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Abstract

Competing risks occur in a time-to-event analysis in which a patient can experience one of several
types of events. Traditional methods for handling competing risks data presuppose one censoring
process, which is assumed to be independent. In a controlled clinical trial, censoring can occur for
several reasons: some independent, others dependent. We propose an estimator of the cumulative
incidence function in the presence of both independent and dependent censoring mechanisms. We
rely on semi-parametric theory to derive an augmented inverse probability of censoring weighted
(AIPCW) estimator. We demonstrate the efficiency gained when using the AIPCW estimator
compared to a non-augmented estimator via simulations. We then apply our method to evaluate the
safety and efficacy of two anti-HIV regimens in a randomized trial conducted by the AIDS
Clinical Trial Group, ACTG A5095.
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1 Introduction

Competing risks often arise in medical studies. In the competing risks setting, as opposed to
the standard survival analysis setting, the failure event is classified into one of several
mutually exclusive types, and occurrence of one type of event precludes the occurrence of an
event of another type. For example, if interest is in death due to cardiovascular disease, a
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patient experiencing death due to cancer would be precluded from experiencing the event of
interest. Standard statistical methods for the analysis of competing risks data are described
in, for example, Andersen et al. (1993); Kalbfleisch and Prentice (1980); Pintilie (2006).

We focus our attention on the cumulative incidence function (CIF), defined as the
probability of a particular type of failure by time ¢ in an environment where other causes of
failure may occur. There have been significant developments in statistical inference based on
the CIF. Gray (1988) developed a class of tests for comparing CIFs of a particular type of
failure among different groups. Lin (1997) constructed confidence bands for the CIF. Fine
and Gray (1999) proposed a semi-parametric proportional hazards model for the
subdistribution of a competing risk. Other work has focused on modeling the CIF directly,
see for example Fine (2001); Bryant and Dignam (2004); Jeong and Fine (2006).

Previous work has assumed that follow-up of patients is subject to only one censoring
process, which is assumed to be independent. However, a patient’s follow-up time may be
censored for one of many reasons, some of which may be independent and some may be
dependent. For example, so-called administrative censoring occurs when patients reach the
end of a study, often inducing independent censoring (although, as noted in e.g. Lok and
Hughes (2016), this censoring may be dependent if, for example, patients with
characteristics which suggest that they might be harder to follow, are under-represented in
the patient population enrolling early, or if sites with distinctly different patient populations
start enrollment at different times). On the other hand, patients may prematurely drop out of
a study prior to the study’s planned end of follow-up, which may induce dependent
censoring if the patients who dropped out are not representative of the entire sample (e.g.
sicker patients drop out of the study with higher probability than healthier patients). Thus,
dependent censoring may more accurately reflect situations that arise in clinical studies. If
dependent censoring is present, use of methods which assume independent censoring can
lead to biased estimates of parameters or functions of interest. Rotnitzky et al. (2007) and
Rotnitzky et al. (2009) estimated survival curves in the presence of dependent censoring.
The purpose of this article is to adapt these methods to estimate the CIF for competing risk
data in the presence of multiple censoring mechanisms, some of which may be dependent.

This paper is organized as follows. In section 2 we introduce the AIDS Clinical Trial Group
(ACTG) A5095 randomized trial, which motivated the methodological developments. In
section 3, we introduce our notation and data structure and in section 4, our assumptions. We
introduce our estimator of the cumulative incidence function in section 5. In section 6, a
simulation study is conducted to evaluate the performance of our estimator in finite samples.
In section 7, we illustrate the application of our methods to an analysis of the A5095 study.
We end with a discussion in section 8.

2 The ACTG A5095 Study: A Motivating Example

ACTG A5095 was a multicenter, randomized, double-blind, placebo-controlled clinical trial
designed to compare the safety and efficacy of two 3-drug regimens versus a 4-drug regimen
for initial treatment of HIV-1 infection (Gulick et al., 2004; Gulick et al., 2006). One 3-drug
regimen was discontinued early on the recommendation of the data and safety monitoring
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board. Our focus is therefore on the comparison of the remaining 3-drug regimen
(zidovudine, lamivudine, and efavirenz) and the 4-drug regimen (zidovudine, lamivudine,
abacavir, and efavirenz).

The primary efficacy outcome measure in A5095 was the time to virologic failure (VF),
defined as the time to the first of two successive HIV-1 RNA levels of 200 copies/mL of
plasma or greater at or 16 weeks of follow-up. This was analyzed using an intention-to-treat
analysis ignoring the changes from the randomized regimens which occurred in a reasonable
proportion of study participants, often due to treatment limiting adverse events (TLAEs),
sometimes due to treatment limiting other events (TLOESs) such as pregnancy and death.
Clinically, there is therefore also considerable interest in comparing regimens with respect to
regimen failure, with the competing outcome types of VF, TLAE, and TLOE. These are
competing risks in that discontinuation of treatment due to a TLAE or TLOE precludes
follow-up for VF while on that randomized treatment. However, some participants
discontinue randomized treatment prior to the planned administrative end of follow-up of the
study for reasons other than VF, TLAE, or TLOE, and there is often concern that this
censoring of follow-up on study treatment may be dependent (Dudley et al. (1995);
Toannidis et al. (1997); Arici et al. (2002); Lanoy et al. (2006); Andersen et al. (2007);
Krishnan et al. (2010); Fleishman et al. (2012)). For example, if patients who feel bad on
treatment discontinue treatment and therefore leave the trial, censoring due to dropout might
be dependent. Developing statistical methods that allow for dependent censoring is therefore
important, particularly for checking the sensitivity of study conclusions to the handling of
such discontinuations.

3 Notation and Goal

We consider a study that has staggered entry and maximum follow-up time v*. Let T* and
C* be non-negative time to event and time to censoring random variables, respectively. Let J
€ {1, 2, ... j*} denote the type of failure and R € {1, 2, ... r*} denote the reason for
censoring. In order for our estimator to converge properly (specifically, to ensure that
regularity condition (2), defined below, holds), we will need to discard data that were
recorded after time v= v* — g, where ¢ is a small positive number. We then define the event
time as 7= min(7*, v) and the censoring time as C'= min(C*, v). We assume that we

observe 1 independent and identically distributed copies of O= (X JALAT (1= A)RV X)
where X=min(7, O), A=1(T7< (), and V,= (V;:s < t) where 1(*) is the indicator function
taking value 1 if its argument is true and O otherwise, and Vjis the vector of covariates

measured at time s. Note that when X'= 7'we observe a patient’s full covariate history, V..
We assume that either the type of failure, J, or the reason for censoring, R, is observed, but

not both. Going forward, we include the type of failure or reason for censoring in V' . Our
goal is to estimate the cumulative incidence function on the interval [0, V), defined as

Fy (t)=P(T <t,J=j),

in the presence of multiple reasons for censoring, some (or all) of which may be dependent.
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4 Assumptions

We shall assume that for r=1, ..., r*:

Ao (HV 1 T 0,T>t) =0, (17, T>t) )

_ P (t < C<t+h, R=r|C > t,V,,T, J,T>t>
where Ac,, (V4 T, J, T>t) =limy, JIn

words, we assume that the hazard of censoring at time # for reason r; depends only on the

measured variables up to time #and not on any future observed or unobserved variables,
failure time, or failure type. When assuming (1), we make the non-identifiable assumption
that data on all time-dependent and time-independent covariates that are predictive of both

failure and censoring are available and included in 77,. Equation (1) is equivalent to
assuming that the data are coarsened at random (CAR) (Heitjan and Rubin, 1991) or missing

at random (MAR) (Rubin, 1976). For ease of notation we will denote Ac... (t‘vu T>t) by
)\CJ‘ (t|vt>.

We impose the regularity condition that for some constant &,

A, <t\7T, T, J, T>t> <€

with probability 1, for #in the interval [0, v). Condition (2) would be false if we took v= v*
since, with probability 1, all patients who are uncensored just before the administrative end
of study v* will be censored when the study ends (Rotnitzky et al., 2007).

When V7, is high dimensional, we cannot estimate Ao <t|vt> non-parametrically due to the

curse of dimensionality. Thus, we specify a model for Ac,. <t‘vt>. In this paper, we use
Cox’s proportional hazards model, of the form:

Acr (t|Vt) =MXo,r (t) exp [ﬂ/;,wr (t,vt)} C3)

where Ag (7 is an unknown, non-negative function of £, Wr (t> Vt) is a specified function of

tand V7, and y,is an unknown parameter vector.

5 Estimation

5.1 Inverse Probability of Censoring Weighted (IPCW) Estimator

In the absence of censoring, F(?) could be estimated non-parametrically by solving
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> {1(Ts < t,3i=j) — Fj (£)}=0.
i=1

Due to censoring we must modify this expression. The main idea underlying our estimator
of F(?) is that of “non-uniform-pseudo-redistribution” to the right via inverse probability
weighting of uncensored patients (Robins et al., 1995; Rotnitzky et al., 2009). That is, when
a patient is censored, our estimator redistributes his or her weight among “similar”
remaining uncensored patients. Following Rotnitzky et al. (2007), we define the inverse

weights, 7 (t‘vﬁAO), as follows:
7T <t\7t;/\o> =exp (—féAC (u|VT, T, J, T>u) du)

=exp <f6i)\0m (u) exp [’y;wr (u,vuﬂ du>

:H H {1 — eXp {%’«wr (u7vu>] dAO.,r (’U,)},
r=10<u<t
with the cumulative baseline hazard, Ay (f), defined as Ag, (t) = [ BAO’T (s) ds.

We can find an estimate of F(7) as the solution to the following equation:

A,
Z% {1 (T; < t,J;=j) — F; (t)} =0
i=1T7 (Ti VLTi ;AO> 4)

where 7 is the minimum time such that 1(7'< ¢, /= )) is observed, i.e. 7= min (7, t), and
A=1 (T< C). As shown in the appendix, equation (4) is an unbiased estimating equation

for F(#) since under CAR, Pr (Ail }VT~> =7 <T~|VT~ ;Ao). Note that if regularity condition
(2) were false, we would be dividing by 0; this is called a positivity violation, where some
patients have probability 0 of remaining uncensored, and IPCW fails (Robins et al., 1995).

Note that using A and 7'instead of A and 7> will result in a less efficient estimator of F(2).
Intuitively this makes sense: by using A4 and 7, censored patients would contribute nothing to
equation (4). However, for those patients who were censored after time #, we know the value
of 1(7T< ¢, J=). As aresult, we can use this information to construct a more efficient
estimator.

Estimation of the inverse weights 7 (ﬂvt;/\o) first requires estimation of

Y= (V1,725 - -, Yer) @0 Ag (t) = (Ao (t) , Aoz (t), ..., Ao, (1)) Because of the missing at
random assumption we can estimate y,, which is the unknown parameter vector in equation
(3), using standard software via a Cox proportional hazards model with time dependent

Lifetime Data Anal. Author manuscript; available in PMC 2019 April 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Lok et al. Page 6

covariates. To estimate y,, treat censoring due to reason ras a “failure” in the time
dependent Cox proportional hazards model. All events and censoring due to causes other
than rare treated as “censored” observations. This process is repeated to estimate all y,’s.

Once we have an estimate of y, 4, we can estimate the cumulative baseline hazard,
Ao (t)=(Aoa (t),..., Ao (), using Breslow’s estimator (Andersen et al., 1993),

AN, ()
ijlexp [’Ay;wr (U,Vi,uﬂ I(X; >u) (5)

AO,T (t) :[6

where N¢ (1) = 1(C< u, R=r, C< T) is the counting process of observing censoring of
type r. Next, 7 (75|Vt;1\0) can be estimated by

7 <t‘vt;f\0> :ﬁ H {1 — exp h;wr (s,vs)] d]\(],'r (s)]

r=10<s<t (6)

We can now find an estimate of F(?) as the solution to

n A, {1(T; <t,J5=j) — Fj (t)}=0.

= |VLT.1 ;/A\()) %

A NA A NA
Denote the estimator solving equation (7) as F' ;V (t). F ﬁv (t) is known as a (non-
augmented) inverse probability of censoring weighted (IPCW) estimator. We can use the

. . . ~NA
non-parametric bootstrap to estimate the variance of F';  (¢).

5.2 Augmented Inverse Probability of Censoring Weighted (AIPCW) Estimator

. . ANA . . . o
We can improve the efficiency of /';  (#) by introducing an augmentation term (Tsiatis,
2006; Rotnitzky and Robins, 2005). Consider the solution to the following equation

> {+ {1(Ts <t,35=)) — Fj (t)} — A; {F (¢) 7%5(')}}:0
i=1 | i (T1|VT1_ ;A0> (8)

where A{F(2), y, &(*)} is the augmentation term and is defined as

A ©) b (O = ST _anr ()
— (u— |Vu;Ao (u)) (9)
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where b (Ua Vu) is a user specified, left-continuous function of zand ¥/, where

™ (U — [Vuiho (U)) indicates the left-continuous version of 7, and where

M, (u) =Ng, (u) — '81 (X > s)exp {'y,:wr (s,vs) } dAor (). (10)

The process M () is a mean zero martingale with respect to the filtration 7 (u), where we

define 7 () as the increasing sequence of sigma algebras generated by

a {1 (C<x),Vy,0<x< 11}. In the appendix, we show that equation (8) is an unbiased
estimating equation for F(4).

For efficiency reasons (to be discussed below), we choose b (U, Vu) as follows:

b (V) =—B [{1(T < t,Ji=j) — F; (t)} [Vu_, T > u] . an

If we can consistently estimate b (Ua Vu) as defined in equation (11), we can find an estimate
of F(?) as the solution to

= | # (Tiyffi o) "
with

o) -y
and

~

Me, (u)=Ng, () = [fexp {7y, (5.V) } dho, (s).

<A
The estimator that solves equation (12) is denoted by /' (¢) and is an augmented inverse
probability of censoring weight (AIPCW) estimator of (7). Again, we can use the non-

. . . <A
parametric bootstrap to estimate the variance of F; (t).

If we can consistently estimate 0 (% Vu) as defined in (11), then 13‘;‘ (t) would be doubly

A A
robust (Rotnitzky and Robins, 2005). That is, F'; (t) is consistent and asymptotically normal
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if the model for the censoring process, 7™ (ﬂvt;l\o ), is correctly specified or the conditional
model, E [1 (T <t,J=j) |[Vu, T > U] is correctly specified. Also, if both the model for

. .. . ~A .
the censoring process and the conditional model are correctly specified then /' (¢) is locally
semi-parametric efficient (Robins and Rotnitzky, 1992; Tsiatis, 2006). The function
b (% Vu) is not arbitrary and is chosen to equal —E [1 (T <¢,J=j) —Fj(t) [Vu,T > u]
in order to gain the greatest efficiency among estimators that solve an equation such as
equation (8) (Rotnitzky et al., 2007).

In practice, estimating the conditional expectation

E [{ 1(T <t,J=j) = Fj(t)} [Vu, T > u} can be difficult, because the information
considered in 7/, in equation (11) is time-dependent. Thus, in order to make the problem
more tractable, one can instead consider estimating

E [{1(T <t,J=j) - F;(t)} [Vo,T > u} " (13)

where 77, are the baseline covariates. One way to estimate (13) is as follows:

fig (a — |V0> df\j <a\V0)

S (“ - WO) (14)

P [(T <t,J=j)[Vo, T > u} -

where 1 (a’V0> =Ao,j (a) exp {6 if (V0> } and f3; is the estimated parameter vector
obtained from fitting a Cox proportional hazards model to the overall time 7'in each
treatment group:

Ay (HV0) =205 ex {557 (Vo) }. 15

_ P (t < T<t+h, J=j|Vq, T>t)
where A ; (t|V0) =limp0 , and Ao (7 is an unknown non-

h
negative function of # The cumulative baseline hazard, A (), can be estimated using
Breslow’s estimator, and S (U’VO) =exp {_ZjAj (“’VO) }

The resulting estimator of £(#) will not be doubly robust or locally semi-parametric

efficient. However, as shown in the appendix, it is still a consistent and asymptotically
normal semi-parametric estimator for F(#), if the censoring models (3) are correctly
specified.
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We compared our augmented and non-augmented IPCW estimators with the standard
estimator of the cumulative incidence function which assumes independent censoring
. ~0
(Andersen et al., 1993), the Aalen-Johansen estimator F'; (£):

~0 1A

1|t <t

where dj; is the number of people with failure type jat time #; ;) <fp <... <ty are the
failure times for failures of type /, 77;;is the number of people at risk at time #;;, and S (t)1s

the Kaplan-Meier estimator of the overall survival function (i.e. for all failure types

combined). We calculated the standard error for F° ? (t) using the delta method (Pintilie,
2006).

6 Simulation Study

We conducted a simulation study, which is a modification of the simulation study in
Rotnitzky et al. (2007), in order to evaluate the performance of our estimators in finite
samples.

We generated 7'* according to an exponential distribution with mean equal to 1.25. We
assumed there were 2 event types, with probabilities equal to 0.35 for event type 1, and 0.65
for event type 2. Here, the type of failure is independent of 7'*. We then generated two
covariates, one time-independent ( V'7;) and one time-dependent ( V7). The time-
independent covariate was generated from a Bernoulli distribution with mean equal to 0.55.
The time dependent covariate was a 1 x 3 row vector generated from a multivariate normal
distribution with mean equal to (7%, 7*, T*)" (so as to create a dependence between Vyp
and 7*) and covariance equal to 0.7~ J], where 7, j=1, 2, 3. This vector represents the values
of Vrp(9 attimes 1 =0, 6 =0.5,and & = 1. V(9 at £= 0 represents a baseline
measurement. We assumed that the time-dependent variable remains constant between
measurements.

We assumed the maximum follow up time was v* = 1.35. We generated the censoring times

for the independent censoring process, (7, according to a uniform(.55,1.35) distribution, to
represent an administrative censoring process. We chose a uniform(.55,1.35) distribution as
opposed to a uniform(0,1.35) distribution because many HIV clinical trials are designed to

follow all patients for a pre-specified duration after the last patient is enrolled.

Next, we generated the censoring times for the dependent censoring process, C7, according
to the following hazard rate: Ac (t}vt> =Ao (t) exp {’Y’w (12 Vt)], where

Y'w (£, V) =31Vy, +92Vep () with Ag(9) = 1.5, 71 = 0.15 and 7, = 0.8. Generating the
censoring times according to the time-dependent model was done sequentially. This was
done because the hazard of censoring in the time interval £ = 0 to & = 0.5 differs from the
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hazard of censoring in the next interval. The algorithm to construct ' for each simulated
patient is as follows:

- Generate a censoring time, Cj, compatible with the hazard function for the first
time interval, [#, ), (where # = 0) using the method of Bender et al. (2005).
Note that this step is simply generating a censoring time that is compatible with
a Cox proportional hazards model with time-independent covariates and
constant baseline hazard.

- If (i is contained within the first time interval [, ), then set C}=C.

- If (3 is not contained within the interval [£, &), generate a censoring time, Gy,
compatible with the model for the second time interval,[ 5, ).

- If G is contained within the interval [0, & — %), then set C'f=Cy+t»-

- If G is not contained within the time interval [0, & — %), then repeat the
previous two steps for the last time interval [ 4, 00).

Finally, C* was defined as min (C}, C5).

We repeated the simulations with the same setting, but with A1o(#) = 2.5 and 1¢ = 0.04
instead of A1y(#) = 1.5, so as to introduce varying levels of dependent censoring. Furthermore,
in order to evaluate the performance of the augmented and non-augmented [IPCW estimators
when the Aalen-Johansen estimator is consistent, that is, when censoring is independent, we
also simulated a scenario with only independent censoring. In this scenario, the distribution
of the outcomes was the same as before, but C; was uniform(0,1.35) and ¢ was
uniform(0.55,1.35).

Practically, in order to ensure the regularity condition that Ac,, (t|VT, T, J, T>t> <€, we
can treat the last observation (or last x observations) in each dataset as a failure (Robins and
Rotnitzky, 1992) and set 7= T* and C'= C*. Alternatively, we could have chosen an
arbitrary e, set v=v* — g, T=min(7*, v) and C= min(C*, v). Both methods would

ensure that Ac, (ﬂvm T,J, T>t> <& with probability 1. Here, we treated the last 5
observations as failures; this was chosen ad hoc. We also examined treating only the last
observation as a failure, and then taking the last 10 observations as failures; our results were
not sensitive to this condition. We generated 1000 datasets with 250 patients each. We
estimated F(4) at 8 time points: 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95, 1.1.

In the first simulation scenario, the average censoring rate for the 1000 simulations was
55%, and the average dependent censoring rate was 33%. The results are presented in Table
1A. In the second simulation scenario, the average censoring rate for the 1000 simulations
was 58%, and the average dependent censoring rate was 43%. The results are presented in
Table 1B. In the third simulation scenario, the average censoring rate for the 1000
simulations was 50%, and the average dependent censoring rate was 15%. The results are
presented in Table 2A. In these three simulation scenarios, the augmented IPCW estimator
had bias very close to zero for each failure type. As expected in these scenarios, the Aalen-
Johansen estimator had substantially larger bias and Mean Squared Error. The non-
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augmented IPCW estimator had reduced bias compared with the Aalen-Johansen estimator
but still appeared to show some bias, particularly at later follow-up times and the highest
percentage of dependent censoring. At earlier follow-up times and lower percentage of
dependent censoring, the bias of both IPCW estimators did not substantially contribute to the
Mean Squared Error. Also, for most time points the augmented IPCW estimator had smaller
Mean Squared Error and hence was more efficient than the IPCW estimator, even though
(11) was misspecified here. The efficiency gains increased over time. The gain obtained by
augmenting the [IPCW estimator was larger in the scenario with more dependent censoring.

Table 2B displays the results for the scenario where censoring was independent. In this
simulation scenario, the average censoring rate for the 1000 simulations was 48%. In this
scenario, all three estimators are consistent. As can be seen in Table 2B, IPCW and
augmented IPCW hardly inflated the Mean Squared Errors. This indicates that adjusting for
dependent censoring can be done without paying a price in the form of a substantial increase
in precision.

7 Analysis of Competing Risks in ACTG A5095

Our event of interest is failure of the initial treatment regimen and can be classified as one of
three types: 1) virologic failure (VF), 2) discontinuation of initial treatment due to treatment
limiting adverse event (TLAE), or 3) discontinuation of initial treatment due to treatment
limiting other event (TLOE). TLOEs included required discontinuation of study treatment
because of the need for medications which could not be taken with study treatment, clinical
events, pregnancy, and death. In addition to administrative censoring, arising when the study
closes to follow-up, patients may discontinue randomized treatment for reasons other than
VF, TLAE, or TLOE (for example, loss of follow-up). Supposing that discontinuing
treatment for other reasons could in principle be avoided, our aim is to describe what might
happen in the setting where treatment is only discontinued because of VF, TLAE, or TLOE.
Therefore, we censor patients if they discontinue treatment for reasons other than VF,
TLAE, or TLOE. This may lead to dependent censoring.

A total of 758 patients were randomized, including 382 patients who received the 4-drug
regimen and 376 patients who received the 3-drug regimen. Of the 758 patients, 146 had
failure of their initial randomized regimen due to virologic failure (VFs), 58 discontinued
their initial regimen due to treatment-limiting adverse events (TLAESs), and 26 discontinued
their initial treatment due to treatment limiting other events (TLOEs, including 5 deaths). Of
the remaining 528 patients who were censored, 432 patients were still on their initial
randomized regimen at completion of the study, and so were administratively censored. The
remaining 96 patients were non-administratively censored, mainly due to loss of follow-up
while on their initial randomized regimen. The types of failure among the two regimens as
well as the types of censoring are presented in Table 3.

We based the model for non-administrative censoring on a literature review of variables that
might predict losses to follow-up in HIV-infected patients (Dudley et al. (1995); loannidis et
al. (1997); Arici et al. (2002); Lanoy et al. (2006); Andersen et al. (2007); Krishnan et al.
(2010); Fleishman et al. (2012)), and used the same set of variables for administrative

Lifetime Data Anal. Author manuscript; available in PMC 2019 April 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Lok et al.

Page 12

censoring. Many of these variables have also been associated with the competing outcomes
of interest, and so dependent censoring is a reasonable concern. We therefore used the

following variables in equation (3), for the hazard of censoring, Wr (72 Vt):

{CD4 Count,, Log Viral Load,, Sex, Age, IV drug use, Black, Hispanic} ,

for r=1, 2 (administrative and non-administrative censoring), where CD4 count is a time
dependent variable coded as 1 for counts < 200 and 0 otherwise; Log Viral Load is the log;q
HIV viral load in the blood; Sex is coded as 1 for males, 0 for females; IV drug use is coded
as 1 for patients who reported ever using illicit intravenous (IV) drugs, and 0 otherwise;
Black and Hispanic are the indicator variables for patients of black non-Hispanic and
Hispanic race/ethnicity, respectively, with reference category white non-Hispanic. Table 4
presents the parameter estimates for the two censoring models, one for administrative and
one for non-administrative censoring. We found no significant predictors of administrative
censoring though there was some evidence of an increased odds of administrative censoring
among men (p=0.07) and Hispanic patients (p=0.06) for the 3-drug regimen. Given that, due
to randomization, treatment and administrative censoring are unrelated, this could well be a
statistical artifact. Reported use of IV drugs was highly predictive of non-administrative
censoring in both treatment arms (p = 0.006 for the 3-drug regimen, p=0.02 for the 4-drug
regimen). Hispanic race/ethnicity was marginally significantly associated with an increased
odds of non-administrative censoring in those on the 3-drug regimen (p=0.08), and male sex
was marginally significantly associated with a reduced odds of non-administrative censoring
in those on the 4-drug regimen (p=0.06). Thus, the assumption of independent censoring is
violated if the time or type of event depends on, for example, use of IV drugs.

The estimated cumulative incidence curves for VF and TLAE are shown in Figure 1. Since
there were only 26 TLOESs, we do not present the cumulative incidence curve for TLOE. The
non-augmented IPCW estimator was essentially identical to the augmented IPCW estimator
and is not shown here. Despite the fact that there were strong predictors of censoring, and
the concern that these might also be predictors of the competing outcomes of interest, there

was little difference between the standard estimate, F° 3 (t), and the augmented IPCW
estimate. For this application, of considerable importance, the conclusions that might be
drawn from the study have been shown to be not sensitive to potentially dependent
censoring, a concern that was well motivated by the fact that some predictors of loss to
follow-up are also predictors of the outcome of interest. Comparing treatments, there were
general trends for higher rates of VF but lower rates of TLAE for the 3-drug versus the 4-
drug regimen.

The standard errors of our non-augmented and augmented IPCW estimators as well as the

standard error for 13‘3 (t) are shown in Figure 2. The standard errors for ﬁ';VA (t)and F? (t)
were obtained using the non-parametric bootstrap with 500 bootstrap samples. The
difference in standard errors between the augmented and non-augmented IPCW estimators is
generally small, suggesting that for this application, there is only a slight efficiency
advantage to using the more complicated augmented estimator. Furthermore, for this
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application, the standard error of the augmented IPCW estimator is very similar to that of
the Aalen-Johansen estimator. This is particularly important, because our estimator remains
valid in the presence of dependent censoring, which is not so for the Aalen-Johansen
estimator. Thus, we can rely on the conclusions even though the assumption of independent
censoring may be violated.

8 Discussion

In this paper we have developed a method to estimate the cumulative incidence function
with multiple types of censoring. The use of methods of analysis which more appropriately
address the challenges of competing risk data and potentially dependent censoring may be
very valuable in understanding the relative balance of safety outcomes (e.g. TLAE) and
efficacy outcomes (e.g. VF), and how this balance evolves with time on treatment and
compares among treatments. Such analyses will likely be important complements to
analyses of composite outcome measures (e.g. time to first of TLAE or VF) which can be
difficult to interpret because they are often complex mixes of efficacy and safety outcomes.
In addition, being able to handle dependent censoring in statistical analyses is important,
where assessment of the sensitivity of the conclusions to the handling of different reasons
for censoring should be part of standard analyses.

We investigated four simulation scenarios. When censoring was dependent, the augmented
IPCW estimator had substantially reduced bias as compared to the Aalen-Johansen
estimator, which assumes independent censoring; the [IPCW estimator was in between, with
small bias for earlier time points and larger bias later, especially where there was more
dependent censoring. The decrease in root Mean Squared Error obtained from augmenting
the IPCW estimator (as opposed to using the non-augmented IPCW estimator) increased
with time and with percentage of dependent censoring, and was substantial for later time
points and larger percentages of dependent censoring. When there was less dependent
censoring, the [IPCW estimator had comparable standard errors as the Aalen-Johansen
estimator, and less bias; and the augmented IPCW estimator outperformed the IPCW
estimator in terms of root MSE by a smaller percentage. In the scenario with independent
censoring, where all three estimators are consistent, [IPCW and augmented IPCW did not
substantially inflate standard errors, as compared to the Aalen-Johansen estimator.

In our application, the results were not appreciably changed by allowing for the possibility
of dependent censoring, but there may be other applications where doing so is important.
Furthermore, this analysis provides more confidence in the resulting estimates since it
incorporates the possibility of dependent censoring. As shown, this does not need to be at
the expense of larger standard errors.

Even if there are only baseline covariates which predict censoring, [IPCW is sometimes
preferable over basing the analysis on a Cox proportional hazards model for the cause
specific hazards. The reason is that we don’t need to assume a semi-parametric Cox model
for the cause specific hazards of the competing outcomes; we only need to specify (3),
which is automatically correctly specified if independent censoring does turn out to hold.
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One direction of possible future research is to relax the assumption that data on all time-
dependent and independent covariates that are prognostic for both failure and censoring are
recorded and available. This future research would rely on sensitivity analyses in order to
handle the non-ignorable missingness.
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A Appendix

Equation (3) is an unbiased estimating equation for F?) since

E w(T|VATA0> {1 (T = t“]:‘]) o F.] (t>}
_ A o
B w(T‘vT;A()) {1(T<t’J_‘]) FJ (t)}|VT7T
E{A‘VT,T} .
-F (T[T o) {L(T < t,J=)) — F; (t)}
=B (1 {1(T < t,J=)) - F;(t)})

The third equality follows from the fact that B (A[Vy, T) =Pr [ A=1|V_., T| which

under our coarsening at random assumption equals 7 (T‘VT %A0>. From this it is clear that
equation (3) is an unbiased estimating equation for F(2).

One can use the results in Robins and Rotnitzky (1992) to prove that with one type of
censoring the solution to

+ {1(Ts <6, 35=)) = Fj(t)} — A {Fj () ,7,b(-)} p=0
i=1 | i <Ti‘V ;AO) ! (16)

with

Ay (7.0 ()} = /- <ub(f;)0(u)) M. (u)

(17
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and b (U7 Vu) the same as in equation (9), is a doubly robust, locally efficient estimator for
F(9). Here, dM(u) = dN(u) — dA(u). In our situation, with multiple types of censoring, it

Tk

is easy to show that M, (u) :ZrzldM ¢ (), which leads to our augmentation term in
(8). Note that with one type of failure and one type of censoring, our method reduces to that
of (Rotnitzky and Robins, 2005).

Now, it can be shown that for each r, since

b (u,vu)
T (u — ViAo (u))

is a bounded and predictable process, defined on the same filtration as M (u),

b(u,vru)
™ (u— |\7u;AU (u)) dMC'T )

is a mean zero martingale (Fleming and Harrington, 1991, Thm 1.5.1). Note that the left-

continuous versions of b (% Vu) and T (U\Vu;l\o (u)) are needed here. As a result
- b(u.7)

dM U
r:ll 7r(u*‘vu;Ao(u)) C’T( )

is also a mean zero martingale. Thus, A;{F(2), y, &)} has mean zero. Since A{F(9), 7,
b(-)} has mean zero, it also follows trivially that equation (7) is an unbiased estimating
equation for F(?).
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Cumulative Incidence Curves, by Regimen.
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Parameter Estimates (95%-Confidence Intervals) for the Models for Administrative and Non-Administrative

Censoring.

Covariate

3-drug Regimen

Admin. Censoring

Non-Admin. Censoring

4-drug Regimen

Admin. Censoring

Non-Admin. Censoring

Sex
(male vs female)

IV Drug Use
(ever vs never)

Age <30
(vs > 30 years)

Hispanic
(vs white, non-Hispanic)

Black, non-Hispanic
(vs white, non-Hispanic)

Log Viral Load
(per 1 log;, copies/ml)

Time-dependent
CD4 count < 200

0.33 (~0.03, 0.69) p=0.07

~0.47 (~1.18, 0.24)
p=0.20

0.18 (~0.16, 0.52) p=0.30

0.36 (~0.003, 0.72)
p=0.06

~0.13 (~0.45, 0.19)
p=0.42

~0.05 (-0.25, 0.15)
p=0.63

~0.01 (~0.64, 0.61)
p=0.97

0.31 (—0.58, 1.19) p=0.50

1.18 (0.34, 2.02) p=0.006

0.54 (<0.14, 1.21) p=0.12

0.76 (—0.08, 1.59) p=0.08

0.56 (-0.20, 1.32) p=0.15

~0.12 (~0.56, 0.32) p=0.59

—0.45 (—1.37, 0.47) p=0.34

~0.03 (—0.41, 0.35)
p=0.87

~0.05 (~0.50, 0.41)
p=0.85

~0.07 (~0.40, 0.25)
p=0.65

0.13 (-0.23, 0.48) p=0.49
0.22 (-0.10, 0.55) p=0.18
~0.03 (-0.21, 0.16)

p=0.79

0.19 (-0.43, 0.82) p=0.55

—0.57 (-1.16, 0.03) p=0.06

0.83 (0.14, 1.51) p=0.02

0.28 (-0.31, 0.87) p=0.36

0.34 (—0.34, 1.02) p=0.33

0.10 (~0.54, 0.74) p=0.76

—0.24 (-0.61, 0.13) p=0.21

0.31(-0.37, 0.99) p=0.37
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