
Faith: An Effcient Framework for Transformer Verifcation on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang,
Yuan Xie, and Yufei Ding

University of California, Santa Barbara
{boyuan,tianqi_tang,yuke_wang, chenzd15thu, zheng_wang, shuyang1995,

yuanxie, yufeiding}@ucsb.edu

Abstract
Transformer verifcation draws increasing attention in ma-
chine learning research and industry. It formally verifes the
robustness of transformers against adversarial attacks such as
exchanging words in a sentence with synonyms. However, the
performance of transformer verifcation is still not satisfac-
tory due to bound-centric computation which is signifcantly
different from standard neural networks. In this paper, we
propose Faith1, an effcient framework for transformer verif-
cation on GPUs. We frst propose a semantic-aware compu-
tation graph transformation to identify semantic information
such as bound computation in transformer verifcation. We
exploit such semantic information to enable effcient kernel
fusion at the computation graph level. Second, we propose a
verifcation-specialized kernel crafter to effciently map trans-
former verifcation to modern GPUs. This crafter exploits
a set of GPU hardware supports to accelerate verifcation-
specialized operations which are usually memory-intensive.
Third, we propose an expert-guided autotuning to incorpo-
rate expert knowledge on GPU backends to facilitate large
search space exploration. Extensive evaluations show that
Faith achieves 2:1� to 3:4� (2:6� on average) speedup over
state-of-the-art frameworks.

1 Introduction
Transformers [8, 21, 25, 32, 33, 38, 45] is an important cate-
gory of neural networks (NNs) in machine learning research
and industry. Transformers are frst designed for natural lan-
guage processing (NLP) and have achieved state-of-the-art
accuracy across many NLP tasks such as neural machine trans-
lation [1, 26, 31] and sentiment analysis [7, 37, 48]. Due to its
success, transformers have been widely used in many indus-
trial products such as Facebook for hate speech detection [10]
and Alexa for question answering [14]. Recently, transformers
also show extraordinary accuracy for many computer vision
tasks [9, 19, 44, 47, 55] and become the new trending model.

1The project is open-sourced at https://github.com/BoyuanFeng/Faith

Ice is Cold

Original Input

Ice is Cold

Ice is         Cold

Frigid

Frosty
Transformer
Verification

0.4 ≤  P(“Pos”) ≤ 0.8
 0.1 ≤ P(“Neg”) ≤ 0.39

Prediction Bounds

Figure 1: Illustration of transformer verifcation. Here, all
perturbed inputs share the same prediction “positive” since
the lower bound probability for “positive” (0.4) is higher than
the upper bound probability for “negative” (0.39).

However, similar to prior NNs, transformers are also vulnera-
ble to adversarial attacks that add imperceptible perturbations
to input data for maliciously changing transformer predictions
[2, 3, 16, 17, 22]. One specifc example of adversarial attack
is to exchange words (e.g., cold) in a sentence with carefully
selected synonyms (e.g., frigid). This vulnerability may result
in security concerns for real-world applications. For example,
an intentionally crafted hate speech may spread widely on
social network.

Transformer verifcation has been proposed to formally
verify the robustness of a transformer against adversarial
attacks [4, 18, 35, 42]. Given an input data x and a trans-
former F(x), transformer verifcation identifes a maximal
bound ε, such that all inputs x0 that are “close” to the input
data (i.e., jx0− xj � ε) cannot “mislead” the transformer (i.e.,
F(x) = F(x0)). A larger ε indicates better robustness. Early
verifcation approaches [18] enumerate all possible inputs x0

that satisfy jx0−xj � ε and conduct inference on each input to
check predictions. These approaches show prohibitive latency
due to the large number of inputs x0. Recent transformer verif-
cation [35, 42] avoids such enumeration by providing a single
pair of lower and upper bounds for transformer predictions
over all these inputs, as illustrated in Fig. 1. We can verify the
robustness of a transformer if the lower bound of the correct
prediction is higher than the upper bound of other predictions.
The key computing pattern is a bound-centric computation,
which computes a pair of inequality bounds for individual
neurons. It frst represents the input perturbations with in-
equality bounds over input neurons (e.g., x− ε� x0 � x+ ε)
and then propagates these bounds across layers to generate

ar
X

iv
:s

ub
m

it/
45

09
42

6 
 [c

s.P
F]

  2
3 

Se
p 

20
22



Faith Compiler

Faith
Pytorch-based 

Frontend

Semantic-aware 
Computation Graph 
Transformation (§3)

Semantic-aware 
Kernel Fusion

Bound-aware 
Cross-layer Fusion

Pragma-guided  
Transformation

Verification-specialized
Kernel Crafter (§4)

Parallel-aware 
Thread Mapping

Dependency-aware 
Partial Reduction

Symmetry based 
Data Reuse

Semantic-equivalent 
transformation

Expert-guided 
Autotuning (§5)

 Rule-based Expert 
Knowledge Metafile

Expert-guided Cost 
Model

Efficient Schedule 
Exploration

Parameterized Kernel 
Configuration

GPU Hardware 
Specification

Semantic-aware 
Computation Graph 
Transformation (§3)

s

S
Semantic-aware 

Kernel Fusion

Bound-aware 
Cross-layer Fusion

Verification-specialized Kernel Crafter (§4)

s Expert-guided 
Autotuning (§5)

Verification 
Compute Pattern 

Categorization

Sharing-oriented 
Workload 
Scheduling

Broadcast-aware
Super Threading

Workload-adaptive 
Reduction

Rule-based Expert 
Knowledge 

Metafile

Expert-guided
Cost Model

Parameterized Kernel 
Configuration GPU Hardware 

Specification

Faith Framework

Figure 2: Overview of Faith Framework

the bounds for transformer predictions.
While transformer verifcation can formally verify the

robustness of transformers, it also introduces high latency
and limits its applications. In particular, transformer verifca-
tion usually leads to second-level latency [35] in contrast to
millisecond-level latency of standard transformers. We iden-
tify three challenges behind effcient transformer verifcation.

Lack of performance optimization over transformer
verifcation computing patterns. Existing transformer veri-
fcations usually utilize the existing deep learning (DL) frame-
works, such as PyTorch [30], which are designed for standard
NNs. However, transformer verifcation shows signifcantly
different computing patterns from standard NNs due to the
nature of bound-centric computation. For example, when com-
puting the upper bound of an output neuron, transformer ver-
ifcation needs to use the upper bound of the input neuron
if the weight is positive; and the lower bound of the input
neuron if negative. Straightforwardly deploying transformer
verifcation to the existing DL frameworks usually leads to
poor performance.

Lack of framework support for verifying diverse NN
layers. Transformer verifcation shows large diversity in the
bound computation for different types of NN layers such
as projection layer with only perturbed features and self-
attention layer with both perturbed weights and features. Even
for the same type of NN layers, diverse upper bounds and
lower bounds may be designed which requires different im-
plementations. For example, Crown [52] utilizes two ReLU
bound designs for generating more precise bounds for verifca-
tion, where these bounds are selected dynamically according
to the range of input neurons. This diversity makes it challeng-
ing to hand optimize GPU kernels in transformer verifcation.

Lack of verifcation-specialized adaptability towards
modern GPUs. Transformer verifcation involves abundant
memory-intensive operations such as reduction and broadcast.
These memory-intensive operations can usually be signif-
cantly accelerated with rich architecture supports (e.g., warp-
level synchronized reduction) in modern GPUs. However,
existing DL frameworks usually only focus on computation-
intensive operations (e.g., convolution) and ignore abundant
optimization opportunities for memory-intensive operations.
This leads to signifcant overhead in transformer verifcation
with a large number of memory-intensive operations.

In this paper, we build Faith, the frst framework for eff-
cient transformer verifcation on GPUs. We show an overview

of the Faith framework in Fig. 2. First, we propose semantic-
aware computation graph transformation to fully exploit
fusion opportunities in transformer verifcation at the compu-
tation graph level. Our key insight is that transformer verif-
cation shows signifcantly different computing patterns (e.g.,
two kernels for computing lower and upper bounds involve
similar input data) from standard NNs. These computing pat-
terns usually exhibit abundant data reuse opportunities. By
exploiting such semantic information, Faith can fully harvest
performance potential in transformer verifcation and achieve
signifcant speedup over existing DL frameworks.

Second, we propose a verifcation-specialized kernel
crafter to optimize transformer verifcation towards modern
GPUs. Transformer verifcation contains abundant memory-
intensive operations, such as elementwise computation, re-
duction, and broadcast. These operations may have complex
dependencies and lead to performance bottlenecks. To this
end, Faith automatically exploits a set of GPU architecture
supports to improve the parallelism of such operations. More-
over, Faith introduces a set of optimizations to effectively
mitigate memory access and improve performance by exploit-
ing GPU memory hierarchies.

Third, we propose expert-guided autotuning to effciently
search optimized implementations in the large search space.
Existing DL frameworks [6, 54] usually conduct autotuning
in a hardware-agnostic approach where an ML-based cost
model is deployed to implicitly learn hardware impact over
performance from scratch. Instead, we propose a rule-based
expert knowledge metafle to explicitly provide a small set of
hardware characterizations and an expert-guided cost model
to incorporate the expert knowledge. Faith exploits these two
components to achieve effcient schedule exploration in the
large design space of transformer verifcation.

In summary, this paper makes the following contributions:

� We build Faith, the frst effcient framework to optimize
the performance of transformer verifcation on GPUs.

� We propose a set of verifcation tailored system optimiza-
tions. In particular, we design a semantic-aware com-
putation graph transformation to identify and exploit
novel fusion opportunities for transformer verifcation,
a verifer-specialized kernel crafter to effectively map
transformer verifcation kernels to GPU backends, and
an expert-guided autotuning to incorporate a set of ex-
pert knowledge on modern GPU architecture to guide
large design space exploration.

� Extensive experiments show that Faith achieves up to
3:4� speedup (2:6� on average) over state-of-the-art
frameworks.

2 Related Work and Motivation
In this section, we frst introduce the background of trans-
former verifcation (§2.1). Then, we discuss related work
on DL frameworks (§2.2). Finally, we present opportunities



Input x

Output y

l u

Input x

Output y

l u

Input x

Output y

l u

(b) (c) (d)(a) yi

yj

NN Pred

Bound
yi > y + cj

Input x

Output y

l u

Input x

Output y

l u

Input x

Output y

l u

(d) (e) (f)(a) yi

yj

NN Pred

Bound
yi > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    3

Ts    4

Wss    pos

W

Elem. Comp.
 (>0)

Elem. Comp.
 (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

Wss    pos

W

Elem. Comp.
 (>0)

Elem. Comp.
 (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

(c)

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )
1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

(b)

Input x

Output y

l

Input x

Output y(d) (e)

(a) y i

y j

Pred

Bound
y i > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Wss    pos

W

Elementwise 
Comp. (>0)

Elementwise 
Comp. (>0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

(c)

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )

1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

(b)

x ux lx ux

Input x

Output y(f)

lx ux

y = k   x + b1*1

Input x

Output y(g)

lx ux

y = k   x + b*1 1

(a)

Input x

Output y

l

Input x

Output y

y i

y j

Pred

Bound
y i > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Wss    pos

W

Elementwise 
Comp. (>0)

Elementwise 
Comp. (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )

1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

x ux lx ux

Input x

Output y

lx ux

y = k   x + b1*1

Input x

Output y

lx ux

y = k   x + b*1 1

(b) (c)

(d) (e) (f) (g)

Figure 3: Illustration of transformer verifcation. (a) model prediction and verifcation bound; (b) an example of verifying a
model with a fully connected layer and a ReLU layer; (c) computation graph of projection layer in transformer verifcation;
(d)-(e) two types of bounds for ReLU layer; (f)-(g) two types of bounds for the Tanh layer.

and challenges for effcient transformer verifcation on GPUs
(§2.3).

2.1 Transformer Verifcation
Standard Transformers. Transformer [8, 25, 38, 45]

takes a sentence as input and predicts a label for this sen-
tence (e.g., hate speech or benign speech). Given a sentence
with Length tokens, we usually frst map each token to a pre-
trained embedding [28] of dimension Dim_in and represent
the feature of a sentence as a tensor of shape Length�Dim_in.
For a batch of sentences, we have input feature X as a tensor
of shape Batch_size� Length�Dim_in, where Batch_size
is the number of sentences in a batch. Since the number of
tokens varies across sentences, Length is set to the maximal
number of tokens over all sentences in a batch.

A transformer has three types of operators. The frst
type is the elementwise operator that applies computation
on individual feature scalars. For example, on each scalar
x in the input feature, we have ReLU(x) = max(0;x) and
Tanh(x) = e2x−1

e2x+1 . The second type is the matrix multiplica-
tion operator that takes an input tensor X , a weight matrix
W , and generates an output tensor Y = XW . We note that
these two types are similar to operators in prior neural net-
works. The third type is the dot product operator, which is
the key idea behind the transformer model. Informally speak-
ing, it takes two input tensors Q and K of the same shape
Batch_size�Length�Dim_in. Then, it computes an output
tensor Y = QT K of shape Batch_size�Length�Length to
measure the pairwise similarity between individual words
in a sentence. This similarity can signifcantly improve the
learning capacity of the model and the prediction accuracy.

Adversarial Attack on Transformers. Adversarial attack
[2, 3, 15, 16, 17, 22] identifes small perturbations to input
data X that can change the transformer prediction. Formally,
consider a transformer f (�), an input sentence X , and a toler-
able input perturbation bound ε, where the transformer cor-

rectly classifes X as a label i (e.g., hate speech). In other
words, the sentence has label i and yi > y j for any j 6= i where
yi is the predicted probability. Adversarial attack identifes a
slightly perturbed sentence X 0 = X +η such that η 2 B(0;ε)
and there exists a label j (e.g., benign speech) such that yi < y j.
This perturbed sentence X 0 is an adversarial example.

Transformer Verifcation. Transformer verifcation [4, 18,
35, 42] computes a maximum bound ε and mathematically
proves that there does not exist an adversarial example X 0

within the ε-ball of X (i.e., (X 0 − X) 2 B(0;ε)). Verifying
transformers is challenging since transformers are essentially
non-convex functions. The key idea of transformer verifca-
tion is to utilize linear bounds as an approximation to NN
predictions. We illustrate transformer verifcation at the model
prediction layer in Fig. 3(a). Given these linear bounds, trans-
former verifcation can simply check if the predictions in-
sides the bounds satisfy certain linear requirements, such as
yi > y j + c, where c is a positive number. As illustrated in
Fig. 3(a), this bound-based approach is sound since the linear
bound covers the non-convex area of NN predictions.

We show an example of bound-centric computation of trans-
former verifcation in Fig. 3(b). Consider a fully connected
layer Y [ j] = ∑

n
i=1 W [ j; i] �X [i] where Y [ j], W [ j; i], and X [i] are

scalars. Here, we skip the index for batch size and length for
notation simplicity. A formal summary of notations can be
found in Table 1. For each neuron X [i], there is a lower and a
upper bound

X [i]� Xlb[i]+Xlw[i]�~ε; X [i]� Xub[i]+Xuw[i]�~ε

where Xlb[i] and Xub[i] are scalars, Xlw[i], Xuw[i], and~ε are
vectors. For the input neurons, we have Xlb[i] = Xub[i] = X [i],
Xlw[i] and Xuw[i] are one-hot vectors with 1 at the index i and
0 at other indices. Given this linear bound, we can compute
concretized bounds for each neuron as

Xl [i] = Xlb[i]− ε� jjXlw[i]jj; Xu[i] = Xub[i]+ ε� jjXuw[i]jj (1)

where jj � jj computes the norm with reduction operations.



Table 1: Notations in transformer verifcation.

W Transformer weights. Shape: Dim_in�Dim_out
X Input feature tensor. Shape: Batch_size�Length�Dim_in

Xlb, Xub
The tensor of lower and upper bound bias of input features.
Shape: Batch_size�Length�Dim_in

Xlw, Xuw
The tensor of lower and upper bound weights of input
features. Shape: Batch_size�Length�Dim_in�Dim_out

Xl , Xu
The tensor of concretized lower and upper bounds of input
features. Shape: Batch_size�Length�Dim_in

When computing the bounds for output neuron Y [ j], we
note that bound computation depends on the sign of weights
W [ j; i]. In particular, we have upper bounds Yub[ j] as

Y [ j]�Yub[ j]+Yuw[ j]�~ε
=( ∑

W [ j;i]�0
W [ j; i] �Xub[i]+ ∑

W [ j;i]<0
W [ j; i] �Xlb[i])

+( ∑
W [ j;i]�0

W [ j; i] �Xuw[i]+ ∑
W [ j;i]<0

W [ j; i] �Xlw[i]))�~ε
(2)

The lower bounds can be computed in a similar way. This
bound computation (Eq. 2) is signifcantly different from stan-
dard NN computation since it explicitly considers the sign of
weights. Previous transformer verifcation directly exploits
the standard DL frameworks to build a computation graph
(Fig. 3(c)) for computing bounds, which leads to ineffcient
memory access and computation overhead. We will discuss
the opportunities and challenges of effcient transformer veri-
fcation in §2.3.

For the same NN layer, diverse bound computation designs
may still be developed to provide tighter bounds on NN predic-
tions. We illustrate two types of bounds for the ReLU layer in
§2(d)-(e) and two types of bounds for the Tanh layer in §2(f)-
(g). A tighter bound (i.e., less space between linear bounds and
ReLU function) is preferred to provide a better linear bound
approximation to NN prediction. For example, consider the
concretized lower bound Xl [i] and upper bound Xu[i] for an
input neuron X [i], when we have abs(Xl [i])> abs(Xu[i]), lin-
ear bound in Fig. 3(d) is preferred over the linear bound in
Fig. 3(e) since the former one provides a tighter approxima-
tion. This diversity in bound design adds more complexity to
developing frameworks for transformer verifcation.

2.2 Deep Learning Frameworks on GPUs
GPUs have been widely exploited to accelerate deep learning
workload [13, 39, 40, 46, 49]. Effciently mapping deep learn-
ing workloads to the GPU computing and memory hierarchy
is usually the key to improve performance [11, 23, 41, 50, 51].
GPU computing hierarchy contains threads, warps, and blocks
[29]. Each block has multiple warps and each warp has exactly
32 threads that compute with single-instruction-multiple-data
(SIMD). GPU memory can be generally treated as a hierarchy
of registers, shared memory, and global memory. Accessing
registers is much faster than accessing shared memory, which
is faster than accessing global memory. Each thread can only

0% 20% 40% 60% 80% 100%

20

8

Latency Breakdown

Dot Product Tanh ReLU Dense Softmax Other

Figure 4: Latency breakdown of transformer verifcation on
sentences with length 8 and 20. Here, we show the latency of
verifying individual operators such as dot product and Tanh.

access its own registers and threads in a block cannot access
shared memory from other blocks.

Many DL frameworks [6, 30, 54] have been developed
recently to effciently support NN workload on GPUs. Early
works such as PyTorch [30] take user-specifed computation
graphs for neural networks and maps towards hand-tuned
kernels on backend platforms (e.g., GPUs). However, this
approach usually builds upon kernels developed for standard
NNs and cannot effciently support transformer verifcation
computation. Recent works, such as TVM [6] and Ansor [54],
can automatically generate such backend kernels based on
a set of heuristic rules on fusion and operator optimizations.
However, these heuristic rules are developed specifcally for
standard NNs. Naively incorporating these rules into trans-
former verifcation may lead to unsatisfactory performance
due to the signifcant difference in computation patterns. For
example, Fig. 3(c) shows the computation graph for utiliz-
ing the kernels of standard NNs on transformer verifcation.
This approach leads to heavy sparsity and redundant memory
access. In particular, only half of the elements in Wpos and
Wneg are non-zero values, leading to 50% sparsity. To this end,
we build Faith, the frst framework for effcient transformer
verifcation on GPUs.

2.3 Opportunities and Challenges
In this section, we introduce optimization opportunities and
challenges in enabling effcient transformer verifcation.

We show the latency of verifying individual transformer
operators in Fig. 4. We profle this latency breakdown based
on the state-of-the-art transformer verifcation implemented
with PyTorch [30]. We have three major observations. First,
dot product accounts for around 45% latency. Dot product
takes two input tensors Q and K where both inputs may be
perturbed during adversarial attack, which is signifcantly dif-
ferent from matrix multiplication that only one input (i.e.,
feature X) may be perturbed. This adds complexity to the
verifcation of dot product operators [35] and longer latency.
Second, elementwise operators such as Tanh and ReLU ac-
count for a large portion of latency in transformer verifcation.
This is signifcantly different from standard NNs where el-
ementwise operators can usually be fused with remaining
operators and show low latency. Third, we observe that ma-



W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

Figure 5: Illustration of Semantic-aware Kernel Fusion. We
show the memory access pattern before and after applying
semantic-aware kernel fusion in (a) and (b), respectively.

trix multiplication and softmax accounts for certain latency.
Opportunities: There are two major opportunities to ac-

celerate transformer verifcation. The frst opportunity is to
exploit the semantics of transformer verifcation to minimize
redundant memory access and computation. Our investigation
shows that transformer verifcation has rich semantic infor-
mation (e.g., 50% sparsity in Wpos and Wneg), which can be
exploited to accelerate transformer verifcation. The second
opportunity is to exploit the modern GPU architectures to
effciently support diverse computing patterns in transformer
verifcation. One example is to accelerate abundant reduction
computation in Eq. 1.

Challenges: Although these ideas sound promising, the
efforts to realize the benefts are non-trivial due to several
challenges. First, transformer verifcation shows signifcantly
different computing patterns from standard NNs. Straight-
forwardly borrowing optimizations for standard NNs such
as kernel fusion can hardly bring similar benefts. Second,
while exploiting GPU architecture supports may bring bene-
fts, we still need specialized designs as a synergy between
architecture and specialized computing patterns. Moreover,
exploiting advanced GPU architecture supports will add more
complexity to the search space of optimized kernels which
motivates novel autotuning optimizations.

3 Semantic-aware Computation Graph
Transformation

In this section, we propose semantic-aware computation
graph transformation for effcient transformer verifcation.
We frst propose semantic-aware kernel fusion to fuse ker-
nels within a transformer layer. It contains two novel types of
fusions – weight-paring based fusion and double bound based
fusion. Then, we propose bound-aware cross-layer fusion
to effciently fuse kernels across transformer layers.

3.1 Semantic-aware Kernel Fusion

The semantic-aware kernel fusion fuses operators in a single
transformer layer to minimize memory access. Different from
standard transformers, a single layer in transformer verifca-
tion usually involves multiple kernels to compute the bounds
adaptively to the sign of weights, as discussed in §2.1. Exist-
ing transformer verifcation [35, 42] usually uses a set of GPU
kernels developed for standard transformers to serve the need
for transformer verifcation. We illustrate the memory access
pattern of this baseline approach in Fig. 5(a). These kernels
need to independently read data from the global memory of
GPUs and lead to heavy memory overhead. Moreover, these
kernels fail to exploit semantic information in transformer ver-
ifcation and show heavy redundancy during memory access.
For example, baseline approaches usually frst split the weight
matrix W into two weight matrices Wpos and Wneg according
to weight signs and then use each matrix for computing lower
and upper bounds. Here, these two split matrices Wpos and
Wneg have the same shape of M�N as the weight matrix W .
However, reading these matrices independently requires load-
ing 2MN scalars, which leads to redundant memory access.

We propose semantic-aware kernel fusion to minimize such
memory overhead by exploiting transformer verifcation se-
mantics and GPU memory hierarchies (i.e., global memory,
shared memory, and registers). We illustrate our semantic-
aware kernel fusion in Fig. 5(b). Our key insight is to frst
load data collaboratively from global memory and only dis-
tinguish data semantics (e.g., Wpos and Wneg) at the register
level to mitigate redundant memory access. In particular, we
identify weight-paring based fusion and double bound based
fusion as the two most important semantics in transformer
verifcation.

Weight-pairing based fusion. We frst propose weight-
paring-based fusion to mitigate redundant memory access
when reading Wpos and Wneg. Our key observation is that
the zero values in Wpos are exactly the position of non-zero
values in Wneg. Formally, we have Wpos +Wneg =W . To this
end, instead of using an operator to split weight matrix W
into Wpos and Wneg, we frst load the matrix W from global
memory to shared memory without distinguishing the sign of
individual scalars. Then, we split the weight matrix W into
Wpos and Wneg when loading data from shared memory to
registers, as illustrated in Fig. 5(b). In our design, we only
need to load MN scalars from global memory, which leads to
signifcantly reduced memory access compared with loading
2MN scalars in baseline approaches.

Double bound based fusion. Our second optimization is a
double-bound-based fusion. One important semantics in trans-
former verifcation is to multiply the same weight matrix with
lower and upper input bounds (e.g., Xlb and Xub) to compute
the output bounds (e.g., Ylb and Yub in Fig. 5(b)). Meanwhile,
when computing the bound for output neurons, we usually
need to read both lower and upper bounds for computation.



For example, when computing the upper bound of output neu-
rons, we need to read upper bound when weight is positive
and read lower bound when weight is negative. Suppose the
input bounds Xlb and Xub have shape N�K, we need to load
4NK scalars during transformer verifcation.

Instead, we propose to fuse the computation of lower and
upper bounds such that the lower and upper bounds only need
to be loaded once to save memory access. In particular, we
frst use threads across GPU blocks to collaboratively load
tiles of input matrices from global memory to shared mem-
ory, which can be accessed by different GPU threads. Here,
we use shared memory to enable data sharing across GPU
threads since different threads may multiply the same input
bound scalar with different weight scalars (e.g., multiplying
the frst row in Xlb and Xub with various columns in W ). Then,
each thread loads independent data from shared memory to
registers and directly accumulates output bounds Ylb and Yub
in registers. We note that this design further improves perfor-
mance by eliminating the redundant global memory access
during generating Ylb and Yub.

3.2 Bound-aware Cross-layer Kernel Fusion

Bound-aware cross-layer kernel fusion fuses the verifcation
of kernels across multiple transformer layers to further mini-
mize memory access. Existing frameworks for accelerating
standard NNs usually rely on a set of rules to fuse kernels.
One popular example is to fuse convolution kernel with the
following elementwise kernels (e.g., ReLU kernel for ele-
mentwise comparison with 0). However, these rules usually
cannot be applied to fuse kernels for transformer verifcation.
For example, verifying the ReLU kernel requires frst a con-
cretization operation with a global reduction to compute the
concretized bounds for a neuron and then applies different
computation according to the concretized bounds (see §2.1).

To this end, we propose a set of rules for cross-layer kernel
fusion in transformer verifcation. In particular, we recognize
three types of operators. The frst type is input-reduction-
compute that conducts reduction or concretization operation
on the input data before computation. One example is veri-
fying nonlinear activation functions such as ReLU and Tanh
that requires concretized bounds to apply different computa-
tion. Another example is the softmax operator that computes
a global summation for normalization. The second type is
strict-elementwise that contains only elementwise computa-
tion and does not require concretization or global summation.
The third type is dense-computation such as matrix-matrix
multiplication kernels. In our cross-layer kernel fusion design,
we can always fuse a dense operator with its following strict-
elementwise operator. However, we cannot fuse dense opera-
tor with input-reduction-compute due to the concretization or
reduction operation. In addition, we can fuse input-reduction-
compute with its following strict-elementwise operator. Fi-
nally, we can fuse multiple strict-elementwise operators (e.g.,

elementwise addition and multiplication).

4 Verifcation-specialized Kernel Crafter

In this section, we propose a verifcation-specialized kernel
crafter to effciently map transformer verifcation towards
modern GPUs. We exploit intrinsic properties (e.g., abundant
reduction operations) of transformer verifcation which are
signifcantly different from standard transformer operators.
One major challenge in building the kernel crafter is the large
diversity in verifcation designs across operators (see Fig. 3(d)-
(g)). To tackle this challenge, we frst propose a verifcation
pattern categorization to abstract such diversity and provide
a small set of computing patterns over verifcation of diverse
operators. Then, we propose three optimizations to effciently
support these computing patterns of transformer verifcation.

4.1 Verifcation Pattern Categorization
While there are diverse bound designs across different opera-
tors, we characterize transformer verifcation into four typical
computing patterns. Based on this characterization, Faith can
abstract the diversity in bound designs into a combination of
computing patterns and exploit optimizations towards individ-
ual computing patterns for improving performance. Similar to
standard NNs, one important computing pattern is generalized
matrix multiplication (GEMM) when verifying projection lay-
ers and fully connected layers. Matrix multiplication is the ma-
jor bottleneck in standard NNs and has been well-optimized
by existing DL frameworks. Besides GEMM, transformer ver-
ifcation introduces three other time-consuming computing
patterns, which are highlighted as follows:

The frst computing pattern is generalized vector reduc-
tion. One typical source of generalized vector reduction is
concretization that computes the norm and generates the con-
cretized lower and upper bounds for individual neurons (see
Eq. 1). Formally, consider a matrix X = [~x1;~x2; � � � ;~xm] 2
Rm�n where ~xi = [xi;1;xi;2; � � � ;xi;n] are vectors of length
n. The generalized vector reduction computes an output
Y = [y1;y2; � � � ;yn] 2 Rn that satisfes

yi = reduction(~xi) =
n

∑
j=1

f (xi; j); i 2 f1;2; � � � ;mg (3)

Here, f (x) is an elementwise function that takes a scalar input
and generates a scalar output. One example for f (x) is x2

when computing the L2 norm for input vectors.
The second computing pattern is generalized elementwise

multiplication which appears frequently when verifying ele-
mentwise operators such as ReLU and Tanh. Formally, con-
sider a concretized lower bound l 2Rm�n and an upper bound
u 2 Rm�n where li; j and ui; j are concretized lower and upper
bounds for the neuron at position (i; j). Let X 2 Rm�n be
the input values. The generalized elementwise multiplication



computes an output Y 2 Rm�n that satisfes

yi; j = f (li; j;ui; j)� xi; j; i 2 f1;2; � � �mg; j 2 f1;2; � � � ;ng (4)

Here, transformer verifcation introduces a function f (�; �)
that takes the lower and upper bounds for an input neuron and
computes a scaling parameter which is multiplied with the
input value of this neuron. One example is the tangent line
between the concretized lower and upper bounds when veri-
fying Tanh layer, which accounts for more than 20% latency
as we profled in Fig. 4. Another example is f (li; j;ui; j) = 1
when verifying ReLU layer and li; j is non-negative. While
f (�; �) shows large diversity across operators, we stress that
the same computing pattern is shared across these operators
such that a uniform framework can be applied to improve
performance.

The third computing pattern is generalized scalar-vector
multiplication. This computing pattern exists widely when
verifying dot products in the self-attention layer of transform-
ers. This computing pattern accounts for more than 40%
latency in transformer verifcation, as discussed in Fig. 4.
Formally, consider a vector S = [s1;s2; � � � ;sm] 2 Rm and a
matrix X = [~x1;~x2; � � � ;~xm] 2 Rm�n, where si are scalars and
~xi = [xi;1;xi;2; � � � ;xi;n] are vectors of length n. The general-
ized scalar-vector multiplication computes an output Y =
[~y1;~y2; � � � ;~yn] 2 Rn�n that satisfes

~yi = f (si)�~xi = [ f (si)� xi;1; f (si)� xi;2; � � � ; f (si)� xi;n];

i 2 f1;2; � � � ;mg
(5)

Here, f (�) is a function that takes a scalar input and generates
a scalar output.

Generability to diverse NN operators. Faith can effec-
tively support verifying diverse NN operators such as SiLU
and Leaky ReLU. Our key insight is that verifying diverse
NN operators usually share the same generalized comput-
ing pattern while the concrete computation formula might
be different. For example, SiLU(x) = x

1+e−x is an activation
function that has signifcantly different concrete computation
formula from ReLU(x) = max(0;x). However, both verifying
SiLU and ReLU can be treated as the generalized element-
wise multiplication (Eq. 4) and the same optimizations can
be applied to improve performance.

In the following sections, we frst demonstrate a workload-
adaptive reduction to improve the performance of generalized
vector reduction (Eq. 3). We then propose a sharing-oriented
workload scheduling to improve the performance of general-
ized elementwise multiplication (Eq. 4). Finally, we demon-
strate broadcast-aware super threading to effciently support
the generalized scalar-vector multiplication (Eq. 5).

4.2 Workload-adaptive Reduction
Transformer verifcation contains abundant reduction opera-
tions where a sequence of scalars are summed up into one
scalar. One common reduction operation is the concretiza-
tion operation that computes the concretized lower and upper

Xs0 Xs1 Xs15 Xs16 Xs Xs17 31 Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T0

T0

T0

0

0

0

3
0

 it
e

ra
ti

o
n

s

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

5
 ite

ratio
n

s

(a)
(b)

Xs0 Xs1 Xs Xs31 Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T0

T0

T0

0

0

0

3
2

 it
e

ra
ti

o
n

s

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

5
 ite

ratio
n

s

(a)
(b)

2

Figure 6: Illustration of Workload-adaptive Reduction. (a)
Sequential Mode; (b) Parallel Mode. Here, xi and Ti are the
i-th data and thread, respectively.

bounds for individual neurons, as discussed in §2. Another
common reduction operation is the softmax operation that is
applied in each self-attention layer for measuring the relation-
ship between individual words. These reduction operations
pose challenges between parallelism and data locality. One
baseline approach is to use a single thread to read and ac-
cumulate a sequence of scalars as illustrated in Fig. 6(a).
However, this approach usually leads to low parallelism and
fails to exploit abundant threads in GPUs. For example, we
need 32 iterations to accumulate 32 scalars. Another baseline
approach is to frst split this sequence of scalars into multiple
chunks and allocate one thread to each chunk for accumula-
tion. Then, each thread writes the accumulated results for each
chunk to global memory and uses an additional thread to f-
nally accumulate the sum of each chunk. While this approach
improves parallelism, it requires expensive global memory
access and high overhead.

Workload-adaptive Reduction with length n = 32. We
propose a workload-adaptive reduction to fully exploit GPU
memory hierarchies and the inter-register communication
functionalities. We illustrate our design in Fig. 6(b). Our
design achieves high parallelism by enabling multiple threads
for reduction simultaneously. Meanwhile, we avoid the expen-
sive data communication through global memory and exploit
only effcient registers. In particular, we use 32 threads (i.e., a
warp) to read these 32 scalars simultaneously from global
memory. Considering these 32 scalars are consecutive in
global memory, we can effciently load them with 32 threads
through coalesced memory access. Then, we exploit the spe-
cialized instruction _shfl_down_sync to directly communi-
cate data in registers across individual threads. As illustrated
in the parallel mode of Fig. 6(b), our design involves only fve
iterations of cross-thread data communication to generate the
fnal accumulated result, rather than the 32 iterations in the
sequential mode of Fig. 6(a).

Workload-adaptive Reduction with Arbitrary Length
n. For an arbitrary length n, one naive approach is to repeat-
edly use 32 threads to reduce 32 scalars and then use 1 thread
to accumulate the fnal results. However, this approach may
lead to unnecessary communication across threads. Suppose
we are accumulating a vector of length n = 32k, we need 5
iterations for reducing every 32 scalars, leading to 5k itera-
tions in total for accumulating the vector. Instead, we propose



Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2 T00 T031

Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2 T00 T031

Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2

T00 T031 Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss XsssGlobal
Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss XsssShared
Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl XsShared
Memory u

Collaborative 
Reduction2

T00 T031 Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Figure 7: Illustration of sharing-oriented workload scheduling

a hybrid mode to minimize the number of iterations while
still achieving high parallelism. In particular, we frst split
the input sequence into chunks where each chunk contains
32 scalars. Then, we use 32 threads to read one chunk simul-
taneously from global memory and accumulate individual
chunks iteratively. For example, the 1-st thread accumulates
the 1-st scalar in each chunk. Here, the accumulation is con-
ducted in registers and does not require communication across
threads. Finally, we apply a single 5-iteration reduction across
32 threads. In total, our design has only k+5 iterations which
are signifcantly less than 6k iterations in the naive approach.

4.3 Sharing-oriented Workload Scheduling
We propose sharing-oriented workload scheduling to eff-
ciently verify elementwise operators. Different from standard
transformers, verifying elementwise operators, especially non-
linear ones (e.g., ReLU and Tanh), accounts for a large portion
of latency in transformer verifcation as we discussed in Fig. 4.
Verifying these operators usually frst requires computing a
concretized lower bound Xl and upper bound Xu for each input
neuron and then computes the bounds for the output neuron.
Different signs of concretized input bounds usually lead to
different computations for output bounds, which could eas-
ily lead to warp divergence and unsatisfactory performance.
Moreover, when computing the output bound weights (i.e.,
Ylw and Yuw) for a neuron, we need to repeatedly use the same
input bounds which leads to extra memory overhead.

To effciently verify elementwise operators, we propose
sharing oriented workload scheduling to minimize memory
access and improve performance. Our key observation is that
the same set of input bound weights Xlw and Xuw are used to
compute the concretized input bounds Xl and Xu, while these
input weights are also used for computing the output bound
weights Ylw and Yuw. Instead of repeatedly loading Xlw and
Xuw, we can exploit the GPU memory hierarchies to cache Xlw
and Xuw and minimize the global memory access to improve
the overall performance.

As illustrated in Fig. 7, we use a set of T (=32) threads
to frst (Step 1 ) load input bound weights Xlw and Xuw
from global memory to shared memory. Here, T is a hyper-

parameter to balance the parallelism and compute intensity,
which will be selected in §5. Then (Step 2 ), these T threads
load input bound weights from shared memory and collabora-
tively compute the concretized lower and upper bounds Xl and
Xu, following our design in §4.2. These concretized lower and
upper bounds are stored in shared memory which can be ac-
cessed by individual threads. Finally (Step 3 ), each thread in-
dependently loads individual Xlw and Xuw scalars from shared
memory and rescales according to the concretized bounds Xl
and Xu. Here, all threads in a warp are computing the output
bound weights for the same neuron and the concretized in-
put bounds are the same across threads in a warp. Thus, all
threads in a warp can apply the same rescaling computation
and avoid warp divergence. We also note that input bound
weights are only loaded once from global memory which
mitigates redundant global memory access.

4.4 Broadcast-aware Super Threading
We propose broadcast-aware super threading to effciently
support generalized scalar-vector multiplication, as discussed
in Eq. 5. One naive approach is to use one thread to read a
scalar si and a vector~xi and computes the generalized scalar
vector multiplication f (si)~xi. However, this approach fails
to exploit the parallelism opportunities in generalized scalar
vector multiplication. Another approach is to split the vector
~xi into multiple chunks and use one thread for each chunk.
However, this approach requires threads to repeatedly read
the same scalar si from global memory and shows redundant
memory access.

Instead, we propose a broadcast-aware super threading to
achieve high parallelism while minimizing memory access.
We consider two types of super threading for generalized
scalar vector multiplication. The frst type is a group of 32
threads (i.e., a warp for one vector). When using 32 threads
to compute the multiplication between a scalar si and a vector
~xi, these 32 threads can read the scalar si once, broadcast
across threads with modern GPU memory, and compute f (si)
simultaneously. Based on this broadcast, we can mitigate the
redundant memory access that each thread repeatedly read
the same scalar si. The second type is a group of 32t threads
(i.e., t warps for one vector). In this case, we use one warp
to read the scalar si and use shared memory to broadcast si
across warps.

5 Expert-guided Autotuning Optimization
Considering the large design space of optimization towards
GPUs, one natural question arises: Can we effectively incor-
porate hardware knowledge to fnd optimal operator imple-
mentation?

Existing works such as TVM [6] and Ansor [54] usually au-
totune operator implementations in a hardware-agnostic way.
In particular, these works extract implementation-specifc pa-
rameters such as tiling size and use a cost model to implicitly



learn the relationship between these parameters and perfor-
mance. However, there are two drawbacks in this hardware-
agnostic approach. First, there is a complex interaction be-
tween implementation and the hardware properties, which
could be hard to be implicitly learned by the cost model. For
example, existing works [12, 20, 24, 43] on hand-tuning large
matrix-matrix multiplication operators usually maximize the
number of registers in use to improve cache performance.
However, this optimization is also limited by the number of
registers for each GPU thread since exceeding such limitation
may lead to register spilling [27] and a signifcant perfor-
mance drop. A careful reasoning on the interaction between
the implementation-specifc parameters (e.g., the number of
registers for caching data) and the hardware properties (e.g.,
the number of registers per thread) is usually necessary to max-
imize the performance. To tackle this challenge, we propose
an expert-guided autotuning optimization to automatically rea-
son both implementation-specifc parameters and hardware
properties. In particular, we have the following designs.

Rule-based Expert Knowledge Metafle. We propose a
rule-based expert knowledge metafle to capture hardware
properties. This metafle only needs to be set once for each
type of GPUs and requires limited manual efforts. In partic-
ular, we consider two types of rules. The frst type is hard
rules which represents hardware limitation such as the maxi-
mal shared memory size and the maximal number of registers
per thread. Violating these rules may lead to signifcant per-
formance drop such as register spilling. The second type is
soft rules which represents intrinsic trade-offs related to the
hardware properties such as the number of streaming multipro-
cessors (SM) and the number of threads per SM. One typical
design choice is the number of threads per block which will be
mapped to threads on the same SM. Allocating more threads
per block usually leads to better parallelism for the sub-task
assigned to a block. However, allocating more threads per
block may also hinder executing multiple blocks on the same
GPU SM hardware and lead to worse overall parallelism.

Expert-guided Cost Model. We propose an expert-guided
cost model to automatically tackle the complex interaction
between implementation-specifc parameters and hardware
properties. Given a set of candidate operator implementations,
we have two phases to select the optimal implementation.
The frst phase is to estimate the shared memory and register
usage for each candidate. We rule out candidates that consume
more shared memory and registers than hardware capacity, as
specifed in the expert knowledge metafle.

The second phase is to train a cost model for the remaining
candidates and use the cost model to select the best candi-
date. We use XGBoost [5] as the cost model. It takes as input
the implementation-specifc parameters (e.g., tiling size) for
candidates and the hardware properties (e.g., shared memory
size). We use the cost model to predict the latency of candi-
dates and select top-k candidates with low latency. Finally, we
profle the latency of these top-k candidates on GPUs and use

Dataset #Train #Val #Test Length
min mean max

SST 67,349 872 1,821 4 25 62
YELP 560,000 0 38,000 5 98 128

Table 2: Dataset statistics

the profled latency to further fntune our cost model. We re-
peat this procedure for a pre-defned iterations (=5 by default)
and select the implementation with the lowest latency.

When training the cost model, we construct the training
dataset as follows. We randomly select a small number of
candidates and use their implementation-specifc parameters
and the hardware properties as feature X . Then, we profle
the latency of each candidate implementation on GPUs as the
label Y . We collect these (X ;Y ) as the training dataset to train
the cost model.

6 Evaluation
In this section, we comprehensively evaluate Faith over vari-
ous datasets and GPU backends. We frst present our exper-
iment setup in §6.1. Then, we show the overall speedup on
end-to-end transformer verifcation in §6.2. Finally, we pro-
vide more optimization analysis on individual transformer
layers in §6.3.

6.1 Experiment Setup
Baselines. We compare Faith with the state-of-the-art trans-
former verifcation [35] based on PyTorch. We further com-
pare with TVM [6] and Ansor [54], as stronger baselines.
TVM and Ansor are two state-of-the-art deep learning compil-
ers for standard neural networks. We feed the pytorch model
into TVM and Ansor through relay frontend [34] which will
automatically optimize transformer verifcation performance.
While TVM and Ansor take minutes to compile an operator
implementation, we do not incorporate this compilation la-
tency and record only inference latency for a fair comparison.

Datasets. We evaluate two popular datasets, Yelp [53] and
SST [36], following the setting in state-of-the-art transformer
verifcation [35]. These two datasets are widely used in the
natural language processing for analyzing sentiment in lan-
guages. We summarize the statistics of these two datasets
in Table 2. SST dataset contains 67,349 training sentences,
872 validation sentences, and 1,821 testing sentences. In SST
dataset, there are 4 to 62 tokens in each sentence and the
average number of tokens in a sentence is 25. YELP dataset
contains 560,000 sentences as training data and 38,000 sen-
tences as testing data. In YELP dataset, there are 5 to 128
tokens in each sentence and the average number of tokens in
a sentence is 98.

Transformer Networks. We evaluate Faith on transformer
networks with 1 to 6 layers to demonstrate the performance
on large models. Following popular transformer settings, each
transformer layer has 4 attention heads and an embedding size



(a) On A100 GPU. (b) On V100 GPU.

Figure 8: Overall speedup on SST dataset.

(a) On A100 GPU. (b) On V100 GPU.
Figure 9: Overall speedup on Yelp dataset.

of 128. Furthermore, we study the Faith performance under
diverse embedding sizes in §6.3.

Experiment Confguration. We evaluate with an NVIDIA
A100 GPU and an NVIDIA V100 GPU to show Faith perfor-
mance on various GPU backends. The host server with A100
GPUs is an AMD EPYC 7742 64-Core Processor and runs
Ubuntu 20.04 with CUDA 11.3. The host server with V100
GPUs has 32 cores of Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and runs Ubuntu 16.04 with CUDA 10.1.

6.2 Overall Performance
We show the overall speedup on SST dataset and Yelp dataset
in Fig. 8 and Fig. 9, respectively. We show the performance
improvement over transformers with diverse numbers of lay-
ers from 1 to 6, which covers popular settings in the natural
language processing domain. While the length of input sen-
tences may have an impact on the performance improvement,
we show the averaged speedup over all testing sentences in
this section and study the impact of sentence length in §6.3.
We compare Faith with the PyTorch baseline following ex-
isting transformer verifcation open-source implementations
[35]. We further compare Faith with two state-of-the-art deep
learning frameworks (i.e., TVM and Ansor) to provide a com-
prehensive comparison, as we discussed in §6.1.

We show the overall speedup on SST dataset and A100
GPU in Fig. 8(a). Compared with PyTorch, we observe 2:3�
to 3:2� speedup (2:5� on average). We contribute this per-
formance improvement to our semantic-aware computation
graph transformation (§3) and verifcation-specialized kernel
crafter (§4). We further observe 17:2� and 15:9� speedup
over TVM and Ansor, respectively. The main reason is that

TVM and Ansor focus on optimizing standard neural net-
works and fail to effciently support verifcation-specifc com-
puting patterns, as discussed in §2.2. While Faith and these
three baselines show different performance, we stress that
the same verifcation bounds are generated, and the only dif-
ference resides in system optimizations. Comparing across
different numbers of transformer layers from 1 to 6, the per-
formance improvement remains similar around 2:5�. This
result shows that Faith can effciently support transformer
verifcation with diverse numbers of transformer layers. We
show the overall speedup on SST dataset and V100 GPU in
Fig. 8(b). We have similar observation about the results on
A100 GPU which shows that Faith can effectively adapt to
diverse GPU backends, thanks to expert-guided autotuning
optimization (§5).

We show overall speedup on Yelp dataset and A100 GPU
in Fig. 9(a). Sentences in YELP dataset has 5 to 128 tokens
(98 on average), which is longer than sentences in SST dataset
with 4 to 62 tokens (25 on average). This provides an opportu-
nity to show Faith performance on long sentences. Overall, we
observe 2:1� to 2:3� speedup (2:2� on average) when com-
paring with the PyTorch baseline. We also observe 26:7� and
28:3� speedup on average over TVM and Ansor, respectively.
This speedup is similar to the performance improvement on
SST dataset and shows the good generality of Faith over di-
verse input data. We also have similar observations on Yelp
dataset and V100 GPU in Fig. 9(b).

6.3 Optimization Analysis
In this section, we show speedup from individual Faith opti-
mizations. We frst show speedup on verifcation of matrix



Figure 10: Speedup on verifcation of matrix multiplication
over the diverse lengths. Embedding Size: 128.

Figure 11: Speedup on verifcation of matrix multiplication
over the diverse embedding sizes. Length: 16.

Figure 12: Speedup on verifcation of ReLU over the diverse
lengths. Embedding Size: 128.

Figure 13: Speedup on verifcation of Tanh and dot product
over the diverse lengths. Embedding Size: 128.

multiplication over the diverse lengths and diverse embedding
sizes. Verifcation of matrix multiplication plays an important
role in verifying projection layers and fully connected layers
in transformers. Then, we show the benefts on verifcation of
ReLU, verifcation of dot product, and verifcation of Tanh,
which in total accounts for around 70% latency in transformer
verifcation. Since we observe similar performance on A100
GPU and V100 GPU, we focus on A100 GPU and omit results
on V100 GPU in this section due to page limits.

Performance benefts on verifcation of matrix multi-
plication. We show speedup on verifcation of matrix mul-
tiplication over the diverse lengths in Fig. 10. We study the
speedup over diverse lengths from 2 to 128, following the
setting in the popular natural language processing datasets as
summarized in Table 2. Overall, we observe 5:1� speedup on
average over the PyTorch baseline. This result shows signif-
cant performance benefts from utilizing Faith on accelerating
transformer verifcation. Comparing across lengths, we ob-
serve a higher speedup of 5:54� over the PyTorch baseline on
shorter sentences with 2 to 32 words. The reason is that our
autotuning optimization (§5) automatically adjusts the num-
ber of threads and memory layout to improve the parallelism.
We achieve a smaller speedup of 3:85� on longer sentences
with 64 and 128 words. For these longer sentences, we have
achieved high occupancy on GPUs and the speedup is limited
by the hardware capability.

Surprisingly, we observe that TVM and Ansor achieve
0:33� and 0:73� speedup, which is signifcantly slower than
PyTorch baselines on verifcation of matrix multiplication.
The main reason is that TVM and Ansor focus on accelerat-
ing standard NNs and cannot effciently support computing

patterns in the verifcation of matrix multiplication (Fig. 3(c)).
Instead, Faith exploits a semantic-aware kernel fusion (§3.1)
to effciently support such computing patterns in verifcation.

We show speedup on verifcation of matrix multiplication
over the diverse embedding sizes in Fig. 11. We study em-
bedding size from 64 to 640 following popular transformer
settings. We note that transformer in natural language pro-
cessing usually adopts a relatively small embedding size (e.g.,
64 to 256), which is different from convolutional neural net-
works in computer vision that adopts a large embedding size
(e.g., 1024). Overall, Faith achieves 4:2� speedup on average
over the PyTorch baseline. This result shows that Faith can
improve performance over diverse embedding sizes. We also
observe that Faith achieves larger speedup for smaller embed-
ding sizes, which is similar to the case when verifying matrix
multiplication over diverse lengths.

Performance benefts on verifcation of ReLU. We show
speedup on verifcation of ReLU over diverse lengths in
Fig. 12. As we discussed earlier in §4.1, verifcation of ReLU
represents an important computing pattern of verifying ele-
mentwise operators. Due to similar behaviors between diverse
lengths and embedding sizes, we focus on verifcation over
diverse lengths and keep embedding size as 128, which is a
popular setting in transformers. Overall, Faith achieves 141�
speedup over PyTorch baseline. This large speedup shows
it promising to accelerate verifcation of elementwise opera-
tors. Besides, Faith achieves 13:4� and 13:5� speedup over
TVM and Ansor. The reason is that our workload-adaptive
reduction (§4.2) can signifcantly improve parallelism during
reduction and sharing-oriented workload sharing can mini-
mize memory access with GPU memory hierarchy.



#Layers 1 2 3 4 5 6
PyTorch 9.1 18 25 28 31 37

Faith 4 7.2 7.8 10.9 12.6 15.4

Table 3: Latency on SST dataset and A100. Unit: Second.

Performance benefts on verifying Tanh and dot prod-
uct layers. We show the speedup from Faith over the PyTorch
baseline on verifcation of Tanh and verifcation of dot product
in Fig. 13. We skip the results of TVM and Ansor since these
two frameworks do not support computing patterns in verif-
cation of Tanh and verifcation of dot product. Here, we show
results of verifcation of Tanh since it is a popular elementwise
operator in transformer verifcation. We also show results of
verifcation of dot product since it accounts for around 45%
latency in transformer verifcation. Overall, we observe that
Faith achieves 138� speedup on average for verifcation of
Tanh. This result is similar to the performance improvement
for verifcation of ReLU, since both Tanh and ReLU are el-
ementwise operators and share benefts from the same set
of optimizations. We also observe that Faith achieves 26:5�
speedup on average for verifcation of dot product. This result
shows the performance benefts from semantic-aware kernel
fusion (§3.1) and broadcast-aware super threading (§4.4) that
mitigate redundant memory access.

Raw latency on transformer verifcation. We show the
raw latency for transformer verifcation on the SST dataset
and NVIDIA A100 GPU in Table 3. Faith requires only a
few seconds to verify the NN prediction on a long sentence
(with on average 25 tokens). More specifcally, when veri-
fying transformers with 1 to 6 layers, Faith only requires 4
to 15:4 seconds to verifying a sentence. This results brings
transformer verifcation to the level of being practical for use.

7 Discussion
Why Faith performs better than prior approaches. Exist-
ing frameworks, such as PyTorch, TVM, and Ansor, only
support limited computation patterns for standard NNs. They
cannot directly support bound-centric computation patterns in
transformer verifcation. While several frameworks like TVM
allow autotuning for diverse operators, there is no magic. They
still rely on hand-written GPU kernels (e.g., matrix multipli-
cation) as the parametric templates (e.g., with tiling size as a
parameter) and can only tune these tiling sizes. When apply-
ing to bound-centric computation patterns, they will break an
operator for transformer verifcation into several hand-written
GPU kernels for standard NNs. This leads to signifcantly
higher memory access when aggregating computation results
across GPU kernels into one transformer verifcation output.

Instead, Faith provides direct support for bound-centric
computation patterns. Instead of breaking into several GPU
kernels for standard NNs, we consider the bound-centric com-
putation patterns as a whole and design a set of optimizations
to reduce the memory and computation cost. For example,

we found the lower and upper bounds are usually multiplied
with the same weight matrix and can be loaded once to reduce
memory overhead.

Practicality of transformer verifcation with Faith.
Faith brings transformer verifcation to be practical by con-
suming only around 10 seconds to verify a long sentence (e.g.,
25 tokens). We remark that transformer verifcation is one of
the hottest topics in deep learning. Hundreds of related papers
have been published in top deep learning conferences. The
performance is essential to bring transformer verifcation into
practical applications. However, existing efforts mainly reside
in the algorithmic domain. In this paper, we build the frst
framework for effcient transformer verifcation on GPUs. Our
work will open a new system research direction on developing
high-performance systems for deep learning verifcation.

8 Conclusion

Verifying the robustness of transformers draws increasing at-
tention from both the academic and industry felds over the re-
cent years. Unfortunately, an effcient system design for trans-
former verifcation is still yet to come. Existing transformer
verifcation still exploits standard neural network frameworks
which are unoptimized towards transformer verifcation work-
load. The main reason is that effcient systems for transformer
verifcation require both expertise from the machine learning
community on mathematical verifcation designs and the sys-
tem community on effcient memory and parallelism designs.

In this paper, we propose a Faith framework for effcient
transformer verifcation. Specifcally, we frst design a set of
semantic-aware computation graph transformations to fully
exploit fusion opportunities in transformer verifcation at
the computation graph level. Then, we propose a verifer-
specialized kernel crafter to effciently map fused verifca-
tion kernels towards modern GPUs with minimized memory
overhead and improved parallelism. Finally, we propose an
expert-guided autotuning to dynamically optimize kernels
according to the transformer verifcation workload and GPU
backend characteristics. Comprehensive experimental evalua-
tion shows that Faith signifcantly improves the performance
of transformer verifcation over state-of-the-art frameworks.

Looking ahead, we believe our work in transformer verif-
cation would highlight a new direction on developing high-
performance systems for deep learning verifcation. This will
encourage system experts with diverse backgrounds to build
the next-generation deep learning systems and facilitate the
wide application of secure deep learning.

9 Acknowledgements

We would like to thank the anonymous reviewers and the
shepherd. This work was supported in part by NSF 2124039.



References

[1] Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. Syn-
tactically supervised transformers for faster neural ma-
chine translation. In ACL (1), pages 1269–1281. Asso-
ciation for Computational Linguistics, 2019.

[2] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-
Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.
Generating natural language adversarial examples. In
EMNLP, pages 2890–2896. Association for Computa-
tional Linguistics, 2018.

[3] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli,
Mahdieh Soleymani Baghshah, and Pascal Frossard.
Universal adversarial attacks on text classifers. In
ICASSP, pages 7345–7349. IEEE, 2019.

[4] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian
Baader, and Martin T. Vechev. Fast and precise certif-
cation of transformers. In PLDI, pages 466–481. ACM,
2021.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scal-
able tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 785–794. ACM,
2016.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-
to-end optimizing compiler for deep learning. In OSDI,
pages 578–594. USENIX Association, 2018.

[7] Junyan Cheng, Iordanis Fostiropoulos, Barry W. Boehm,
and Mohammad Soleymani. Multimodal phased trans-
former for sentiment analysis. In EMNLP (1), pages
2447–2458. Association for Computational Linguistics,
2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL-HLT (1), pages 4171–4186. Association for
Computational Linguistics, 2019.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR.
OpenReview.net, 2021.

[10] Facebook. How facebook uses super-effcient
ai models to detect hate speech. https://ai.
facebook.com/blog/how-facebook-uses-super\
/-efficient-ai-models-to-detect-hate-speech/.

[11] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an effcient GPU serving system for
transformer models. In Jaejin Lee and Erez Petrank,
editors, PPoPP ’21: 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
Virtual Event, Republic of Korea, February 27- March
3, 2021, pages 389–402. ACM, 2021.

[12] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng
Zhang, Yuan Xie, and Yufei Ding. EGEMM-TC: acceler-
ating scientifc computing on tensor cores with extended
precision. In PPoPP, pages 278–291. ACM, 2021.

[13] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and
Yufei Ding. APNN-TC: accelerating arbitrary precision
neural networks on ampere GPU tensor cores. In Bro-
nis R. de Supinski, Mary W. Hall, and Todd Gamblin,
editors, SC ’21: The International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, St. Louis, Missouri, USA, November 14 - 19, 2021,
pages 37:1–37:13. ACM, 2021.

[14] Siddhant Garg, Thuy Vu, and Alessandro Mos-
chitti. Tanda: Transfer and adapt pre-trained
transformer models for answer sentence selection.
https://www.amazon.science/publications/
tanda-transfer-and-adapt-pre-trained-\
/transformer-models-for-answer-\
/sentence-selection.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. In ICLR (Poster), 2015.

[16] Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei,
Wen-Lian Hsu, and Cho-Jui Hsieh. On the robustness
of self-attentive models. In ACL (1), pages 1520–1529.
Association for Computational Linguistics, 2019.

[17] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. Is BERT really robust? A strong baseline
for natural language attack on text classifcation and
entailment. In AAAI, pages 8018–8025. AAAI Press,
2020.

[18] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian,
and Mykel J. Kochenderfer. Reluplex: An effcient SMT
solver for verifying deep neural networks. In CAV (1),
volume 10426 of Lecture Notes in Computer Science,
pages 97–117. Springer, 2017.

https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection


[19] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
and Hyunwoo J. Kim. HOTR: end-to-end human-object
interaction detection with transformers. In CVPR, pages
74–83. Computer Vision Foundation / IEEE, 2021.

[20] Junjie Lai and André Seznec. Performance upper bound
analysis and optimization of SGEMM on fermi and
kepler gpus. In CGO, pages 4:1–4:10. IEEE Computer
Society, 2013.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In ICLR. OpenReview.net, 2021.

[22] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. Textbugger: Generating adversarial text against
real-world applications. In NDSS. The Internet Society,
2019.

[23] Xin-Chun Li, De-Chuan Zhan, Jia-Qi Yang, and Yi Shi.
Deep multiple instance selection. Sci. China Inf. Sci.,
64(3), 2021.

[24] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia,
and Yinghan Li. A coordinated tiling and batching
framework for effcient GEMM on gpus. In PPoPP,
pages 229–241. ACM, 2019.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[26] Yu Lu, Jiali Zeng, Jiajun Zhang, Shuangzhi Wu, and
Mu Li. Attention calibration for transformer in neural
machine translation. In ACL/IJCNLP (1), pages 1288–
1298. Association for Computational Linguistics, 2021.

[27] Paulius Micikevicius. Local memory and register
spilling. https://developer.download.nvidia.
com/CUDA/training/register_spilling.pdf.

[28] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Effcient estimation of word representations in
vector space. In Yoshua Bengio and Yann LeCun, edi-
tors, 1st International Conference on Learning Repre-
sentations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013.

[29] Nvidia. Cuda c++ programming guide. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/
index.html.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pages
8024–8035, 2019.

[31] Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. Glancing
transformer for non-autoregressive neural machine trans-
lation. In ACL/IJCNLP (1), pages 1993–2003. Associa-
tion for Computational Linguistics, 2021.

[32] Alec Radford and Karthik Narasimhan. Improving lan-
guage understanding by generative pre-training. 2018.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unifed text-to-text transformer. J. Mach.
Learn. Res., 21:140:1–140:67, 2020.

[34] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh
Pollock, Marisa Kirisame, Tianqi Chen, and Zachary Tat-
lock. Relay: a new IR for machine learning frameworks.
In MAPL@PLDI, pages 58–68. ACM, 2018.

[35] Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. Robustness verifcation for
transformers. In ICLR. OpenReview.net, 2020.

[36] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng, and Christo-
pher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In EMNLP, pages
1631–1642. ACL, 2013.

[37] Hao Tang, Donghong Ji, Chenliang Li, and Qiji Zhou.
Dependency graph enhanced dual-transformer structure
for aspect-based sentiment classifcation. In ACL, pages
6578–6588. Association for Computational Linguistics,
2020.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
pages 5998–6008, 2017.

[39] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
Superneurons: dynamic GPU memory management for
training deep neural networks. In Andreas Krall and
Thomas R. Gross, editors, Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018, pages 41–53. ACM, 2018.

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


[40] Yuke Wang, Boyuan Feng, and Yufei Ding. QGTC: ac-
celerating quantized graph neural networks via GPU ten-
sor core. In Jaejin Lee, Kunal Agrawal, and Michael F.
Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, Seoul, Republic of Korea, April 2 - 6, 2022, pages
107–119. ACM, 2022.

[41] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
adaptive and effcient runtime system for GNN accelera-
tion on gpus. In Angela Demke Brown and Jay R. Lorch,
editors, 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021, July 14-16,
2021, pages 515–531. USENIX Association, 2021.

[42] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-
Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin,
and Cho-Jui Hsieh. Automatic perturbation analysis for
scalable certifed robustness and beyond. In NeurIPS,
2020.

[43] Da Yan, Wei Wang, and Xiaowen Chu. Optimizing
batched winograd convolution on gpus. In PPoPP, pages
32–44. ACM, 2020.

[44] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and
Baining Guo. Learning texture transformer network for
image super-resolution. In CVPR, pages 5790–5799.
Computer Vision Foundation / IEEE, 2020.

[45] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet:
Generalized autoregressive pretraining for language un-
derstanding. In NeurIPS, pages 5754–5764, 2019.

[46] Han-Jia Ye, Yi Shi, and De-Chuan Zhan. Identifying
ambiguous similarity conditions via semantic matching.
In CVPR. Computer Vision Foundation / IEEE, 2022.

[47] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang.
Cross-modal self-attention network for referring image
segmentation. In CVPR, pages 10502–10511, 2019.

[48] Da Yin, Tao Meng, and Kai-Wei Chang. Sentibert: A
transferable transformer-based architecture for compo-
sitional sentiment semantics. In ACL, pages 3695–3706.
Association for Computational Linguistics, 2020.

[49] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai,
Xipeng Shen, Onur Mutlu, and Xiaoyong Du. G-
TADOC: enabling effcient gpu-based text analytics
without decompression. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Cha-
nia, Greece, April 19-22, 2021, pages 1679–1690. IEEE,
2021.

[50] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and
Xiaoyong Du. Poclib: A high-performance framework
for enabling near orthogonal processing on compression.
IEEE Trans. Parallel Distributed Syst., 33(2):459–475,
2022.

[51] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang,
Zheng Chen, Onur Mutlu, Wenguang Chen, and Xiaoy-
ong Du. TADOC: text analytics directly on compression.
VLDB J., 30(2):163–188, 2021.

[52] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. Effcient neural network ro-
bustness certifcation with general activation functions.
In NeurIPS, pages 4944–4953, 2018.

[53] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
Character-level convolutional networks for text classif-
cation. In NIPS, pages 649–657, 2015.

[54] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In OSDI, pages 863–879.
USENIX Association, 2020.

[55] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable DETR: deformable
transformers for end-to-end object detection. In ICLR.
OpenReview.net, 2021.


	1 Introduction
	2 Related Work and Motivation
	2.1 Transformer Verification
	2.2 Deep Learning Frameworks on GPUs
	2.3 Opportunities and Challenges

	3 Semantic-aware Computation Graph Transformation
	3.1 Semantic-aware Kernel Fusion
	3.2 Bound-aware Cross-layer Kernel Fusion

	4 Verification-specialized Kernel Crafter
	4.1 Verification Pattern Categorization
	4.2 Workload-adaptive Reduction
	4.3 Sharing-oriented Workload Scheduling
	4.4 Broadcast-aware Super Threading

	5 Expert-guided Autotuning Optimization
	6 Evaluation
	6.1 Experiment Setup
	6.2 Overall Performance
	6.3 Optimization Analysis

	7 Discussion
	8 Conclusion
	9 Acknowledgements

