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Abstract

The stochastic block model (SBM) is one of the
most widely used generative models for network
data. Many continuous-time dynamic network
models are built upon the same assumption as the
SBM: edges or events between all pairs of nodes
are conditionally independent given the block or
community memberships, which prevents them
from reproducing higher-order motifs such as tri-
angles that are commonly observed in real net-
works. We propose the multivariate community
Hawkes (MULCH) model, an extremely flexible
community-based model for continuous-time net-
works that introduces dependence between node
pairs using structured multivariate Hawkes pro-
cesses. We fit the model using a spectral cluster-
ing and likelihood-based local refinement proce-
dure. We find that our proposed MULCH model
is far more accurate than existing models both for
predictive and generative tasks.

1. Introduction
Networks are often used to represent data in the form of
relations (edges) between a set of entities (nodes). In many
settings, the nodes and edges change over time, resulting
in dynamic or temporal networks. We consider networks
observed through timestamped relational events, where each
event is a triplet (i, j, t) denoting events from node i (sender)
to node j (receiver) at timestamp t. Application settings
involving timestamped relational events include interactions
(messages, likes, shares, etc.) between users on social me-
dia, financial transactions between buyers and sellers, and
military actions between countries in diplomatic conflicts.
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There has been significant recent interest in generative mod-
els for timestamped relational event data. Such models typi-
cally combine a Temporal Point Process (TPP) model such
as a Hawkes process (Laub et al., 2021) for event times with
a latent variable network model such as a Stochastic Block
Model (SBM) (Nowicki & Snijders, 2001) for the sender
and receiver of the event (Blundell et al., 2012; DuBois
et al., 2013; Yang et al., 2017; Miscouridou et al., 2018;
Matias et al., 2018; Junuthula et al., 2019; Arastuie et al.,
2020; Huang et al., 2022). We call such models continuous-
time network models because they provide probabilities of
observing events between nodes at arbitrary times.

Continuous-time network models typically assume that the
probability of an event occurring between a pair of nodes
(i, j) at some time t is conditionally independent of all other
node pairs given the latent variable representation of the
network. The conditional independence between node pairs
allows them to be modeled separately using univariate or
bivariate TPPs. Such an approach makes the model more
tractable but prevents it from replicating higher-order struc-
tures including triangles and other network motifs (Benson
et al., 2016). Of particular interest in the dynamic network
setting are temporal motifs, which require multiple events
to be formed between different nodes within a certain time
window (Paranjape et al., 2017).

We propose the multivariate community Hawkes (MULCH)
model, a highly flexible continuous-time network model that
introduces dependence between node pairs in a controlled
manner. We jointly model all node pairs using a multivariate
Hawkes process where an event between a node pair (x, y)
can increase the probability of an event between a different
node pair (i, j). To keep the model tractable, we impose an
SBM-inspired structure on the excitation matrix α of the
multivariate Hawkes process. We consider several different
types of excitation to encourage formation of temporal mo-
tifs, inspired by the notion of participation shifts (Gibson,
2003; 2005) from sociology.

Our main contributions are as follows: (1) We propose
the highly flexible MULCH model for continuous-time net-
works using multivariate Hawkes processes that incorpo-
rate many types of dependence between node pairs includ-
ing reciprocity and participation shifts. (2) We develop an
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efficient estimation approach for MULCH using spectral
clustering and likelihood-based local refinement. (3) We
demonstrate the MULCH fits to several real data sets are
superior to existing continuous-time network models both
at predicting future events and at replicating temporal mo-
tifs. (4) We present a case study using MULCH to analyze
military dispute data, revealing how groups of countries act
and respond to other actions in such disputes.

2. Background
2.1. Multivariate Hawkes Process

Temporal point processes (TPPs) are used to model events
that occur randomly (i.e. not at regularly spaced intervals)
over time. A univariate TPP is characterized by a conditional
intensity function λ(t|Ht) such that the expected number
of events in an infinitesimal interval dt around t is given by
λ(t|Ht) dt (Rasmussen, 2018). Ht denotes the history of
the TPP (all event times up to time t); we drop it for ease
of notation and simply use λ(t). A univariate Hawkes pro-
cess is a self-exciting TPP where the occurrence of an event
increases the probability of another event occurring shortly
afterwards (Laub et al., 2021). Given a sequence of times-
tamps {t1, t2, . . . , tl} for l events, the conditional intensity
function takes the form λ(t) = µ + α

∑
s:ts<t

γ(t− ts),
where µ is the background or base intensity, α is the jump
size or excitation, and γ(·) is the kernel function.

A multivariate TPP is characterized by a set of condi-
tional intensity functions {λj(t)}dj=1 for the d different
variables. A multivariate Hawkes process is both self
and mutually exciting, so that an event in one variable
can also increase the probability of an event in another
variable (Zhou et al., 2013b; Hawkes, 2018). The con-
ditional intensity function of the jth dimension is given
by λj(t) = µj +

∑
s:ts<t

αijγij(t− ts), where the back-
ground intensity µj can differ for each dimension, αij de-
notes the jump size that an event in dimension i causes
to dimension j, and γij(·) denotes the kernel, which may
differ across dimensions. Notice that the background inten-
sities are now characterized by a d-dimensional vector µ,
while the jump sizes and kernels are characterized by d× d
matrices α and γ, respectively.

2.2. Stochastic Block Model

The stochastic block model (SBM), first formalized by Hol-
land et al. (1983), is one of the most widely used generative
models for network data. The SBM was designed for a static
network, but many dynamic extensions have since been pro-
posed, which we discuss in the related work section. In
a (static) SBM with n nodes, every node i is assigned to
one and only block Zi ∈ {1, . . . ,K}, where K denotes
the number of blocks. For a directed SBM, given the node

membership vector Z = [Zi]
n
i=1, all off-diagonal entries of

the adjacency matrix Aij are independent Bernoulli random
variables with parameter pZi,Zj , where p is a K×K matrix
of probabilities which is not symmetric. Thus, the probabil-
ity of forming an edge between nodes i and j depends only
on the node memberships Zi and Zj .

Real networks often have many reciprocated edges (Aij =
1⇒ Aji = 1) and triangles (Aij = 1, Ajm = 1⇒ Aim =
1). These are not replicated by the SBM due to the indepen-
dence of the adjacency matrix entries. Replicating triangles
usually requires an additional generative process on top of
the SBM (Peixoto, 2022) or generative models which induce
dependence (Paul et al., 2018; Bollobás et al., 2011).

Fitting an SBM to data involves estimating both the node
memberships Z and the edge probabilities pZi,Zj

between
all pairs of blocks (Nowicki & Snijders, 2001). Several
variants of spectral clustering, including regularized ver-
sions (Chaudhuri et al., 2012; Amini et al., 2013), have been
shown to be consistent estimators of the node memberships
in the SBM and various extensions in several asymptotic
settings (Rohe et al., 2011; Sussman et al., 2012; Qin &
Rohe, 2013; Lei & Rinaldo, 2015; Chin et al., 2015; Han
et al., 2015; Gao et al., 2017). Spectral clustering scales
to large networks with hundreds of thousands of nodes and
is generally not sensitive to initialization, so it is also a
practically useful estimator.

2.3. Related Work

Most prior models for continuous-time networks utilize
low-dimensional latent variable representations of the net-
works to parameterize univariate or bivariate TPPs, typi-
cally Hawkes processes, for the node pairs. The self exci-
tation in Hawkes processes has been found to be a good
model for conversation event sequences (Masuda et al.,
2013) among other temporal relational event data. The
latent variable representations are often inspired by genera-
tive models for static networks such as latent space models
(Hoff et al., 2002) and stochastic block models. Continuous-
time network models have been built with continuous latent
space representations (Yang et al., 2017; Huang et al., 2022)
and latent block or community representations (Blundell
et al., 2012; DuBois et al., 2013; Xin et al., 2017; Matias
et al., 2018; Miscouridou et al., 2018; Corneli et al., 2018;
Junuthula et al., 2019; Arastuie et al., 2020).

The CHIP (Arastuie et al., 2020) model uses a univariate
Hawkes process to model self excitation for each node pair,
with node pairs in the same community pair sharing param-
eters. Bivariate Hawkes process models (Blundell et al.,
2012; Yang et al., 2017; Miscouridou et al., 2018; Huang
et al., 2022) allow events i→ j, which we denote by the di-
rected pair (i, j), to influence the probability of events (j, i).
This encourages reciprocal events, which are commonly
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Figure 1. Toy example illustrating the different excitations in the proposed multivariate block Hawkes model. Nodes 1-5 are in block a,
while nodes 6-8 are in block b. (a) The event (1, 8) (dashed line) excites the processes for the other node pairs shown in solid lines by the
specified jump size αab or αba. (b) Block diagonal structure of the excitation matrix α for this toy example. (c) Block structure of the
expected count matrix (expected number of events between each node pair) for this toy example.

seen in email and messaging networks, where a reciprocal
event typically denotes a user replying to a message. A
weakness of such models is that they still have no mech-
anism to encourage the formation of higher-order motifs
such as triangles given their bivariate nature. One way to
accomplish this would be to move to higher-dimensional
Hawkes processes, as we propose in this paper.

High-dimensional multivariate Hawkes processes are fre-
quently used for estimating the structure of a latent or un-
observed network from observed events at the nodes (Zhou
et al., 2013b; Linderman & Adams, 2014; Farajtabar et al.,
2015; Tran et al., 2015). These models are often used to esti-
mate static networks of diffusion from information cascades.
The information cascade is modeled using an n-dimensional
Hawkes process with each dimension corresponding to a
node, and the objective is to estimate the n× n excitation
matrix α of influence strengths between nodes.

3. Multivariate Community Hawkes Model
In order to replicate higher-order motifs such as triangles,
we must move beyond univariate and bivariate Hawkes
process-based models. One approach would be to model all
(ordered) node pairs (i, j) using an n(n− 1)-dimensional
Hawkes process where an event for any node pair can excite
any other node pair, similar to the models used for informa-
tion cascades (Zhou et al., 2013b; Tran et al., 2015). Such
a model would have an n(n − 1) × n(n − 1) excitation
matrix α, which would be computationally intractable even
for relatively small networks with a few hundred nodes.

We propose the multivariate community Hawkes (MULCH)
model, an extremely flexible continuous-time network

model based on the SBM where each node i belongs to
a block a ∈ {1, . . . ,K}, which we denote by i ∈ a or
Zi = a. Each node pair (i, j) then belongs to a block
pair (a, b), which we denote by (i, j) ∈ bp(a, b). We as-
sume a block diagonal structure on α so that events for
node pair (x, y) ∈ bp(a, b) can only excite node pairs
(i, j) ∈ {bp(a, b), bp(b, a)}. This block diagonal structure
is shown in Figure 1b. This structure allows for higher-order
motifs to form in the same (a, b) and reciprocal (b, a) block
pairs of the initial event for node pair (x, y).

Within the non-zero diagonal blocks of α, we introduce
dependence between node pairs in a controlled manner using
different types of excitations. Consider a node pair (i, j) ∈
bp(a, b), which has conditional intensity function

λij(t) = µab +
∑

(x,y)∈bp(a,b)
(x,y)∈bp(b,a)

αxy→ijab

∑
ts∈Txy

γxy→ij(t− ts),

where Txy denotes the set of times that event (x, y) happens.
The parameters αxy→ijab control the types of excitations in
the model by denoting which node pairs (x, y) can increase
the probability of an event for node pair (i, j) occurring
shortly after time t.

3.1. Excitation Parameters

Many variants of our proposed multivariate block Hawkes
model are possible depending on the structure of the param-
eters αxy→ijab corresponding to different types of excitations.
We consider 6 types of excitations, listed in Table 1 and illus-
trated for a sample network in Figure 1a. If we had only the
excitation parameter αxy→xyab , then our model would only
incorporate self excitation and reduces to the CHIP model
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Table 1. Descriptions of the 6 types of excitations (illustrated in
Figure 1a) we consider following an event from node x in block a
to node y in block b. Excitations that trigger events from block b
back to block a are modeled by αba, not αab.

Parameter Excitation Type

αxy→xyab Self excitation: continuation of event (x, y)
αxy→yxba Reciprocal excitation: event (y, x) taken in

response to event (x, y)

αxy→xbab Turn continuation: (x, b) following (x, y) to
other nodes except for y in the same block b

αxy→yaba Generalized reciprocity: (y, a) following
(x, y) to other nodes except x in block a

αxy→ayab Allied continuation: event (a, y) following
(x, y) from other nodes except x in block a

αxy→bxba Allied reciprocity: event (b, x) following
(x, y) from other nodes except y in block b

(Arastuie et al., 2020). The remaining 5 parameters denote
mutual excitation. These different types of mutual excita-
tion correspond to the notion of participation shifts (Gibson,
2003; 2005) from sociology. The terms “turn continuation”
(Gibson, 2003) and “generalized reciprocity” (Yamagishi &
Kiyonari, 2000) also have origins from sociology.

Each excitation is associated with its own jump size param-
eter that controls probability of such an event following the
initial event (x, y). The structure of a non-zero diagonal
block of α under these 6 excitations is shown in Figure
1b. By using specific types of excitations in a multivariate
Hawkes process model, we not only reduce the number of
parameters, but also improve interpretability through the set
of excitation parameters for each block pair.

While other models have incorporated self excitation (Aras-
tuie et al., 2020; Junuthula et al., 2019) and reciprocal exci-
tation (Blundell et al., 2012; Yang et al., 2017; Miscouridou
et al., 2018), our model is the first to incorporate the 4 other
types of excitations. These newly-introduced excitations
incorporate higher-order dependencies beyond a node pair
to encourage the formation of motifs such as triangles.

3.2. Generative Process

To generate events between node pairs in the network, we
first sample the membership of each node Zi from a categor-
ical distribution with block probability π = [π1, · · · , πK ].
There is a total of n(n− 1) node pairs, which are split into
K ×K block pairs. All node pairs within one block pair
(a, b) share the same base intensity µab and same set of
6 excitation parameters from Table 1. We denote these 7
parameters for a block pair by θab.

By ordering node pairs by block pairs, we can form the exci-
tation matrix α for a high-dimensional multivariate Hawkes

Algorithm 1 MULCH Model Generative Process

Input: Block probabilities π, Hawkes process parameters
Θ, Duration T

Output: Node memberships Z, Array of event triplets E
1: for i = 1 to n do
2: Zi ∼ Categorical(π)
3: end for
4: Split n× (n− 1) node pairs into K ×K block pairs
5: for each diagonal block pair (a, a) do
6: Eaa ← MultivariateHawkesProcess(θaa, T )
7: end for
8: for each off-diagonal block pairs (a, b) and (b, a) do
9: Eab, Eba ← MultivariateHawkesProcess(θab,θba, T )

10: end for
11: Concatenate all Eaa and Eab into E
12: return Z, E

process as shown in Figure 1b. As a result of MULCH’s
block diagonal structure on α, we can simulate events be-
tween (i, j) ∈ {bp(a, b), bp(b, a)} as separate multivariate
Hawkes processes. We use a variant of Ogata’s thinning
algorithm proposed by Xu et al. (2020) to simulate the
multivariate Hawkes processes. Given the block probabil-
ities π, the Hawkes process parameters for all block pairs
Θ = [θab], and simulation duration T , the generative pro-
cess is summarized in Algorithm 1. The generated events
are sets of triplets (i, j, t) denoting nodes and timestamps
concatenated into a single array E.

3.3. Hawkes Process Kernel Selection

A frequent choice of kernel for univariate Hawkes processes
is an exponential kernel γ(t) = e−β(t). Estimation of β is
difficult, and estimators are typically not well-behaved (San-
tos et al., 2021). In many applications involving multivariate
Hawkes processes, the exponential kernel is normalized so
that γxy→ij(t) = βe−β(t), and β is typically assumed to be
a fixed rather than estimated parameter (Zhou et al., 2013b;
Bacry et al., 2015; 2017). While assuming β to be fixed
greatly simplifies estimation, a poor choice of β may result
in a much worse fit compared to estimating β.

One way to mitigate this possibility is to use a weighted
sum of different kernels (Zhou et al., 2013a). Inspired by
Yang et al. (2017), we use a sum of multiple exponential
kernels with different decay rates. Let β = (β1, · · · , βQ)
denote a set of Q fixed decays shared among all block pairs.
For each bp(a, b), we introduce a block pair-specific ker-
nel scaling parameter Cab =

(
C1
ab, · · · , C

Q
ab

)
that is esti-

mated simultaneously with Θ. For identifiability, we as-
sume

∑Q
q=1 C

q
ab = 1, and Cqab ∈ [0, 1]. The full expression

for the MULCH conditional intensity function with the sum
of exponential kernels is provided in Appendix A.1.
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4. Estimation Procedure
Fitting the MULCH model involves both estimation of node
membership vector Z and Hawkes process parameters θab
for all block pairs (a, b). We first aggregate the number of
events between each node pair (i, j) to form entryNij(T ) of
the count adjacency matrixN(T ). We then apply spectral
clustering to the count matrix N(T ) to obtain an initial
estimate of the node memberships Z. Since the network
is directed, we use singular vectors for spectral clustering
according to the algorithm of Sussman et al. (2012) with
the added step of row normalization of the singular vectors
(Rohe et al., 2016), which is beneficial in the presence of
degree heterogeneity.

The expectation of the count matrix has a block structure
induced by MULCH, as shown in Figure 1c. The expected
count matrix is simply E[N(T )] = λT , where λ denotes
the expected intensity function. When the process is sta-
tionary, we have the following theorem to ensure that the
expected count matrix has the block structure.

Theorem 4.1. For any (i, j) ∈ (a, b) and (i′, j′) ∈ (a, b),
λ(i,j) = λ(i′,j′) = gabµab + gbaµba, where gab and gba are
real valued functions which depend on model parameters.

Proof of this theorem can be found in Appendix A.3. As the
duration T →∞, the count matrixN(T ) should approach
the expected count matrix, and spectral clustering should
succeed in recovering the correct node memberships. For
finite T , the estimated node memberships for spectral clus-
tering may not be optimal, so we run an iterative refinement
procedure using the likelihood to improve the estimated
node memberships, which we describe in Section 4.1.

We do not have a theoretical guarantee for spectral clustering
estimation accuracy due to the dependent adjacency matrix
entries in MULCH resulting from the different excitations in
Table 1. This is unlike CHIP (Arastuie et al., 2020), which
had independent adjacency matrix entries and used proof
techniques that assumed independence.

After we get the node membership Z, we then estimate Θ,
using a maximum likelihood estimation (MLE) approach.
Under the MULCH assumptions, the model’s log-likelihood
can be expressed as a sum over block pair log-likelihoods

`(Θ|Z,Ht) =
K∑
a=1

K∑
b=1

`ab(θab|Z,Ht) (1)

The detailed form for `ab(θab|Z,Ht) is provided in Ap-
pendix A.2. Each block pair log-likelihood function
`ab(θab|Z,Ht) can be maximized by standard non-linear
optimization methods. We use the L-BFGS-B (Byrd et al.,
1995) optimizer implemented in SciPy. Parameters are ini-
tialized to small random numbers, and we set bounds to be
between (10−7,+∞) to ensure that they are positive.

4.1. Likelihood Refinement Procedure

Next, we propose a likelihood refinement procedure using
the MULCH model likelihood to improve the estimation of
the node memberships starting from a spectral clustering
initial solution. The algorithm is motivated by leave-one-
out likelihood maximization procedures that are commonly
employed in conjunction with spectral clustering to achieve
minimax optimal error rates of community detection in the
context of stochastic block models and extensions (Gao
et al., 2017; 2018; Chen et al., 2020). However, in contrast
to the previous literature, we do not use the likelihood of
the count matrix elements, but instead use the likelihood of
the event times to obtain the refined node memberships.

Our refinement procedure has 3 steps. First, we perform
spectral clustering on the count matrix to get the initial
node memberships Z0, and then estimate the parameters
through maximum likelihood estimation as described in the
previous section. Then for each node i, we assign it to
the block which can maximize the log-likelihood (1) given
the estimated node memberships of all other nodes and the
estimated parameters. Finally, we re-estimate the model
parameters using the new block assignment.

The refinement step involves computing a likelihood over
significantly less number of events and is thus computation-
ally efficient. To get better results, we run the refinement
multiple times, each time using the latest refined estimates
as the initial values. We end the refinement when no node
memberships change or at a maximum of 15 iterations.

4.2. Model Selection

Up to this point, we have assumed that both the decay values
βq used in the sum of exponential kernels and the number
of blocks K are fixed and known. The βq values should be
chosen appropriately for the type of network. For example,
for networks with rapid dynamics such as instant messaging
networks, suitable βq values will likely be on the order of
minutes, hours, or days; whereas, for networks with slower
dynamics, suitable βq values may be in the order of weeks
or months. We choose three βq values in our experiments.

In most application settings, the number of blocks K is usu-
ally also unknown. We use task-based model selection in
our experiments; that is, we choose the value of K that max-
imizes the evaluation metric we use for predictive accuracy
(Section 5.2.1) or generative accuracy (Section 5.2.2)

5. Experiments
5.1. Simulated Networks

We first test the ability of both spectral clustering and our
likelihood refinement procedure to recover true node mem-
berships on networks simulated from MULCH. In Appendix
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Figure 2. Block estimation accuracy averaged over 10 simulated networks. (a) Heat map of adjusted Rand index for spectral clustering at
K = 4 while varying T, n. Comparison between adjusted Rand index achieved by spectral clustering and refinement algorithm for (b)
fixed n = 70, varying T and (c) fixed T = 3.5 months, varying n (± standard error over 10 runs).

B.2, we present an additional experiment evaluating param-
eter estimation accuracy.

Spectral Clustering Accuracy We simulate networks at
K = 4 while varying both n and T . For each (n, T ) value,
we simulate a network from the MULCH model, run spectral
clustering on the count matrix, and calculate the adjusted
Rand index (Hubert & Arabie, 1985) between the true and
estimated node memberships, where a score of 1 indicates
perfect clustering and 0 is the expected score for a random
estimate. As shown in Figure 2a, the accuracy of estimated
node memberships improves as both n, T increase. The
average score over 10 simulations is shown and indicates
that spectral clustering can recover true node memberships
for large n and T . Parameter values used to simulate the
networks are listed in Appendix B.1.

Likelihood Refinement Accuracy Figure 2b shows the
adjusted Rand index from spectral clustering and from ap-
plying our refinement algorithm to networks simulated at
n = 70 and varying T . Similarly, Figure 2c shows the
adjusted Rand index at T = 3.5 months and varying n.
Each point is averaged over 10 simulations. Notice that the
adjusted Rand index always improves after applying our
refinement algorithm, and in some cases, allows for perfect
estimation of node memberships for cases where spectral
clustering still makes errors.

5.2. Real Networks

We perform benchmark experiments on 4 real network
datasets to evaluate the predictive and generative accuracy
of our proposed MULCH model against several other mod-
els1. Summary statistics for the datasets are shown in Table

1Python code is available at https://github.com/
IdeasLabUT/Multivariate-Community-Hawkes

Table 2. Summary statistics of real network datasets

Dataset Nodes Total Events Test Events

Reality 70 2, 161 661
Enron 142 4, 000 1, 000
MID 147 5, 117 1, 078

Facebook 43, 953 852, 833 170, 567

2, with additional details in Appendix B.3. Each dataset
consists of a set of events where each event is denoted by a
sender, a receiver, and a timestamp.

Models for Comparison We compare against several
other TPP models for continuous-time networks: REM
(DuBois et al., 2013), BHM (Junuthula et al., 2019), CHIP
(Arastuie et al., 2020), DLS (Yang et al., 2017), and ADM4
(Zhou et al., 2013b). Each of these models can be fit to a
network and used to evaluate test log-likelihood on future
events and to simulate networks from the fit. REM, BHM,
CHIP, and DLS are continuous-time network models, while
ADM4 is a sparse and low-rank regularized model for gen-
eral multivariate Hawkes processes. Additional details on
these models is provided in Appendix B.4. We present also
experiments on scalability and on other parameterizations
for MULCH in Appendices B.5 and B.6.

5.2.1. PREDICTIVE ACCURACY

Experiment Set-up We first evaluate the ability of our
proposed MULCH model to predict future events between
nodes. To do this, we split the data into training and test
sets, with the first ltrain events being used to fit the model
and the remaining ltest events (shown in Table 2) being used
to evaluate the model’s predictive ability. We assign all new
nodes present in the test set but not the training set to the
largest block in the training set, consistent with Arastuie

https://github.com/IdeasLabUT/Multivariate-Community-Hawkes
https://github.com/IdeasLabUT/Multivariate-Community-Hawkes
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Table 3. Mean test log-likelihood per event for each real network
dataset across all models. Larger (less negative) values indicate
better predictive ability. Bold entry denotes highest accuracy for a
dataset. Results for REM are reported values from DuBois et al.
(2013), so results on MID and Facebook are not available. DLS
does not scale to Facebook; ADM4 does not scale beyond Reality.

Model Reality Enron MID Facebook

MULCH −3.82 −5.13 −3.53 −6.82
CHIP −4.83 −5.61 −3.67 −9.46
BHM −5.37 −7.49 −5.33 −14.4
DLS −5.74 −7.75 −5.52
REM −6.11 −6.84

ADM4 −8.52

Table 4. Dynamic link prediction AUC for each real network
dataset across all models. Mean (standard deviation) of AUC
over 100 random short time windows is shown. Bold entry denotes
highest mean link prediction AUC for a dataset.

Model Reality Enron MID

MULCH 0.954(.036) 0.852(.006) 0.968(.023)
CHIP 0.931(.033) 0.792(.005) 0.966(.030)
BHM 0.951(.035) 0.846(.005) 0.973(.022)
DLS 0.935(.034) 0.872(.001) 0.981(.013)

et al. (2020). For the DLS model, we randomly sample
latent positions for new nodes from a multivariate Gaussian.

We consider two evaluation metrics previously established
in the literature. The first is the mean test data log-likelihood
per event (DuBois et al., 2013; Arastuie et al., 2020). We use
the same train and test splits as in DuBois et al. (2013) for
the Reality and Enron datasets, which allows us to compare
against their reported results. The second evaluation metric
is the area under the receiver operating characteristic curve
(AUC) for dynamic link prediction. Specifically, we adopt
the dynamic link prediction setting proposed by Yang et al.
(2017). We divide the test set into 100 random short time
windows and compute the mean and standard deviation of
the link prediction AUC over the 100 windows.

Results and Discussion The predictive abilities of the
different models are summarized in Table 3. Notice that
MULCH achieves the highest test log-likelihood on all 4
datasets, and by a large margin on the Reality and Facebook
data. CHIP performed second best on all of the datasets,
indicating the importance of self excitation.

MULCH also includes reciprocal and other excitations,
which is partially responsible for the improved predictive
ability. We find that using a sum of exponential kernels in
MULCH also helps to improve predictive log-likelihood
compared to a single exponential kernel in CHIP and BHM.
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Figure 3. All possible 3-edge temporal motifs. Green and grey
shaded boxes denotes 2-node and triangle motifs, respectively. All
other motifs are stars. Figure credit: Paranjape et al. (2017).

The importance of the SBM-structured excitation matrix α
in MULCH is clearly visible when comparing it to ADM4,
which estimates a sparse and low rank α without additional
network structure and is not competitive.

Table 4 shows the dynamic link prediction AUC values2.
MULCH performs the best on Reality and is competitive
on the other two datasets. Notice that the BHM performs
better than CHIP in dynamic link prediction AUC, while
it was substantially worse than CHIP in test log-likelihood
in Table 3. This is due to a difference in the evaluation
metrics—test log-likelihood is evaluated on all events, so
that repeated events between node pairs are counted multiple
times. Conversely, dynamic link prediction considers only
whether a pair of nodes had at least a single event within a
short time window, so each node pair is only counted once.

5.2.2. GENERATIVE ACCURACY

Experiment Set-up We evaluate the generative accuracy
of our proposed MULCH model by simulating networks
from the fitted model and comparing the counts of temporal
motifs in the simulated networks to those in the actual net-
work. We consider all 36 possible temporal motifs with 2
or 3 nodes and 3 edges arranged in the same 6× 6 matrix
as defined by Paranjape et al. (2017). The matrix of differ-
ent motifs is shown in Figure 3. One would expect a good
generative model to replicate the number of temporal mo-
tifs observed in the actual network. We consider temporal
motifs over 1 week for the Reality and Enron datasets and 1
month for the MID data3.

2We exclude the Facebook data because the dynamic link pre-
diction experiment does not scale to a network of its size.

3We do not evaluate generative accuracy on the Facebook data
due to its size. We also do not include DLS in this comparison be-
cause it resulted in unstable models that cannot be used to generate
new networks, also been noted by Huang et al. (2022).
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Figure 4. Average temporal motif counts for time window δ = 1 week on 10 simulated networks from MULCH, CHIP, and BHM models
fitted on the (a)-(d) Reality and (e)-(g) Enron datasets. The simulations are unstable for the BHM model fit to Enron. Our proposed
MULCH model best replicates the temporal motif counts from the actual networks.

Table 5. Mean absolute percentage error (MAPE) on temporal mo-
tif counts for each real network dataset across all models. Smaller
values indicate better generative ability. Bold entry denotes best fit
for a dataset. The BHM fit to the Enron data results in an unstable
Hawkes process that cannot simulate networks.

Model Reality Enron MID

MULCH 16.5 32.0 92.3
CHIP 79.3 74.5 91.0
BHM 51.1 97.6

To provide a quantitative assessment of generative ability,
we compute the mean absolute percentage error (MAPE) on
the temporal motif count matrix. The MAPE is defined by

MAPE =
100

36

6∑
i=1

6∑
j=1

∣∣∣∣∣MA
i,j −MS

i,j

MA
i,j

∣∣∣∣∣ ,
where MA

i,j denotes the number of occurrences of motif
Mi,j in the actual network, and MS

i,j denotes the mean num-
ber of occurrences of the motif over 10 simulated networks.

Results and Discussion The MAPE values for the differ-
ent models and datasets are shown in Table 5. MULCH is by
far the best at replicating temporal motif counts on Reality
and Enron, while all of the models struggle on the MID data.
Do & Xu (2021) found that the majority of motifs occurred
during several major international conflicts in the years 1999
and 2000, which are not accurately replicated by any of the

models. More sophisticated models that incorporate change
points may be required to capture these dynamics.

In Figure 4, we show a comparison of the average tempo-
ral motif counts on simulated networks from the MULCH,
CHIP, and BHM model fits to the Reality and Enron datasets
to the actual counts. Notice that CHIP, which uses only self
excitation, does not generate motifs with reciprocated edges
with any appreciable frequency. The BHM uses self exci-
tation at the block level and then randomly assigns events
to node pairs, which results in the uniform-like distribution
of 3-node temporal motifs seen in Figure 4d. It generates a
wide variety of motifs, but not at frequencies similar to the
actual network. On the other hand, our proposed MULCH
model generates both a variety of different temporal motifs
and at relative frequencies similar to the actual network,
as shown by the similarities of the checkerboard patterns
between Figures 4a and 4b as well as Figures 4e and 4f for
the Enron data. This indicates that the added excitations
in MULCH that create dependence between node pairs can
indeed replicate higher-order motifs found in real networks.

6. Case Study
We now present a case study on the Militarized Interstate
Disputes (MID) dataset. A node denotes a (sovereign) state.
An edge denotes a threat, display, or use of force one state
directs towards another. We apply MULCH to perform
model-based exploratory analysis using the different excita-
tions to reveal insights into behaviors of different states.
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Figure 5. Estimated values for MULCH parameter estimates and node memberships fit to the Military Interstate Disputes data. Nodes are
represented by their 3-letter country codes from The Correlates of War Project (2021).

Our parameter and block estimates are shown in Figure
5. From examining the magnitudes of the different exci-
tations, one can see that self and reciprocal excitation are
the strongest, with highest α values around 0.9 and 0.7, re-
spectively. Next strongest are allied continuation and turn
continuation, with highest α values around 0.04 and 0.03,
respectively, which is one order of magnitude weaker. Gen-
eralized reciprocity and allied reciprocity have much lower
α values, with the highest around 0.0005 for both, two or-
ders of magnitude weaker than allied and turn continuation.

Examining the combination of node memberships and pa-
rameter estimates also reveals some interesting insights.
Events in this network correspond to disputes between states,
and we find that most events occur between blocks. Every
member of block 1 is a member state of the North Atlantic
Treaty Organization (NATO) except the UAE, which has
partnered with NATO in several disputes, including the in-
tervention in Libya in 2011.

We observe that block pair (1, 2) has by far the highest exci-
tation for allied continuation, indicating that nodes in block
1 (NATO members) tend to jointly engage states in block
2. By consulting the narratives that accompany the MID
dataset, indeed we find that two of the most prominent dis-
putes involving NATO correspond to the NATO bombing of
Yugoslavia in 1999 and the Libya intervention in 2011. Both
Yugoslavia (YUG) and Libya (LIB) are in block 2, so the
high allied continuation αxy→ay1,2 is correctly modeling these
incidents. Note also that block pair (2, 1) has the highest
excitation for turn continuation. This is dominated again by
the dispute between NATO and Yugoslavia, with Yugoslavia

threatening multiple NATO states in rapid succession.

We present this case study to illustrate the type of analysis
that MULCH can be used for. Our analysis is exploratory
rather than confirmatory, and we caution against jumping to
conclusions about the behaviors of states from our results.

7. Conclusion
We proposed the multivariate community Hawkes
(MULCH) model for continuous-time dynamic networks
and demonstrated that it is superior to existing models both
in terms of predictive and generative abilities on several real
network datasets. The main innovation in our model is intro-
ducing dependence between node pairs in a tractable manner
by using multivariate Hawkes processes with a structured
excitation matrix α inspired by the SBM. In addition to self
and reciprocal excitation, we also incorporated excitations
motivated by sociological concepts of turn continuing and
generalized reciprocity, which can replicate higher-order
temporal motifs. We emphasize that these are not the only
types of excitations that can be incorporated into our model-
ing framework—an investigation of other potential excita-
tions would be a useful avenue for future research.

Acknowledgements
This material is based upon work supported by the National
Science Foundation grants IIS-1755824, DMS-1830412,
IIS-2047955, and DMS-1830547.



The Multivariate Community Hawkes Model for Continuous-time Networks

References
Amini, A. A., Chen, A., Bickel, P. J., and Levina, E. Pseudo-

likelihood methods for community detection in large
sparse networks. The Annals of Statistics, 41(4):2097–
2122, 2013.

Arastuie, M., Paul, S., and Xu, K. S. CHIP: A Hawkes
process model for continuous-time networks with scal-
able and consistent estimation. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Bacry, E., Mastromatteo, I., and Muzy, J.-F. Hawkes pro-
cesses in finance. Market Microstructure and Liquidity, 1
(01):1550005, 2015.

Bacry, E., Bompaire, M., Deegan, P., Gaı̈ffas, S., and
Poulsen, S. tick: a Python library for statistical learn-
ing, with an emphasis on Hawkes processes and time-
dependent models. Journal of Machine Learning Re-
search, 18(1):7937–7941, 2017.

Benson, A. R., Gleich, D. F., and Leskovec, J. Higher-order
organization of complex networks. Science, 353(6295):
163–166, 2016.

Blundell, C., Beck, J., and Heller, K. A. Modelling recipro-
cating relationships with Hawkes processes. In Advances
in Neural Information Processing Systems 25, pp. 2600–
2608, 2012.

Bollobás, B., Janson, S., and Riordan, O. Sparse random
graphs with clustering. Random Structures & Algorithms,
38(3):269–323, 2011.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited
memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995.

Chaudhuri, K., Chung, F., and Tsiatas, A. Spectral clus-
tering of graphs with general degrees in the extended
planted partition model. In Proceedings of the 25th An-
nual Conference on Learning Theory, pp. 35.1–35.23,
2012.

Chen, S., Liu, S., and Ma, Z. Global and individualized com-
munity detection in inhomogeneous multilayer networks.
arXiv preprint arXiv:2012.00933, 2020.

Chin, P., Rao, A., and Vu, V. Stochastic block model and
community detection in sparse graphs: A spectral algo-
rithm with optimal rate of recovery. In Proceedings of
the 28th Conference on Learning Theory, pp. 391–423,
2015.

Corneli, M., Latouche, P., and Rossi, F. Multiple change
points detection and clustering in dynamic networks.
Statistics and Computing, 28(5):989–1007, 2018.

Do, H. N. and Xu, K. S. Analyzing escalations in militarized
interstate disputes using motifs in temporal networks.
In Proceedings of the 10th International Conference on
Complex Networks and Their Applications, pp. 527–538,
2021.

DuBois, C., Butts, C. T., and Smyth, P. Stochastic blockmod-
eling of relational event dynamics. In Proceedings of the
16th International Conference on Artificial Intelligence
and Statistics, pp. 238–246, 2013.

Eagle, N., Pentland, A. S., and Lazer, D. Inferring friend-
ship network structure by using mobile phone data. Pro-
ceedings of the National Academy of Sciences, 106(36):
15274–15278, 2009.

Farajtabar, M., Wang, Y., Rodriguez, M. G., Li, S., Zha, H.,
and Song, L. COEVOLVE: A joint point process model
for information diffusion and network co-evolution. In
Advances in Neural Information Processing Systems 28,
pp. 1945–1953, 2015.

Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. Achieving
optimal misclassification proportion in stochastic block
models. The Journal of Machine Learning Research, 18
(1):1980–2024, 2017.

Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. Community
detection in degree-corrected block models. The Annals
of Statistics, 46(5):2153–2185, 2018.

Gibson, D. R. Participation shifts: Order and differentiation
in group conversation. Social Forces, 81(4):1335–1380,
2003.

Gibson, D. R. Taking turns and talking ties: Networks and
conversational interaction. American Journal of Sociol-
ogy, 110(6):1561–1597, 2005.

Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi,
E. M. A survey of statistical network models. Foun-
dations and Trends in Machine Learning, 2(2):129–233,
2010.

Han, Q., Xu, K. S., and Airoldi, E. Consistent estimation of
dynamic and multi-layer block models. In Proceedings of
the 32nd International Conference on Machine Learning,
pp. 1511–1520, 2015.

Hawkes, A. G. Spectra of some self-exciting and mutually
exciting point processes. Biometrika, 58(1):83–90, 1971.

Hawkes, A. G. Hawkes processes and their applications to
finance: a review. Quantitative Finance, 18(2):193–198,
2018.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. Latent
space approaches to social network analysis. Journal of



The Multivariate Community Hawkes Model for Continuous-time Networks

the American Statistical Association, 97(460):1090–1098,
2002.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social Networks, 5(2):109–137,
1983.

Huang, Z., Soliman, H., Paul, S., and Xu, K. S.
A mutually exciting latent space Hawkes process
model for continuous-time networks. arXiv preprint
arXiv:2205.09263, 2022.

Hubert, L. and Arabie, P. Comparing partitions. Journal of
Classification, 2(1):193–218, 1985.

Junuthula, R., Haghdan, M., Xu, K. S., and Devabhaktuni,
V. The block point process model for continuous-time
event-based dynamic networks. In Proceedings of the
World Wide Web Conference, pp. 829–839, 2019.

Klimt, B. and Yang, Y. The Enron corpus: A new dataset for
email classification research. In Proceedings of the 15th
European Conference on Machine Learning, pp. 217–226,
2004.

Laub, P. J., Lee, Y., and Taimre, T. The Elements of Hawkes
Processes. Springer Nature, 2021.

Lei, J. and Rinaldo, A. Consistency of spectral clustering in
stochastic block models. The Annals of Statistics, 43(1):
215–237, 2015.

Linderman, S. W. and Adams, R. P. Discovering latent
network structure in point process data. In Proceedings of
the 31st International Conference on Machine Learning,
pp. 1413–1421, 2014.

Masuda, N., Takaguchi, T., Sato, N., and Yano, K. Self-
exciting point process modeling of conversation event
sequences. In Temporal Networks, pp. 245–264. Springer,
2013.

Matias, C., Rebafka, T., and Villers, F. A semiparametric
extension of the stochastic block model for longitudinal
networks. Biometrika, 105(3):665–680, 2018.

Miscouridou, X., Caron, F., and Teh, Y. W. Modelling spar-
sity, heterogeneity, reciprocity and community structure
in temporal interaction data. In Advances in Neural Infor-
mation Processing Systems, volume 31, pp. 2343–2352,
2018.

Nowicki, K. and Snijders, T. A. B. Estimation and prediction
for stochastic blockstructures. Journal of the American
Statistical Association, 96(455):1077–1087, 2001.

Palmer, G., McManus, R. W., D’Orazio, V., Kenwick, M. R.,
Karstens, M., Bloch, C., Dietrich, N., Kahn, K., Ritter,
K., and Soules, M. J. The MID5 dataset, 2011–2014:

Procedures, coding rules, and description. Conflict Man-
agement and Peace Science, 39(4):470–482, 2022.

Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in
temporal networks. In Proceedings of the 10th ACM In-
ternational Conference on Web Search and Data Mining,
pp. 601–610, 2017.

Paul, S., Milenkovic, O., and Chen, Y. Higher-order spectral
clustering under superimposed stochastic block model.
arXiv preprint arXiv:1812.06515, 2018.

Peixoto, T. P. Disentangling homophily, community struc-
ture, and triadic closure in networks. Physical Review X,
12:011004, 2022.

Qin, T. and Rohe, K. Regularized spectral clustering under
the degree-corrected stochastic blockmodel. In Advances
in Neural Information Processing Systems 26, pp. 3120–
3128, 2013.

Rasmussen, J. G. Lecture notes: Temporal point processes
and the conditional intensity function. arXiv preprint
arXiv:1806.00221, 2018.

Rohe, K., Chatterjee, S., and Yu, B. Spectral clustering and
the high-dimensional stochastic blockmodel. The Annals
of Statistics, 39(4):1878–1915, 2011.

Rohe, K., Qin, T., and Yu, B. Co-clustering directed graphs
to discover asymmetries and directional communities.
Proceedings of the National Academy of Sciences, 113
(45):12679–12684, 2016.

Santos, T., Lemmerich, F., and Helic, D. Surfacing esti-
mation uncertainty in the decay parameters of Hawkes
processes with exponential kernels. arXiv preprint
arXiv:2104.01029, 2021.

Sussman, D. L., Tang, M., Fishkind, D. E., and Priebe, C. E.
A consistent adjacency spectral embedding for stochastic
blockmodel graphs. Journal of the American Statistical
Association, 107(499):1119–1128, 2012.

The Correlates of War Project. COW country codes,
2021. URL https://correlatesofwar.org/
data-sets/cow-country-codes.

Tran, L., Farajtabar, M., Song, L., and Zha, H. NetCodec:
Community detection from individual activities. In Pro-
ceedings of the SIAM International Conference on Data
Mining, pp. 91–99, 2015.

Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P.
On the evolution of user interaction in Facebook. In
Proceedings of the 2nd ACM Workshop on Online Social
Networks, pp. 37–42, 2009.

https://correlatesofwar.org/data-sets/cow-country-codes
https://correlatesofwar.org/data-sets/cow-country-codes


The Multivariate Community Hawkes Model for Continuous-time Networks

Xin, L., Zhu, M., and Chipman, H. A continuous-time
stochastic block model for basketball networks. The
Annals of Applied Statistics, 11(2):553–597, 2017.

Xu, S., Morse, S., and González, M. C. Modeling human
dynamics and lifestyle using digital traces. arXiv preprint
arXiv:2005.06542, 2020.

Yamagishi, T. and Kiyonari, T. The group as the container
of generalized reciprocity. Social Psychology Quarterly,
63(2):116–132, 2000.

Yang, J., Rao, V., and Neville, J. Decoupling homophily
and reciprocity with latent space network models. In Pro-
ceedings of the Conference on Uncertainty in Artificial
Intelligence, 2017.

Zhou, K., Zha, H., and Song, L. Learning triggering kernels
for multi-dimensional Hawkes processes. In Proceed-
ings of the 30th International Conference on Machine
Learning, pp. 1301–1309, 2013a.

Zhou, K., Zha, H., and Song, L. Learning social infectiv-
ity in sparse low-rank networks using multi-dimensional
Hawkes processes. In Proceedings of the 16th Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 641–649, 2013b.



The Multivariate Community Hawkes Model for Continuous-time Networks

0 2 4 6 8
t…(day)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ke
rn

el

1…week…C=(1,0,0)
2…days…C=(0,1,0)
12…hours…C=(0,0,1)
C=(0.3,0.3,0.4)

Figure 6. Sum of exponential kernels shapes at β = (1 week, 2 days, 12 hours) and differentCq
ab values.

A. Additional Details on MULCH Model and Estimation Procedure
A.1. Sum of Kernels Hawkes Process Intensity

By allowing different block pairs to have different scaling parameters Cqab, their intensities can decay at different rates, as in
the CHIP (Arastuie et al., 2020) and BHM (Junuthula et al., 2019) models where a single βab value was estimated for each
block pair. As shown in Figure 6, Cq

ab controls decay rate, and also, allows every block pair to have distinct kernel shape.
The intensity of (i, j) ∈ bp(a, b) becomes

λij(t) = µab +
∑

(x,y)∈bp(a,b)
(x,y)∈bp(b,a)

αxy→ijab

∑
ts∈Txy

Q∑
q=1

Cqabβqe
−βq(t−ts). (2)

A.2. Full Log-likelihood Function

Based on our intensity function (2) and the log-likelihood function for exponential Hawkes processes, we can derive our
block pair wise log-likelihood function to be

`ab(θab|Z,Ht) =
∑

Zi=a,Zj=b,i6=j

−µabT −
∑

(x,y)∈bp(a,b)
(x,y)∈bp(b,a)

αxy→ijab

∑
ts∈Txy

Q∑
q=1

Cqab

[(
1− e−βq(T−ts)

)]

+
∑
ts∈Tij

ln

µab +
∑

(x,y)∈bp(a,b)
(x,y)∈bp(b,a)

αxy→ijab

Q∑
q=1

CqabβqR
q
xy→ij(ts)




where

Rqxy→ij(ts) =
∑

tr∈Txy

tr<ts

e−βq(ts−tr)

can be computed recursively (Arastuie et al., 2020).
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A.3. Block Structure in Expected Count Matrix

As shown in Figure 1c, the expected count matrixE[N(T )] follows a block structure. This block structure is stated explicitly
in Theorem 4.1, and the proof is below.

Proof of Theorem 4.1. When the process is stationary, we can derive the vectorized version of the expected intensity
as vec(λ) = (I − Γ)−1µ, where all node pairs in a block pair (a, b) are kept together and they are ordered such that
block pairs (a, b), (b, a) occupy consecutive positions. Then Γ is a n(n − 1) × n(n − 1) matrix whose elements are
Γ(i,j)→(x,y) = αij→xyab (Hawkes, 1971) and it has a diagonal block structure, i.e.,

Γ =

 Γ(a,b)

Γ(a′,b′)

. . .


where Γ(a,b) contains the rows (i, j)→ (x, y) such that (i, j) ∈ (a, b) or (b, a) and (x, y) ∈ (a, b) or (b, a). This is because
Γ(i,j)→(x,y) = 0 for any (i, j) ∈ (a, b) and (x, y) /∈ {(a, b), (b, a)}. Denote G(a,b) = I − Γ(a,b), where I is the identity
matrix. Then,

I − Γ =

 G(a,b)

G(a′,b′)

. . .


also have the diagonal block structure, and so does

(I − Γ)−1 =

 G−1(a,b)

G−1(a′,b′)

. . .


By our construction of the Γ, we can write theG(a,b) as a block matrix:

G(a,b) =

(
Gab→ab Gab→ba
Gba→ab Gba→ba

)
and in the same block matrix, the rows have the same row sum.

Note for a block matrix, the inversion is(
A B
C D

)−1
=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 + D−1C

(
A−BD−1C

)−1
BD−1

)

We summarize a few simple observations in the following proposition.

Proposition A.1. For any square matrixA the following holds.

1. IfA1 = a1, i.e., if the row sum ofA are identical, and ifA−1 exists, thenA−11 = a−11, i.e., the row sum ofA−1

are also identical.

2. IfA1 = a1 andB1 = b1, thenAB1 = ab1

3. IfA1 = a1 andB1 = b1, then (A−B)1 = (a− b)1

Thus, sinceGab→ab,Gab→ba,Gba→ab,Gba→ba have the same row sum, and if all of them andG(a,b) are invertible, then
using the proposition above, we have

G−1(a,b)

(
1nanb

0nanb

)
=

( (
Gab→ab −Gab→baGba→ba

−1Gba→ab
)−1

1nanb

−G−1ba→baGba→ab
(
Gab→ab −Gab→baGba→ba

−1Gba→ab
)−1

1nanb

)

=

(
g1ab1nanb

g2ab1nanb

)
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where g1ab, g
2
ab are some real valued functions of the parameters αab,αba, and na denotes the number of nodes in block a.

Similarly,

G−1(a,b)

(
0nanb

1nanb

)
=

(
g1ba1nanb

g2ba1nanb

)
Thus, by our construction,

vec(λ(i,j)|i∈a,j∈b or i∈b,j∈a) = G−1(a,b)



µab
...
µab
µba

...
µba


(3)

= G−1(a,b)

((
1nanb

0nanb

)
µab +

(
0nanb

1nanb

)
µba

)
(4)

=

(
(g1abµab + g1baµba)1nanb

(g2abµab + g2baµba)1nanb

)
(5)

which means for any (i, j) ∈ (a, b), λ(i,j) = (g1abµab + g1baµba), and for any (i′, j′) ∈ (b, a), λ(i′,j′) = (g2abµab +
g2baµba)1nanb

.

B. Additional Experiment Details and Results
B.1. Spectral Clustering and Refinement Accuracy

For these experiments, we generate data from the MULCH model with K = 4 and assume parameters of the four diagonal
block pairs are equal, and similarly, parameters of the off-diagonal block pairs are equal.

We denote the set of Hawkes process parameters for a block pair (a, b) by

θab =
(
µab, α

xy→xy
ab , αxy→yxab , αxy→xbab , αxy→yaab , αxy→ayab , αxy→bxab

)
.

In these experiments, we use the following parameters:

θaa = θbb = (0.008, 0.3, 0.3, 0.002, 0.0005, 0.001, 0.0005)

θab = θba = (0.008, 0.1, 0.1, 0.001, 0.0001, 0.001, 0.0001)

Caa = Cab = Cba = Cbb = (0.33, 0.33, 0.34)

β = (2 weeks, 1 day, 2 hours) = (1/14, 1, 24/2)

Note that, simulated networks have assortative mixing, and we assumed timestamps are in unit of days.

B.2. Parameter Estimation Accuracy

We test the accuracy of our MLE in this experiment. We generate data from the MULCH model with K = 2 and assume
same structured parameters as in B.1. However, we switch diagonal and off-diagonal block pairs parameters so simulated
networks are disassortative:

θaa = θbb = (0.008, 0.1, 0.1, 0.001, 0.0001, 0.001, 0.0001)

θab = θba = (0.008, 0.3, 0.3, 0.002, 0.0005, 0.001, 0.0005)

At a fixed duration T = 5 months, and while varying number of nodes n, we simulate and fit our model to evaluate the
accuracy of the different Hawkes process parameters. As shown in Figure 7, the mean-squared error (MSE) for each
estimated parameter decreases with increasing n as expected. Similarly, for a fixed number of nodes n = 70, we vary the
duration T . Figure 8 shows that the MSE decreases with increasing T as expected. For each pair values of (n, T ), we run 10
simulations.
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Figure 7. Mean squared error for Hawkes process parameters on simulated networks at T = 5 months (± standard error over 10 runs).
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Figure 8. Mean squared error for Hawkes process parameters on simulated networks at n = 70 (± standard error over 10 runs).



The Multivariate Community Hawkes Model for Continuous-time Networks

B.3. Real Dataset Descriptions

Each dataset consists of a set of events where each event is denoted by a sender, a receiver, and a timestamp:

• MIT Reality Mining (Eagle et al., 2009): We use the phone call data, where the start time of each call was used as the
event timestamp. We consider calls between pairs of the core 70 callers and recipients. We use β values of 1 week, 2
days, and 1 hour.

• Enron Emails (Klimt & Yang, 2004): We use the same subset of the Enron email corpus as in DuBois et al. (2013). We
use β values of 1 week, 2 days, and 6 hours.

• Militarized Interstate Disputes (MID) (Palmer et al., 2022): We use the MID 5.01 dataset compiled by the Correlates of
War project. Nodes denote (sovereign) states. Each edge denotes an incident, which is a threat, display, or use of force
one state directs towards another. We remove 8 nodes that are disconnected from the largest connected component.
Unlike the other networks, this is a conflict network, so we expect to see disassortative rather than assortative mixing
between nodes. We use β values of 2 months, 2 weeks, and 12 hours.

• Facebook Wall Posts (Viswanath et al., 2009): We consider only posts from a user to another user’s wall so that there
are no self-edges. We analyze the largest connected component of the network excluding self loops. We use β values
of 2 months, 1 week, and 2 hours.

The MIT Reality Mining, Enron, and Facebook datasets were loaded and preprocessed identically to Arastuie et al. (2020).
Timestamps in all datasets were rescaled to be in the range [0, 1000], the same as in Arastuie et al. (2020) and DuBois et al.
(2013) so that log-likelihoods are comparable with their reported figures.

B.4. Descriptions of Other Models for Comparison

We compare against several other TPP models for continuous-time networks:

• Community Hawkes Independent Pairs (CHIP) (Arastuie et al., 2020): Univariate Hawkes process network model
with block structure where each node pair is independent of all others. We use the implementation at https:
//github.com/IdeasLabUT/CHIP-Network-Model

• Block Hawkes Model (BHM) (Junuthula et al., 2019): Univariate Hawkes process network model with block structure
where an event between a node pair equally excites all node pairs in the same block pair. We use the implementation at
https://github.com/IdeasLabUT/CHIP-Network-Model

• Relational Event Model (REM) (DuBois et al., 2013): Inhomogeneous Poisson process network model with piecewise
constant intensities and block structure. The instantaneous intensity for a node pair depends on several network
summary statistics in a manner similar to an exponential random graph model (Goldenberg et al., 2010). We were not
able to locate a working implementation so we only compare against reported results.

• Dual Latent Space (DLS) (Yang et al., 2017): Bivariate Hawkes process network model with separate continuous
latent spaces for the base intensities and for reciprocal excitations. We use the implementation at https://github.
com/jiaseny/lspp

• ADM4 (Zhou et al., 2013b): Multivariate Hawkes process network model with penalties to encourage sparsity and low
rank for the excitation matrix α. We use the implementation in the Python package tick (Bacry et al., 2017).

B.5. Scalability of MULCH

We compare scalability of MULCH against the CHIP and BHM models. We fit all 3 models to the Facebook (n = 43, 953)
and MID (n = 147) datasets (see Table 2 for other dataset statistics). We run the models without likelihood refinement over
a range of number of blocks K and report the wall clock time required to fit to the model at K corresponding to the best test
log-likelihood score. The wall clock times and test log-likelihoods are both shown in Table 6. Both CHIP and BHM, which
utilize univariate Hawkes processes, are much faster to fit than our proposed MULCH model that uses multivariate Hawkes
processes. However, MULCH is able to achieve better fits, as indicated by the higher test log-likelihood.

https://github.com/IdeasLabUT/CHIP-Network-Model
https://github.com/IdeasLabUT/CHIP-Network-Model
https://github.com/IdeasLabUT/CHIP-Network-Model
https://github.com/jiaseny/lspp
https://github.com/jiaseny/lspp
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Table 6. Wall clock times to fit CHIP, BHM, and MULCH on the Facebook and MID datasets. Test ` denotes the mean test log-likelihood
per event as defined in Section 5.2.1.

CHIP BHM MULCH

Dataset Test ` K Time Test ` K Time Test ` K Time

Facebook −9.48 9 3.8 minutes −14.3 15 3.5 minutes −6.82 1 16 hours
MID −3.67 2 0.48 seconds −5.18 91 3.5 seconds −3.53 2 31 seconds
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(a) Actual network
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(b) Six-α (MAPE = 16.5)
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(c) Four-α (MAPE = 16.1)
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(d) Two-α (MAPE = 69.8)

Figure 9. Average temporal motif counts for time window δ = 1 week on 10 simulated networks from six-α, four-α, and two-α MULCH
models fitted on the Reality Mining dataset.

B.6. Ablation Experiment on Number of Excitation Types

The excitation parameters αxy→ijab control which node pairs can mutually excite each other. For the full MULCH model, we
consider 6 types of excitations, listed in Table 1. In this experiment, we perform an ablation study by removing some of the
excitation types (i.e. set to 0), then refit the model. We test out two additional variants of our MULCH model: two α’s (self
and reciprocal excitation only) and four α’s (add turn continuation and generalized reciprocity). We use the Reality Mining
dataset in this experiment.

We find that the full six-α model has slightly better predictive accuracy. Compared to the 0.954 link prediction AUC of
the full six-α model, the four-α and two-α models had AUCs of 0.950 and 0.951, respectively. All 3 models had similar
test-log likelihood (±0.01).

We find that the six-α and four-α models significantly improve generative accuracy compared to the two-α model, as shown
in Figure 9. The improvement is because the two-α model has no mechanism to generate 3-node motifs, e.g. triangles,
and needs to generate way too many 2-node motifs (see Figure 9d, MAPE = 69.8) to generate 3-node motif counts close
to the actual network in Figure 9a. The full six-α model (Figure 9b) can accurately generate all motif counts due to the
additional excitations and achieves a much better MAPE = 16.5 score. Note that the four-α model is able to perform well
and generate motifs close to actual dataset at MAPE = 16.1.


