
Efficient Active Learning for Gaussian Process
Classification by Error Reduction

Guang Zhao1, Edward R. Dougherty1, Byung-Jun Yoon1,3, Francis J. Alexander3, & Xiaoning Qian1,2,3

guangzhao@tamu.edu, falexander@bnl.gov,
{edward,bjyoon,xqian}@ece.tamu.edu

1Department of Electrical & Computer Engineering,
2Department of Computer Science & Engineering,

Texas A&M University
College Station, TX 77843, USA

3Computational Science Initiative,
Brookhaven National Laborator

Upton, NY 11973, USA

Abstract

Active learning sequentially selects the best instance for labeling by optimizing
an acquisition function to enhance data/label efficiency. The selection can be
either from a discrete instance set (pool-based scenario) or a continuous instance
space (query synthesis scenario). In this work, we study both active learning
scenarios for Gaussian Process Classification (GPC). The existing active learning
strategies that maximize the Estimated Error Reduction (EER) aim at reducing
the classification error after training with the new acquired instance in a one-
step-look-ahead manner. The computation of EER-based acquisition functions
is typically prohibitive as it requires retraining the GPC with every new query.
Moreover, as the EER is not smooth, it can not be combined with gradient-based
optimization techniques to efficiently explore the continuous instance space for
query synthesis. To overcome these critical limitations, we develop computationally
efficient algorithms for EER-based active learning with GPC. We derive the joint
predictive distribution of label pairs as a one-dimensional integral, as a result of
which the computation of the acquisition function avoids retraining the GPC for
each query, remarkably reducing the computational overhead. We also derive the
gradient chain rule to efficiently calculate the gradient of the acquisition function,
which leads to the first query synthesis active learning algorithm implementing
EER-based strategies. Our experiments clearly demonstrate the computational
efficiency of the proposed algorithms. We also benchmark our algorithms on both
synthetic and real-world datasets, which show superior performance in terms of
sampling efficiency compared to the existing state-of-the-art algorithms.

1 Introduction

Compared to traditional passive learning with randomly sampled training instances, active learning
aims at “optimally” querying instances for labeling to achieve label efficiency when training machine
learning models, especially when labeling is difficult or costly. There are two fundamental scenarios
of active learning discussed in the literature: query synthesis and pool-based sampling [14]. In
query synthesis, the leaner can request labels for any instance generated from a continuous feature
space while pool-based sampling selects the instance from a finite set. Query synthesis is more
challenging due to the infinite search space and inherent higher label uncertainty. Recent research on
query synthesis with deep generative models has shown promising potential [18, 11]. However, in

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

n = 1

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

n = 10

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

n = 22

0.2

0.4

0.6

0.8

Figure 1: Phase diagram identification by active learning with Gaussian Process Classification (GPC).

many science and engineering applications, acquiring the label for even one instance is prohibitively
resource-demanding and therefore active learning with deep models may not be practical.

For example, one of critical materials science research questions is to identify phase transition
diagrams, where the phase transition response surface can be complex [8]. Identifying phase
transitions can be formulated as finding the optimal classification boundaries between different
phases in the enormous materials design space. However, precisely knowing the phase of each
design with the corresponding input features requires costly and time-consuming materials synthesis
and profiling experiments or running complex simulation models. Furthermore, there may exist
significant uncertainty in acquired phase labels due to technical limitations. Hence, active learning
for optimal Bayesian classifiers is a natural solution to help identify the phase diagram with as few
as possible synthesized or simulated materials under such uncertainty and complexity. Gaussian
Process Classification (GPC) as a popular and powerful Bayesian classifier with the flexibility of
adopting different kernels [15], is suitable for solving this problem with appropriate active learning
strategies. Fig.1 shows an example of phase identification in a two-dimensional design space by
active learning with GPC (Details in the Appendix). In the figure, the black solid line indicates the
phase transition response surface, the crosses and dots indicate the queries of different phases, and
the colorbar indicates the predictive distribution of GPC. From the figure we can see, the predictive
distribution identifies the phase transition boundary with a few samples guided by active learning
using GPC surrogate models, which has significant cost and time savings compared to the traditional
trial-and-error phase diagram identification paradigm in the current materials science practice.

Many active learning strategies have been proposed for GPC. For example, Bayesian Active Learning
by Disagreement (BALD) selects the instance with the maximum mutual information between the
observation and the derived uncertain model [5]. There also have been strategies targeting at reducing
classification error directly or indirectly. Estimated Error Reduction (EER) strategies optimize for the
error reduction after training with the new queries [13, 10, 6]. We note here that EER-based active
learning has been studied for both Gaussian Process Regression (GPR) and GPC [13, 6]. For GPR, the
regression error can be represented by the posterior predictive variance with the analytical expression
and the acquisition function is easy to calculate for efficient active learning. In contrast, for GPC,
there is no analytical expression for the posterior predictive. The model updates need approximate
inference, such as Expectation Propagation (EP), an algorithm iteratively approximating the GPC
posterior [7]. Moreover, the classification error computation requires the new query labels; so the
calculation of the corresponding EER-based acquisition function requires incrementally retraining
the model for each possible query label to calculate the expected future error as the utility to guide
active learning. The complexity of training GPC with EP approximation is O(n3), where n is the
number of observed data. This has been the main hurdle to develop active learning for GPC models.

To reduce the calculation cost of EER, the paper [6] proposed to use a non-iterative but less accurate
method Assumed Density Filtering (ADF) approximating the new posterior when calculating the
acquisition functions. The paper [3] proposed a novel approximated error reduction (AER) criterion,
in which the error reduction of a candidate is estimated based on the impact over its nearby instances.
The approximated estimation avoids re-inferring the labels of massive instances. These methods are
relatively efficient in computation. But besides EP approximation, they need additional approxima-
tions in calculating acquisition functions so the acquisition functions are not precisely calculated,
which may degrade the desired data efficiency.

2

In this paper, within the EER-based active learning framework for GPC, we develop computationally
efficient algorithms to compute EER to guide both query synthesis and pool-based active learning. In
particular, we consider EER as the reduction of the Mean Objective Cost of Uncertainty (MOCU) [16]
since the learning objective of GPC, in particular for identifying phase diagram, is to reduce the
classification error. By deriving the joint distribution of queries as a one-dimensional integral, we
avoid retraining the GPC for each query when calculating the EER/MOCU-based acquisition function.
We further leverage a smooth approximation of MOCU, Soft MOCU (SMOCU) [17], to enable
efficient gradient computation of the SMOCU reduction by deriving the corresponding chain rule for
efficient query synthesis with GPC. To the best of our knowledge, this is the first algorithm for query
synthesis active learning based on EER strategies. We show in our experiments that our algorithms
accelerate the computation of the acquisition functions. Compared with other existing algorithms, we
demonstrate consistent data efficiency of our algorithms with both synthetic and real-world datasets.

2 Problem Setting and Background

2.1 Gaussian Process Classification (GPC)

Consider a binary classification problem with the instance space X and binary label set Y = {0, 1},
we aim to train a classifier ψ : X → Y to predict labels for unobserved instances ψ(x∗),x∗ ∈ X .
The Gaussian Process classification (GPC) framework connects the instance and the label by a latent
function f , which is a random process depending on x. Assume that f follows a Gaussian Process
(GP) prior f ∼ GP(µ(·), k(·, ·)), where µ(·) is a mean function and k(·, ·) is a covariance kernel
function [9]. GP is a popular and powerful model for both regression and classification. A good
property of GP is that given any finite number of instances xi, the joint distribution of f(xi) is
still Gaussian. For classification problems, given f , the label y takes a Bernoulli distribution with
probability p(y = 1|x, f) = Φ(f(x)), where Φ is the Gaussian cumulative distribution function.

Given a sequence of observations D = {X,Y } with X = {x1,x2, . . . ,xn} and Y =
{y1, y2, . . . , yn}, the class labels are conditionally independent given the latent function. Therefore,
the joint likelihood can be factorized as: p(Y |X, f) =

∏
i p(yi|xi, f). Since the likelihood proba-

bility is non-Gaussian, the posterior π(f |X,Y) ∝ π(f)p(Y |f,X) can not be computed analytically
and approximation are often adopted. The Expectation Propagation (EP) algorithm approximates
π(f |X,Y) with a Gaussian approximation q(f |X,Y) = N (f |µ̃(·), Σ̃(·, ·)) by iteratively moment
matching marginal posteriors [9].

With the approximated posterior, the marginal distribution of f∗ = f(x∗) is still Gaussian. De-
note the mean and variance as µ∗ and σ∗∗ respectively, then there is a closed-form expression for
p(y∗|x∗, X, Y) as:

p(y∗ = 1|X,Y,x∗) =

∫
Φ(f∗)φ(f∗|µ∗, σ2

∗)df∗ = Φ(
µ∗√

1 + σ∗∗
). (1)

Given the predictive probability, we assume the prediction of the instance is the most probable label
arg maxy∗ p(y∗|X,Y,x∗), which is known as the Optimal Bayesian Classifier (OBC) [1].

2.2 Bayesian Active Learning Based on Estimated Error Reduction (EER)

In the Bayesian active learning procedure, we consider a general case that the label given by the
annotator is not deterministic, but the label follows an unknown distribution instead. Given the GPC
model and observations, active learning sequentially chooses a query from a discrete instance set
or a continuous instance space, to efficiently improve the prediction performance of GPC. In each
iteration, the query is chosen by optimizing an acquisition function. The acquisition function reflects
the anticipated benefit of the queries, and it usually depends on the model posterior π(f |X,Y).
After observing the new data (x∗, y∗), the model is updated by Bayes’ rule to get the posterior
π(f |X,Y,x∗, y∗). In the following content, we’ll discuss the iteration of active learning after
observing training data (X,Y), for the sake of clarity, we omit X,Y from the notations of posterior
and posterior predictive distributions as π(f) and p(y|x).

Assume the distribution of instances over X is xs ∼ p(xs), denote the optimal Bayesian classi-
fier (OBC) as ψπ(f)(·). Based on GPC, the expected classification error of the OBC is:

Exs
{1− p(ys = ψπ(f)(xs)|xs)} = Exs

{1−max
ys

p(ys|xs)}. (2)

3

In the GPC setting, if the latent function f is known, we can accordingly label each instance
with the most probable label as ψf (x) = arg maxy p(y|x, f), where ψf (·) denotes the optimal
classifier. The classification error of ψf is Exs

{1−maxy p(y|x, f)}. Due to the model uncertainty,
the classification error of OBC should be larger than that of the optimal classifier. The Mean
Objective Cost of Uncertainty (MOCU) measures the classification error increase due to the model
uncertainty [16]. It is defined as the OBC classification error minus the expected classification error
of the optimal classifier under model uncertainty:

M(π(f)) = Exs
{1−max

ys
p(ys|xs)} − Eπ(f){Exs

[1−max
ys

p(ys|xs, f)]}. (3)

As MOCU captures the direct influence of the model uncertainty on the classification error, we can
take the MOCU reduction in a one-step-look-ahead setting as the acquisition function:

UM(x∗;π(f)) =M(π(f))− Ey∗|x∗ [M(π(f |x∗, y∗))] (4)

The second term is the MOCU after observing (x∗, y∗), and averages over p(y∗|x∗) since we do
not know the label of y∗ before observation. It is easy to verify that in (4), the maxys p(ys|xs, f)
terms inM(π(f)) andM(π(f |x∗, y∗)) are cancelled and the acquisition function can be proved to
be equivalent to the Expected Error Reduction (EER) of OBC [10, 17]:

UM(x∗) = Exs{1−max
ys

p(y|xs)} − Ey∗|x∗{Exs [1−max
ys

p(ys|xs,x∗, y∗)]}

= Exs
{Ey∗|x∗ [max

ys
p(ys|xs,x, y)]−max

ys
p(ys|xs)}, (5)

Although MOCU reduction or EER is optimal for single queries, with noisy observation labels, it
may get stuck before converging to the optimal classifier as discussed in [16]. To address this issue,
the paper [17] proposed a smooth concave approximation of MOCU, called Soft-MOCU (SMOCU),
which replaces the maxys p(ys|xs) term in (3) with a LogSumExp term:

MS(π(f)) = Exs
{1− 1

k
LogSumExp(k · p(y|xs)} − Eπ(f){Exs

[1−max
ys

p(ys|xs, f)]}, (6)

where k is a parameter controlling the approximation to MOCU. The resulting acquisition function
based on the SMOCU reduction can be defined as:

US(x∗) = Exs{Ey∗|x∗ [
1

k
LogSumExp(k · p(ys|xs,x∗, y∗))]−

1

k
LogSumExp(k · p(ys|xs))}, (7)

which guarantees the convergence to the optimal classifier [17]. The resulting acquisition function
is a smooth function of p(ys|xs,x, y) and has no maximization operators. We will leverage this
smooth acquisition function to derive the first efficient gradient-based query synthesis active learning
algorithm for GPC.

3 Efficient Active Learning for GPC

In this section, we present our EER-based active learning algorithms for GPC based on the acquisition
functions defined by the MOCU and SMOCU reduction. At each iteration, with the updated GPC
given previous observations, the acquisition function (5) or (7) can be optimized to guide the selection
of the next query for active learning. We first present a straightforward algorithm for both the discrete
instance set (pool-based sampling) and continuous instance space (query synthesis) scenarios, where
the acquisition function is optimized by random optimization. Random optimization first collects a
random sample set X∗ ⊂ X of size M1, calculates the acquisition function for each sample in the set
and then takes the instance with the maximum acquisition function value as the query.

To calculate (5) or (7), the integral over X space is not analytical. Hence we need to calculate
the integral by Monte Carlo sampling with M2 samples of xs ∈ X . Define gM(xs;x∗) and
gS(xs;x∗) such that UM(x∗) = Exs{gM(xs;x∗)} and US(x∗) = Exs{gS(xs;x∗)}. Let g(xs;x∗)
denote either gM(xs;x∗) or gS(xs;x∗). For each xs, the calculation of g(xs;x∗) requires deriving
the probability distribution of p(ys|xs) and p(ys|xs,x∗, y∗), ∀y∗ ∈ Y . Here, p(ys|xs) can be
calculated directly from (1) while updating p(ys|xs,x∗, y∗) needs incremental training of GPC with
observations {X,Y,x∗, y∗} based on the EP approximation, and then calculating (1). The whole
procedure of optimizing the acquisition function at the n-th iteration need to retrain GPC for each

4

possible pair (x∗, y∗), therefore, the EP approximation needs to be performed 2×M1 times. The
whole procedure is illustrated as the pseudocode Algorithm 1 in the Appendix.

There are three issues of the acquisition function calculation in the straight forward algorithm. First,
we need a large number of samples M2 to have a reliable estimation of the integral in (5) or (7).
Second, the calculation of p(ys|xs,x∗, y∗) requires incremental retraining of the GPC model for
each pair of (x∗, y∗), with computational complexity O(M1n

3). Third, even though US(x∗) is a
differentiable function of p(ys|xs,x∗, y∗), in the algorithm we actually use the EP approximation
q(f |x∗, y∗) to calculate US(x∗), and it is impossible to calculate the gradient∇q(f |x∗, y∗) during
the EP procedure.

We develop our EER-based active learning algorithms to address these three presented challenges:
1) By importance sampling leveraging inhere GPC assumptions, we reduce the required number
of samples for estimating acquisition functions; 2) We compute p(ys|xs,x∗, y∗) by deriving ana-
lytic solution to marginalize the joint distribution p(ys, y∗|xs,x∗) from the approximated posterior
q(f |X,Y), which avoids the retraining with EP approximation; 3) More critically, we derive the first
gradient-based query synthesis algorithm when using the SMOCU-based acquisition function by
deriving the gradient∇q(f |x∗, y∗) for efficient active learning.

3.1 Importance Sampling

Regarding the issue in requiring the high sampling number of xs for reliable estimation of the
acquisition function, we notice that most of the kernels applied in GPC assume that the observed data
only have influence on neighboring regions. Hence, we only need to account for the samples near x∗
to estimate its influence on the classification error, thereafter the acquisition function for each new
query. More specifically, we can use importance sampling to reduce the required sampling number.
Reformulate the expectation U(x∗) = Exs∼p(xs)[g(xs;x∗)] over an assistant distribution p̃(xs;x∗)
as: U(x∗) = Exs∼p̃(xs;x∗)[p(xs)g(xs;x∗)/p̃(xs;x∗)].

The variance of the expectation is minimized when p̃(xs;x∗) is proportional to p(xs)g(xs;x∗).
But this requires knowledge of the value of U(x∗), which is the acquisition function that we try
to estimate. In practice, we can choose p̃(xs;x∗) ∝ k(xs,x∗)p(xs) instead, as k(xs,x∗) reflects
the non-zero region of g(xs;x∗): k(xs,x∗) ≈ 0 means (xs, ys) and (x∗, y∗) are independent, thus
p(ys|xs,x∗, y∗) ≈ p(ys|xs) and g(xs;x∗) ≈ 0. For example, if p(xs) is uniformly distributed
within a finite region, k(xs,x∗) is a square exponential kernel, then p̃(xs;x∗) can be chosen as a
truncated Gaussian distribution. Note that importance sampling and random optimization is only
suitable for continuous instance space, or discrete set with large cardinality, For small instance set, we
can traverse all the elements for calculating the expectation and optimizing the acquisition function.

3.2 Joint Distribution Calculation

To avoid the retraining of GPC for each (x∗, y∗), we can calculate the posterior predictive by
p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(y∗|x∗), which requires computing the joint distribution of
p(ys, y∗|xs,x∗). We remind the reader all the probabilities are conditioned on {X,Y } and we omit
them for the seek of brevity. Denote fs = f(xs) and f∗ = f(x∗). Now we show how to simplify the
calculation of p(ys, y∗|xs,x∗). In the Gaussian approximation of the posterior q(f |X,Y), the joint
distribution of fs, f∗ is still Gaussian. Since ys and y∗ are conditionally independent given fs and f∗,
the joint distribution can be expressed as:

p(ys = 1, y∗ = 1|xs,x∗) =

∫∫
Φ(fs)Φ(f∗)φ(fs, f∗|µs∗,Σs∗)dfsdf∗, (8)

where µs∗ and Σs∗ are the marginal mean and covariance matrix of fs and f∗. This integral can

be simplified as a one-dimensional integral. Denote µs∗ =

(
µs
µ∗

)
and Σs∗ =

(
σss σs∗
σs∗ σ∗∗

)
.

We can decompose the joint Gaussian distribution as the marginal distribution of fs times the
conditional distribution of f∗ given fs, i.e. φ(fs, f∗|µs∗,Σs∗) = φ(fs|µs, σss)φ(f∗|µ̃∗(fs), σ̃∗∗),

5

where µ̃∗(fs) = µ∗ + (fs − µs)σs∗/σss and σ̃∗∗ = σ∗∗ − σ2
s∗/σss. Then, (8) can be transformed as:

p(ys = 1, y∗ = 1|xs,x∗) =

∫∫
Φ(f∗)Φ(fs)φ(fs, f∗|µs∗,Σs∗)dfsdf∗,

=

∫∫
Φ(f∗)φ(f∗|µ̃∗(fs), σ̃∗∗)df∗ Φ(fs)φ(fs|µs, σss)dfs

=

∫
Φ(

µ̃∗(fs)√
σ̃∗∗ + 1

)Φ(fs)φ(fs|µs, σss)dfs. (9)

The last line is based on the integral equation introduced in [9]. The above equation (9) calculates
the joint distribution with the 1-d integral in constant time. With the joint distribution p(ys =
1, y∗ = 1|xs,x∗), we can easily obtain the joint distribution of ys, y∗ with other label pairs, and
finally we can obtain the posterior predictive p(ys|xs,x∗, y∗) without retraining the GPC with EP
approximation. Based on this solution with importance sampling, we can develop efficient algorithms
estimating MOCU/SMOCU reduction. Combining with Random Optimization, we develop the
active learning algorithm with MOCU reduction named Non-Retraining MOCU reduction with
Random Optimization (NR-MOCU-RO), and similarly for SMOCU reduction NR-SMOCU-RO. The
pseudocode of NR-(S)MOCU-RO can be found in the Appendix (Algorithm 2).

3.3 Gradient Calculation

With the introduced marginalization strategy and importance sampling, we can significantly improve
the computational efficiency for pool-based active learning with GPC. However, in the query synthesis
problems, we would like to optimize the acquisition functions with gradient-based algorithms. Usually
the acquisition functions are multi-modal in the feature space, so the common practice is to perform
random optimization first, and then take the optimal point as the initial point to perform the gradient-
based algorithms [4].

Here we consider the gradient calculation of the acquisition function based on the SMOCU reduction
∇US(x∗) for query synthesis active learning as US(x∗) is a smooth function whose gradients exist
everywhere. For a Gaussian Process, the gradients of its mean and covariance functions have closed-
form expressions of the gradients of its adopted kernel function. Here we assume that given the
EP approximation q(f |X,Y) and any pair of points (xs,x∗), the gradients ∇µ∗, ∇σ∗∗ and ∇σs∗
with respect to x∗ are known. Calculation of these gradients is detailed in Appendix E. With this
assumption, we can use the chain rule to finally express the gradients US(x∗) in the form of ∇µ∗,
∇σ∗∗ and∇σs∗.
In (7), the second term is unrelated to x∗, so the gradient of the SMOCU reduction is:

∇US(x∗) = Exs
[∇gS(xs,x∗)] = ∇Exs

{
∑
y∗

p(y∗|x∗)
1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}

=
∑
y∗

∇p(y∗|x∗) · Exs
{1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}

+
∑
y∗

p(y∗|x∗) · Exs{∇
1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}. (10)

In the first term,∇p(y∗|x∗) can be calculated with∇µ∗ and∇σ∗∗ based on (1). For the second term,
we can use the chain rule to compute∇LogSumExp[k · p(ys|xs,x∗, y∗)] = g1 · g2, where:

g1 =
∂LogSumExp[k · p(ys|xs,x∗, y∗)]

∂p(ys|xs,x∗, y∗)
, g2 = ∇p(ys|xs,x∗, y∗). (11)

Since p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(y∗|x∗) and we have calculated ∇p(y∗|x∗), now we
only need to calculate∇p(ys, y∗|xs,x∗) based on (9):

∇p(ys = 1, y∗ = 1|xs,x∗) =∇
∫

Φ(fs)φ(fs|µs, σss)Φ(
µ̃∗(fs)√
σ̃∗∗ + 1

)dfs

=

∫
Φ(fs)φ(fs|µs, σss)φ(

µ̃∗(fs)√
σ̃∗∗ + 1

) · ∇(
µ̃∗(fs)√
σ̃∗∗ + 1

)dfs, (12)

6

which is again a 1-d integral. The gradient of∇(µ̃∗(fs)√
σ̃∗∗+1

) can be again calculated by chain rule, and
connected to the calculation of∇µ̃∗(fs) and ∇σ̃∗∗:

∇µ̃∗(fs) = ∇µ∗ +
fs − µs
σss

∇σs∗, ∇σ̃∗∗ = ∇σ∗∗ −
2∇σs∗
σss

. (13)

Therefore, ∇(µ̃∗(fs)√
σ̃∗∗+1

) is a linear function of fs, and we can use numerical integral methods to
calculate (12). The query synthesis algorithm with the integral computation is summarized in the
pseudocode: NR-SMOCU with Stochastic Gradient Descent (NR-SMOCU-SGD).

In summary, to reduce the number of samples xs for reliable estimation of acquisition functions,
our algorithm utilizes an importance sampling with an assistant distribution chosen according to
the kernel function. By calculating the posterior predictive directly from the joint distribution, the
algorithm avoids retraining GPC with EP approximation. The introduction of the joint distribution
also enables the efficient calculation of the gradient of the smooth acquisition function, with which
we develop an efficient active learning algorithm for query synthesis.

NR-SMOCU-SGD: n-th iteration
1: function GRADIENTOPT(p(x), q(f |X,Y))
2: Obtain initial point x∗ from RANDOMOPT(p(x), q(f |X,Y))
3: while not converge do
4: Sample M2 samples of xs ∼ p̃(xs;x∗)
5: Calculate p(y∗|x∗) and∇p(y∗|x∗) by (1)
6: for each xs do
7: for y in {0, 1} do
8: Calculate p(ys, y∗|xs,x∗) , ∇p(ys, y∗|xs,x∗) and p(ys|xs) by (1, 9, 12)
9: end for

10: Calculate∇gS(xs,x∗) by (10 - 12)
11: end for
12: ∇US(x∗) = 1

M2

∑
xs
p(xs)∇gS(xs;x∗)/p̃(xs;x∗)

13: Update x∗ with ∇US(x∗)
14: end while
15: return x∗
16: end function

4 Experiments

In this section we demonstrate the efficiency of our active learning algorithms combined with either
random optimization (NR-MOCU-RO, NR-SMOCU-RO) or Adagrad (NR-SMOCU-SGD) in the
following sets of experiments. In the first set of experiments, we analyze and benchmark the running
time of our algorithm by comparing to the naive computation of the MOCU/SMOCU reduction.
Then we benchmark our algorithms with other active learning algorithms for both query synthesis on
synthetic benchmark datasets, and pool-based active learning on real-world datasets. The competing
algorithms include random sampling, Maximum Entropy Search (MES) [12], Bayesian Active
Learning by Disagreement (BALD) [5]; several MOCU-based active learning algorithms are also
included to better show the accuracy and computation efficiency of our proposed algorithms, including
the original MOCU and SMOCU (OR-MOCU/OR-SMOCU) algorithms as described in the beginning
of Section 3. In addition, an ADF-MOCU algorithm is also included for comparison, which uses
Assumed Density Filtering (ADF) to retrain the GPC [6] and importance sampling (IS) to calculate
the expectation. In our experiments, we use GP prior for f with the squared-exponential kernels
k(x,x′) = γ2exp(−‖x− x′‖2/l2), where {γ, l} are model hyperparameters. The label probability
is modeled with the probit function as p(y|x, f) = Φ(f(x)). The code for our experiments is made
available at https://github.com/QianLab/NR_SMOCU_SGD_GPC.

4.1 Estimation Accuracy And Running Time Comparison

We first evaluate the effect of using the joint distribution integral in calculating the acquisition
functions. We compare the estimation of p(I)(ys|xs,x∗, y∗) through the joint distribution Integral

7

https://github.com/QianLab/NR_SMOCU_SGD_GPC

Table 1: Running time (in seconds) and estimation accuracy.
Algorithm n = 10 n = 100 n =500 n =1000

Time (s)
naive 0.125 0.675 64.2 846

IS 0.126 0.674 64.2 848
IS+JDI 0.568 0.591 0.598 0.643

Relative Error
naive 0.149 0.207 0.195 0.27

IS 0.013 0.029 0.027 0.026
IS+JDI 0.013 0.032 0.027 0.022

(9), with p(R)(ys|xs,x∗, y∗) estimated by Retraining GPC with EP approximation. For this set of
experiments, we generate the initial data points using a latent function f sampled from the GP prior.
The instance space X = [−4, 4], and the hyperparameters γ2 = 0.5, l2 = 1. We initially sample 100
data points to train GPC, then we compare the values g(I) = LogSumExp(k ·p(I)(ys|xs,x, y))/k and
g(R) = LogSumExp(k ·p(R)(ys|xs,x, y))/k, since these are related to the calculation of the SMOCU
reduction. With 1000 pairs of (xs,x∗) randomly sampled from X , we calculate the relative error as
|g(I) − g(R)|/g(R). The average relative error is 1.8e-5 and the maximum relative error is 2.4e-3. We
also compare the values g(I) = maxys p

(I)(ys|xs,x, y) and g(R) = maxys p
(R)(ys|xs,x, y), which

is used to calculate the MOCU reduction. The average relative error is 1.3e-5 and the maximum
relative error is 2.2e-3. These results validate that using (9) can provide accurate estimates of the
acquisition functions.

Next, we compare the running time and accuracy of estimating acquisition functions by three
algorithms: 1) a naive algorithm calculating p(ys|xs,x∗, y∗) with GPC retraining (naive), 2) sampling
xs by Importance Sampling and calculating p(ys|xs,x∗, y∗) with GPC retraining (IS), 3) sampling
xs by Importance Sampling and calculating p(ys|xs,x∗, y∗) with the Joint Distribution Integral
(IS+JDI). The algorithms are implemented in Python 3.7 on a personal computer with Intel i5-
10400 2.9 GHz CPU and 16G RAM. We set the initial datasets of size n = 10, 100, 500 and
1000, respectively. Note that in all three algorithms, inferring the predictive distribution for each xs
also takes a considerable part of computations, especially when n is small, so we separate out the
computation of the predictive distributions and directly compare the running time between retraining
GPC (in the naive and IS algorithm) and calculating the joint distribution integral (in the IS+JDI
algorithm). For all three competing algorithms, we sample 1000 xs’s, and calculate US(x∗). We
benchmark them with a “ground truth“ algorithm: calculating US(x∗) by the naive algorithm with
1e6 xs samples. We perform this comparison for 100 x∗’s. The average running time for a single
x∗ and relative error are shown in Table 1. From the table, the relative error of the naive algorithm
with 1000 samples is much larger than the other two as expected since the other two algorithms use
importance sampling with smaller estimation variance. As n increase, the running time of both naive
and IS algorithms increases fast since GPC training has a complexity of O(n3), while the running
time of IS+JDI does not change much because the joint distribution integral is calculated in almost
constant time. The results show that importance sampling does not impose much extra computation
load in active learning, while it significantly increases the estimation accuracy. When n is large, the
joint distribution integral is faster than retraining GPC with EP approximation.

4.2 Query Synthesis

We now benchmark our proposed algorithms with a challenging synthetic dataset checkerboard 4× 4,
similar as the one tested in [5], which emulates the setup of phase diagram identification in materials
science. Fig. 2a illustrates the classification boundaries. We perform all the competing active learning
algorithms on this dataset. MES, BALD,RO-MOCU, RO-SMOCU, ADF-MOCU, NR-MOCU-RO
and NR-SMOCU-RO are all optimized by random optimization with M1 = 1000. In NR-SMOCU-
SGD, we first perform random optimization with M1 = 800 and set the best point as the initial point
for Adagrad so that NR-SMOCU-SGD has similar running time compared with NR-SMOCU-RO
at their corresponding setups for fair comparison. Algorithm performance is measured in terms
of the error regret defined as the OBC error at n-th iteration minus the optimal classifier error of
the simulated ground truth. To show the influence of the observation error on the performance of
different algorithms, we further assume that there is a constant flip error rate on the observing labels.
We report the results with different error rates equal to 0 and 0.2. In the experiments, we initially
draw 100 samples for labeling to estimate the hyperparameters {γ, l}. Then we perform different

8

algorithms to collect new data. We repeat the procedure for 150 runs and plot the average error regret
with standard deviations in Figs. 2b-c, for the flip error rate = 0.2, the running time of each algorithm
in each iteration is also shown in Fig. 2d. The algorithm performance with the flip error rate of 0.1 is
shown in the Appendix.

We can observe from these figures that MES does not performs well, which is because MES tends
to query the points close to the decision boundary, while this problem has multiple intertwined
boundaries and MES cannot differentiate different boundaries. OR-MOCU and OR-SMOCU perform
worse than our proposed NR-MOCU-RO and NR-SMOCU-RO with respect to both computation
and sample efficiency. That is because when compared with IS, the naive Monte Carlo used in
OR-MOCU/OR-SMOCU with GPC cannot accurately estimate the acquisition function values. On
the other hand, the running time of OR-MOCU/OR-SMOCU increases much faster than NR-MOCU-
RO/NR-SMOCU-RO since they retrain the model for every query samples. ADF-MOCU runs faster
than our proposed algorithms, but it performs poorly as the ADF approximation is not accurate
enough. We also observe that as the error rate increases, the difference between NR-MOCU and
NR-SMOCU also increases, that is because as the error rate increases, MOCU reduction tends to
ignore the long-term effect of a query, leading to the degraded long-term performance, also discussed
in [16]. Among these algorithms, NR-SMOCU-SGD performs better than other proposed algorithms
by leveraging the gradient information in the optimization procedure.

4.3 Pool-Based Active Learning with Real-World Datasets

We also compare algorithms on the UCI datasets [2] for pool-based active learning. NR-SMOCU-
SGD is not included as it is designed to search the continuous space. For each dataset, we split it into
training and testing datasets. We take the training dataset as the sampling pool for active learning,
initially we randomly choose two samples from each class for labelling, and use them to estimate the
GPC hyperparameters. Then we apply the competing active learning algorithms to sequentially select
the query from the training dataset and estimate the OBC error with the testing dataset after each
iteration. Details of the tested UCI datasets are provided in the Appendix.

0 1 2 3 4
Dim. 1

0

1

2

3

4

Di
m

. 2

(a) Checkerboard 4× 4 problem

0 10 20 30 40 50 60
Iteration number

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

Ru
nn

in
g

tim
e

(s
)

random
MES
BALD
OR-MOCU
OR-SMOCU
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO
NR-SMOCU-SGD

(b) Flip error rate = 0

0 10 20 30 40 50 60
Number of labeled data

1.6 × 10 1

1.7 × 10 1

1.8 × 10 1

1.9 × 10 1

2 × 10 1

2.1 × 10 1

Er
ro

r r
eg

re
t random

MES
BALD
OR-MOCU
OR-SMOCU
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO
NR-SMOCU-SGD

(c) Flip error rate = 0.2

0 10 20 30 40 50 60
Iteration number

0

20

40

60

80

100

120

Ru
nn

in
g

tim
e

(s
)

random
MES
BALD
OR-MOCU
OR-SMOCU
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO
NR-SMOCU-SGD

(d) Running time comparison for flip error rate = 0.2

Figure 2: Comparison of expected OBC error regret and running time on the 4 × 4 checkerboard
problem.

9

0 5 10 15 20
Iteration number

0.06

0.08

0.10

0.12

0.14

0.16

er
ro

r r
at

e

random
MES
BALD
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO

(a) WDBC

0 5 10 15 20
Iteration number

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

er
ro

r r
at

e

random
MES
BALD
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO

(b) Ionosphere

0 5 10 15 20
Iteration number

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

er
ro

r r
at

e

random
MES
BALD
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO

(c) Vehicle

0 5 10 15 20
Iteration number

0.04

0.06

0.08

0.10

0.12

0.14

er
ro

r r
at

e

random
MES
BALD
ADF-MOCU
NR-MOCU-RO
NR-SMOCU-RO

(d) Wine

Figure 3: Classification error rate comparison on UCI datasets.

We repeat the active learning procedures for 100 runs and plot the average OBC error with standard
deviation values for each algorithm for performance comparison shown in Fig. 3. In pool-based active
learning, the expectation in MOCU/SMOCU is calculated by averaging over the whole instance
pool, and there is no need for sampling, so the acquisition functions calculated by OR-MOCU/OR-
SMOCU are almost the same as the ones calculated by NR-MOCU-RO/NR-SMOCU-RO. Therefore,
performances of OR-MOCU/OR-SMOCU are not provided in the figure for the sake of conciseness.
We notice that ADF-MOCU also performs similar to NR-MOCU-RO, though ADF provides rough
approximations. That is because for the discrete space and small number of iterations, the small
deviation due to approximation will not change the ranking of the instances in the pool. Overall,
ADF-MOCU, NR-MOCU-RO and NR-SMOCU-RO are better than MES and BALD, which validates
that MOCU-based algorithms achieve better sample, in particular label efficiency. Note that in the
Vehicle and Wine datasets, MES performs closely to MOCU-based algorithms. When checking
the converging GPC model, the classification boundary is relatively simple on these datasets with
relatively low-dimensional feature space (d ≤ 18). The WDBC and Ionosphere data are in higher
dimensions (d ≥ 30), for which our proposed algorithms perform significantly better.

5 Conclusions

We have proposed efficient EER-based active learning algorithms with GPC, which estimate the
error reduction by querying instances based on the joint distribution of label pairs. We have derived
the joint distribution as a one-dimensional integral with constant computation cost and calculate the
predictive posterior based on it. Together with importance sampling, the acquisition function can be
estimated efficiently by the 1-d integral of the joint distribution without incrementally retraining GPC
with EP approximation, which has a computation complexity of O(n3). Without the need for EP
approximation, we can further derive the chain rule to calculate the gradient of the SMOCU reduction,
which provides us the first efficient gradient-based query synthesis active learning algorithm. Our
experiments have demonstrated not only the accuracy and the running speed of our algorithms but
also consistently better data/label efficiency compared with competing algorithms for both query
synthesis and pool-based active learning.

10

Acknowledgments X. Qian was supported in part by the National Science Foundation (NSF)
Awards 1553281, 1812641, 1835690, 1934904, and 2119103. B.-J. Yoon was supported in part by
the NSF Award 1835690. The work of E. R. Dougherty and F. J. Alexander was supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Mathematical Multifaceted Integrated Capability Centers program under Award DE-SC0019303.

References
[1] Lori A Dalton and Edward R Dougherty. Optimal classifiers with minimum expected error

within a Bayesian framework—part i: Discrete and Gaussian models. Pattern Recognition,
46(5):1301–1314, 2013.

[2] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[3] Weijie Fu, Meng Wang, Shijie Hao, and Xindong Wu. Scalable active learning by approximated
error reduction. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1396–1405, 2018.

[4] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predic-
tive entropy search for efficient global optimization of black-box functions. arXiv preprint
arXiv:1406.2541, 2014.

[5] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

[6] Ashish Kapoor, Eric Horvitz, and Sumit Basu. Selective supervision: Guiding supervised
learning with decision-theoretic active learning. In IJCAI, volume 7, pages 877–882, 2007.

[7] Malte Kuss, Carl Edward Rasmussen, and Ralf Herbrich. Assessing approximate inference for
binary Gaussian process classification. Journal of machine learning research, 6(10), 2005.

[8] GE Poirier, WP Fitts, and JM White. Two-dimensional phase diagram of decanethiol on au
(111). Langmuir, 17(4):1176–1183, 2001.

[9] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer, 2003.

[10] Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling
estimation of error reduction. In Proceedings of the 18th International Conference on Machine
Learning, ICML ’01, pages 441—-448, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[11] Raphael Schumann and Ines Rehbein. Active learning via membership query synthesis for semi-
supervised sentence classification. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 472–481, 2019.

[12] Paola Sebastiani and Henry P Wynn. Maximum entropy sampling and optimal Bayesian
experimental design. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
62(1):145–157, 2000.

[13] Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression:
Active data selection and test point rejection. In Mustererkennung 2000, pages 27–34. Springer,
2000.

[14] Burr Settles. Active learning literature survey. Computer Science Technical Report 1648,
University of Wisconsin-Madison. 2009.

[15] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial intelligence and statistics, pages 370–378. PMLR, 2016.

[16] Guang Zhao, E Dougherty, Byung-Jun Yoon, F Alexander, and Xiaoning Qian. Uncertainty-
aware active learning for optimal Bayesian classifier. In Proc. 9th Int. Conf. Learn. Repre-
sent.(ICLR), pages 1–20, 2021.

11

[17] Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis J Alexander, and Xiaoning Qian.
Bayesian active learning by soft mean objective cost of uncertainty. In International Conference
on Artificial Intelligence and Statistics, pages 3970–3978. PMLR, 2021.

[18] Jia-Jie Zhu and José Bento. Generative adversarial active learning. arXiv preprint
arXiv:1702.07956, 2017.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Sections 1 & 5. In addition to deriving label-
efficient EER-based active learning for GPC with improved computational efficiency,
we have derived the first gradient-based query synthesis algorithm for GPC.

(b) Did you describe the limitations of your work? [Yes] See the discussions in Sections
2 & 3. Active learning algorithms in this work are derived for GPC using probit
likelihood, which may have its inherent limitation in high-dimensional feature space.

(c) Did you discuss any potential negative societal impacts of your work? [No] The paper
focuses on active learning algorithm development, which helps reduce the cost and time
of machine learning and experimental design. We do not foresee immediate negative
societal impact if not implemented for malicious machine learning applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The settings

for deriving the joint distribution and gradient calculation are based on basic calculus
as presented in Section 3.

(b) Did you include complete proofs of all theoretical results? [Yes] The derivation of the
joint distribution and gradient calculation is detailed in Section 3.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Included in the
supplementary

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the corresponding descriptions in all the experiments in
Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For all the experimental results, we have shown the error
bars with standard deviation values.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] All the experiments are
implemented on a PC as described in Section 4.1.

12

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Section 4, we have

explicitly stated and cited the corresponding programming environment and competing
algorithms for performance comparison.

(b) Did you mention the license of the assets? [No] The licenses of the assets can be
viewed in their respective documentation.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We have included our code in the supplementary.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Problem Setting and Background
	Gaussian Process Classification (GPC)
	Bayesian Active Learning Based on Estimated Error Reduction (EER)

	Efficient Active Learning for GPC
	Importance Sampling
	Joint Distribution Calculation
	Gradient Calculation

	Experiments
	Estimation Accuracy And Running Time Comparison
	Query Synthesis
	Pool-Based Active Learning with Real-World Datasets

	Conclusions

