arXiv:2109.14523v2 [cs.LG] 28 Oct 2021

Online Robust Reinforcement Learning with Model

Uncertainty
Yue Wang Shaofeng Zou
University at Buffalo University at Buffalo
Buffalo, NY 14228 Buffalo, NY 14228
ywang294@buffalo.edu szou3@buffalo.edu
Abstract

Robust reinforcement learning (RL) is to find a policy that optimizes the worst-
case performance over an uncertainty set of MDPs. In this paper, we focus on
model-free robust RL, where the uncertainty set is defined to be centering at a
misspecified MDP that generates a single sample trajectory sequentially, and is
assumed to be unknown. We develop a sample-based approach to estimate the
unknown uncertainty set, and design robust Q-learning algorithm (tabular case) and
robust TDC algorithm (function approximation setting), which can be implemented
in an online and incremental fashion. For the robust Q-learning algorithm, we prove
that it converges to the optimal robust Q function, and for the robust TDC algorithm,
we prove that it converges asymptotically to some stationary points. Unlike the
results in [Roy et al., 2017], our algorithms do not need any additional conditions
on the discount factor to guarantee the convergence. We further characterize the
finite-time error bounds of the two algorithms, and show that both the robust Q-
learning and robust TDC algorithms converge as fast as their vanilla counterparts
(within a constant factor). Our numerical experiments further demonstrate the
robustness of our algorithms. Our approach can be readily extended to robustify
many other algorithms, e.g., TD, SARSA, and other GTD algorithms.

1 Introduction

Existing studies on Markov decision process (MDP) and reinforcement learning (RL) [Sutton and
Barto, 2018] mostly rely on the crucial assumption that the environment on which a learned policy
will be deployed is the same one that was used to generate the policy, which is often violated in
practice — e.g., the simulator may be different from the true environment, and the MDP may evolve
over time. Due to such model deviation, the actual performance of the learned policy can significantly
degrade. To address this problem, the framework of robust MDP was formulated in [Bagnell et al.,
2001, Nilim and El Ghaoui, 2004, Iyengar, 2005], where the transition kernel of the MDP is not fixed
and lies in an uncertainty set, and the goal is to learn a policy that performs well under the worst-case
MDP in the uncertainty set. In [Bagnell et al., 2001, Nilim and El Ghaoui, 2004, Iyengar, 2005], it
was assumed that the uncertainty set is known beforehand, i.e., model-based approach, and dynamic
programming can be used to find the optimal robust policy.

The model-based approach, however, requires a model of the uncertainty set known beforehand, and
needs a large memory to store the model when the state and action spaces are large, which make it
less applicable for many practical scenarios. This motivates the study in this paper, model-free robust
RL with model uncertainty, which is to learn a robust policy using a single sample trajectory from a
misspecified MDP, e.g., a simulator and a similar environment in which samples are easier to collect
than in the target environment where the policy is going to be deployed. The major challenge lies in
that the transition kernel of the misspecified MDP is not given beforehand, and thus, the uncertainty
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set and the optimal robust policy need to be learned simultaneously using sequentially observed data
from the misspecified MDP. Moreover, robust RL learns the value function of the worst-case MDP
in the uncertainty set which is different from the misspecified MDP that generates samples. This is
similar to the off-policy learning, which we refer to as the "off-transition-kernel" setting. Therefore,
the learning may be unstable and could diverge especially when function approximation is used
[Baird, 1995].

In this paper, we develop a model-free approach for robust RL with model uncertainty. Our major
contributions in this paper are summarized as follows.

* Motivated by empirical studies of adversarial training in RL [Huang et al., 2017, Kos and Song,
2017, Lin et al., 2017, Pattanaik et al., 2018, Mandlekar et al., 2017] and the R-contamination model
in robust detection (called e-contamination model in [Huber, 1965]), we design the uncertainty set
using the R-contamination model (see (4) for the details). We then develop an approach to estimate
the unknown uncertainty set using only the current sample, which does not incur any additional
memory cost. Unlike the approach in [Roy et al., 2017], where the uncertainty set is relaxed to one
not depending on the misspecified MDP that generates samples so that an online algorithm can be
constructed, our approach does not need to relax the uncertainty set.

¢ We develop a robust Q-learning algorithm for the tabular case, which can be implemented in an
online and incremental fashion, and has the same memory cost as the vanilla Q-learning algorithm.
We show that our robust Q-learning algorithm converges asymptotically, and further characterize
its finite-time error bound. Unlike the results in [Roy et al., 2017] where a stringent condition
on the discount factor (which is due to the relaxation of the uncertainty set, and prevents the use
of a discount factor close to 1 in practice) is needed to guarantee the convergence, our algorithm
converges without the need of such condition. Furthermore, our robust Q-learning algorithm
converges as fast as the vanilla Q-learning algorithm [Li et al., 2020] (within a constant factor),
while being robust to model uncertainty.

* We generalize our approach to the case with function approximation (for large state/action space).
We investigate the robust policy evaluation problem, i.e., evaluate a given policy under the worst-
case MDP in the uncertainty set. As mentioned before, the robust RL problem is essentially
"off-transition-kernel", and therefore non-robust methods with function approximation may diverge
[Baird, 1995] (also see our experiments). We develop a novel extension of the gradient TD (GTD)
method [Maei et al., 2010, Maei, 2011, Sutton et al., 2008] to robust RL.. Our approach introduces a
novel smoothed robust Bellman operator to construct the smoothed mean-squared projected robust
Bellman error (MSPRBE). Using our uncertainty set design and online sample-based estimation,
we develop a two time-scale robust TDC algorithm. We further characterize its convergence and
finite-time error bound.

* We conduct numerical experiments to validate the robustness of our approach. In our experiments,
our robust Q-learning algorithm achieves a much higher reward than the vanilla Q-learning algo-
rithm when being trained on a misspecified MDP; and our robust TDC algorithm converges much
faster than the vanilla TDC algorithm, and the vanilla TDC algorithm may even diverge.

1.1 Related Work

Model-Based Robust MDP. The framework of robust MDP was investigated in [Iyengar, 2005,
Nilim and El Ghaoui, 2004, Bagnell et al., 2001, Satia and Lave Jr, 1973, Wiesemann et al., 2013],
where the transition kernel is assumed to be in some uncertainty set, and the problem can be solved by
dynamic programming. This approach was further extended to the case with function approximation
in [Tamar et al., 2014]. However, these studies are model-based, which assume beforehand knowledge
of the uncertainty set. In this paper, we investigate the model-free setting, where the uncertainty set is
a set of MDPs centered around some unknown Markov transition kernel from which a single sample
trajectory can be sequentially observed.

Adpversarial Robust RL. It was shown in [Iyengar, 2005] that the robust MDP problem is equivalent
to a zero-sum game between the agent and the nature. Motivated by this fact, the adversarial training
approach, where an adversary perturbs the state transition, was studied in [Vinitsky et al., 2020, Pinto
etal., 2017, Abdullah et al., 2019, Hou et al., 2020, Rajeswaran et al., 2017, Atkeson and Morimoto,
2003, Morimoto and Doya, 2005]. This method relies on a simulator, where the state transition can
be modified in an arbitrary way. Another approach is to modify the current state through adversarial



samples, which is more heuristic, e.g., [Huang et al., 2017, Kos and Song, 2017, Lin et al., 2017,
Pattanaik et al., 2018, Mandlekar et al., 2017]. Despite the empirical success of these approaches,
theoretical performance guarantees, e.g., convergence to the optimal robust policy and convergence
rate, are yet to be established. The main difference lies in that during the training, our approach does
not need to manipulate the state transition of the MDP. More importantly, we develop the asymptotic
convergence to the optimal robust policy and further characterize the finite-time error bound. In [Lim
et al., 2013], the scenario where some unknown parts of the state space can have arbitrary transitions
while other parts are purely stochastic was studied. Adaptive algorithm to adversarial behavior was
designed, and its regret bound is shown to be similar to the purely stochastic case. In [Zhang et al.,
2020a], the robust adversarial RL problem for the special linear quadratic case was investigated.

Model-free Robust RL. In [Roy et al., 2017, Badrinath and Kalathil, 2021] model-free RL with
model uncertainty was studied, where in order to construct an algorithm that can be implemented in an
online and incremental fashion, the uncertainty set was firstly relaxed by dropping the dependency on
the misspecified MDP that generates the samples (centroid of the uncertainty set). Such a relaxation
is pessimistic since the relaxed uncertainty set is not centered at the misspecified MDP anymore
(which is usually similar to the target MDP), making the robustness to the relaxed uncertainty set
not well-justified. Such a relaxation will further incur a stringent condition on the discounted factor
to guarantee the convergence, which prevents the use of a discount factor close to 1 in practice.
Moreover, only asymptotic convergence was established in [Roy et al., 2017]. In this paper, we do
not relax the uncertainty set, and instead propose an online approach to estimate it. Our algorithms
converge without the need of the condition on the discount factor. We also provides finite-time error
bounds for our algorithms. The multi-agent RL robust to reward uncertainty was investigated in
[Zhang et al., 2020b], where the reward uncertainty set is known, but the transition kernel is fixed.

Finite-time Error Bound for RL Algorithms. For the tubular case, Q-learning has been studied
intensively, e.g., in [Even-Dar et al., 2003, Beck and Srikant, 2012, Qu and Wierman, 2020, Li
et al., 2020, Wainwright, 2019, Li et al., 2021]. TD with function approximation were studied in
[author=Dalal, Gal and Szorényi, Baldzs and Thoppe, Gugan and Mannor, Shie, 2018, Bhandari
et al., 2018, Srikant and Ying, 2019, Cai et al., 2019, Sun et al., 2020]. Q-learning and SARSA
with linear function approximation were investigated in [Zou et al., 2019, Chen et al., 2019]. The
finite-time error bounds for the gradient TD algorithms [Maei et al., 2010, Sutton et al., 2009, Maei
et al., 2010] were further developed recently in [Dalal et al., 2018, Liu et al., 2015, Gupta et al., 2019,
Xu et al., 2019, Dalal et al., 2020, Kaledin et al., 2020, Ma et al., 2020, Wang and Zou, 2020, Ma
etal., 2021, Doan, 2021]. There are also finite-time error bounds on the policy gradient methods and
actor critic methods, e.g., [Wang et al., 2020, Yang et al., 2019, Kumar et al., 2019, Qiu et al., 2019,
Wau et al., 2020, Cen et al., 2020, Bhandari and Russo, 2019, Agarwal et al., 2021, Mei et al., 2020].
We note that these studies are for the non-robust RL algorithms, and in this paper, we design robust
RL algorithms, and characterize their finite-time error bounds.

2 Preliminaries

Markov Decision Process. An MDP can be characterized by a tuple (8, A, P, ¢,~), where 8 and A
are the state and action spaces, P = {pfj €As,a€ A s€ S} is the transition kernel', c is the cost
function, and v € [0, 1) is the discount factor. Specifically, p? denotes the distribution of the next
state if taking action a at state s. Let p§ = {p¢ s }scs, where p¢ , denotes the probability that the
environment transits to state s if taking action a at state s. The cost of taking action « at state s is
given by c(s, a). A stationary policy 7 is a mapping from § to a distribution over A. At each time
t, an agent takes an action A; € A at state S; € 8. The environment then transits to the next state
Si41 with probability p?ti Sei1® and the agent receives cost given by ¢(S¢, A¢). The value function of
a policy  starting from any initial state s € § is defined as the expected accumulated discounted cost
by following m: E [>~,° 7' ¢(Ss, A¢)|So = s, 7], and the goal is to find the policy 7 that minimizes
the above value function for any initial state s € S.

Robust Markov Decision Process. In the robust case, the transition kernel is not fixed and lies in
some uncertainty set. Denote the transition kernel at time ¢ by P, and let & = (Pg, Py, ...), where
P, € P,Vt > 0, and P is the uncertainty set of the transition kernel. The sequence « can be viewed
as the policy of the nature, and is adversarially chosen by the nature [Bagnell et al., 2001, Nilim and

' A,, denotes the (n — 1)-dimensional probability simplex: {(p1,...,pn)|0 < p; < 1,37 p; = 1}.



El Ghaoui, 2004, Iyengar, 2005]. Define the robust value function of a policy 7 as the worst-case
expected accumulated discounted cost following a fixed policy 7 over all transition kernels in the
uncertainty set:

V7 (s) = maxE, thc(St,AtﬂSo =s,7|, (D)
t=0

where E,; denotes the expectation when the state transits according to . Similarly, define the robust
action-value function for a policy 7: Q™ (s, a) = max, E,; [> ;o v'c(St, Ar)|So = s, Ag = a, 7.
The goal of robust RL is to find the optimal robust policy 7* that minimizes the worst-case accumu-
lated discounted cost:

7 = argmin V™ (s),Vs € 8. )

We also denote V™ and Q™ by V* and Q*, respectively, and V*(s) = minge 4 Q* (s, a).

Note that a transition kernel is a collection of conditional distributions. Therefore, the uncertainty set
P of the transition kernel can be equivalently written as a collection of P¢ forall s € §,a € A, where
P is a set of conditional distributions p? over the state space 8. Denote by o9 (v) £ max,ec»(p' v)
the support function of vector v over a set of probability distributions P. For robust MDP, the
following robust analogue of the Bellman recursion was provided in [Nilim and El Ghaoui, 2004,
Iyengar, 2005].

Theorem 1. [Nilim and El Ghaoui, 2004 ] The following perfect duality condition holds for all s € 8:

Zytc(St,At)‘ﬂ', So=s|. Q)

oo
min max E, E 7tc(St,At)‘7r, Sy = s} = maxminE,
T K K T
t=0 =0

The optimal robust value function V* satisfies V*(s) = mingea(c(s,a) + yopa(V*)), and the
optimal robust action-value function Q* satisfies Q*(s,a) = c(s,a) + yopa (V*).

Define the robust Bellman operator T by TQ(s,a) = c(s,a) + yope (mingea Q(s,a)). It was
shown in [Nilim and El Ghaoui, 2004, Iyengar, 2005] that T is a contraction and its fixed point is the
optimal robust Q*. When the uncertainty set is known, so that opa can be computed exactly, V* and
@Q* can be solved by dynamic programming [Iyengar, 2005, Nilim and El Ghaoui, 2004].

3 R-Contamination Model For Uncertainty Set Construction

In this section, we construct the uncertainty set using the R-contamination model.

Let P = {p?,s € §,a € A} be the centroid of the uncertainty set, i.e., the transition kernel that
generates the sample trajectory, and P is unknown. For example, P can be the simulator at hand,
which may not be exactly accurate; and P can be the transition kernel of environment 1, from which
we can take samples to learn a policy that will be deployed in a similar environment 2. The goal is to
learn a policy using samples from P that performs well when applied to a perturbed MDP from P.

Motivated by empirical studies of adversarial training in RL [Huang et al., 2017, Kos and Song, 2017,
Lin et al., 2017, Pattanaik et al., 2018, Mandlekar et al., 2017] and the R-contamination model in
robust detection [Huber, 1965], we use the R-contamination model to define the uncertainty set:

Pe={(1—-R)pl+ Rqlgc Ajg}.s€8,a€c A, forsome0 < R<1. 4)

Here, p? is the centroid of the uncertainty set P? at (s, a), which is unknown, and R is the design
parameter of the uncertainty set, which measures the size of the uncertainty set, and is assumed to be
known in the algorithm. We then let P = ) Pe.

Remark 1. R-contamination model is closely related to other uncertainty set models like total varia-
tion and KL-divergence. It can be shown that R-contamination set certered at p is a subset of total
variation ball : {(1 — R)p+ Rqlq € A|3|} C {q € Asildrv(p, q) < R}. Hence the total varia-
tion uncertainty set is less conservative than our R-contamination uncertainty set. KL-divergence

s€8,acA

moreover can be related to total variation using Pinsker’s inequality, i.e., dry(p,q) < 4/ %dKL(p, q).



4 Tabular Case: Robust Q-Learning

In this section, we focus on the tabular case with finite state and action spaces. We focus on the
asynchronous setting where a single sample trajectory is available with Markovian noise. We will
develop an efficient approach to estimate the unknown uncertainty set P, and further the support
function op (), and then design our robust Q-learning algorithm.

We propose an efficient and data-driven approach to estimate the unknown p? and thus the unknown
uncertainty set P¢ for any s € § and a € A. Specifically, denote the sample at ¢-th time step by

O, = (8¢, at, S¢+1). We then use O; to obtain the maximum likelihood estimate (MLE) p, S L.,
of the transition kernel p§!, where 1, , is a probability distribution taking probability 1 at s414
and O at other states. This is an unbiased estimate of the transition kernel p§* conditioning on
S; = sy and A; = a;. We then design a sample-based estimate P, & {(1 — R)p: + Rqlq € A|5‘}

of the uncertainty set P5*. Using the sample-based uncertainty set P,, we construct the following
robust Q-learning algorithm in Algorithm 1. For any ¢, o4, (V}) can be easily computed: o4 (V3) =

Algorithm 1 Robust Q-Learning
Initialization: T, Qo (s, a) for all (s,a) € 8 x A, behavior policy 7, sg, step size o
I: fort =0,1,2,....T — 1do
2:  Choose a; according to m,(+|s;)
3 Observe s;4+1 and ¢;
4: Vi(s) « mingeq Qi(s,a), Vs € 8
50 Qeya(st,a) < (1 — ag)Qi(se,at) + ay(ey + ’YUjat(Vt))
6
7:

Qi11(s,a) + Qu(s,a) for (s,a) # (s, a)

end for
Output: Qr

Rmaxges Vi(s) + (1 — R)Vi(si4+1). Hence the update in Algorithm 1 (line 5) can be written as

Qit1(st,ar) + (1 — ap)Qu(se, ar) + e + VRng‘/zt(S) +v(1 = R)Vi(s¢41))- )

Compared to the model-based approach, our approach is model-free. It does not require the prior
knowledge of the uncertainty set, i.e., the knowledge of p?,Vs € §,a € A. Furthermore, the
memory requirement of our algorithm is |8| X |.A| (used to store the Q-table), and unlike the model-
based approach it does not need a table of size |$||A| to store p?,Vs € 8, a € A, which could be
problematic if the state space is large. Moreover, our algorithm does not involve a relaxation of the
uncertainty set like the one in [Roy et al., 2017], which will incur a stringent condition on the discount
factor to guarantee the convergence. As will be shown below, the convergence of our Algorithm 1
does not require any condition on the discount factor.

We show in the following theorem that the robust Q-learning algorithm converges asymptotically to
the optimal robust action-value function Q*.

Theorem 2. (Asymptotic Convergence) If step sizes cv, satisfy that >~ cy = coand y .- a? < oo,
then Qy — Q* as t — oo with probability 1.

To further establish the finite-time error bound for our robust Q-learning algorithm in Algorithm 1,
we make the following assumption that is commonly used in the analysis of vanilla Q-learning.

Assumption 1. The Markov chain induced by the behavior policy m, and the transition kernel
p¢, Vs € 8,a € A is uniformly ergodic.

Let p1r, denote the stationary distribution over 8 x A induced by 7, and pg,Vs € 8,a € A. We
then further define fimin = ming 4)esx.a fix, (S, a). This quantity characterizes how many samples
are needed to visit every state-action pair sufficiently often. Define the following mixing time of
the induced Markov chain: tyix = min {¢ : maxses dry(tir, P(s¢ = -[so = s)) < 1}, where dry
is the total variation distance.

The following theorem establishes the finite-time error bound of our robust Q-learning algorithm.



Theorem 3. (Finite-Time Error Bound) There exist some positive constants co and ¢y such that for
any 6 < 1, any e < ﬁ, any T satisfying

T>c + > lo ( log| ———= ], (6)
0 (,umin(l - 7)562 lffmin(l - fY) s 5 s 6(1 - ’7)2

2 4
and step size oy = I(T"‘ilg‘w) min (tl, , (lv ) ) Yt > 0 we have with probability at least 1 — 60,
og(ZLS[IAT
Q1 — Q"o < 3e.

From the theorem, we can see that to guarantee an e-accurate estimate, a sample size O(W 4
'min

m) (up to some logarithmic terms) is needed. This complexity matches with the one for the
vanilla Q-learning in [Li et al., 2020] (within a constant factor), while our algorithm also guarantees
robustness to MDP model uncertainty. Our algorithm design and analysis can be readily extended
to robustify TD and SARSA. The variance-reduction technique [Wainwright, 2019] can also be

combined with our robust Q-learning algorithm to further improve the dependency on (1 — 7).

5 Function Approximation: Robust TDC

In this section, we investigate the case where the state and action spaces can be large or even
continuous. A popular approach is to approximate the value function using a parameterized function,
e.g., linear function and neural network. In this section, we focus on the case with linear function
approximation to illustrate the main idea of designing robust RL algorithms. Our approach can be
extended to non-linear (smooth) function approximation using techniques in, e.g., [Cai et al., 2019,
Bhatnagar et al., 2009, Wai et al., 2019, Wang et al., 2021].

We focus on the problem of robust policy evaluation, i.e., estimate the robust value function V'™
defined in (1) for a given policy 7 under the worst-case MDP transition kernel in the uncertainty set.
Note that for robust RL with model uncertainty, any policy evaluation problem can be viewed as
"off-transition-kernel", as it is to evaluate the value function under the worst-case MDP using samples
from a different MDP. Since the TD algorithm with function approximation may diverge under
off-policy training [Baird, 1995] and importance sampling cannot be applied here due to unknown
transition kernel, in this paper we generalize the GTD method [Maei et al., 2010, Maei, 2011] to the
robust setting.

Let {¢):8 - R,i=1,...,N} be aset of N fixed base functions, where N < |S||A|. In
particular, we approximate the robust value function using a linear combination of ¢()’s: Vy(s) =
SN 098 = ¢T6, where 6 € RY is the weight vector.

Define the following robust Bellman operator for a given policy 7:
T, V(s) = Egmr(|s)lc(s, A) + ’ycrgagx(V)}

=Eanr(]s) |c(5,A) +(1 — Zps V(s +'yRmaXV( . 7
s’€S

We then define the mean squared projected robust Bellman error (MSPRBE) as

MSPRBE(0) = |[TIT,Vy — Vp|, (®)
where [[v]|% = [ v?(5)px(ds), pir is the stationary distribution induced by 7, and IT is a projection
onto the linear function space w.r.t. || - || .. We will develop a two time-scale gradient-based approach

to minimize the MSPRBE. However, it can be seen that max, V(s) in (7) is not smooth in 6, which
is troublesome in both algorithm design and analysis. To solve this issue, we introduce the following

smoothed robust Bellman operator T'; by smoothing the max with a LSE(LogSumExp):

TTFV(S) = EANT{'("S) (5 A) + ry 1 - Z Ds, S’V + ’YR LSE(V) )
s'€S



log(z,egv(s)) . .
where LSE(V') = — =, is the LogSumExp w.r.t. V" with a parameter ¢ > 0. Note that when

o0 — oo, the smoothed robust Bellman operator T, — T,. The LSE operator can also be replaced
by some other operator that approximates the max operator and is smooth, e.g., mellow-max [Asadi

and Littman, 2017]. In the following, we first show that the fixed point of T, exists for any g, and
the fixed points converge to the one of T for large p.

Theorem 4. (1). For any o, ’i‘ﬂ has a fixed point.
(2). Let V1 and V5 be the fixed points of T, and T, respectively. Then

YR log|8|

Vi =Valloo < 7= — 0, as 0 — 0. (10)

We then denote by J(¢) the smoothed MSPRBE with the LSE operator, and the goal is:

min J(6) :r%inHHTWVQng‘ (11)

2
Hox
5.1 Algorithm Development

In the following, we develop the robust TDC algorithm to solve the problem in (11). We will
first derive the gradient of the smoothed MSPRBE, J(f), and then design a two time-scale
update rule using the weight doubling trick in [Sutton et al., 2009] to solve the double sam-

pling problem. Define 6, . s (0) = c(s,a) + (1 — R)Vp(s') + YRLSE(Vy) — Vjy(s), where
LSE(Vjp) is the LogSumExp function w.r.t. V5 = 07 ¢. Denote by C £ E,,_ [(;51:(1)5]. Then,

E,[0s,4,5(0)¢s] = &' D (TwVe) — Ve), where D = diag(px(s1), pix(52), s fix(8)s))) and

D = (s, hsgsrnr bsy5,) | € RISV, We know that IIT DIT = DT &(¢T D) =107 D from [Maei,
2011]. Hence we have

2
=E,. [0s4,5(0)¢s]'C'E,_[0s.4,5(0)ds]. (12)

M

J(0) = HHTﬂVQ v

Then, its gradient can be written as:

- %Vj(e) = —E,, [(Vis.a,5(0)¢s] T C By, [65.4,5 (0)ds]

=E,.[05.4.5(0)ps] —VE,. [((1 —R)ps + R+ VLSE(V9)> ¢>§} w(8),

where w(f) = C'E,,_[65,4,5 (8)ds]. It can be seen that to obtain an unbiased estimate of V.J(6),
two independent samples are needed as there exists a multiplication of two expectations, which is
not applicable when there is only one sample trajectory. We then utilize the weight doubling trick in
[Sutton et al., 2009], and design the robust TDC algorithm in Algorithm 2. Specifically, we introduce
a fast time scale to estimate w(6), and a slow time scale to estimate V.J(§). Denote the projection by
Mk (z) £ arg ming, < ||y — 2| for any € RY. Our robust TDC algorithm in Algorithm 2 can
be implemented in an online and incremental fashion. If the uncertainty set becomes a singleton, i.e.,
R = 0, then Algorithm 2 reduces to the vanilla TDC algorithm.

5.2 Finite-Time Error Bound of Robust TDC

Unlike the vanilla TDC algorithm, J(#) here is non-convex. Therefore, we are interested in the
convergence to stationary points, i.e., the rate of |[V.J(0)|| — 0. We first make some standard
assumptions which are commonly used in RL algorithm analysis, e.g., [Wang and Zou, 2020, Kaledin
et al., 2020, Xu et al., 2019, Srikant and Ying, 2019, Bhandari et al., 2018].

Assumption 2 (Bounded feature). ||¢s|l2 < 1,Vs € 8.
Assumption 3 (Bounded cost function). |c(s, a)| < ¢max, Vs € S and a € A.

Assumption 4 (Problem solvability). The matrix C = E,,_[¢s¢l] is non-singular with X\ > 0 being
its smallest eigenvalue.



Algorithm 2 Robust TDC with Linear Function Approximation
Input: T, 3, o, ¢; fori =1, ..., N, projection radius K
Initialization: 0,wg, s

1: Choose W ~ Uniform(0,1,...,7 — 1)

2: fort=0,1,2,...., W —1do

3:  Take action according to 7(+|s;) and observe s;11 and c¢;

4: (Z)t — ¢st

5

o eger>s
84(61) = v + (1 — R)Va, (s141) + yREEZ) v (s))
eVo(s) g
011+ g <9t +a <5t(9t)¢t - 7((1 —R)py1+ R <26:69‘Zm> )@th))

se8
70w+ Mg (we + B(0:(0,) — ¢ we)dr)
8: end for

Output: Oy,

a

Assumption 5 (Geometric uniform ergodicity). There exist some constants m > 0 and p € (0,1)
such that for any t > 0, max,es dry(P(s¢]so = s), pir) < mpt.

In the following theorem, we characterize the finite-time error bound for the convergence of our
robust TDC algorithm. Here we only provide the order of the bounds in terms of 7". The explicit
bounds can be found in (129) in Appendix D.3.

Theorem 5. Consider the following step-sizes: 5 = O (%), and o = 0 (%), where % <a<l1
and 0 < b < a. Then we have that

I (6w)1] = 0 (1 +alog(1/a) + 71 + Flow(1/5) ). (13)

log T
If we further let a = b = 0.5, then E[||VJ (0w )||*] = O ( % ) .
The robust TDC has a matching complexity with the vanilla TDC with non-linear function approxi-
mation [Wang et al., 2021], but provides the additional robustness to model uncertainty. It does not
need to relax the uncertainty set like in [Roy et al., 2017], and our convergence results do not need a
condition on the discount factor.

6 Experiments

6.1 Robust Q-Learning

In this section, we compare our robust Q-learning with the vanilla non-robust Q-learning. We use
OpenAl gym framework [Brockman et al., 2016], and consider two different problems: Frozen lake
and Cart-Pole. One more example of the taxi problem is given in the appendix. To demonstrate the
robustness, the policy is learned in a perturbed MDP, and is then tested on the true unperturbed MDP.
Specifically, during the training, we set a probability p such that after the agent takes an action, with
probability p, the state transition is uniformly over 8, and with probability 1 — p the state transition
is according to the true unperturbed transition kernel. The behavior policy for all the experiments

below is set to be a uniform distribution over the action space given any state, i.e., m(a|s) = ﬁ for

any s € § and a € A. We then evaluate the performance of the obtained policy in the unperturbed
environment. At each time t, the policy we evaluate is the greedy-policy w.r.t. the current estimate of
the Q-function, i.e., m(s) = arg max, Q:(s, a). A Monte-Carlo method with horizon 100 is used to
evaluate the accumulated discounted reward of the learned policy on the unperturbed MDP. We take
the average over 30 trajectories. More details are provided in the appendix.

In Figure 1 and Figure 2, we plot the accumulated discounted reward of both algorithms under
different p and R for both problems. The upper and lower envelopes of the curves correspond to
the 95 and 5 percentiles of the 30 trajectories, respectively. It can be seen that overall our robust
Q-learning algorithm achieves a much higher reward than the vanilla Q-learning. This demonstrates
the robustness of our robust Q-learning algorithm to model uncertainty. Moreover, as p and R getting
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Figure 2: CartPole-v0: robust Q-learning v.s. non-robust Q-learning.

larger, i.e., as the MDP that we learn the policy deviates from the MDP we test the policy, the
advantage of our robust Q-learning algorithm is getting more significant compared to the vanilla
Q-learning algorithm.

6.2 Robust TDC with Linear Function Approximation

In this section we compare our robust TDC with the vanilla non-robust TDC with linear function
approximation on the 4 x 4 Frozen Lake problem. The problem setting is the same as the one in
Section 6.1. More details about the experiment setup are provided in the appendix.

We implement the two algorithms using samples from the perturbed MDP both for 30 times, and
obtain 30 sequences of {0:}2°,, i = 1,2,...,30. We then compute the squared gradient norm
|V.J(0)]|? on the true unperturbed MDP, and see whether {f:}£°, converges to some stationary
points on the true unperturbed MDP. In Fig. 3, we plot the average squared gradient norm || V.J(6)|?
for different p and R. The upper and lower envelops are the 95 and 5 percentiles of the 30 curves. It
can be seen that our robust TDC converges much faster than vanilla TDC, and as the model mismatch
between the training and test MDPs enlarges, the vanilla TDC may diverge (Fig. 3(c)), while our
robust TDC still converges to some stationary point. Also, the robust TDC has a much smaller
variance, which indicates a much stable behavior under model uncertainty.
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6.3 Comparison with The Adversarial Training Approach

We also compare our robust Q-learning with Robust Adversarial Reinforcement Learning (RARL)
in [Pinto et al., 2017]. To apply their algorithm to our problem setting, we model the nature as an
adversarial player, and its goal is to minimize the reward that the agent receives. The action space
Aqq of the nature is set to be the state space A,q £ 8. Then the perturbed training environment can
be viewed as an adversarial model: both the agent and the adversary take actions a,, a.q, then the
environment will transit to state a,q with probability R and transit following the unperturbed MDP
p2e with probability 1 — R. The goal of the maximize its accumulated reward, while the goal of the
natural is to minimize it.

Following the RARL algorithm [Pinto et al., 2017], in each iteration of the training, we first fix the
adversarial policy and use Q-learning to optimize the agent’s policy and obtain the Q-table ();. Then
we fix the agent’s policy and optimize the adversarial policy.

After each training iteration, we test the performance of the greedy policies w.r.t. Q-tables obtained
from robust Q-learning and RARL. The testing environment is set to be the worst-case, i.e., after
the agent takes an action, the environment transits to the state which has the minimal value function
(arg mingeg Vi (s)) with probability p. We plot the accumulated discounted rewards of both algo-
rithms against number of training iterations under different parameters. We set « = 0.2 and v = 0.9.
It can be seen from Fig. 4 that our robust Q-learning achieves a higher accumulative reward, and thus
is more robust that the RARL algorithm in [Pinto et al., 2017]. Also our robust Q-learning is more
stable during training, i.e., the variance is smaller.
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Figure 4: Taxi-v3: robust Q-learning v.s. RARL.

7 Conclusion

In this paper, we develop a novel approach for solving model-free robust RL problems with model
uncertainty. Our algorithms can be implemented in an online and incremental fashion, do not require
additional memory than their non-robust counterparts. We theoretically proved the convergence
of our algorithms under no additional assumption on the discount factor, and further characterized
their finite-time error bounds, which match with their non-robust counterparts (within a constant
factor). Our approach can be readily extended to robustify TD, SARSA and other GTD algorithms.
Limitations: It is also of future interest to investigate robustness to reward uncertainty, and other
types of uncertainty sets, e.g., ones defined by KL divergence, Wasserstein distance and total
variation. Negative societal impact: To the best of the authors’ knowledge, this study does not have
any potential negative impact on the society.
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Supplementary Materials

A Proof of Theorem 2: Asymptotic Convergence of Robust Q-Learning

In this section we show that the robust Q-learning converges exactly to the optimal robust Q function
Q. Recall that the optimal robust Q function QQ* is the solution to the robust Bellman operator T*

* _ . * : * . * T
Q (S,(I) - C(S,a)-'—’)/o'(pg((gél;llQ (Slaa)aggﬁQ (SQaa)a"'vgélﬁQ (8|5\7a)) ) (14)
It can be shown that the estimated update is an unbiased estimation of T. More specifically,

TQ(s,a) = c(s,a) +yopa (V)
e(s,a) +y(1— R)(p?) TV + RHlSE/LX V(s

= c(s,a) + (1= R) Y (08 )V (s') + Rmax V(')

s’

c(s,a) + Y _ply ((1 R)(]ls/)TVJrRmaquV), (15)
’ ’ q
which is the expectation of the estimated update in line 5 of Algorithm 1.

A.1 Robust Bellman operator is a contraction

It was shown in [Iyengar, 2005, Roy et al., 2017] that the robust Bellman operator is a contrac-

tion. Here, for completeness, we include the proof for our R-contamination uncertainty set. More
specifically,

ITQ(s,a) — TQ'(s,a)|

= lc(s,a) +yopa (V) = c(s,a) — yopa (V)]

=7]opa (V) = op: (V')

= ymax {(1 = R)(p9) "V + Rq "V} —max {(1 = R)(p3) V' + Rq'"V'} |

=7|>_pes (L=R)V(s)) + RmaxV(s') - Yo pla (L=RV'(s)) - Rmax V'(s")
s'e8 s'e8

=7 D ple(L=R)(V(s) = V'(s) + R(maxV(s') — max V’(S’))‘

s'e8
<3| el B (i Q) < min Q') )| + A max V() = max V()
s'€S
<9 % s (- )| (i Q) - min Q50 ) | + R (V(s) ~ V(o)
s'€8
(a)
Y - RIQ - Qe +1RIQ - @
s'e8
<10 - Qe (16)

where (a) can be shown as below. Assume that a; = arg min, Q(s’,a) and b; = argmin, Q’(s', a).
Then if Q(s’,a1) > Q'(s',b1), then

Qs a1) = Q'(s', 1) = Q(s, 1) = Q(s,01) < Q(s',b1) = Q(5',b1) < |Q = Qe (A7)

Similarly, it can also be shown when Q(s’,a1) < Q’(s’,b1), and hence the inequality (a) holds.
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A.2 Asymptotic Convergence of Robust Q-Leaning

With the definition of T, the update (5) of robust Q-learning can be re-written as a stochastic
approximation:

Qu+1(st,a1) = (1 — ) Qi (81, ar) + e (TQi (81, ar) + ne(Se, s S141)), (18)

where the noise term is
Ne(8t, at, St41) = (s, at) + YR max Vi(s) +v(1 — R)Vi(st41) — TQ:(st, at). (19)
From (15), we have that
E[n:(St, A¢, St41)|St = s¢, At = a¢] = 0. (20)
The variance can be bounded by

E[(n:(St, A, Si1))*] < 7*(1 = R)* (max Q3 (s, a)), @1)

where the last inequality is from V;(s;41) < max, V;(s) < max, , Q:(s,a). Thus the noise term n;
has zero mean and bounded variance. From [Borkar and Meyn, 2000], we know that the stochastic
approximation (18) converges to the fixed point of T, i.e., Q*. Hence we showed that robust
Q-learning converges to optimal optimal robust Q function Q* with probability 1.

B Finite-Time Analysis of Robust Q-Learning
In this section, we develop the finite-time analysis of the Algorithm 1.

B.1 Notations

We first introduce some notations. For a vector v = (v1, va, ..., vy, ), we denote the entry wise absolute

value (|v1], ..., |vn|) by |v|. For a sample Oy = (s;, az, s¢41), define A1 € RISIAIXISIAL a5
a, if(s,a) = (s, a") = (s¢,a¢),
Al () = { o TG =0 Sl @

Also we define the sample transition matrix P41 € RISIAIXIS a5

1, if(s,a,8") = Oy,
Pii1((s,a),s") = { 0, ( oth)erwisé. @

We also define the transition kernel matrix P € RISIMIXIS] ¢
P((S7a)7$/) :pg,s" (24)

We use (; € RISIAT and V; € RI3! to denote the vectors of value functions. Denote the cost function
c € RISIMI with entry c(s, a) being the cost received at (s, a). Then the update of robust Q-learning
(5) can be written in matrix form as

Qi == A)Qe1 + A(c+9(L = IRV +9RmaxVia (9PL),  (25)

where 1 denotes the vector (1,1,1, ..., 1)-r € RIS!. The robust Bellman equation can be written as

Q" =c+~y(1—-R)PV*+ VRmagi V*(s)P1. (26)
sE€

B.2 Analysis
Define ¢y = Q¢ — Q*, then by (25) and (26), we have that
Yr=Qr — Q"
=T —A)Q—1 + A(c+~v(1 — R)P Vi1 + ’YRIEEELSX Vici(s)P1) — Q*
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=T -A)(Qi-1 — Q")+ A(c+~v(1 = R)PV,_1 + ’YRHJEELSX Vi—1(s)P1 — Q")
=TI - A)Y1 + A (vA = R)PV,_1 + ’YRYEEZ%SX Vici(s)P1 —~(1 - R)PV*

- ’yRmaSX V*(s)P1)
se
= = A1 +v(1 = R)Ay (P V-1 — PV™)
|\ S —
k1
+vRA, (measx Vi—1(s)P1 — max V*(s)P1)). (27)

k2
The term k; can be written as
PV, 1—-PV*=PV, 1 —PV*"+PV*—PV*=P(Vou1 = V*)+ (P, — P)V*". (28)
Similarly, we have that

ky = (gleagc Vi-1(s) —maxV (8)) Pl +max V*(s)(P: — P)1. (29)

Hence (27) can be written as

Y =0 — Q"
= = A1 +v(1 = R)A(P(Vier = V*) + (P — P)V™)

+RA, ((I?ggc Vi-1(s) — max V*(8)> P14 max V*(s)( £ — P)1>
— (1= s + (21— RJA(P = PIV) + RA sV (9P~ P)1) )

seS

+ (40 APy V) R (o ies () - max (o)) ) ) GO

By applying (30) recursively, we have that

¢r = [T = A))¢0
j=1

ki,t

=Ry [T U= A)AP = P)V" + 4R [ (I = 45)Amax V7 (s)(P; — P)1

i=1 j=i+1 i=1 j=i+1

k2.t

+1-R)> [ U= 40P Vi =V +9RY | [] (I = 45)As(max Vi1 (s) — max V"(s)) 1.

i=1 j=i+1 i=1 j=i+1
k3t
(31)
We then bound terms k; ; separately.
Lemma 1. Define tfqpme = % log M. Then with probability at least 1 — 0, for any (s, a) €
8 x A and any t > tpame, ki1,+ can be bounded as
thmin
[F1el < (1—a) 2 |[Yollecl; (32)
and for t < tpame
kel < vl (33)

Proof. First note that the (s, a)-entry of k; ; can be written as
Fri(s,0) = (1= ) Dyq(s, a), (34)

where K, (s, a) denotes the times that the sample trajectory visits (s, a) before the time step t. We
introduce a lemma from [Li et al., 2020] first:
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Lemma 2. (Lemma 5 [Li et al., 2020]) For a time-homogeneous and uniformly ergodic Markov
chain with state space X and any 0 < § < 1, if t > 443t'”" log DC\ , then for any y € X,

) <5 35)

t
Px, —y EIxEUC:Z]lXj =z <
j=1
where t,,;, = min {t s maxgerx drv(p, PH(|x)) < %} L s the stationary distribution of the Markov
chain, and jiy;, = mingex p(x).

From this lemma, we know that for any (s,a) € 8 x A and any t > 4;43# log M, we have that

t min
K,(s,a) > “T (36)

with probability at least 1 — 4.
Thus (34) can be bounded as

k(s a)] < (1— @) 2™ tho(s, a) (37)

with probability at least 1 — 6 for any (s,a) € 8§ x A and any ¢ > 4ﬁ3t‘““ log M , which shows
the claim.
For ¢ < tframe, the bound is obvious by noting that ||I — A;|| < 1. O

Lemma 3. There exists some constant ¢, such that for any § < 1 and any t < T that satisfies

\SHAlT : 7 _ 5
0 < alog < 1, with probability at least 1 STATT

] TIS||A] ;.
|ka,| < b5yé alog%\\v (8)|loo1, (38)

Proof. Recall that

t t t t
ke =v1-R)> J[ ¢ (P =PV +yRY [ (I-4,)4(P - P)w*, (39)
=1 j=i+1 i=1 j=i+1

where w* £ max,cs V*(s)1. Then the (s, a)-th entry of ko ; can be written as

Ky(s,a)
/{72,1;(8,0/) = 7(1 - R) Z a(l - Q)Kt(s’a)ii(Pti+l(57a) - P(S: a))V
=1
Ki(s,a)
+9R Z a(l — )K=, 1 (s5,a) — P(s,a))w”, (40)
=1

where t;(s, a) is the time step when the trajectory visits (s, a) for the i-th time. We define Varp (V') €
RISIMI being a vector, where Varp(V)(s,a) = dsres Pr o (V(S )3 = Cyes pe V(s sH)? &
Varpa [V] for any V € RISI.

From Section E.1 in [Li et al., 2020], we know that

K

> a(l =) (P ya(s,a) — P(s,a)V*

i=1

Var = aVarps [V*] £ 0% 41)

for some constant 0% and any K < T. Moreover, note that

Var

K
Yo all =) (Prga(s,a) — P(s, CL))w*]

i=1
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K
(@ ZQQ(l — a)?K 2 Var[(Py,41(s,a) — P(s,a))w”]

() Z a2(1— a)QK—QiVar[mqu V*(s)((Pr;+1(s,a) — P(s,a))1)]

= 0: (42)

where equation (a) is due to the fact that { P, 11 (s, a), Pr,+1(s,a), ..., Py, +1(5, @) };c are indepen-
dent (Equation (101) in [Li et al., 2020]), () is from the definition of w*, and the last equation is
because the sum of each entries of P, 1(s,a) — P(s,a)is 0.

the last equality is due to the fact that every entries of w* are the same and hence Varpa [w*] = 0.

Additionally, we have that
a1 — )~ (Py,41(s,a) — P(s, a))V*HOO < 2a|V*(s)||l £ D, (43)
where we denote the bound by D. Also,
[|la(1 - )K= (Py, 11(s,a) — P(s,a))w*HoO <D. (44)
Hence from the Bernstein inequality ([Li et al., 2020]), we have that
k2.1 (s, a)]

<~(1—- R)é <\/a§( log <T|85||A> + Dlog T|86||A|) + vRé <D log T86|A|>

A TISIIAl, . .
< sy fartog LAy (g @s)

for some constant ¢ with probability at least 1 — W, and the last step is due to the fact that

Varpa [V*] < [|[V*||2, and alog % < 1. This hence completes the proof. O

Lemmad. Foranyt > T,

t t
ksl <7 llicalle [T (7= 45)(40)1. (46)
i=1 j=it1
Proof. First note that for any ¢,
1P (Vier = Voo < 1Pill1[[Vics = Voo = Vit = Voo < [[Yi-1lloo, 47

where the last inequality is from
Vi1 = Voo = max Vi1 (s) = V7 (s)| = [Vi-a(s7) = V(7))
= [min Qi (%, @) — min Q" (5", )] < Qi1 — Q"1 48)

where s* = argmax |V;_1(s) — V*(s)|. Similarly,

H (max Vi (s) —maxV*(s)) Fil

< f _ * < )
< [maxVio1(s) — max V(s)| < i, (49)

‘ [e.e]

where the last inequality is from | max,es Vi—1(s) — maxses V*(s)| < ||[Vic1 = V¥loo < [1Qiz1 —
Q" ||o- Hence K3 ; can be bounded as

t t
ksl <7 llicalle [T (2= 45)(40)1. (50)
=1

j=i+1

O
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Now combine the bounds for terms £ ¢, k2 and k3 ¢, we have the bound on 1), as follows.

For t < tfame, We have that

) TISIIAl,. .
¥l < ol + 5ney atog T4 )1

t t
+y ) il [T (7= 454015 (51)
i=1 j=i+1
and for t > tfame, We have that
[Wlloe < (1= )2 oot + 57y farlog Ty (5) o1

t t

+ Y il JT (7= 45)(40)1 (52)

i=1 j=i+1

This bound exactly matches the bound in Equation (42) in [Li et al., 2020] and hence the remaining
proof for Theorem 3 can be obtained by following the proof in [Li et al., 2020]. We omit the remaining
proof and only state the result.

Theorem 6. Define

2log =5z
ty = max {Wa tfmme} 5 (53)
A fhmin
1
Mframe = §,Umintfmme; (54)
p=1=7)1=1=a)rm), (55)

then for any 6 < 1 and any € < ﬁ, there exists a universal constant ¢ and cq (determined by ¢),
such that with probability at least 1 — 66, the following bound holds for any t < T':

(1= 0)"1Q0~ Q' , 57
1—7 1-—

S||A|T
alogM + €, (56)

1@ — Q7ll < .

where k = max {0, Li_ﬂ }, as long as
frame

T>e ( L tm )10 (TS"A'>1O (1 )
=0 ,UJmin(l_fY)5€2 mem(l_'Y) & 5 & 6(1_’7)2 ’

and step size 0 < alog (M) <1

This theorem implies that the convergence rate of our robust Q-learning is as fast as the one of the
vanilla Q-learning algorithm in [Li et al., 2020](except the constant ¢).

Finally, to show Theorem 3, we only need to show each term in (56) is smaller than e. It
can be verified that there exists constants cj, such that if we choose the step size a =

Wmin( L 62<1;”>4),then (A=n)"1Q0=Q"ll < ¢ (inequality (51) in [Li et al., 2020]) and

Emix v

% /alog M < € (by choosing suitable constant ¢;). Then we have that ||Q; — Q*||e < 3e.

This completes the proof.

C Proof of Theorem 4: Approximation of Smoothing Robust Bellman
Operator

In this section we prove Theorem 4. First note that for any z,y € RISI,

ILSE(z) — LSE(y)| < SFP] IVLSE(tz + (1 = t)y) 1]z = ylloo- (57)
te[0,1
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It can be shown that the gradient of LSE is softmax, i.e.,

OLSE(z)  e%™
TR )

Hence
|VLSE(2)||; = 1,Vz € RI¥I, (59)

which implies that [LSE(z) — LSE(y)| < ||z — y||- Hence for any x, y € RISI, we have that

Tr(s) = Try(s)| = |Ba |7(1 = R) Y pllo(x(s') = y(s") + YR(LSE(x) — LSE(Z/))] ‘
s'e8
<1 = B)flz = ylloo + 7Rz =yl

<Az = Ylloe- (60)
This means that T, is a contraction, which implies that it has a fixed point.

We then show the limit of the fixed points of ’i‘ﬂ is the fixed point of T, Note that T, V; = V; and
T,.V5 = V5, hence

Vi — Valloo
- HTﬂ'Vl - TW‘/QHOO

E, {7 (1-R) Zpﬁs,vl (s) +yRmax Vi (s)

= max
s

0B s ()~ R ) |

E, [71% (msa/tx Vo (s') — LSE(Vg))} )

+ max
S

<maxE,
S

0= R) Y phe () = Va ()] + o (max Va () = max Va (o) l]

E, [’yR (mse/mx Vo (s') — LSE(VQ)):| )

+ max
S

(a)
< maxy|Vi () ~ Va (s) | +

log |8
gvl\Vl—VQHWMR%, 61)

E, [VR (msé/ix Va(s') — LSE(Vg))] ’

where (a) is from |V (s") — Va(s')| < max;, |[Vi(s) — Va(s)| = [|[Vi — Vz|le and | maxy Vi (s") —
maxy Va(s')] < ||[Vi — Va|lw, and the last inequality is from LSE(V) — maxV =

1 eV ()Y _]og g@max V 0V (s) _ , 1 .
o8(3, et ") -loge =1]og 725,;,(‘, = Liog Y eoV(s)momaxV < 1og 18| Hence this com-
0 e 0 s 0

)
pletes the proof.

D Proof of Theorem 5: Finite-Time Analysis of Robust TDC with Linear
Function Approximation

In this section we develop the finite-time analysis of the robust TDC algorithm. In the following
proofs, ||v|| denotes the I3 norm if v is a vector; and || A|| denotes the operator norm if A is a matrix.

For the convenience of proof, we add a projection step to the algorithm, i.e., we let

Vg(s)
Orp1 < Mg <9t +o <5t(9t)¢t - 7((1 ~R)ppi1 + R (M) )@T%)) :
JES

sES
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wi1 g (i + B(5:(0:) — &/ wi) o) (62)

for some constant K. We note that recently there are several works [Srikant and Ying, 2019, Xu
and Liang, 2021, Kaledin et al., 2020] on finite-time analysis of RL algorithms that do not need
the projection. However, a direct generalization of their approach does not necessarily work in our
case. Specifically, the problem in [Srikant and Ying, 2019] is for one time scale linear stochastic
approximation. and doesn’t need to consider the effect of the w; introduced, also their work highly
depends on the bound of the update functions of 6, (see inequality (18) in [Srikant and Ying, 2019]).
The parameter 6, in [Srikant and Ying, 2019] is bounded using itself at a previous timestep by taking
advantage of the fact that the update of 6 is linear. However, in our problem, the update is not linear
in 6, and our update rule is two time-scale. The approach in [Kaledin et al., 2020] transforms the
original two time-scale updates into two asymptotically independent updates via a linear mapping,
which is however challenging for our non-linear updates. Some other work, e.g., [Xu and Liang,
2021], gets around this issue by imposing additional assumptions on the function class. Specifically,
it is assumed that Vp (non-linear function approximation) is bounded for all 6. For the linear function
approximation setting considered in this paper, this assumption is equivalent to the assumption of a
finite A, which is guaranteed by the projection step in this paper.

D.1 Lipschitz Smoothness

In this section, we first show that V.J(6) is Lipschitz. We begin with an important lemma.
Lemma 5. Forany (s,a,s’) € 8 X A X S8, both 05 4.5 (0) and Vs o s (0) are bounded and Lipschitz,
i.e., forany 0 and ¢’,

log ||

10s,a,5 (0)] < Cmax + YR(K + )+ (1+7)K = Cs, (63)
105,05 () = Os,a,50 (0] < (L)1 — 0] = L]l — &', (64)
V50,6 (0) = Va0 < 2vRoll6 — 0| £ Li[l6 — 6']|. (65)
Proof. 1. ¢ is bounded:
Recall that
lo PR
S (0) = c(s,0) + (1 — RYVa(s) 4+ 7R EEes ) g g
First we have that
log |S|e*e
G (0)] < emas + 71— RIK +4REBI L R4 K
log 8|
= Cmax + YR(K + T)+(1+7)K- (67)

2. § is Lipschitz:

The Lipschitz smoothness of d, 4, .+ can be showed by finding the bound of Vi 4 . We first recall
that

00" ¢ gh,
Vis,a,s(0) =71 — R)ps + VREM — @s. (63)
J
Hence
IVésas (@) <v(1—-R)+1+yR=1+7. (69)

3. V§ is Lipschitz:

Finally we need to verify the Lipschitz smoothness of Vi 4 ¢ (6), which can be implied from the
bound of V2§, (6). First we have that

Zi’j e@gT(thﬁ)@T@ _ Zm_ egeT(¢i+¢j)¢I¢j
(5, e )2

V285,0,5(0) = YRo <2yRo.  (70)

O
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With this lemma, we then show that V.J(6) is Lipschitz as follows.
Lemma 6. For any 0 and ', we have that

L2 CsL!,
IVJ(0) — VIO <2 <; + i 5) 0 —0'|| 2 Ls||6—¢]. (71)
Proof. From Lemma 5, we have that
|E, [(Vis,a,s(0))9s]ll < Ls (72)
and
IE,..[(Vis a,s(0)ds] — K, [(Vis.as (0)gs| < Lsl|6 — 0| (73)
Also it is easy to see that
_ 1
IC™Ey, 65,45 (0)s]l| < 3Cs, (74)
and
1
|C™ Ey, [05,4,5'(0) 5] — CT'Ey, [05,4,(6") 0]l <  Lallf — o' (75)

Thus this implies that

L2 CsL.
IV.7(6) - VI <2 (6+ ? 6) 10— a1, 76)

A A

and hence completes the proof. U

D.2 Tracking Error

In this section, we study the bound of the tracking error, which is defined as z; = wy — w(0;). First
we can rewrite the fast time-scale update in Algorithm 1 as follows:

241 = Wil — W(9t+1)
= wi + B(6:(61) — df wi)pr — w (1)
(6:) + B(6:(6:) — ¢/ wi) e — w(Brs1)
= 2t +w(0:) + B(6:(0:) — &/ (21 +w(6:))) 1 — w(0r11)
=z +w(0) + B8:(00)br — Boi 206 — B w(0e)br — w(Br41)
= 2z — Bdedy 2 + B(61(0:) b — drd] w(6r)) + w(By) — w (1) a7
Thus taking the norm of both sides implies that

=zt tw

lzeal? € 2ol + 38202l + 36208(00) b — deoT w(Bo) |2 + () — ()P
+ 2(24, —Bdrd] 2t) + 2(zt, B(6:(0:)pr — bedy w(Br))) + 2(zt,w(0;) — w (01 1))
= ||2el|® — 282 Cze + 38%|| 201> + 38(16¢(01) b — deob w(By)]|* + 3||w () — w (1) |
+2B(z4, (C — ¢ed) )2t) + 2(z1, B(6:(0) b — ey w(0:))) + 2(ze, w(0r) — w(f11))

(2 (14387 = 28N) ||| + B2C1 + 2B(21, (C — ¢uh/ )ze) + 2(z0,w(6r) — w(0r11))

+ 2021, B(81(0) 61 — G/ w(61))), (78)
where(a) is from ||z + y + z||* < 3|z + 3||y||* + 3||z||? for any z,y,2 € RY, (b) is from
2 Cz > M|z||% and Cy = 3(Cs + %)2 +3(Cs+(1+ 2RQK)%)2 is the upper bound of
3[16:(61) e — ded w(O)IP + e llw () — w(Ger1) 1.

Taking expectation on both sides and applying recursively (78), we obtain that

t

t
Elllzes1]?] < ¢ izl +2 ) ¢ 9 BELf (25, 0)] + 2 4" BElg(;, 67, 0;)]

=0 =0
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t

t
+2 thﬂ‘(zj,w(ﬂj) —w(041)) + B*Ch Z q, (79)

=0 7=0
where
q=1+38% 28\,
F(2,05) £ (25, (C = 6;0] )z5),
9(25,05,05) £ (2,0;(0;)9; — 60 w(9;)). (80)
To simplify notations, let
Or41 < 0r + aG (0, wy), (81)
Wiyl < wi + BH(0r, wy), (82)

T,
el big,

where Gy (0,w) = 6,(8)¢p, — 7<(1 ~ R)er1 + R%) ¢f w, and Hy(0,w) = (6,(6,) —
o] wi)or. ]
We have

1G1(0,w)[| < Cs + K = C. (83)
The upper bound of H;(f,w) is straightforward:

[H:(0,0)|| < C5 + K £ Ch. (84)
With these two bounds we can then find the upper bound of the update of tracking error:

lze41 — 2ell < [[He(0r, wie)|| + lw(Or11) — W(Ot)H

(a) c
< BCH + CVT&HG:&(HhWt)H

< B0 +a 520, (85)

where (a) is from the Lipschitz of w(6): ||w(f:11) — w(6y)] < %Hetﬂ — 6 < QTL‘SHGt(Ht,wt)H.
Then for the Lipschitz smoothness of function g in (80), it is straightforward to see that

19(0,2,0:) — g(0',2",0,)]

= (2,0;(0)¢; — ¢j0; w(0)) — (2, 0;(0")b; — 6;¢] w(B))

= (2,0;(0)0; — 6,0, w(0)) — (2,6;(6")b; — 6;0; w(®))
+(2,0;(0")6; — ¢;0; w(0)) — (2/,0;(0"); — d;6,] w(¥))

1 1
< wts (143 ) 1001405 (14 3) 1o, (56)
where K, & K + % being a rough bound on the track error. Also it can be shown that
[(2,00) = [(z',00)| = (2,(C = ¢pd )2) — (', (C = ¢ud/ )2")
= <Zv (C - ¢t¢:)z> - <Zv (C - ¢t¢:)z/>

+(2,(C = e[ )2) — (¢, (C — 19/ )2')
<AK,||z — 2. (87)

It is easy to see that

1Gi(6,w1) = Gi(0, w2)[| < (7 + 2yReK) w1 — ws. (88)

With these bounds and Lipschitz constants, the following two lemmas can be proved using the similar
method of decoupling the Markovian noise in [Wang and Zou, 2020, Bhandari et al., 2018, Zou et al.,
2019].
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Lemma 7. Define 73 = min {k’ :mpP < ﬁ} Ift < 73, then
E[f (2, Oy)] < AKZ; (89)
and if t > 7, then
E[f (2, Or)] < myB +m)7s0, (90)
where my = 8K?2 and m;c =8K, (CH + %)

A similar result on E[g(6;, 2, O;)] can also be implied:
Lemma 8. Ift < 73, then

Elg(01, %, 0,)] < 2K. (1 + i) Cs; 1)
and if t > 73, then
E[g(0s, 2, Or)] < mgf +my7sf3, (92)
where mg = 4K, (14 ) Cs and m/, = 4K.LsCq (14 5) + Cs (14 %) (Cu + Cals).
One more lemma is needed to bound the tracking error.
Lemma 9. Define h(0,z,0;) = <z, —Vw(8) (Gt(ﬁ,w(e)) + %@) > then if t < 73,
E[h(0t, 2, Or)] < K- Ch; 93)
and if t > 73,
E[h(0r, 21, 0p)] < mp 3 + mj, 758, %4)
where mp, = 2K,Cy, and mj, = C}, (CH + %) + K,L,Cq.

Proof. First we show the Lipschitz smoothness of & as follows. For any 6, 6’, z and z’, we have that
h(aa Z, Ot) - h(@l’ Zla Ot)

= (2 =vu(0) (Gulbw®) + 50 ) ) - (4 -vuld) (Gulo' o) + Y5 )

2 2
_ <z _Vw(0) <Gt(9,w(0)) + WQ(Q)>> _ <z —Vw(0) (Gt(e,w(G)) + WQ(G)>>
+ <z R0 (Gt(e,w(e)) + WQ@>> - <z V(@) <Gt(0’,w(0’)) + VJ;9')>> .
(95)
We note that va(e) (Gt(&w(@)) . VJ2(9)>‘
< % <C§ +7(1—-R) + QQK’YR% + QL;C‘S) 20y, (96)
and
|-vto) (uo.wton + T2 v (Gu o + V)|
< (pon+ T T ) o0 2 Ll - 01 ©7)
e thath(@, 2,0;) — h(0',2',04) < Cpllz — 2’| + K.Ly||0 — '] (98)
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We have shown before in (85) that

CsC,
lzt+1 = 2]l < BCH + a7 (99)

Hence, we have that

CsCq

|h (O, 2, Or) — W(Or—r, 2e—7,O1)| < C, (ﬁCH + « > T+ K. Lp,Cgra. (100)

Define an independent random variable O = (S, A, §") ~ pix x P(-|S, A), then we have
Eplh(0,2,0)] = 0 (101)
for any 0 and z. Thus by uniform ergodicity, we have that
E[h(etf‘raztf'ru Ot)] < E[h(gtf‘rvztf'ra Ot)] - Eo [h(9t, Zts O)] <2K.Cpmp". (102)
Then if £ < 73, we have the straightforward bound
E[R(0, 2, Or)] < K,Ch; (103)
and if ¢ > 73, we have that

CsCq

E[n(0, 2, Ot)] < E[h(0s—74, 2t—75,O0¢)] + Ch (501{ + ) 75 + K. LyCaTpa

CsC
< 2K.Cpmp™ + Cy, <5CH +a2? G) 75 + K.L,CaTga
L2 mpB+ m;LTgB, (104)
where my, = 2K,Cy, and mj, = Cj, (CH + %) + K, L,Cg. This completes the proof. O

Now we bound the tracking error in (79). We first rewrite it as

t

t
Elllze10%) < ¢ lzol” + 2 ¢" 7 BE[f(25,0,)]+2> ¢ BE[g(z;,6;,0;)]

7=0 j=0
Ay By
t . t )
+2) " (z,w(0;) — w(0i41)) +8°C1 > g (105)
j=0 7=0
Ct

The second term A; can be bounded as follows:

t
Ay =2 ¢"IBE[f (2, 0;)]
=0

T5—1 t

=2 ¢"IBE[f(2,05)]+2 ) ¢ BE[f(z,0;)]
J=0 J=7p
T5—1 t

<8 ¢ TK.B+2) ¢ B(mysB+mTsB)
J=0 J=7s

qt+177'ﬁ 1— qtfnﬁ»l

< 16K.p5
1—¢q

+28(myB + my7s) (106)

1-¢
Similarly, we have that

1— qt—Tﬁ-‘rl

1 qt+1—‘r,3
B, < 4K.3 <1 + ) Cs +26(my B + m! m5) (107)

A 1—¢q 1—¢q
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For C;, we first note that

E [(zi,w (6;) — w (0it1))]

WE (2, Voo (6:) (6: — 0511) + Ro)]
= E [(ZZ, fan (01) Gz (01, wi) + R2>]

_E Kz oV (6) (Gi (81,005 — Gi (81,0 (6:)) + G (63,0 (6,)) +

)

—E [<zl, —aVw (6;) <Gi (0:,w (6:)) + VJQ(QZ)) >}

©)

VJ(0:;) VJ(8)
2 2 )

J (0;
‘B K oV (6) (Gi (01, 01) — Gi (65,00 (6:)) — V2”> T Rﬂ | (108)
©
where (a) follows from the Taylor expansion, and Rj is the remaining term with norm || Rz|| = O(a?).

Term (b) can be bounded using Lemma 9, where

E [<zi7—o¢Vw ) <Gi (01,0 (6:)) + W;“) >} = aE[h(0;,2,0:)].  (109)

Term (c) can be bounded as follows.

<z —aVw (6;) <Gi (05, w;) — G (B, (6)) — V‘];ei)) + RQ>

2

9 A5|| o f an(@)(Gi(ﬁi,wi)—Gi(9i7w(9i))—W)+R2
I5) 2
A
2 aa?

v.J (6,
+<||avw(9)(ai(9i,wi)—a (0, (6))] +H Vw (9»% +||RQ||2>
)\B ,  6a? 5  3a? L3 9 9

H Al +Wﬁ(V+QVRQK) (EA +mﬁ\|m}(9)“ + 6||R2||- (110)

where (d) is from (z,y) < 22||z||? + %Hy”2 for any x,y € R and the fact that |G, (6, w;) —
Gi(0,w2)|| < (v + 2v0RK)||w1 — wa|| for any ||#|| < R and w1, w2, which is from (88) .

Finally the term C'; can be bounded as follows.
—2Zq 3 (z5,0(05) — w(041))

=2 Z qtijaE[h(ej? Zjs O])]

j=0
t
AB 5 602 5  3a? L3 2, 9
2 zill? + =2 (v + 2yRoK)?| 2|2 + == <2 || V.J(6; R
+ ‘:Oq ( [zl + Ve A2(7+ vRoK)?|zil| +2M“2||V (01" + BH 2|
t
223 "¢ aR[h(0;, 2, 0;)] + M, (111)
j=0
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L? 212
where M, =23 ¢'~ (*’Bllzzll2 + 822 28 (v + 29RoK)?|| 21| + 35 55V (0:)]|? + %IIRzH?).
From Lemma 9, we have that

t
23 "¢ JaE[h(9;, 2,0;)]

=0
T5—1
th ]]Eh‘(ejazja th JE 0]7'2]70)}
Jj=0 J=T7p
T3—1
<4K,Chra Z ¢+ 2a(mpB + mj,m58) Z g7
j=0 J=78
qt+17'rﬁ 1— qt77ﬁ+1
and this implies that
qt+1 3 qt T3+1
Now we plug the bounds on A;, B; and C} in (79), we have that
E[HthHQ}
1— gttt 1 t+1—74
< ¢ 20| + /820117 + (16&5 +4K.C5B (1 + A) + 4chha)
—q —q
/ / / 1- qtiTﬁ+1
+ (ZB(mfﬁ +m1sB) +28(myB + myTsB) + 2a(mpB + mhrgﬁ)) 14 + M,
t+1 t+1 8 qt Ta+1
< ¢z ||2+62017 +Cz6 +ﬁ(mzﬁ+m mﬁ)iq + M, (114)

where C, = 16K, +4K.Cs (14 1) + 4chh3, m, = 2my + 2mg + 2%my and m, = 2m’; +
2my, + %O‘m’h Note that ¢ = 1 4+ 332 — 26\ £ 1 — uf < e “#, where u = 2\ — 3. Hence it
implies that
T-1
1=0 Efllzt]|”]
T

20l T
(0 s

T—1 qt+1_75 1— qt—7'5+1
+ Z (CZ/B Uﬁ + B(mzﬂ + szﬂB)ui + Mt)

L =l T
< = <1—euﬁ + /BQClﬁ +4K27s
S o e

+e.f==—— B

P
+ B(m.B + mf—ﬂ'ﬁﬁ)% +> Mt)
=0

1

, T
WB) 1 —ew8) B(m.B +m.738)—

“T\1—eub uf3 uf3

T—-1
=S Mt)
t=0
cs

_ 1 =l? T 2
T(l—euﬁ+5clu+4KzTﬁ+u(l—€u6) (mzﬁ+m Tgﬁ +2Mt

1 2 T
< = (1 =0l + 320, — +4K%7m5 + ¢.8
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ol 5C a2 G gt L 4 T Mo
= T(l—e*“ﬁ) u(l — e=uB)T : = T
L,
2 gr+ Zig M
T-1
—o My
=0 =0 ") 115
<Tﬁ+BTB+T+ T ) (115)
2
where Q7 = % + 5% +4K27Z + u(l_fiium + (m=f +m.7506) 5.
We then compute Y/ ' M;. Recall that M, = 22;:0 qt_j(%HZiHQ + %%(7 +
2vRoK)?||z? + Qf\‘ﬁ ig IVJO0)? + %||R2||2) From double sum trick, i.e.,
tTol Z o By < L ZtT:_Ol x4 for any z; > 0, we have that
T-1 T-1
2 (A8 )
M, < 2vRoK E
Z b= ouB eu5<8+)\,8)\2(+7g)>z[”ZtH]
t=0 t=0
2 3L} 2
E \UC ———||Ro|I°T. 116
Note that 1 — e % = O(ﬁ), thus we can choose « and [ such that

s (’\B + G/\Qﬂ ﬁg( +2’}/RQK)2) < 1, then by plugging St M, in (115) we have
that

LT B g, 2 S BELIEINIONR, 62 e
117)
and this implies that
=0 (1/3 + Brs + Bz =0 E[”TVJ(Q’&)P}), (118)

which completes the development of error bound on the tracking error.

D.3 Finite-Time Error Bound

Now with the tracking error in (118), we derive the finite-time error of the robust TDC. From Lemma
6 and Taylor expansion, we have that

L
J(Or+1) < J(0r) + (VI (6r), 01 — 01) + %||9t+1 — 6:])?

L
= J(0:) +  (VI(0,). Ge(0n, 1)) + =5 0% [|Gr(6r,wi) |
VJ(6:)
2

= J(Gt) — <VJ(9,§), fGt(Qt,wt) — + Gt(Gt,w(Qt)) — Gt(Qt,w(ﬁt))>

= 29I + ELa?Gul6r, o)
— J(Gt) — a(VJ(0;), —G(0r,wr) + G (0, w(0y)))

+a <VJ(9t), v 2<9f)

< J(0:) + | VIO (7 + 2YRE ) |w(6:) — will = 11961

L
+ Gt(Ht,w(Gt))> - §||V<7(9t)||2 + 7‘]042\|Gt(9t»wt)||2
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+a <VJ(9t), Wz(at)

By taking expectation on both sides and summing up from 0 to 7" — 1, we have that

n Gt<9t,w<9t>>> + 2 0260w (119)

>

t=0

E[|V.J(6:)]I°]

M\Q

< J(6o) = J(0r) + a(y + 2yRK ) \l ZEHIVJ(@ 11%] \l EATY

=0 t=0
T-1 T-1
vJ (‘gt) Ly 2 2
+;an«: wat 5t Gilbnw(®) )| + = ;aE[HGt(Gt,wt)H J,  (120)
which follows from the Cauchy-Schwartz inequality: T71 E[IVIO@)lzll] <

T BV TEPENP] < /ST EIVJ@0I/ S EllzP. To bound the
Markovian noise term, i.e., <VJ(0), VJQ(B) +Gt(0,w(9))>, we first need some bounds and
smoothness conditions. It can be shown that

Cs
1G (0, (@) < Cs+ 2 (7 + 20KAR) 2 C, (121)
L C
1G1(6,0(0)) — G0/ (@) < (La + =2y + 2y Rok) + jLs) 10—0'1l 2 La.llo— 0.
(122)

Lemma 10. Define ((6,0;) = <VJ(9), %@ + Gt(G,w(ﬁ))>, and let 7, = min {k : mp* < a}.
Ift < 7y, then

CsLs (CsL
E[¢(0:,O¢)] < 5/\ ’ ( ;/\5 + CG*> £ C¢; (123)
and if t > 1,, then
E[¢(0:, Or)] < mea 4+ meTaa, (124)

where m¢ = 2C¢ and m’C =Cq (L"(jde + CJLg\LG* + LJCG*).

Next we plug the tracking error (118) in (120).

T-1

> SEIVI@)?)

t=0

J(0o) — J(Or) + aly + Z’YRKQ)\I 2_: E[IIVJ(Ht)|2]\l 2TQr +2 z_: M,

t=0 t=0
L
+ a1aCc + (T — 7o) (m¢ + miTa) + %aQCéT. (125)
Divided both sides by %, we have that
o ElIVJ6)]%]
T
< M0)=2J00) oo pre | Zimo EUVIOI] o0 30 My
S oT Y 8 Y T T T
274,
+ 27aCe + 20(m¢ + mCTa) + LJaCG (126)
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We know from (118) that QZ‘T:_;I M < e 3)\0‘6 iz zic “1EH|VJ(9*)H L+ % —L || R2||?, thus
o ElIVI(6:)]I]
T
2.J(0o) — 2. (8 o E[IVI(6,)]2
aT T
6 4 2 3a%L§ E[IVJ(0:)]1°]
2 2
27,C
4 ¢ + 2a(m¢ +miTa) + LjaC%
_ 2J(6y) — 2J(6r) 2 302 L33, o E[IVJ(0)]]
= oT +2(v+ 2vRKp) T =B AF N2 T
6 4 > izo E[IVI(8:)]?]
2 2 2vRK
(V200 + i lal?) 260+ 20 @\/ A
27,C
g Tk + 2a(m¢ +miTa) + LjaCy
2 -2 0¢) 0 2
o 2000~ 2000r) o SIEIVIOON \/ Ei BV, 2roC
aoT T
+ 20(m¢ +m’<Ta) + LyaC%, 127)
where K, = 2(y + 2vRKo)\/ 12 ?:\a; iQ = O(%) and Ko =

(\2@r + 2w 1Ral?) 20y + 29RKe) = O(y/% + 75 +5m).  Thus we can

choose « and 3 such that K <1 55 then we have that

o E[IVI(0)]%)
T
—(90) 4J(0r) 2K, ¢Z HW(et)” ] + 47‘}@ +da(me +mlTy) + 2L;aC

where U = 4‘](00) 4J(9T) + 4T“C< +da(me +miTy) + 2L ;008 = O(aty + =) and V = 2K,.
Hence, we have that
-1
E[IVJ(8:)]°]
T

2
- (v VI 4U>
= 2

@
< V42U

6 4 ) L, 8J(0) —8J(07)  87.C¢

allal?) G+ gyt 4 MO0 800 B

<1612
< 6( QT+>\51
+ 8a(m¢ +miTa) +4LJaCé

1 1
a 12
o <ch Ta T5 ﬁTﬁ) ’ (129)

2
where Qr = 7itloys + 8L +4K2 % + Sy + (m.B+ mlTpB) L.
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D.4 Constants

In this section we list all the constants occurred in our proof for the readers’ reference.

log |8
Ls=(1+7), (131)
L5 = 2yRo, (132)
L2 CsL!
Ly=2(=0+ 22 1
J ( SRR ) : (133)
C(S 2 05 2
Cr=3(Cs+0) +3(Cst (1+2ReK) ) (134)
Cq = Cs +~vK + 2yoRK?, (135)
Cn=0Cs + K, (136)
K.=K+ % (137)
1
mg = 4K, (1 + )\) Cs, (138)
1 1 CcCs
ml, = 4K.L;Cq (1 + A) +C (1 + A) (CH += ) , (139)
my =8K2, (140)
CeC,
m), = 8K, (CH + C; 5) , (141)
mp = 2K,Ch, (142)
my, = Cj, (CH + C‘S)\CG> + K. L,Cq, (143)
Cs
Cav =Cs + 7(7 +20KvR), (144)
L C
Le, = Ls + 7‘5(7 + 2yRoK) + %Lg, (145)
L LsLe-  LsLy
Ly =220, 14
nEL O TN o\ (146)
L Cs  2LsC
Ch:T(S (Ca+v(1R)+2@KvR;+ i ‘5)7 (147)
B CsLs (CsLg
Ce=— ( ) +OG*) , (148)
m¢ = 2C%, (149)
L;CsL LsLex
m'C =Cqg ( JC; 4+ Cs ; ¢ +LJCG*> (150)

E Experiments

Experiments in Section 6.1:
Frozen Lake Problem. We consider a 4 x 4 Frozen Lake problem. We set v = 0.96, a = 0.8.
Cart-Pole Problem. We set v = 0.95, o = 0.2.

Experiments in Section 6.2:
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Frozen Lake Problem. We consider a 4 x 4 Frozen Lake problem. We set « = 0.1, § = 0.5 and
v = 0.9. The initialization is = (1,1,1,1,1) € R and w = (0,0, 0,0, 0). Each entry of every
base function ¢ is generated uniformly at random between (0, 1).

Additional Experiments on the Taxi Problem.

We use the same setting as in Section 6.1 to demonstrate the robustness of our robust Q-learning
algorithm. For the step size and discount factor, we set & = 0.3 and v = 0.8. The results are shown
in fig. 5, from which the same observation that our robust Q-learning is robust to model uncertainty,
and achieves a much higher reward when the mismatch between the training and test MDPs enlarges.

—— Robust Q-learning
—— Non-robust Q-learning

—— Robust Q-learning
—— Non-robust Q-learning

—— Robust Q-learning
—— Non-robust Q-learning

accumulated discounted reward

accumulated discounted reward

accumulated discounted reward

3 ED wo | s 200 2500 3 20 0 70 o0 1250 1300 150 2000 3 0 o 70 100 10 1300 1750 2000
number of samples number of samples number of samples

(a) p=0.1, R=0.1 (b) p=0.05, R=0.2 (c) p=0.1, R=0.2

Figure 5: Taxi-v3: robust Q-learning v.s. non-robust Q-learning.
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