. When more machines are
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Figure 7. Reduction in job completion time with different numbers of machines on Alibaba traces (higher is better).
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Figure 9. Reduction in job completion time averaged over all num-
ber of machines on Alibaba traces (higher is better).

available than tasks for each job, a task that is predicted
to straggle is terminated and relaunched on a new machine
immediately (Algorithm 2). Figure 4 and 5 show the results
for Google and Alibaba traces respectively, with the x-axis
represents the method and the y-axis represents the reduc-
tion in job completion time (higher is better). We can see
that NURD has the highest reductions, 25.8% and 18.6% for
Google and Alibaba traces respectively, which are 3.8 and
3.5 percentage point improvements compared to the best
baseline approach. NURD achieves these improvements due
to its early and accurate predictions for stragglers.

Fewer machines than tasks. When fewer machines are
available than tasks for each job, the scheduler needs to
check if a new machine is available for relaunch if a task
is predicted to straggle (Algorithm 3). We study how re-
duction in completion time will change as a function of the
number of machines. Figure 6 and 7 show the results, where
the x-axis shows the number of machines from 100 to 900,
and the y-axis shows the reduction in job completion time
(higher is better). As the number of machines increases, the
reductions also increase, and NURD has the highest reduc-
tions compared to all other methods at all numbers except
the small size (i.e., 100 and 200). We also compute the
reduction averaged over all number of machines in Figure 8
and 9, where x-axis represents different methods, and y-axis
represents the average reduction. We can see that NURD
NURD has the highest reductions, 53.1% and 46.6% for
Google and Alibaba traces respectively, which are 4.7 and
8.8 percentage point improvements compared to the best
baseline approach. These results demonstrate that NURD
can be easily incorporated with different types of schedulers
and effectively reduce the job completion time.

8 CONCLUSION

This paper introduces NURD, a novel negative-unlabeled
learning approach for online straggler prediction that re-
quires no labeled positive examples or assumptions on la-
tency distributions. The key idea is to train a predictor using
finished tasks of non-stragglers to predict latency for unla-
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beled running tasks, and then reweight each unlabeled task’s
prediction based on a weighting function of its feature space.
Extensive evaluation results on two real-world production
traces demonstrates the effectiveness of NURD for online
straggler prediction. Looking ahead, there is a possibility
to apply transfer learning (Pan & Yang, 2009) to incorpo-
rate knowledge from other jobs to improve predictions. We
will incorporate transfer learning and deploy our methods in
real-world datacenters for future datacenter-scale research.
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