
Estimation of the Cumulative Incidence Function Under Multiple 
Dependent and Independent Censoring Mechanisms

Judith J. Lok*,
Department of Biostatistics, Harvard School of Public Health

Shu Yang,
Department of Statistics, North Carolina State University

Brian Sharkey, and
Incyte, Wilmington, USA

Michael D. Hughes
Department of Biostatistics, Harvard School of Public Health

Abstract
Competing risks occur in a time-to-event analysis in which a patient can experience one of several 
types of events. Traditional methods for handling competing risks data presuppose one censoring 
process, which is assumed to be independent. In a controlled clinical trial, censoring can occur for 
several reasons: some independent, others dependent. We propose an estimator of the cumulative 
incidence function in the presence of both independent and dependent censoring mechanisms. We 
rely on semi-parametric theory to derive an augmented inverse probability of censoring weighted 
(AIPCW) estimator. We demonstrate the efficiency gained when using the AIPCW estimator 
compared to a non-augmented estimator via simulations. We then apply our method to evaluate the 
safety and efficacy of two anti-HIV regimens in a randomized trial conducted by the AIDS 
Clinical Trial Group, ACTG A5095.
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1 Introduction
Competing risks often arise in medical studies. In the competing risks setting, as opposed to 
the standard survival analysis setting, the failure event is classified into one of several 
mutually exclusive types, and occurrence of one type of event precludes the occurrence of an 
event of another type. For example, if interest is in death due to cardiovascular disease, a 
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patient experiencing death due to cancer would be precluded from experiencing the event of 
interest. Standard statistical methods for the analysis of competing risks data are described 
in, for example, Andersen et al. (1993); Kalbfleisch and Prentice (1980); Pintilie (2006).

We focus our attention on the cumulative incidence function (CIF), defined as the 
probability of a particular type of failure by time t, in an environment where other causes of 
failure may occur. There have been significant developments in statistical inference based on 
the CIF. Gray (1988) developed a class of tests for comparing CIFs of a particular type of 
failure among different groups. Lin (1997) constructed confidence bands for the CIF. Fine 
and Gray (1999) proposed a semi-parametric proportional hazards model for the 
subdistribution of a competing risk. Other work has focused on modeling the CIF directly, 
see for example Fine (2001); Bryant and Dignam (2004); Jeong and Fine (2006).

Previous work has assumed that follow-up of patients is subject to only one censoring 
process, which is assumed to be independent. However, a patient’s follow-up time may be 
censored for one of many reasons, some of which may be independent and some may be 
dependent. For example, so-called administrative censoring occurs when patients reach the 
end of a study, often inducing independent censoring (although, as noted in e.g. Lok and 
Hughes (2016), this censoring may be dependent if, for example, patients with 
characteristics which suggest that they might be harder to follow, are under-represented in 
the patient population enrolling early, or if sites with distinctly different patient populations 
start enrollment at different times). On the other hand, patients may prematurely drop out of 
a study prior to the study’s planned end of follow-up, which may induce dependent 
censoring if the patients who dropped out are not representative of the entire sample (e.g. 
sicker patients drop out of the study with higher probability than healthier patients). Thus, 
dependent censoring may more accurately reflect situations that arise in clinical studies. If 
dependent censoring is present, use of methods which assume independent censoring can 
lead to biased estimates of parameters or functions of interest. Rotnitzky et al. (2007) and 
Rotnitzky et al. (2009) estimated survival curves in the presence of dependent censoring. 
The purpose of this article is to adapt these methods to estimate the CIF for competing risk 
data in the presence of multiple censoring mechanisms, some of which may be dependent.

This paper is organized as follows. In section 2 we introduce the AIDS Clinical Trial Group 
(ACTG) A5095 randomized trial, which motivated the methodological developments. In 
section 3, we introduce our notation and data structure and in section 4, our assumptions. We 
introduce our estimator of the cumulative incidence function in section 5. In section 6, a 
simulation study is conducted to evaluate the performance of our estimator in finite samples. 
In section 7, we illustrate the application of our methods to an analysis of the A5095 study. 
We end with a discussion in section 8.

2 The ACTG A5095 Study: A Motivating Example
ACTG A5095 was a multicenter, randomized, double-blind, placebo-controlled clinical trial 
designed to compare the safety and efficacy of two 3-drug regimens versus a 4-drug regimen 
for initial treatment of HIV-1 infection (Gulick et al., 2004; Gulick et al., 2006). One 3-drug 
regimen was discontinued early on the recommendation of the data and safety monitoring 

Lok et al. Page 2

Lifetime Data Anal. Author manuscript; available in PMC 2019 April 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



board. Our focus is therefore on the comparison of the remaining 3-drug regimen 
(zidovudine, lamivudine, and efavirenz) and the 4-drug regimen (zidovudine, lamivudine, 
abacavir, and efavirenz).

The primary efficacy outcome measure in A5095 was the time to virologic failure (VF), 
defined as the time to the first of two successive HIV-1 RNA levels of 200 copies/mL of 
plasma or greater at or 16 weeks of follow-up. This was analyzed using an intention-to-treat 
analysis ignoring the changes from the randomized regimens which occurred in a reasonable 
proportion of study participants, often due to treatment limiting adverse events (TLAEs), 
sometimes due to treatment limiting other events (TLOEs) such as pregnancy and death. 
Clinically, there is therefore also considerable interest in comparing regimens with respect to 
regimen failure, with the competing outcome types of VF, TLAE, and TLOE. These are 
competing risks in that discontinuation of treatment due to a TLAE or TLOE precludes 
follow-up for VF while on that randomized treatment. However, some participants 
discontinue randomized treatment prior to the planned administrative end of follow-up of the 
study for reasons other than VF, TLAE, or TLOE, and there is often concern that this 
censoring of follow-up on study treatment may be dependent (Dudley et al. (1995); 
Ioannidis et al. (1997); Arici et al. (2002); Lanoy et al. (2006); Andersen et al. (2007); 
Krishnan et al. (2010); Fleishman et al. (2012)). For example, if patients who feel bad on 
treatment discontinue treatment and therefore leave the trial, censoring due to dropout might 
be dependent. Developing statistical methods that allow for dependent censoring is therefore 
important, particularly for checking the sensitivity of study conclusions to the handling of 
such discontinuations.

3 Notation and Goal
We consider a study that has staggered entry and maximum follow-up time ν*. Let T * and 
C* be non-negative time to event and time to censoring random variables, respectively. Let J 
∈ {1, 2, … j*} denote the type of failure and R ∈ {1, 2, … r*} denote the reason for 
censoring. In order for our estimator to converge properly (specifically, to ensure that 
regularity condition (2), defined below, holds), we will need to discard data that were 
recorded after time ν = ν* − ε, where ε is a small positive number. We then define the event 
time as T = min(T *, ν) and the censoring time as C = min(C*, ν). We assume that we 

observe n independent and identically distributed copies of 
where X = min(T, C), ∆ = 1(T ≤ C), and  where 1(·) is the indicator function 
taking value 1 if its argument is true and 0 otherwise, and Vs is the vector of covariates 
measured at time s. Note that when X = T we observe a patient’s full covariate history, . 
We assume that either the type of failure, J, or the reason for censoring, R, is observed, but 
not both. Going forward, we include the type of failure or reason for censoring in . Our 
goal is to estimate the cumulative incidence function on the interval [0, ν), defined as

in the presence of multiple reasons for censoring, some (or all) of which may be dependent.
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4 Assumptions
We shall assume that for r = 1, …, r*:

(1)

where . In 
words, we assume that the hazard of censoring at time t for reason r, depends only on the 
measured variables up to time t and not on any future observed or unobserved variables, 
failure time, or failure type. When assuming (1), we make the non-identifiable assumption 
that data on all time-dependent and time-independent covariates that are predictive of both 
failure and censoring are available and included in . Equation (1) is equivalent to 
assuming that the data are coarsened at random (CAR) (Heitjan and Rubin, 1991) or missing 

at random (MAR) (Rubin, 1976). For ease of notation we will denote  by 

.

We impose the regularity condition that for some constant ξ,

(2)

with probability 1, for t in the interval [0, ν). Condition (2) would be false if we took ν = ν* 
since, with probability 1, all patients who are uncensored just before the administrative end 
of study ν* will be censored when the study ends (Rotnitzky et al., 2007).

When  is high dimensional, we cannot estimate  non-parametrically due to the 

curse of dimensionality. Thus, we specify a model for . In this paper, we use 
Cox’s proportional hazards model, of the form:

(3)

where λ0,r(t) is an unknown, non-negative function of t,  is a specified function of 
t and , and γr is an unknown parameter vector.

5 Estimation
5.1 Inverse Probability of Censoring Weighted (IPCW) Estimator

In the absence of censoring, Fj(t) could be estimated non-parametrically by solving
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Due to censoring we must modify this expression. The main idea underlying our estimator 
of Fj(t) is that of “non-uniform-pseudo-redistribution” to the right via inverse probability 
weighting of uncensored patients (Robins et al., 1995; Rotnitzky et al., 2009). That is, when 
a patient is censored, our estimator redistributes his or her weight among “similar” 
remaining uncensored patients. Following Rotnitzky et al. (2007), we define the inverse 

weights, , as follows:

with the cumulative baseline hazard, Λ0,r(t), defined as .

We can find an estimate of Fj(t) as the solution to the following equation:

(4)

where  is the minimum time such that 1(T ≤ t, J = j) is observed, i.e. , and 

. As shown in the appendix, equation (4) is an unbiased estimating equation 

for Fj(t) since under CAR, . Note that if regularity condition 
(2) were false, we would be dividing by 0; this is called a positivity violation, where some 
patients have probability 0 of remaining uncensored, and IPCW fails (Robins et al., 1995).

Note that using ∆ and T instead of  and  will result in a less efficient estimator of Fj(t). 
Intuitively this makes sense: by using ∆ and T, censored patients would contribute nothing to 
equation (4). However, for those patients who were censored after time t, we know the value 
of 1(T ≤ t, J = j). As a result, we can use this information to construct a more efficient 
estimator.

Estimation of the inverse weights  first requires estimation of 
 and . Because of the missing at 

random assumption we can estimate γr, which is the unknown parameter vector in equation 
(3), using standard software via a Cox proportional hazards model with time dependent 
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covariates. To estimate γr, treat censoring due to reason r as a “failure” in the time 
dependent Cox proportional hazards model. All events and censoring due to causes other 
than r are treated as “censored” observations. This process is repeated to estimate all γr’s.

Once we have an estimate of γ, , we can estimate the cumulative baseline hazard, 
, using Breslow’s estimator (Andersen et al., 1993),

(5)

where NC,r(u) ≡ 1(C ≤ u, R = r, C ≤ T) is the counting process of observing censoring of 

type r. Next,  can be estimated by

(6)

We can now find an estimate of Fj(t) as the solution to

(7)

Denote the estimator solving equation (7) as .  is known as a (non-
augmented) inverse probability of censoring weighted (IPCW) estimator. We can use the 

non-parametric bootstrap to estimate the variance of .

5.2 Augmented Inverse Probability of Censoring Weighted (AIPCW) Estimator

We can improve the efficiency of  by introducing an augmentation term (Tsiatis, 
2006; Rotnitzky and Robins, 2005). Consider the solution to the following equation

(8)

where Ai{Fj(t), γ, b(·)} is the augmentation term and is defined as

(9)
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where  is a user specified, left-continuous function of u and , where 

 indicates the left-continuous version of π, and where

(10)

The process MC,r(u) is a mean zero martingale with respect to the filtration , where we 
define  as the increasing sequence of sigma algebras generated by 

. In the appendix, we show that equation (8) is an unbiased 
estimating equation for Fj(t).

For efficiency reasons (to be discussed below), we choose  as follows:

(11)

If we can consistently estimate  as defined in equation (11), we can find an estimate 
of Fj(t) as the solution to

(12)

with

and

The estimator that solves equation (12) is denoted by  and is an augmented inverse 
probability of censoring weight (AIPCW) estimator of Fj(t). Again, we can use the non-

parametric bootstrap to estimate the variance of .

If we can consistently estimate  as defined in (11), then  would be doubly 

robust (Rotnitzky and Robins, 2005). That is,  is consistent and asymptotically normal 
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if the model for the censoring process, , is correctly specified or the conditional 

model,  is correctly specified. Also, if both the model for 

the censoring process and the conditional model are correctly specified then  is locally 
semi-parametric efficient (Robins and Rotnitzky, 1992; Tsiatis, 2006). The function 

 is not arbitrary and is chosen to equal 
in order to gain the greatest efficiency among estimators that solve an equation such as 
equation (8) (Rotnitzky et al., 2007).

In practice, estimating the conditional expectation 

 can be difficult, because the information 
considered in  in equation (11) is time-dependent. Thus, in order to make the problem 
more tractable, one can instead consider estimating

(13)

where  are the baseline covariates. One way to estimate (13) is as follows:

(14)

where  and  is the estimated parameter vector 
obtained from fitting a Cox proportional hazards model to the overall time T in each 
treatment group:

(15)

where , and λ0,j(t) is an unknown non-
negative function of t. The cumulative baseline hazard, Λ0,j(a), can be estimated using 

Breslow’s estimator, and .

The resulting estimator of Fj(t) will not be doubly robust or locally semi-parametric 
efficient. However, as shown in the appendix, it is still a consistent and asymptotically 
normal semi-parametric estimator for Fj(t), if the censoring models (3) are correctly 
specified.
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We compared our augmented and non-augmented IPCW estimators with the standard 
estimator of the cumulative incidence function which assumes independent censoring 

(Andersen et al., 1993), the Aalen-Johansen estimator :

where dji is the number of people with failure type j at time tji, tj1 < tj2 < … < tjkj are the 

failure times for failures of type j, nji is the number of people at risk at time tji, and  is 
the Kaplan-Meier estimator of the overall survival function (i.e. for all failure types 

combined). We calculated the standard error for  using the delta method (Pintilie, 
2006).

6 Simulation Study
We conducted a simulation study, which is a modification of the simulation study in 
Rotnitzky et al. (2007), in order to evaluate the performance of our estimators in finite 
samples.

We generated T * according to an exponential distribution with mean equal to 1.25. We 
assumed there were 2 event types, with probabilities equal to 0.35 for event type 1, and 0.65 
for event type 2. Here, the type of failure is independent of T *. We then generated two 
covariates, one time-independent (VTI) and one time-dependent (VTD). The time-
independent covariate was generated from a Bernoulli distribution with mean equal to 0.55. 
The time dependent covariate was a 1 × 3 row vector generated from a multivariate normal 
distribution with mean equal to (T*, T*, T*)′ (so as to create a dependence between VTD 
and T*) and covariance equal to 0.7|i−j|, where i, j = 1, 2, 3. This vector represents the values 
of VTD(t) at times t1 = 0, t2 = 0.5, and t3 = 1. VTD(t) at t = 0 represents a baseline 
measurement. We assumed that the time-dependent variable remains constant between 
measurements.

We assumed the maximum follow up time was ν* = 1.35. We generated the censoring times 
for the independent censoring process, , according to a uniform(.55,1.35) distribution, to 
represent an administrative censoring process. We chose a uniform(.55,1.35) distribution as 
opposed to a uniform(0,1.35) distribution because many HIV clinical trials are designed to 
follow all patients for a pre-specified duration after the last patient is enrolled.

Next, we generated the censoring times for the dependent censoring process, , according 

to the following hazard rate: , where 

 with λ0(t) = 1.5, γ1 = 0.15 and γ2 = 0.8. Generating the 
censoring times according to the time-dependent model was done sequentially. This was 
done because the hazard of censoring in the time interval t1 = 0 to t2 = 0.5 differs from the 
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hazard of censoring in the next interval. The algorithm to construct  for each simulated 
patient is as follows:

– Generate a censoring time, C1, compatible with the hazard function for the first 
time interval, [t1, t2), (where t1 = 0) using the method of Bender et al. (2005). 
Note that this step is simply generating a censoring time that is compatible with 
a Cox proportional hazards model with time-independent covariates and 
constant baseline hazard.

– If C1 is contained within the first time interval [t1, t2), then set .

– If C1 is not contained within the interval [t1, t2), generate a censoring time, C2, 
compatible with the model for the second time interval,[t2, t3).

– If C2 is contained within the interval [0, t3 − t2), then set .

– If C2 is not contained within the time interval [0, t3 − t2), then repeat the 
previous two steps for the last time interval [t3, ∞).

Finally, C* was defined as .

We repeated the simulations with the same setting, but with λ0(t) = 2.5 and λ0 = 0.04 
instead of λ0(t) = 1.5, so as to introduce varying levels of dependent censoring. Furthermore, 
in order to evaluate the performance of the augmented and non-augmented IPCW estimators 
when the Aalen-Johansen estimator is consistent, that is, when censoring is independent, we 
also simulated a scenario with only independent censoring. In this scenario, the distribution 
of the outcomes was the same as before, but  was uniform(0,1.35) and  was 
uniform(0.55,1.35).

Practically, in order to ensure the regularity condition that , we 
can treat the last observation (or last x observations) in each dataset as a failure (Robins and 
Rotnitzky, 1992) and set T = T * and C = C*. Alternatively, we could have chosen an 
arbitrary ε, set ν = ν* − ε, T = min(T *, ν) and C = min(C*, ν). Both methods would 

ensure that  with probability 1. Here, we treated the last 5 
observations as failures; this was chosen ad hoc. We also examined treating only the last 
observation as a failure, and then taking the last 10 observations as failures; our results were 
not sensitive to this condition. We generated 1000 datasets with 250 patients each. We 
estimated Fj(t) at 8 time points: 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95, 1.1.

In the first simulation scenario, the average censoring rate for the 1000 simulations was 
55%, and the average dependent censoring rate was 33%. The results are presented in Table 
1A. In the second simulation scenario, the average censoring rate for the 1000 simulations 
was 58%, and the average dependent censoring rate was 43%. The results are presented in 
Table 1B. In the third simulation scenario, the average censoring rate for the 1000 
simulations was 50%, and the average dependent censoring rate was 15%. The results are 
presented in Table 2A. In these three simulation scenarios, the augmented IPCW estimator 
had bias very close to zero for each failure type. As expected in these scenarios, the Aalen-
Johansen estimator had substantially larger bias and Mean Squared Error. The non-
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augmented IPCW estimator had reduced bias compared with the Aalen-Johansen estimator 
but still appeared to show some bias, particularly at later follow-up times and the highest 
percentage of dependent censoring. At earlier follow-up times and lower percentage of 
dependent censoring, the bias of both IPCW estimators did not substantially contribute to the 
Mean Squared Error. Also, for most time points the augmented IPCW estimator had smaller 
Mean Squared Error and hence was more efficient than the IPCW estimator, even though 
(11) was misspecified here. The efficiency gains increased over time. The gain obtained by 
augmenting the IPCW estimator was larger in the scenario with more dependent censoring.

Table 2B displays the results for the scenario where censoring was independent. In this 
simulation scenario, the average censoring rate for the 1000 simulations was 48%. In this 
scenario, all three estimators are consistent. As can be seen in Table 2B, IPCW and 
augmented IPCW hardly inflated the Mean Squared Errors. This indicates that adjusting for 
dependent censoring can be done without paying a price in the form of a substantial increase 
in precision.

7 Analysis of Competing Risks in ACTG A5095
Our event of interest is failure of the initial treatment regimen and can be classified as one of 
three types: 1) virologic failure (VF), 2) discontinuation of initial treatment due to treatment 
limiting adverse event (TLAE), or 3) discontinuation of initial treatment due to treatment 
limiting other event (TLOE). TLOEs included required discontinuation of study treatment 
because of the need for medications which could not be taken with study treatment, clinical 
events, pregnancy, and death. In addition to administrative censoring, arising when the study 
closes to follow-up, patients may discontinue randomized treatment for reasons other than 
VF, TLAE, or TLOE (for example, loss of follow-up). Supposing that discontinuing 
treatment for other reasons could in principle be avoided, our aim is to describe what might 
happen in the setting where treatment is only discontinued because of VF, TLAE, or TLOE. 
Therefore, we censor patients if they discontinue treatment for reasons other than VF, 
TLAE, or TLOE. This may lead to dependent censoring.

A total of 758 patients were randomized, including 382 patients who received the 4-drug 
regimen and 376 patients who received the 3-drug regimen. Of the 758 patients, 146 had 
failure of their initial randomized regimen due to virologic failure (VFs), 58 discontinued 
their initial regimen due to treatment-limiting adverse events (TLAEs), and 26 discontinued 
their initial treatment due to treatment limiting other events (TLOEs, including 5 deaths). Of 
the remaining 528 patients who were censored, 432 patients were still on their initial 
randomized regimen at completion of the study, and so were administratively censored. The 
remaining 96 patients were non-administratively censored, mainly due to loss of follow-up 
while on their initial randomized regimen. The types of failure among the two regimens as 
well as the types of censoring are presented in Table 3.

We based the model for non-administrative censoring on a literature review of variables that 
might predict losses to follow-up in HIV-infected patients (Dudley et al. (1995); Ioannidis et 
al. (1997); Arici et al. (2002); Lanoy et al. (2006); Andersen et al. (2007); Krishnan et al. 
(2010); Fleishman et al. (2012)), and used the same set of variables for administrative 

Lok et al. Page 11

Lifetime Data Anal. Author manuscript; available in PMC 2019 April 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



censoring. Many of these variables have also been associated with the competing outcomes 
of interest, and so dependent censoring is a reasonable concern. We therefore used the 

following variables in equation (3), for the hazard of censoring, :

for r = 1, 2 (administrative and non-administrative censoring), where CD4 count is a time 
dependent variable coded as 1 for counts ≤ 200 and 0 otherwise; Log Viral Load is the log10 
HIV viral load in the blood; Sex is coded as 1 for males, 0 for females; IV drug use is coded 
as 1 for patients who reported ever using illicit intravenous (IV) drugs, and 0 otherwise; 
Black and Hispanic are the indicator variables for patients of black non-Hispanic and 
Hispanic race/ethnicity, respectively, with reference category white non-Hispanic. Table 4 
presents the parameter estimates for the two censoring models, one for administrative and 
one for non-administrative censoring. We found no significant predictors of administrative 
censoring though there was some evidence of an increased odds of administrative censoring 
among men (p=0.07) and Hispanic patients (p=0.06) for the 3-drug regimen. Given that, due 
to randomization, treatment and administrative censoring are unrelated, this could well be a 
statistical artifact. Reported use of IV drugs was highly predictive of non-administrative 
censoring in both treatment arms (p = 0.006 for the 3-drug regimen, p=0.02 for the 4-drug 
regimen). Hispanic race/ethnicity was marginally significantly associated with an increased 
odds of non-administrative censoring in those on the 3-drug regimen (p=0.08), and male sex 
was marginally significantly associated with a reduced odds of non-administrative censoring 
in those on the 4-drug regimen (p=0.06). Thus, the assumption of independent censoring is 
violated if the time or type of event depends on, for example, use of IV drugs.

The estimated cumulative incidence curves for VF and TLAE are shown in Figure 1. Since 
there were only 26 TLOEs, we do not present the cumulative incidence curve for TLOE. The 
non-augmented IPCW estimator was essentially identical to the augmented IPCW estimator 
and is not shown here. Despite the fact that there were strong predictors of censoring, and 
the concern that these might also be predictors of the competing outcomes of interest, there 

was little difference between the standard estimate, , and the augmented IPCW 
estimate. For this application, of considerable importance, the conclusions that might be 
drawn from the study have been shown to be not sensitive to potentially dependent 
censoring, a concern that was well motivated by the fact that some predictors of loss to 
follow-up are also predictors of the outcome of interest. Comparing treatments, there were 
general trends for higher rates of VF but lower rates of TLAE for the 3-drug versus the 4-
drug regimen.

The standard errors of our non-augmented and augmented IPCW estimators as well as the 

standard error for  are shown in Figure 2. The standard errors for  and 
were obtained using the non-parametric bootstrap with 500 bootstrap samples. The 
difference in standard errors between the augmented and non-augmented IPCW estimators is 
generally small, suggesting that for this application, there is only a slight efficiency 
advantage to using the more complicated augmented estimator. Furthermore, for this 
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application, the standard error of the augmented IPCW estimator is very similar to that of 
the Aalen-Johansen estimator. This is particularly important, because our estimator remains 
valid in the presence of dependent censoring, which is not so for the Aalen-Johansen 
estimator. Thus, we can rely on the conclusions even though the assumption of independent 
censoring may be violated.

8 Discussion
In this paper we have developed a method to estimate the cumulative incidence function 
with multiple types of censoring. The use of methods of analysis which more appropriately 
address the challenges of competing risk data and potentially dependent censoring may be 
very valuable in understanding the relative balance of safety outcomes (e.g. TLAE) and 
efficacy outcomes (e.g. VF), and how this balance evolves with time on treatment and 
compares among treatments. Such analyses will likely be important complements to 
analyses of composite outcome measures (e.g. time to first of TLAE or VF) which can be 
difficult to interpret because they are often complex mixes of efficacy and safety outcomes. 
In addition, being able to handle dependent censoring in statistical analyses is important, 
where assessment of the sensitivity of the conclusions to the handling of different reasons 
for censoring should be part of standard analyses.

We investigated four simulation scenarios. When censoring was dependent, the augmented 
IPCW estimator had substantially reduced bias as compared to the Aalen-Johansen 
estimator, which assumes independent censoring; the IPCW estimator was in between, with 
small bias for earlier time points and larger bias later, especially where there was more 
dependent censoring. The decrease in root Mean Squared Error obtained from augmenting 
the IPCW estimator (as opposed to using the non-augmented IPCW estimator) increased 
with time and with percentage of dependent censoring, and was substantial for later time 
points and larger percentages of dependent censoring. When there was less dependent 
censoring, the IPCW estimator had comparable standard errors as the Aalen-Johansen 
estimator, and less bias; and the augmented IPCW estimator outperformed the IPCW 
estimator in terms of root MSE by a smaller percentage. In the scenario with independent 
censoring, where all three estimators are consistent, IPCW and augmented IPCW did not 
substantially inflate standard errors, as compared to the Aalen-Johansen estimator.

In our application, the results were not appreciably changed by allowing for the possibility 
of dependent censoring, but there may be other applications where doing so is important. 
Furthermore, this analysis provides more confidence in the resulting estimates since it 
incorporates the possibility of dependent censoring. As shown, this does not need to be at 
the expense of larger standard errors.

Even if there are only baseline covariates which predict censoring, IPCW is sometimes 
preferable over basing the analysis on a Cox proportional hazards model for the cause 
specific hazards. The reason is that we don’t need to assume a semi-parametric Cox model 
for the cause specific hazards of the competing outcomes; we only need to specify (3), 
which is automatically correctly specified if independent censoring does turn out to hold.
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One direction of possible future research is to relax the assumption that data on all time-
dependent and independent covariates that are prognostic for both failure and censoring are 
recorded and available. This future research would rely on sensitivity analyses in order to 
handle the non-ignorable missingness.

Acknowledgments
The authors would like to thank Andrea Rotnitzky for her review and valuable comments on this paper. We are 
grateful to the ACTG for providing data used in the motivating application. This work was partially supported by 
grants AI024643, AI068634, and AI007358 from the National Institutes of Health. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health.

A Appendix
Equation (3) is an unbiased estimating equation for Fj(t) since

The third equality follows from the fact that  which 

under our coarsening at random assumption equals . From this it is clear that 
equation (3) is an unbiased estimating equation for Fj(t).

One can use the results in Robins and Rotnitzky (1992) to prove that with one type of 
censoring the solution to

(16)

with

(17)
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and  the same as in equation (9), is a doubly robust, locally efficient estimator for 
Fj(t). Here, dMC(u) = dNC(u) − dΛ(u). In our situation, with multiple types of censoring, it 

is easy to show that , which leads to our augmentation term in 
(8). Note that with one type of failure and one type of censoring, our method reduces to that 
of (Rotnitzky and Robins, 2005).

Now, it can be shown that for each r, since

is a bounded and predictable process, defined on the same filtration as MC,r(u),

is a mean zero martingale (Fleming and Harrington, 1991, Thm 1.5.1). Note that the left-

continuous versions of  and  are needed here. As a result

is also a mean zero martingale. Thus, Ai{Fj(t), γ, b(·)} has mean zero. Since Ai{Fj(t), γ, 
b(·)} has mean zero, it also follows trivially that equation (7) is an unbiased estimating 
equation for Fj(t).
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Figure 1. 
Cumulative Incidence Curves, by Regimen.
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Figure 2. 

Standard Errors of , by Regimen and Type of Failure, using Bootstrap Variance 
Estimation.
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Table 4

Parameter Estimates (95%-Confidence Intervals) for the Models for Administrative and Non-Administrative 
Censoring.

Covariate

3-drug Regimen 4-drug Regimen

Admin. Censoring Non-Admin. Censoring Admin. Censoring Non-Admin. Censoring

Sex
(male vs female)

0.33 (−0.03, 0.69) p=0.07 0.31 (−0.58, 1.19) p=0.50 −0.03 (−0.41, 0.35) 
p=0.87

−0.57 (−1.16, 0.03) p=0.06

IV Drug Use
(ever vs never)

−0.47 (−1.18, 0.24) 
p=0.20

1.18 (0.34, 2.02) p=0.006 −0.05 (−0.50, 0.41) 
p=0.85

0.83 (0.14, 1.51) p=0.02

Age ≤ 30
(vs > 30 years)

0.18 (−0.16, 0.52) p=0.30 0.54 (−0.14, 1.21) p=0.12 −0.07 (−0.40, 0.25) 
p=0.65

0.28 (−0.31, 0.87) p=0.36

Hispanic
(vs white, non-Hispanic)

0.36 (−0.003, 0.72) 
p=0.06

0.76 (−0.08, 1.59) p=0.08 0.13 (−0.23, 0.48) p=0.49 0.34 (−0.34, 1.02) p=0.33

Black, non-Hispanic
(vs white, non-Hispanic)

−0.13 (−0.45, 0.19) 
p=0.42

0.56 (−0.20, 1.32) p=0.15 0.22 (−0.10, 0.55) p=0.18 0.10 (−0.54, 0.74) p=0.76

Log Viral Load
(per 1 log10 copies/ml)

−0.05 (−0.25, 0.15) 
p=0.63

−0.12 (−0.56, 0.32) p=0.59 −0.03 (−0.21, 0.16) 
p=0.79

−0.24 (−0.61, 0.13) p=0.21

Time-dependent
CD4 count ≤ 200

−0.01 (−0.64, 0.61) 
p=0.97

−0.45 (−1.37, 0.47) p=0.34 0.19 (−0.43, 0.82) p=0.55 0.31 (−0.37, 0.99) p=0.37
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