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Abstract

Local Differential Privacy (LDP) protocols enable an un-
trusted server to perform privacy-preserving, federated data
analytics. Various LDP protocols have been developed for dif-
ferent types of data such as categorical data, numerical data,
and key-value data. Due to their distributed settings, LDP
protocols are fundamentally vulnerable to poisoning attacks,
in which fake users manipulate the server’s analytics results
via sending carefully crafted data to the server. However, ex-
isting poisoning attacks focused on LDP protocols for simple
data types such as categorical and numerical data, leaving the
security of LDP protocols for more advanced data types such
as key-value data unexplored.

In this work, we aim to bridge the gap by introducing novel
poisoning attacks to LDP protocols for key-value data. In
such a LDP protocol, a server aims to simultaneously esti-
mate the frequency and mean value of each key among some
users, each of whom possesses a set of key-value pairs. Our
poisoning attacks aim to simultaneously maximize the fre-
quencies and mean values of some attacker-chosen target keys
via sending carefully crafted data from some fake users to
the sever. Specifically, since our attacks have two objectives,
we formulate them as a two-objective optimization problem.
Moreover, we propose a method to approximately solve the
two-objective optimization problem, from which we obtain
the optimal crafted data the fake users should send to the
server. We demonstrate the effectiveness of our attacks to
three LDP protocols for key-value data both theoretically and
empirically. We also explore two defenses against our attacks,
which are effective in some scenarios but have limited effec-
tiveness in other scenarios. Our results highlight the needs
for new defenses against our poisoning attacks.

1 Introduction

Nowadays, many Internet services rely on users’ data. How-
ever, it poses significant challenges to users’ privacy for a
server to collect raw data from users. Local Differential Pri-
vacy (LDP) [16] aims to address the challenges. Specifically,

LDP is a variant of differential privacy [15] under a local
setting, where each user locally perturbs his/her data before
sending it to an untrusted server. The server aggregates the
perturbed data and obtains the statistics of interest. LDP en-
sures that even if the server is compromised, users’ privacy
is still well-protected. Due to its promising resilience against
untrusted server, LDP has been widely deployed by Internet
giants such as Google [16], Apple [40], and Microsoft [13].

Moreover, LDP protocols have been proposed for different
types of data, such as categorical data [16, 30, 39, 45-47],
numerical data [13, 14], multidimensional data [44,52], and
key-value data [24,49]. For instance, in recommender sys-
tems, each user rates a set of items (e.g., products), where
an item and a rating can be viewed as a key and a value, re-
spectively. Thus, each user possesses a set of key-value pairs.
In current recommender systems, users send their raw key-
value pairs to the server. However, given access to users’ raw
key-value pairs, an untrusted server can infer users’ sensitive
attributes (e.g., gender, age, sexual orientation) via attribute
inference attacks [22,32]. LDP protocols enable a server
to collect frequency (i.e., popularity) and mean value (i.e.,
mean rating) of each key from users without accessing their
raw key-value pairs and thus protect users’ rating-behavior
privacy. The collected frequencies and mean values can be
used to rank keys and make recommendations to users.

However, due to the distributed settings, LDP protocols are
vulnerable to poisoning attacks [7,11], in which an attacker
injects fake users into the system and manipulates the server’s
analytics results via sending carefully crafted data from the
fake users to the server. Specifically, Cheu et al. [11] showed
that poisoning attacks can degrade the overall performance
for indiscriminate items, while Cao et al. [7] showed that
poisoning attacks can promote attacker-chosen target items
in LDP protocols for frequency estimation and heavy hitter
identification. However, these studies focused on simple data
types such as categorical data and numerical data, in which
each user possesses a single categorical item or numerical
value. The security of LDP protocols for more advanced data
types such as key-value data is largely unexplored.



In this work, we aim to bridge this gap. Specifically, we
perform a systematic study on poisoning attacks to LDP proto-
cols for key-value data. In our poisoning attacks, an attacker
aims to simultaneously promote the estimated frequencies
and mean values for some attacker-chosen target keys. An
attacker can inject some fake users into the system and send
carefully crafted data to the server to achieve the attack goals.
Our attacks pose severe security threats to LDP protocols for
key-value data. For example, when such a LDP protocol is
deployed to collect popularity and mean ratings of mobile
apps in a mobile-app recommender system, an attacker can
use our attacks to promote a malicious app’s popularity and
mean rating such that it may be recommended to more people.

However, different from the poisoning attacks to LDP pro-
tocols for simple data types [7, 1 1], poisoning attacks to the
LDP protocols for key-value data face new challenges. Specif-
ically, key-value data are inherently heterogeneous, i.e., keys
are categorical and values are numerical. Moreover, there are
correlations between the keys and the values. In particular,
the estimated mean value of a key depends on the estimated
frequency of the key. Furthermore, each user may possess
more than one key-value pair, while each user only has a sin-
gle item or numerical value in LDP protocols for categorical
and numerical data. Therefore, existing poisoning attacks are
insufficient for LDP protocols for key-value data.

To address the challenges, we formulate our poisoning
attacks as a rwo-objective optimization problem, which ex-
plicitly captures the attacker’s two objectives on promoting
both the estimated frequencies and mean values of the target
keys. Specifically, we define the frequency gain (or mean
gain) as the difference between the total estimated frequency
(or mean value) of the target keys before and after attack. The
expected frequency gain and expected mean gain are the two
objective functions in our two-objective optimization prob-
lem, where the expectation is taken over the randomness in
a LDP protocol. Moreover, we propose a method, called
maximal gain attack (M2GA), to approximately solve the two-
objective optimization problem. The solution corresponds to
the crafted data fake users should send to the server. Specifi-
cally, M2GA can exactly maximize the expected frequency
gain and approximately maximize the expected mean gain.

To demonstrate the effectiveness of M2GA, we also pro-
pose two baseline poisoning attacks, called random message
attack (RMA) and random key-value pair attack (RKVA). In
RMA, each fake user sends a random message in the domain
allowed by the LDP protocol to the server, while in RKVA,
each fake user picks a random target key, associates the largest
allowable value with it, and perturbs the key-value pair fol-
lowing the LDP protocol before sending it to the server.

We apply our attacks to three state-of-the-art LDP proto-
cols for key-value data, e.g., PrivKVM [49], PCKV-UE [24],
and PCKV-GRR [24]. Moreover, we evaluate our attacks both
theoretically and empirically. Theoretically, we derive the
expected frequency gains of our attacks exactly. However, it

is challenging to derive the expected mean gains exactly be-
cause they involve divisions of random variables. To address
the challenge, we derive the expected mean gains approxi-
mately via relaxing the divisions of random variables. We
note that prior work [7, 11] found security-privacy trade-offs
in LDP protocols for categorical and numerical data, i.e., such
a LDP protocol is more vulnerable to poisoning attacks when
it is more privacy-preserving. One interesting finding from
our theoretical analysis is that, such security-privacy trade-off
does not necessarily hold in LDP protocols for key-value data.
For instance, in M2GA to PrivKVM [49], the expected fre-
quency gain increases (i.e., more vulnerable to M2GA) as the
privacy budget decreases (i.e., more privacy-preserving) when
an attacker selects one target key; the expected frequency
gain does not depend on the privacy budget when an attacker
selects two target keys; and the expected frequency gain de-
creases as the privacy budget decreases when an attacker
selects more than two target keys. Empirically, we evaluate
our attacks on multiple datasets. Our results show that M2GA
can successfully promote the estimated frequencies and mean
values of the target keys, and that M2GA substantially outper-
forms the two baseline attacks.

We also explore two defenses against our poisoning attacks.
Specifically, in one defense, the server uses one-class clas-
sifier to detect fake users via treating users’ data sent to the
server as their features. PrivKVM requires multiple communi-
cation rounds between the users and the server. Therefore, in
our second defense, the server detects fake users in PrivKVM
via checking the consistency of their data sent to the server
in multiple rounds. Our intuition is that a fake user sends
highly correlated data to the server in multiple rounds, while
a genuine user does not. Our empirical results show that our
defenses are effective in some scenarios. For instance, when
the fraction of fake users and the number of target keys are
small, M2GA achieves negligible frequency gains and mean
gains when the second defense is deployed. However, the
defenses are ineffective in other scenarios, e.g., when the frac-
tion of fake users or the number of target keys is large for the
second defense, which highlights the needs for new defense
mechanisms against our attacks.

Our contributions can be summarized as follows:

e To the best of our knowledge, we are the first to study
poisoning attacks to LDP protocols for key-value data.

* We formulate our attacks as a two-objective optimization
problem, which aims to maximize both the expected fre-
quency gain and expected mean gain of the target keys.

e We evaluate our attacks on three state-of-the-art LDP proto-
cols for key-value data both theoretically and empirically.

* We investigate two defenses against our attacks. Our results
show that the defenses can defend against our attacks in
some scenarios but not in others, which highlights that new
defenses are needed to mitigate our attacks.



2 Related Work

Poisoning Attacks to LDP Two concurrent studies [7, 11]
proposed poisoning attacks to LDP protocols for categorical
and numerical data. In these LDP protocols, each user holds a
single item or numerical value, and a server aims to estimate
the frequencies of items or identify heavy hitters that have
the largest item frequencies. Cheu et al. [11] showed that an
attacker can downgrade the accuracy of the estimated item
frequencies or the identified heavy hitters for indiscriminate
items via injecting fake users into the system. Cao et al. [7]
showed that an attacker can increase the estimated frequencies
for attacker-chosen target items or promote them to be identi-
fied as heavy hitters. In particular, Cao et al. formulated their
poisoning attacks as a single-objective optimization problem,
where the objective function is to maximize the frequency
gains for the target items. As we discussed in Introduction,
these poisoning attacks are insufficient for LDP protocols for
key-value data.

In particular, our work differs from [7] in the following
aspects. First, we formulate a two-objective optimization
problem for key-value data instead of the single-objective
one. Second, our solutions to the optimization problems
are different. Third, we propose different defenses against
the poisoning attacks. Fourth, we observe different privacy-
security trade-off. Specifically, Cao et al. [7] found that when
the privacy guarantee is stronger, a protocol becomes less
secure to poisoning attacks. We do not necessarily observe
such privacy-security trade-off both theoretically (in some
cases) and empirically for LDP protocols for key-value data.

Poisoning Attacks to ML Poisoning attacks to machine
learning systems have been studied extensively [6, 8, 10, 17—
19,23,26,28,29,34,36-38,48]. In these attacks, an attacker
manipulates the training phase of a machine learning system
via poisoning some carefully selected training examples or
tampering the training process. For instance, training-data
poisoning attacks have been studied for support vector ma-
chines [6], neural networks [10, 23, 36], and recommender
systems [18, 19,27, 34,48]. Training-process poisoning at-
tacks have been studied for federated learning [4,5, 17]. Our
poisoning attacks differ from these ones because the computa-
tional process of LDP protocols is significantly different from
that of machine learning training phases.

3 Preliminaries

Before we dive into details, we summarize the important
notations we use in Table 1.

3.1 LDP Protocols for Key-Value Data

Suppose we have n users, we have a dictionary X of d keys
(i.e., X =1{1,2,---,d}), and each user possesses a set of KV

symbol representation
n # genuine users
m # fake users
B fraction of fake users
X dictionary of keys
d # keys
(k,v) key-value pair
Jx frequency of k
my mean value of k
€ privacy budget
padding length
# target keys
Gy frequency gain
Gn mean gain

Table 1: Notations used in this work.

pairs (k,v), where k € K and v € [—1, 1]. Note that, without
loss of generality, we assume the values are transformed into
the range [—1, 1]. A server aims to estimate the frequency and
mean value of each key among the n users. The frequency of
a key is the fraction of users who possess the key, while the
mean value of a key is the average of the values in the KV
pairs that contain the key. Formally, the true frequency f; and
mean value my, for each key k are defined as follows:

fi= M _ Zue{l,---,n},(ky}esuv
k— ) k —

n n- fi ’

where §, is the set of KV pairs possessed by user u and
Is, ((k,-)) is an indicator function that equals 1 if one KV pair
in S, contains the key k and equals O otherwise.

Framework of LDP Protocols for Key-Value Data In
LDP protocols, each user randomly perturbs its KV pairs
and sends the perturbed data (called message) to the server.
Roughly speaking, in LDP, any two sets of KV pairs are
perturbed to the same message with close probabilities. State-
of-the-art LDP protocols [24,49] for key-value data consist
of the following three key steps.

e Sample: A user randomly samples a key from the dictio-
nary and constructs a KV pair based on the sampled key.

e Perturb: The user perturbs the constructed KV pair to ob-
tain the message that should be sent to the server.

» Aggregate: The server estimates the frequency and mean
value of each key via aggregating the messages from all
users. We denote by f and s the estimated frequency and
mean value of a key k.

Next, we briefly review three state-of-the-art LDP protocols
for key-value data, i.e., PrivKVM [49], PCKV-UE [24], and
PCKV-GRR [24].



3.2 PrivKVM

PrivKVM utilizes an iterative procedure, where the aforemen-
tioned three steps are performed for Nje, rounds. Specifically,
after each round, the server has an estimated mean value
for each key &, which is used to construct messages for the
users who do not possess the key k in the next round. Next,
we describe the three steps in each round.

Sample For each user, PrivKVM samples a key k from the
dictionary uniformly at random. If the user possesses k, then
the Sample step returns the user’s KV pair (k,v), otherwise
the Sample step constructs a KV pair (k,v = riy;) (7 is the
estimated mean value in the previous round and is set to
0 in the first round). The value v in the KV pair is then
discretized to v* = 1 with a probability of % and v = —1
with a probability % Finally, the Sample step returns a KV
pair (k,v*) and a flag indicating whether & is possessed by the
user or not.

Perturb First, the user perturbs the discretized value v* to
be v/ based on the following rule:

p* w.p 2

; P =

Vo= . ez (D
=V WP T

where w.p. is short for with probability. Then, the user further
perturbs the (k,V') pair to be (k,V/,). Specifically, if the user
possesses the key k, then <k,,,v;,> is obtained based on the
following perturbation rule:

1,V)  wp. S
IRTATED B T 2)
ko 1)) { (0,0)  w.p. et

If the user does not have k, then (k,, v},) is obtained as follows:

€]

<kp,v;>={ S

<1,V/> w.p. Tret1T

Finally, the user sends the pair (k,,},) and the index of the
key k to the server.

Aggregate We denote by n; the number of users report-
ing the index of key k and the tuple (1,-). Then, the server
computes the estimated frequency of k as follows:

~ p—1+m/n

Je= 1 “

el
141"
nk (or n* ) that report the index of key k and the tuple (1,1)
(or (1,—1)). The server computes the estimated mean value

of k as follows:

where p = Then, the server counts the number of users
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where A% and #* | are defined as follows:
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where p = ef;il . We note that frequency estimation is only

conducted in the first round, while mean estimation uses
the results after Nje, rounds. The privacy budget €; is only
allocated to the first round, while the privacy budget &, is
equally allocated for each round. Specifically, we have &; = §
and g = ﬁ, where € is the overall privacy budget.

3.3 PCKV-UE and PCKV-GRR

PCKV-UE and PCKV-GRR are two protocols from the
PCKYV family [24]. PCKV improves PrivKVM by utilizing a
padding-and-sampling strategy in the Sample step to reduce
the variance of frequency and mean value estimation. More-
over, unlike PrivKVM that performs aforementioned three
steps for multiple rounds, PCKV only requires a single round.
The two protocols PCKV-UE and PCKV-GRR mainly differ
in the Perturb step and the Aggregate step, while sharing a
common Sample step. Specifically, we have the following
workflow:

Sample Suppose a user u has a set of KV pairs 5,,. If [.S,| <
¢, where / is called padding length and is a parameter of the
protocols, then the user u pads the set .S, with dummy KV
pairs {(d +1,0),(d +2,0),...,{(d+1—|S5,],0)}.

Note that the maximum number of dummy KV pairs is ¢
when §, is an empty set. After the padding, a random KV
pair (k,v) is drawn from the padded set. The value v is then
discretized in the same way as PrivKVM, i.e., the value v is

discretized to v* = 1 with a probability of 1? and v = —1

with a probability ?

Perturb We denote &' =d +1 and X' = {1,2,---,d +1}
(the dictionary with dummy keys). The Perturb steps for
PCKV-UE and PKCV-GRR are as follows:

¢ PCKV-UE: PCKV-UE leverages Unary Encoding (UE) to
perturb KV pairs. In particular, a perturbed vector y €
{1,—1,0} is sent to the server, where y[i] contains value
information of key 7 and is obtained as follows:

v, w.p. a-p

yik]=< —v wp. a-(1-p) , (8)
0, wp. l—a
1, w.p. b/2

ylil=4 =1, wp. b/2 LieK'\{k}, (9

0, wp. 1—b



where a, b, and p are as follows:

1 2
a==,b=

3 es+3,pfe/(e£+1). (10)

* PCKV-GRR: PCKV-GRR leverages Generalized Random
Response (GRR) to perturb KV pairs. Specifically, the KV
pair (k,v*) is randomly perturbed into (k’,v') as follows:

(k,v*), w.p. a-p

I k,— .p. -(1
®N=Y Gy " e bos @b

(i —l) wp. b-0.5

where i € X'\ {k} and a, b, and p are as follows:

-0 +2  1—a  L(ef—1)+1
TleE—Dr2d T d 1P T e )12

12)

The perturbed KV pair (k’,V') is sent to the server.

Aggregate Due to the difference in Perturb step, the Aggre-
gate steps for PCKV-UE and PCKV-GRR are also different.
Given a key k, we respectively use nf and n* | to denote the
number of users that support the KV pairs (k, 1) and (k,—1).
In particular, they can be computed as follows:

* PCKV-UE: Recall that, in PCKV-UE, y[k] contains the
value information of the key k. We say y|[k] supports (k, 1)
(or (k,—1)) if y[k] = 1 (or y[k] = —1). Then, we can com-
pute nf (or n* ) as the number of users whose perturbed
vectors satisfy y[k] = 1 (or y[k] = —1).

* PCKV-GRR: In PCKV-GRR, each user sends a single
perturbed KV pair (k’,v') to the server. Similar to PCKV-
UE, we say (k’,v') supports (k, 1) (or (k,—1)) if K =k and
v/ =1 (orv = —1). Then, we can compute r} (or n* )
as the number of users whose perturbed KV pairs satisfy
K =kandVv =1 (orv = —1).

Given rt and n* |, the server can estimate the frequency of
key k as follows:

k k _
szw.g’ (13)
a—>b

The estimated mean value of the key k is computed as follows:

= (=A%) / (nfe) (14)
where
k1 [ nk—nb)2
E R Y R
b b
A= ap—35 a(l_p)_2:|. 16
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We note that in all the three LDP protocols, the server can
clip the estimated frequency f; to be % if it is smaller than

l and to be 1 if it is larger than 1. Moreover, the server can

chp the support counts 7 and 1 into the range of [0, nf “*in
PCKV-UE and PCKV- GRR, as well as the range of [O nk] in
PrivKVM, before using them to estimate the mean value.

4 Threat Model

Attacker’s capability and background knowledge We
assume that the attacker is able to inject some fake users
into the system. Previous measurement study [41] has
shown that an attacker can easily obtain a large number of
fake/compromised users in online web services such as Twit-
ter and Facebook. Specifically, we assume that the attacker
has access to m fake users. Together with the n genuine users,
the server estimates frequencies and mean values of keys
among the n + m users. For each fake user, the attacker can
arbitrarily craft its message sent to the server. An attacker
has access to the parameters of the LDP protocol since the
LDP protocol is executed on a user side. Specifically, an
attacker has access to the dictionary of keys, as well as the
implementation details of the Sample and Perturb steps of the
LDP protocol.

Attacker’s goal An attacker aims to promote some target
keys. We assume r target keys and denote them as a set T =
{ki,ka,--- ,k,}. The attacker aims to increase the estimated
frequencies and mean values of the target keys via sending
carefully crafted messages from the fake users to the server.
Without loss of generality, we assume the m fake users have
IDs n+1,n+2,--- ,n+m. We denote the set of messages
the fake users send to the server as Y = {y;}!” anH , where y;
is the message fake user i sends to the server. We denote
by fi and f; the estimated frequency of key k among the n
genuine users and all the n + m users, respectively. Moreover,
we denote by G7(Y) = Y1 E[Af] the frequency gain of the
target keys, where Af; = fi — fx and the expectation is taken
over the randomness in a LDP protocol.

Similarly, we denote by 71, and 77 the estimated mean
value of key k among the n genuine users and all the n+m
users, respectively. Furthermore, we denote by G,,(Y) =
Y rer E[Ariy] the mean gain of the target keys, where Asfy, =
g — iy, and the expectation is taken over the randomness in a
LDP protocol. An attacker aims to simultaneously maximize
the frequency gain and mean gain via carefully crafting the
messages Y. We propose to formulate such an attack goal as
the following two-objective optimization problem:

max [g; ((?\{())] (17)

Note that we consider the target keys are weighted equally
for simplicity. However, our formulation can be extended



to the scenario where the attacker assigns different weights
to different target keys in the frequency and mean gains. A
method to solve the two-objective optimization problem is a
poisoning attack to a LDP protocol for key-value data.

5 Our Attacks

We first introduce our three attacks and then apply them to
PrivKVM, PCKV-UE, and PCKV-GRR.

5.1 Three Attacks

We propose Maximal Gain Attack (M2GA ), which solves the
two-objective optimization problem to construct the optimal
messages the fake users should send to the server. To show the
effectiveness of M2GA, we also propose two baseline attacks:
Random Message Attack (RMA) and Random Key-Value Pair
Attack (RKVA). Next, we describe them one by one.

5.1.1 M2GA

Our idea is to unify the frequency gain and mean gain for
different LDP protocols under the same framework, based on
which we transform the two-objective optimization problem
to be one that is easier to solve.

Unifying the frequency gain We first observe that the es-
timated frequency f; can be unified as Eq. 13. In particular,
as discussed in Section 3.3, PCKV-UE and PCKV-GRR use
Eq. 13 to calculate f;. We can also use Eq. 13 to calculate
fk in PrivKVM, where the parameters a, b, and [ are set as

follows:
el 1

= b= {=1. 18
a= b= (18)
Therefore, we can represent the frequency gain G(Y) as:
=Y E[fi— /i

keT

= ZE{E
keT

E (n} +n)/n—b

a—>b

(nk +nk 7+ )/ (n+m) —b]

a—>b

where n’f and n* | respectively are the support counts of (k, 1)
and (k,—1) among the n genuine users, while ﬁ’f and 7t | are
the ones among the m fake users. We note that the messages Y

=k
only affect the term Y ;o E[%] and the denominator
(n+m)(a—b) is irrelevant in the optimization for a given
setting of LDP protocol. Therefore, optimizing the frequency

gain is equivalent to optimizing the following:

rnax Z

keT

nl +En - (19)

Moreover, the frequency gain can be simplified as follows:

Y @A ER ) - Q)

GY) = o) &

ml(ny+n
where ¢ = Y #)(a"]b)) = e (fr+25). fr=Yier fi

is the sum of the true frequencies of all target keys, which is
a constant.

Unifying the mean gain Similar to frequency estimation,
the estimated mean value can also be unified in the following
equation:

. (n’f—nk_l)(a—b)

- a(2p—1) (nk +n* | —nb)’ 1)

where the parameters a, b, p, and [ are described in Section 3.3
for PCKV-UE and PCKV-GRR, and they are set as follows
for PrivKVM:

2

a ) ’p 682—1—17 ( )

Then, we can represent the mean gain G,,(Y) as follows:

Gm(Y) = Z E [ﬁlk - ’;lk}
keT

_v e (nk —n* |+ ik ) (a—b)
keT a(2p—1) (nk+n* |+t +7* | — (n+m)b)

() ta—b) } .

[a(2p— 1) (nk +n* | —nb)

However, unlike the frequency gain, it is non-trivial to
compute the two expectations above because they involve
divisions between random variables. Specifically, since n’f
and n’é are random variables, both the numerator and the de-
nominator are random variables. To address the challenge, we
propose to use the first-order Taylor expansion of functions of
random variables [9] to approximately compute G,,. Specif-
ically, given two random variables X and Y, the first-order
Taylor expansion means the following:

Note that we have the following:

where f; and my, are the true frequency and mean value of k.
Thus, based on the first-order Taylor expansion, we have:

nfia(2p — Vmy/0+ E[i) — E[f* |

NZ a-b _
it \ a2p=1) nfi(a—b) /0 +E[] + E[#* || — mb
(25)




For simplicity, we denote & = nfia(2p —1)my /¢ and ¢ =
nfi(a—b)/l —mb. Then, we approximate optimizing the
mean gain as follows:

”]f —E[i, ]+
[ ]+

(26)

Reformulated two-objective optimization problem By
combining Eq. 19 and 26, we re-formulate our two-objective
optimization problem as follows:

Yier(E [ﬁ’fH]E[“" 1)
max E[k]-E[#* J+c& | . 27
]

~k
+E[R* ]Jrc2

5.1.2 RMA

In this baseline attack, each fake user picks a message uni-
formly at random from the message domain allowed by a
LDP protocol and sends it to the server.

5.1.3 RKVA

RMA does not consider any information about the target
keys. Different from RMA, RKVA considers the target keys.
Specifically, each fake user picks a random target key k, pairs
it with an extreme value 1, and the constructed KV pair is
viewed as the fake user’s KV pair. Then, the constructed
KV pair is processed by the LDP protocol and the resulting
message is sent to the server.

5.2 Attacking PrivKVM
5.2.1 M2GA

Recall that PrivKVM is an iterative procedure, in which the
frequency estimation is performed in the first round while the
mean estimation is performed in each round and the estimated
mean values in the last round are used. Solving Eq. 27 exactly
is non-trivial. Therefore, we propose a two-step approximate
solution, which first optimizes the frequency gain and then
approximately optimizes the mean gain.

Since each user in PrivKVM sends a key index and a tuple
to the server, we craft such message for each fake user such
that Eq. 19 is maximized. For PrivKVM, a fake user can only
inject a single key to be counted by the server. That is, a
fake user can only increase either 7 ”1 or itk * | for a single key k.
Therefore, for each fake user, we randomly select a target key
k, and send the index k and the tuple (1,-) to the server, where
the reported value does not influence the frequency gain and
we will discuss it for optimizing the mean gain. Thus, we
have Y (E[] + ]E[~ 1]) = m, and we have the frequency
gain as Gy = W ¢, where the parameters a,b are
defined in Eq. 18. In practice, for each target key, ** fake
users send messages including the target key to the server.

For mean estimation, we attack each round of PrivKVM.
Specifically, in PrivKVM, the value sent to the server is either
1 or -1. Therefore, to increase the estimated mean, a fake user
always sends value 1 for a target key. In other words, we have
E[#] = 2 and E[#* |] = 0 for each target key k. The mean

- —b  nfra(2p—1)my /l+m/r
gain is as follows. G =~ Yier a(‘z’p_l) nf:(a_b)/é+21/r_’nb) —
my, where a, b, p are given in Eq. 22.

To summarize, each fake user sends a random target key

and value 1 to the server in each round of PrivKVM.

5.22 RMA

In RMA, each fake user randomly chooses a key k from the
entire dictionary. Then, the fake user randomly chooses a
tuple to report to the server. Specifically, (0,0) is chosen with
a probability of 1, while (1,—1) and (1,1) are each chosen
with probability 1.

Therefore, we have a probability of - 2 that the message of
a fake user supports key k, and the KV pairs (k, 1) and (k, —1)
would be supported with equal probabilities. Thus, we have
E[#t] = E[#* ] = #%. By plugging the values into Eq 20 and
Eq. 25, we have the frequency gain of Gy = W c,

: 2
and the mean gain of G ~ Yer 73, bl) o (Zf "Z)( L /&Zf)" e

my. Again, we note that the parameters a, b, p are different in
Gy and G,.

5.2.3 RKVA

In RKVA, each fake user picks a target key k uniformly at ran-
dom and the fake user’s tuple is (1, 1). This tuple is perturbed
according to the Perturb step of the PrivKVM protocol. The

perturbed tuple still supports k with a probablhty of 51 +1,
and the value is inverted with a probability of ; + T
Therefore, we have E[i\] = E[* || = "¢ E[i\] =

2r(ef141) "
and Efii* ] =

me'l The frequency
me®l

me®lef2
r(ef1+1)(14¢2)

r(egl+l)(l+e€2) :
gainis Gy = @b @)~ 6 and the mean gain is G, ~

wb nfia(2p Vgt (2 1) (1 41) (14652)
ZkET a(2p—1) nfi(a—b)+metl [ (r(ef1+1))—mb o

5.3 Attacking PCKV-UE
531 M2GA

In PCKV-UE, each user sends a vector of length d + ¢ to
the server, and each dimension is checked independently on
whether it supports the corresponding key. Therefore, a single
user could support multiple keys.

For each fake user, we put a 1 or -1 in all the dimensions
corresponding to the target keys. Therefore, a single fake
user can increase i or i* | for all k € T. For the remaining
dimensions, if we simply leave them as 0, the server may
easily detect that these messages are from fake users. To

address this issue, we sample some dimensions and set them



to 1 or -1, such that the vectors we craft for the fake users
would have the same number of 1 bits and -1 bits as the ex-
pectation of the genuine users’. Specifically, if a genuine user
samples a KV pair (-, 1) (or (-,—1)) to report, the perturbed
vector would have |ap+ (d' —1)(b/2)] 1 (or -1) bits and
a(l1—p)+(d' —1)(b/2) -1 (or 1) bits on expectation. We
note that this form of disguise does not affect the frequency
gain and mean gain for the target keys.

Therefore, we have it +7i* | = m for each target key k.

The frequency gain is Gy = W’éiw — c¢. To further max-
imize the mean gain, we solve the optimization problem
of Eq. 26 in the similar way as for PrivKVM. Specifically,

we only need to maximize ﬁ’f — it * | for each target key k

under the constraints of i > 0,7 | > 0 and /% +7* | = m.
Therefore, we have the following optimal solution n'f =m
and 7% , = 0. Thus, we obtain the mean gain as: G, ~

—b  nfra2p—1)my/l+m
LieT a(tzlpq) n ff (a—b) /é+nk1(17b) = Mg

To summarize, each fake user sets the dimensions corre-
sponding to the target keys to 1 in its vector. Moreover, to
evade possible detection, each fake user randomly samples
some other dimensions of its vector and set them to be 1 or -1
such that the vector has the same number of 1 bits and -1 bits
as the expected 1 bits and -1 bits in a genuine user’s vector.

5.3.2 RMA

In PCKV-UE, a message is a vector. For each fake user, we
randomly sample the value of each dimension of the vector.
Specifically, each dimension is randomly set to 1, -1, or O
with an equal probability of % Therefore, we have E[iX] =

E[ﬁ]i | = %. The frequency gain is G = —¢. The

2mrl
3(ntm)(a—b)
—b nfra(2p—1)my /0
mean gain is G & Yiet gr5,- l)nfk(akb)/[Jrzm/g 5 — Mk

5.3.3 RKVA

For each fake user, a random target key & is sampled from T
and paired with a value of 1. The constructed KV pair is then
perturbed by the PCKV-UE protocol. As the perturbation is
independent for each dimension, we only need to focus on
the dimensions corresponding to the target keys in T. Similar
to PrivKVM, if k is selected, its value remains the same
with probability ap and gets inversed to -1 with a probability
of a(1 — p). However, different from PrivKVM, if a key
other than £ is selected, the perturbed vector supports k with
probability b and the value is 1 or -1 with equal probability
g. Therefore, we have E[ii] = %;4)1’/2 and E[ii* || =
ma(1—p)+m(r—1)b/2 Hrm(r*l)b/ 2. The frequency gain and the mean gain
mal-+m(r—1)bl —cand G

are respectively as follows: Gy = Tt (@=b)

ZkeT nfimy/l+m/r

nfy/l+m/r S

5.4 Attacking PCKV-GRR
54.1 M2GA

In PCKV-GRR, each user sends a KV pair as the message to
the server. A user supports a KV pair if and only if the mes-
sage he/she sent to the server is exactly the KV pair. There-
fore, similar to PrivKVM, a fake user can only increase the
support count ﬁ’f or ik | of a single target key. Similar to
PrivKVM, we have } ;.1 E [fl’l‘ + ik J = m. The frequency

ml
(n+m)(a—b)
The mean gain for each target key is then maximized

in the same way as each round of PrivKVM, where we

set Ak = and 7% | = 0, i.e., we set all the values in the

KV pairs sent to the server to 1. Thus, the mean gain is
-~ a—b nfrap—1)m/l+m/r -
G =~ ZkET a(2p—1) nfi(a—b)/l+m/r—mb M.
To summarize, each fake user sends a random target key

and value 1 to the server.

gainis Gy = —c.

54.2 RMA

For each fake user, we randomly select a target key and
set its corresponding value as -1 or 1 uniformly at random
, which is the KV pair sent to the server. Therefore, we

have E[i{] = E[#*,] = J%. We have the frequency gain
as G = Wtf—b)d’ — ¢, while the mean gain as G¥, ~

):kdl' a —b nfra2p—1)m/t

20—1) nfela—b)T~m/d —mb — k-

5.4.3 RKVA

For each fake user, we randomly select a target key k from
T and choose its value 1 to construct a KV pair. The KV
pair is then perturbed according to the Perturb step of the
PCKV-GRR protocol. The KV pair after perturbation still
keeps k as its key with a probability of a, and a key other than

k gets perturbed to k with a probability of b. Therefore, we get

E[ﬁlﬂ _ map+m(r—1)b/2 and ]E[~ ] _ ma(l—p)+:n(r—1)b/2 We

(+ 1)bl fomy /(4
haver—%—candGmNZke B[ — .

5.5 Theoretical Analysis

Table 2 summarizes the analytical forms of the frequency
gains of our three attacks for the three LDP protocols, while
Table 3 summarizes the analytical forms of the approximate
mean gains of our three attacks for the three LDP protocols.
We have replaced the protocol-dependent parameters a, b,
and p in the analytical forms. We note that we do not con-
sider clipping the estimated frequency f; and support counts
n’]‘,nlj ; When deriving the analytical forms.

First, we observe that M2GA outperforms RMA and
RKVA. This is because M2GA crafts the fake users’ messages
via solving a two-objective optimization problem. In partic-
ular, our two objectives are non-convex. However, M2GA



Table 2: Frequency gains of the three attacks for PrivKVM, PCKV-UE, and PCKV-GRR. § =

% is the fraction of fake users,

Jr = YreT fx 1s the sum of true frequencies of the target keys, € is the privacy budget, d is the total number of keys, ¢ is the

padding length, d’

= d + ( is the padded dictionary size, and r is the number of target keys.

PrivKVM PCKV-UE PCKV-GRR
M2GA Lﬁ{l‘f“ ] Eplr-a+dy] o |0-me+ X
RKVA LB[l—fqur o 1] 1+B( — fr) 5 (1- fr)

Table 3: Approximate mean gains of the three attacks for PrivKVM, PCKV-UE, and PCKV-GRR. f; is the true frequency of key

k, my, is the true mean value of k, €, =

1s the privacy budget in each round of PrivKVM, and Nj, is the number of rounds.

PrivKVM PCKV-UE PCKV-GRR
£2
M2GA ZkeT fkm%féjﬁ — My ZkeT 22{3( 8;41_)1) (e(eg_l){;,}’:k — My Zke’]I‘ BI( e(e 1 lg)igi;fkngljr);gzzﬁli;fkr — my
RMA Liet % —my Yier 3(355137]%1% —my Yiet % —my
RKVA 3 et %—T)R;ﬁ — my Yker f'}TﬂEEf — my Yker fkflnfigl,}/ — my

achieves the optimal frequency gain for the three LDP pro-
tocols in all cases, as we discussed when describing M2GA
for each protocol. Moreover, in a given execution of a LDP
protocol, M2GA also achieves the optimal mean gain if there
is only one target key k (i.e., r = 1) and n1 > nk > M
(Appendix A.l shows the proof). Second, we observe that the
frequency gain of an attack increases as the fraction of fake
users increases. However, we do not have this observation
for mean gains. We suspect the reason is that the mean gain
depends on the estimated frequency and that we approximate
the mean gains via Taylor expansion. Third, the frequency
gain is larger when the total true frequencies fr of the target
keys is smaller. This is because the frequency gain is the
difference between the estimated frequencies before and after
attack. Moreover, the approximate mean gain becomes larger
when the true mean value of each target key becomes smaller.

Prior work [7, 11] observed trade-off between security
against poisoning attacks and privacy in LDP protocols for
categorical and numerical data, i.e., such a LDP protocol
is more vulnerable to poisoning attacks if it uses a smaller
privacy budget. Our fourth observation is that such security-
privacy trade-off does not necessarily hold in LDP protocols
for key-value data. In particular, while we observe such
security-privacy trade-off for the frequency gains of M2GA
to PCKV-UE and PCKV-GRR, how the privacy budget € in-
fluences the frequency gain of M2GA to PrivKVM depends
on r, the number of target keys. Specifically, the frequency
gain of M2GA to PrivKVM increases, does not change, and
decreases as the privacy budget € decreases whenr =1, r =2,
and r > 2, respectively. The approximate mean gain of M2GA

Table 4: Dataset statistics. #records indicates the total number
of KV pairs in a dataset, while the 90th-percentile refers to
that of the number of KV pairs possessed per user.

Dataset #users #keys  #records 90th-percentile
Synthetic 100,000 100 100,000 1.0
Clothing 105,508 5,850 192,198 3.0
TalkingData 60,822 320 1,327,468 34.0
MovieLens-1M 943 1,682 100,000 244 .4

in Table 3 has such security-privacy trade-off as we can verify
that the derivative of the approximate mean gain of M2GA
with respect to € is negative. However, we do not necessar-
ily observe such security-privacy trade-off for the frue mean
gains of M2GA in our experiments. This is because the ap-
proximate mean gains are obtained using Taylor expansion of
the true ones and the protocols clip frequencies and support
counts in practice.

6 Evaluation

6.1 Experimental Setup
6.1.1 Datasets

We evaluate our three attacks, i.e., M2GA, RMA, and RKVA,
on a synthetic dataset and three real-world datasets. The
statistics of the four datasets are shown in Table 4.

e Synthetic: Following [24,49], we create a synthetic dataset
to evaluate our attacks. In particular, we generate 10° users
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Figure 1: Impact of different parameters (f,€,r) on the fre-
quency gains on Synthetic. The three rows are for PrivKVM,
PCKV-UE, and PCKV-GRR, respectively.

and 100 keys. Each user has a single KV pair. The keys and
the values follow a zero-mean Gaussian distribution, where
the standard deviation is 15 for keys and 1 for values.

* Clothing [1]: This is a clothing fit dataset for product size
recommendation. It contains users’ rating scores for dif-
ferent products. We treat each product as a key and view
each rating score as a value. Note that each user may have
multiple pairs of (product, rating score).

» TalkingData [3]: This dataset contains mobile apps down-
loaded by users on their mobile devices. In particular, we
treat each category of mobile apps as a key and view the
number of apps downloaded by a user in a category as a
value. A user may have multiple KV pairs.

* MovieLens-1M [25]: This dataset contains users’ rating
scores for different movies. Each movie is a key and each
rating score is a value. A user may rate multiple movies.

We scale the values in each dataset such that they fall into
the range of [—1, 1].

6.1.2 Evaluation Metrics

gain@freq and gain@mean We use frequency gain
(gain@freq) and mean gain (gain@mean) of a set of tar-
get keys as the evaluation metrics. In particular, given a set
of target keys T, gain@freq is computed as ¥y E[Af;] and
gain@mean is computed as Y1 E[Ary], where Afy and Ariy
respectively measure the frequency gain and mean gain for
the target key k. Note that frequency gain and mean gain
involve expectations. In our experiments, we average the re-
sults over 100 trials to compute the expectations. Since in our
experiments, we clip the estimated frequencies and support
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Figure 2: Impact of different parameters (3, €, ) on the mean
gains on Synthetic. The three rows are for PrivKVM, PCKV-
UE, and PCKV-GRR, respectively.

counts in the LDP protocols, the frequency gains may not be
the same as those in Table 2.

ASR for recommender systems We also consider recom-
mender system as a downstream application. Specifically,
the server first collects the frequency and mean value (i.e.,
average rating score) of each item/key from users using LDP
protocols and then recommends top-z items to all users based
on the statistics. In this downstream application, the attacker’s
goal is to promote the target items/keys to be among the top-¢
items recommended by the system. Therefore, we use attack
success rate (ASR) as our metric, which we define as the
fraction of target items that are in the t recommended items
after attack. Note that the target items are not among the ¢
recommended ones before attack.

We consider three different cases of recommender systems,
i.e., frequency-based recommender system (Case 1), score-
based recommender system (Case 2), and frequency-score-
based recommender system (Case 3). In Case 1, the recom-
mender system recommends the most popular ¢ items, i.e., the
t items with the largest estimated frequencies. Ties are broken
by selecting the item with higher estimated average rating
score. In Case 2, the recommender system recommends ¢
items with the highest estimated average rating scores. Ties
are broken by selecting the item with larger estimated fre-
quency. In Case 3, the recommender system considers both
the popularity and the average rating score of an item. Specif-
ically, the recommender system calculates the product of the
estimated frequency and (uncalibrated) average rating score
of each item, and recommends the ¢ items with the largest
products. Ties are broken randomly. Roughly speaking, the
product of the estimated frequency and average rating score
of an item is the item’s estimated total rating scores.
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6.1.3 Parameter Settings

The parameters involved are B (the fraction of fake users),
€ (the privacy budget), and r (the number of target keys).
PrivKVM further involves Nj,, (the number of rounds), while
PCKV-UE and PCKV-GRR further involve ¢ (the padding
length). Unless otherwise mentioned, we set the default val-
ues of these parameters as follows: p =0.05,e=1.0, r =1,
Niter = 10, ¢ =1 for Synthetic, ¢ = 2 for Clothing, ¢ = 20
for TalkingData, and ¢ = 100 for MovieLens-1M. We set
¢ differently for different datasets to consider their different
characteristics, which is suggested by [24]. We set r = 10
and ¢t = 20 by default when evaluating our attacks to the rec-
ommender system downstream application. We randomly
sample r keys from the entire dictionary as the target keys for
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PrivKVM, PCKV-UE, and PCKV-GRR, respectively.

2
T —— m20a

RMA
-==- RKVA

8

gan(@mean
>
S
=
4
>
gain@mean
s

S

20

gain@mean
3

20| —— M2GA
RMA
-=- RKVA

gain@mean
gain@mean
gain@mean

t
=
z
<
>

00
107 10° 10 05 10 15 20 25 30 3 10 15 2

Figure 6: Impact of different parameters (3, €, ) on the mean
gains on TalkingData. The three rows are for PrivKVM,
PCKV-UE, and PCKV-GRR, respectively.

each dataset. We vary one parameter while keeping the others
fixed to their default values, to investigate its impact on the
frequency and mean gains. We note that we clip the estimated
frequencies and support counts in the LDP protocols as we
described in Section 3.3.

6.2 Experimental Results

Figure 1-Figure 8 show the frequency gains and mean gains
of our attacks on the four datasets. Figure 9 shows the ASRs
of M2GA to the recommender systems in different cases on
Clothing dataset. Moreover, we also explore the impact of
Niter on our attacks for PrivKVM, and the results are shown in
Figure 10. Note that we don’t show the results of frequency
estimation since the frequencies of keys are estimated only in
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quency gains on MovieLens-1M. The three rows are for
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the first round and thus are not affected by Nj,r. We have the
following observations:

* In all scenarios, M2GA achieves larger frequency and mean
gains than the two baseline attacks (RMA and RKVA). This
is because M2GA is an optimization based attack.

* RKVA achieves larger frequency gains than RMA except
PCKV-UE, as RKVA considers target keys. RMA achieves
a larger frequency gain for PCKV-UE because the target key
RKVA samples gets perturbed and the perturbed message
in PCKV-UE continues to support this target key with a
probability of 1/2, while a target key is supported with a
probability of 2/3 in RMA.

* M2GA and RKVA achieve larger frequency and mean gains
as the number of fake users (i.e., B) increases. However, the
frequency/mean gains of RMA may increase, not change, or
fluctuate as 3 increases in different datasets and for different
LDP protocols.

* The security-privacy trade-off does not necessarily hold.
In particular, we observe security-privacy trade-off with
respect to the frequency gains of M2GA (for PrivKVM,
this is because we set r = 1), i.e., the frequency gains of
M2GA decrease as € increases. However, the mean gains of
M2GA may increase, fluctuate, or decrease as € increases
in different datasets and for different LDP protocols.

* The mean gains of M2GA increase as the number of tar-
get keys (i.e., r) increases for all the three LDP protocols.
The frequency gains of M2GA decrease as r increases for
PrivKVM. This is because a fake user can only increase the
estimated frequency for a single target key. The frequency
gains of M2GA increase as r increases for PCKV-UE. This
is because a fake user in M2GA can simultaneously support
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Figure 8: Impact of different parameters (3, €, ) on the mean
gains on MovieLens-1M. The three rows are for PrivKVM,
PCKV-UE, and PCKV-GRR, respectively.

all the target keys. However, the frequency gains of M2GA
for PCKV-GRR have different trends on different datasets.
We find that this is mainly caused by clipping the estimated
frequencies and support counts in PCKV-GRR.

* M2GA achieves high ASRs towards the recommender sys-
tems in different cases. Specifically, in Case 1 and Case
3, when B > 0.01 and € > 1, M2GA achieves close-to-1
ASRs. Our results mean that the recommender system rec-
ommends almost all target items under M2GA. In Case 2,
M2GA still achieves ASRs that are close to 1 for PrivKVM,
while the ASRs for PCKV-UE and PCKV-GRR are close
to 0.5, which means that half of the target keys/items are
among the recommended ¢ items. The ASRs for PCKV-UE
and PCKV-GRR are smaller in Case 2 because the esti-
mated average rating scores of many non-target keys are 1
in PCKV-UE and PCKV-GRR.

e QOur strongest attack, i.e., M2GA, is effective for differ-
ent Ny Specifically, the estimated mean after attack is
consistently 1.0 when Nj, ranges from 1 to 10.

7 Defenses

Cao et al. [7] proposed three defenses against poisoning at-
tacks to LDP protocols for categorical data. However, these
defenses cannot be directly applied to defend against our at-
tacks. This is because these defenses rely on the assumption
that each user only holds one single item. In contrast, we
consider key-value data, where each user usually has multiple
KV pairs. We explore two methods to detect fake users as
defenses against our poisoning attacks. For both methods, we
assume the server knows the KV pairs sent from each user.
For one-class classifier based detection, we further assume
the server knows A fraction of genuine users as ground truth.



1.0 7 10— — — 1.0 — === Lo—= ——
“ ! —+— PrivKkVM —+— PrivKV! [ —— PrivKkVM
f
0.8 / 0.8 / PCKV-UE 0.8 PCKV-UE 0.8 PCKV-UE
;
/ ] -==- PCKV-GRR -—=-- PCKV-GRR -~- PCKV-GRR
006 2 061 0.6 o 0-6
g /’ 7] I/ %]
0.4y —— PrivKVM “oa| / 0.4 “o4
02 PCKV-UE 02 / 02 02
-=- PCKV-GRR <l
0.0 g S 09 0.0 0.0
10 10 10 05 10 15 20 25 30 3 10 15 20 1 15 20 25 30
B € r k
1.0 1.0 1.0 1.0
—+— PrivKkVM —+— PrivKkVM —+— PrivKkVM
0.8 0.8 PCKV-UE 0.8 PCKV-UE 0.8 PCKV-UE
06 -=—- PCKV-GRR -=-- PCKV-GRR -=-- PCKV-GRR
o0 emmmmem e o 06] e 0 067 e D e S S
Za z z z
041 -~ —— PrivKVM 0.4 0.4 0.4
02 PCKV-UE o o o
-—- PCKV-GRR : : :
0.0°— =2 -1 0.0 0.0 0.0
10 10 10 05 10 15 20 25 30 5 10 15 20 10 15 20 25 30
B € r k
1.0 I’— 1.0 == 1.0 | =
K —— PrivKkVM —+— PrivKV! —— PrivKkVM
081/ PCKV-UE 0.8 PCKV-UE 0.8 PCKV-UE
/ -—=- PCKV-GRR -~ PCKV-GRR -=-- PCKV-GRR
2 061/ 0.6 o 0.6
2 2
04 —+— PrivKkVM 0.4 0.4 0.4
02 PCKV-UE o o o
-=-- PCKV-GRR : : :
0.0°= 7 1 0.0 0.0 0.0,
10 10 10 05 10 15 20 25 30 5 10 15 20 10 15 20 25 30
B 3 r k
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third row: Case 3). Three LDP protocols and Clothing dataset are used.
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attack for PrivKVM on the four datasets.

7.1 One-class Classifier (OC) based Detection

Detecting fake users is essentially an anomaly detection
problem, where we aim to distinguish fake users as outliers
from the genuine ones. Therefore, we can leverage the one-
class machine learning classifiers that are commonly used

for anomaly (outlier) detection to detect fake users. Specifi-
cally, we treat each user’s messages sent to the server as its
features. For PrivKVM, we concatenate each user’s messages
in multiple rounds as a single feature vector. We can then
use these features as training data to fit an outlier detection
classifier. In our experiments, we use isolation forest [35]. An
isolation forest trains an ensemble of randomly partitioned
trees to detect outliers. After training, the isolation forest can
categorize the users into two groups. We assume the server
already knows A fraction of the genuine users as ground truth.
Moreover, the server treats the group which includes more
ground-truth genuine users as the “genuine” group and the
other one as the “fake” group. The users in the “fake” group
are considered as fake users and are excluded from aggrega-
tion. The server only uses the messages sent by users in the
“genuine” group to estimate the frequencies and mean values.
In our experiments, we use the implementation of isolation
forest in Scikit-learn [2].

7.2  Anomaly Score (AS) based Detection

We note that, multiple rounds of communications are con-
ducted in PrivKVM, allowing us to check the consistency of
the messages sent by a user in different rounds. Based on
this observation, we propose a method to detect fake users
for PrivKVM. Recall that, in PrivKVM, each user sends a
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Figure 12: Impact of B and r on the defense effectiveness of
OC against M2GA for PrivKVM on TalkingData.

perturbed KV pair and the index of a key to the server in each
round. Since the key is randomly sampled from the large dic-
tionary, it is unlikely that the same key is repeatedly selected
in multiple rounds for genuine users. However, since a fake
user promotes a target key in each round, it may send the
same key to the server in multiple rounds, especially when
the number of target keys is small.

Based on this intuition, we assign an anomaly score to each
user, which we define as the maximum number of rounds
in which the user sends the same index of key to the server.
Specifically, in round ¢, the server computes the number of
rounds N, in which the user u has sent key & to the server.
The anomaly score of user # in round ¢ is the maximum N,iu
over possible k’s. If the anomaly score for a user is no smaller
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Figure 13: Impact of B and r on the defense effectiveness of
OC against M2GA for PCKV-UE on TalkingData.

than n (called anomaly threshold), then we mark the user as
a fake one. We calculate the anomaly score of each user and
detect fake users in each round. When a user is detected as
fake in a certain round, we exclude the user in the subsequent
rounds for mean estimation. Moreover, we re-estimate the
frequencies of keys based on the messages sent by users in
the first round by removing the ones belonging to the detected
fake users.

7.3 Experiments
7.3.1 Experimental Setup

Unless otherwise mentioned, we adopt the following default
parameters: B = 0.05, r =2, € = 1.0, Nyger = 10, and 1 =
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Figure 14: Impact of 3 and r on the defense effectiveness of
OC against M2GA for PCKV-GRR on TalkingData.

2. We adopt frequency gain (gain@freq) and mean gain
(gain@mean) of a set of target keys as the evaluation metrics
(please refer to Section 6.1.2 for details). Moreover, we also
consider False Positive Rate (FPR) (or False Negative Rate
(FNR)), which is the fraction of genuine (or fake) users that
are detected as fake (or genuine). We vary one parameter
while keeping the others fixed to their default values to study
the impact of it on the effectiveness of our defenses. Moreover,
we evaluate M2GA since it is the strongest attack.

7.3.2 Experimental Results

Figure 11 shows the impact of B, r, and A on the FPRs and
FNRs of OC and AS against M2GA on TalkingData dataset.
Figure 12, 13, and 14 show the impact of B and r on the
defense effectiveness of OC against M2GA on TalkingData
dataset for PrivKVM, PCKV-UE, and PCKV-GRR, respec-
tively. Figure 15 shows the impact of B and r on the defense
effectiveness of AS against M2GA for PrivKVM on Talking-
Data dataset. Note that in Figure 15, we set p = 0.001 when
exploring the impact of r to better illustrate the impact of
(AS is not effective in the default setting § = 0.05 regardless
of r).

Our key observation is that the defenses are effective in
some scenarios but have limited effectiveness in other sce-
narios. For instance, when B is small or r is large, OC fails
to detect the fake users with high FNR. Moreover, OC has
high FPR (e.g., 22% for PCKV-UE), which results in utility
loss as a large fraction of genuine users are excluded from
aggregation. For instance, when B = 0.05 and » =2, OC
for PCKV-GRR has a FPR of 5.5% and the mean gain is
-1.04, which means that the estimated mean decreases by 1.04
compared to the estimated mean without attack and defense.
Similarly, when P or r is small, AS can detect a large fraction
or all of fake users, and thus the frequency and mean gains
of M2GA under AS become close to 0. However, when
or r is large, the frequency gain and/or mean gain increase
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Figure 15: Impact of B and r on the defense effectiveness of
AS against M2GA for PrivKVM on TalkingData.

substantially. Our results show that new defenses are needed
to defend against our attacks.

7.4 Other Defenses

Another defense is to use verifiable computing in the LDP
protocols. For instance, the server may leverage homomor-
phic encryption [33] when collecting the key-value pairs.
However, such methods incur large computational overhead
on the user side, downgrading the user experience. Other
potential defenses include detecting fake users based on ad-
ditional information about the users, e.g., their social con-
nections [12,20, 21,31, 42,43, 50] or registration informa-
tion [51]. Nevertheless, these detection methods are not ap-
plicable when the needed information is not available.

8 Conclusion and Future Work

In this paper, we conduct the first systematic study on poison-
ing attacks to LDP protocols for key-value data. We show
such poisoning attacks can be formulated as a two-objective
optimization problem. Our results show that an attacker
can promote the estimated frequencies and mean values of
attacker-chosen target keys. We also explore two defenses,
which are effective in some scenarios but are ineffective in
others. An interesting future work is to study defenses against
our attacks.
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A Appendix
A.1 Optimality of M2GA

Theorem 1. In a given execution of any of the three LDP
protocols, M2GA achieves the optimal mean gain if there is
only one target key k and n’f >nk > Lzm)b.

Proof. When there is only one target key k, the mean gain
in a given execution of a LDP protocol can be written as
G (Y) = iy, — iy, where the second term is irrelevant to the
attack. Therefore, G,,(Y) is maximized when 7 is maxi-
mized. According to Equation (21), we have the following
equation:

ity = (n’f—n’il—i—ﬁ’f—ﬁ’il)(a—b)
a(2p—1) (nk+n* | + 7+ ik | — (n+m)b)

; (28)

where n’f and n* | are constants in a given execution. For
simplicity, we let x = n']‘ + n’i] —(n+m)b,y= n’l‘ - n]il, and

z= a(gp;f’l). Then we can rewrite 7, as follows:

Sk ak
Y+ —nz,
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(29)

where z > (. Taking the partial derivative with respect to ﬁ’f
and 7ii* 1» we have the following equations:
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Ifnk >nk | > @,wehavex—y>0andx+y>0. Since

9k~ () and
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ot}

< 0. Therefore, 1, reaches the maximum value when

ii* | and /i¥ are both in the range [0,m], we have

oniyy,
otk |
ﬁ’f = m and A~ 1 = 0, which is what M2GA does. In other
words, M2GA maximizes the mean gain G,,(Y) for the given
execution.
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