
Deepfake Detection Using CNN Trained on Eye Region

David Johnson 1[0000-0001-8504-4501], Tony Gwyn1[0000-0003-4625-0040], Letu Qingge1, and
Kaushik Roy1

1 North Carolina A&T State University, Greensboro NC 27411, USA
dmjohns8@aggies.ncat.edu, tgwyn@aggies.ncat.edu,

lqingge@ncat.edu, kroy@ncat.edu

Abstract. In this work, we will develop a simple convolutional neural network
to detect deepfakes in videos on a frame-by-frame level, focusing on the region
around the eyes. Since deepfakes are increasingly being created using forms of
CNN, it should be possible to also detect deepfakes using CNN. OpenCV allows
for frame extraction from videos, while also allowing image cropping. The well-
developed Multitask Cascade Neural Network (MTCNN) is a stacked neural net-
work for face detection and alignment. MTCNN is used for high accuracy face
detection to greatly reduce false positive images in the dataset. Finally, a region
around both eyes are cropped, with extra padding, to be used as input to train a
CNN, using returned coordinates from MTCNN for the eyes. This research will
focus on measuring if the eye region can be a useful area of interest for comparing
original videos to deepfake videos.

Keywords: Deep Learning, Deepfake, deepfake detection, CNN, computer vi-
sion, eye region

1 Introduction

Deepfakes are manipulated images or videos that usually are an attempt to affect an
individual’s image or reputation, or deepfakes are used to spread disinformation. While
they are somewhat easy to distinguish based on the viewer, they are becoming rampant
because there are many times where they are difficult to tell if the video is real or fake.
The goal of this research is to use deep learning to create a convolutional neural network
(CNN) trained in distinguishing between real and fake images to then be able to detect
manipulated image sequences in videos. There are a few public datasets that can be
used to train a model. For this research, the dataset DeepFakeDetection [1] from the
FaceForensics++ collection [1] will be used. DeepFakeDetection [1] consists of one
thousand original videos, and three thousand manipulated videos of the originals. While
deepfakes can be used to alter both visual and auditorial information, this research will
only focus on the visual information from the videos. There exist patterns within deep-
fakes that can be learned by a CNN [2] [3] to be able to detect potential manipulation,
such as the boundary where a fake face is placed over an original.

mailto:dmjohns8@aggies.ncat.edu
mailto:tgwyn@aggies.ncat.edu

2

Fig. 1. An original extracted face (right) and the same face, manipulated at the same frame (left).
The left image is an example of a deepfake from the DeepFakeDetection dataset [1] [4].

2 Background

Deepfakes are popularly created using Generative Adversarial Networks (GAN), which
creates data after training, and validates against itself to increase realism [5]. In some
of the more rudimentary forms, deepfakes present themselves as a false face superim-
posed on an original, unmanipulated face. Oftentimes, there is some brushing involved
to allow better edge blending, this can be seen in Figure 1. This style of deepfake crea-
tion is famously used online with the actor Nicolas Cage’s face being superimposed on
various people [6], such as other celebrities or world leaders. The increase in hyperre-
alism from deepfakes also leads to the potential for mis-, or disinformation, to spread.
An example of a deepfake created using improved GAN technology would be the video
of U.S. President Barack Obama [7] manipulated by the director and comedian Jordan
Peele. While these examples show the humor and potential behind deepfakes, often-
times, they are used as propaganda. Jordan Peele used his deepfake as a way to show
how videos on the Internet may not always be original, “good faith” videos, but rather
disinformation. Some states have gone to pass laws that make the use of deepfakes for
political purposes, although enforcement remains problematic. Deepfakes are created
using a type of CNN [5], and typically includes artifacts in the manipulated video that
can be detected either by a person or by machine. Below are previous works that have
also used CNN detect anomalies and artifacts based on the features from extracted im-
ages. The datasets used in the related works are not the same use here, although some
use datasets from the same collection, FaceForensics++ [1], others use datasets created
from different deepfake methods.

3

3 Related Works

Deepfakes, in their fundamental nature, are vectors for misinformation. Given their po-
tential, it would be good to have ways to detect various types of deepfakes and their
respective patterns in images. The following sections include various works related to
the discussed problem.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are deep learning models that are commonly
used on image data, or data that can be processed as image data. There have been pre-
vious works at constructing CNNs to detect deepfakes on different datasets, either by
classifying against entire faces [5] or by focusing on specific extracted regions [2] [3].
In building a simple CNN based around the face region on the Celeb-DF dataset, clas-
sification close to 70% could be achieved [8]. Other methods of deepfake detection,
such as using Scale-Invariant Feature Transform (SIFT) with CNN, which focus on
specific regions of the face using SIFT [2], then using those results as input for a CNN,
produced classification accuracies closer to 93%. By focusing on a specific region of
the extracted face, a CNN can be constructed to detect deepfakes with greater accuracy
than training on the entire face.

3.2 Generative Adversarial Networks

Generative adversarial networks (GAN) are deep learning models consisting of paired
neural networks, or sub-models, that work against each other to produce realistic im-
ages [5]. The paired neural networks, the generator and the discriminator, tend to be
CNNs, where the generator creates fake data that looks real, while the discriminator
classifies real and fake data. When training with paired sub-models, a generator can
create fake images, which are passed to the discriminator, where a classification is pre-
dicted. Based on the result, the generator will adjust to try to “fool” the discriminator
into classifying fake data as real. This tandem generation and classifying leads to real-
istic images that are difficult to distinguish from original, unmanipulated images.

Fig. 2. Deepfake creation using GAN [8].

4

4 Materials & Methodology

Here, the tools used and methodology will be outlined to classify deepfakes using a
CNN.

4.1 Dataset

The dataset used comes from the FaceForensics++ collection of deepfakes [1]. The
current collection contains six sets of videos produced in different styles of manipula-
tion. A few of the datasets are Face2Face, DeepFakeDetection, FaceSwap, and Deep-
fakes. The DeepFakeDetection [1] dataset will be used as the source for videos. The
FaceForensics++ collection [1] consists of 1000 original videos that have been manip-
ulated to produced thousands more. In the DeepFakeDetection dataset [1], there are
1000 original videos, and 3000 manipulated videos. To balance original and manipu-
lated videos, every third manipulated video is used for every original video.

4.2 Frame Extraction

Next, using Python [9] and the OpenCV [10] library to load the video frame-by-frame,
a frame is extracted every 100ms and 40 frames are extracted per video. The frames are
then used as input to a face detection neural network for high accuracy face detection
in each frame. Frames without a high-confidence face are ignored.

4.3 Face and Eye Region Extraction

The face detection neural network is Multitask Cascaded Neural Network (MTCNN)
[11], which is a model consisting of three stacked neural networks for bounding box
regression, face detection and alignment, and facial landmark location. MTCNN’s face
detection component is used to detect faces in extracted frames. Faces with a confidence
greater than 99% are retained in the extracted faces database, while other images are
ignored. MTCNN returns coordinates for facial landmarks, such as the eyes, nose, and
mouth. Using the coordinates of the eyes, a bounding box is created to contain both
eyes at either end. The bounding boxes width and height are padded with 15 and 10
pixels, respectively, to increase the extracted region to also include potential regions of
manipulation and the bounding box edges from face swapping. After extraction, the
image database to be used as input to train a CNN consists of shape (40498, 20, 100,
3), where 20,249 RGB images are original and 20,249 RGB images are manipulated.

4.4 Construct Convolutional Neural Network

CNNs are great tools for classifying image data. Keras, within the TensorFlow platform
[12], is used to build the model. In creating a CNN, the input dataset must be split into
training and testing sets. The dataset is split with a ratio of 90% training and 10% test-
ing, or 36,449 training images and 4,049 testing images. Training is set to 200 epochs,

5

using the Adam optimizer with a learning rate of 0.0001. The proposed CNN model
consists of six layers: an input layer, three hidden layers, a dense layer, and finally an
output layer. To reduce overfitting, dropout is utilized between each layer, with a rate
of 0.3. Max pooling layers also proceed every convolutional layer. Accuracies should
exceed 80% to be considered statistically relevant.

Fig. 3. Architecture of CNN model used

Fig. 4. Visualization of proposed CNN model

6

4.5 Compare Test Results

It is worth noting that the construction of a CNN model does not have to be limited to
the dataset originally designed in mind. Given a collection of datasets, where each da-
taset is derived from the same set of original videos, in the case of FaceForensics++
[1], it would be fairy simple to retrain the model against similar, but different data.
Since manipulated data come from the same source, the original data does not need to
be reextracted, just the manipulated data. The new, manipulated data, along with the
original data, are used to train the same CNN model-concept to compare metrics.

5 Results & Conclusion

Using the proposed CNN architecture, a model was created on the DeepFakeDetection
dataset [1] with accuracy of about 98.3% at epoch 200. At epoch 50, validation accu-
racy tends to be around 90% but continues to increase, even beyond 200 epochs. Alt-
hough training could continue beyond 200 epochs, accuracy and loss were not improv-
ing enough to warrant the extended training. Considering deepfakes are created using
technologies based on CNN, it would seem possible to construct a CNN that could
detect deepfakes, and this research shows that it is possible to detect deepfakes with
strong confidence. The proposed CNN also provided significant results on other da-
tasets from the FaceForensics++ collection [1], such as Face2Face [1], FaceSwap [1],
and NeuralTextures [1]. Some datasets may need additional work on the CNN to in-
crease positive detection rates, such as with detection in the NeuralTextures dataset [1]
within FaceForensics++ [1].
This research focused on the creation of a simple CNN, which could be a helpful tool
to determine if an image has been manipulated. By restricting images to specific, fea-
ture-containing regions, such as around the eyes, a high-accuracy CNN can be created
to detect and potentially help mitigate the use of false media for disinformation, while
still allowing the creative use of generative adversarial networks.

7

Fig. 5. Training and Validation accuracy/loss curves

Fig. 6. Resulting Confusion Matrix

Fig. 7. ROC curve

K-Fold Accuracies

0 98.07

1 98.32

2 98.44

3 98.05

4 98.27

8

5 98.52

6 98.47

7 98.02

8 98.59

9 97.68

Mean 98.24

St. Dev. 0.27

Table 1. Accuracy results from k-fold validation, k=10

Table 2. Accuracy results comparison between datasets on same CNN model architecture

6 Acknowledgements

This research is supported by National Science Foundation (NSF). Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF.

Dataset Average Accuracies

DeepFakeDetection 98.3%

FaceSwap 97.8%

Face2Face 86.5%

NeuralTextures 67.2%

9

References

1. Face{F}orensics++: Learning to Detect Manipulated Facial Images. Rössler,
Andreas, et al. s.l. : International Conference on Computer Vision (ICCV), 2019.
2. Burroughs, Sonya, Roy, Kaushik and Gokaraju, Balakrishna. Detection Analysis of
DeepFake Technology by Reverse Engineering Approach (DREA) of Feature
Matching. Springer in Algorithm for Intelligent System (AIS). s.l. : International
Conference on Machine Intelligence and Smart Systems, 2020.
3. Wodajo, Deressa and Atnafu, Solomon. Deepfake Video Detection Using
Convolutional Vision Transformer. arxiv.org. March 11, 2021.
https://arxiv.org/pdf/2102.11126.pdf.
4. (Jigsaw), Nick Dufour (Google Research) and Andrew Gully. Contributing Data to
Deepfake Detection Research. Google Blog. Google, September 24, 2049.
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html.
5. Fake Faces Identification via Convolutional Neural Network. Huaxiao Mo, Bolin
Chen, Weiqi Luo. Innsbruck : Association for Computing Machinery, 2018.
IH&MMSec '18: Proceedings of the 6th ACM Workshop on Information Hiding and
Multimedia Security. pp. 43-47.
6. derpfakes. Nicolas Cage | Mega Mix Two | Derpfakes. YouTube. February 02, 2019.
https://www.youtube.com/watch?v=_Kuf1DLcXeo.
7. Buzzfeed Video, Jordan Peele. You Won’t Believe What Obama Says In This Video!
�. YouTube. April 17, 2018. https://www.youtube.com/watch?v=cQ54GDm1eL0.
8. Deepfake Video Detection Using Convolutional Neural Network. A. Karandikar, V.
Deshpande, S. Singh, S. Nagbhidkar, S. Agrawal. 2020, International Journal of
Advanced Trends in Computer Science and Engineering.
9. Python. https://www.python.org/.
10. OpenCV. https://opencv.org/.
11. Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint Face Detection
and Alignment using Multi-task Cascaded Convolutional Networks. 2016.
12. Tensorflow. https://www.tensorflow.org/.
13. Rossler, Andreas, et al. FaceForensics++: Learning to Detect Manipulated Facial
Images. The CVF. 2019.
https://openaccess.thecvf.com/content_ICCV_2019/papers/Rossler_FaceForensics_Le
arning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.pdf.
14. Dataset, FaceForensics++. GitHub. https://github.com/ondyari/FaceForensics.

