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ABSTRACT

System optimum (SO) routing, wherein the total travel time of all
users is minimized, is a holy grail for transportation authorities.
However, SO routing may discriminate against users who incur
much larger travel times than others to achieve high system effi-
ciency, i.e., low total travel times. To address the inherent unfairness
of SO routing, we study the f-fair SO problem whose goal is to
minimize the total travel time while guaranteeing a f > 1 level of
unfairness, which specifies the maximum possible ratio between the
travel times of different users with shared origins and destinations.

To obtain feasible solutions to the f-fair SO problem while achiev-
ing high system efficiency, we develop a new convex program, the
Interpolated Traffic Assignment Problem (I-TAP), which interpo-
lates between a fairness-promoting and an efficiency-promoting
traffic-assignment objective. We evaluate the efficacy of I-TAP
through theoretical bounds on the total system travel time and
level of unfairness in terms of its interpolation parameter, as well as
present a numerical comparison between I-TAP and a state-of-the-
art algorithm on a range of transportation networks. The numerical
results indicate that our approach is faster by several orders of mag-
nitude as compared to the benchmark algorithm, while achieving
higher system efficiency for all desirable levels of unfairness. We
further leverage the structure of I-TAP to develop two pricing mech-
anisms to collectively enforce the I-TAP solution in the presence of
selfish homogeneous and heterogeneous users, respectively, that
independently choose routes to minimize their own travel costs.
We mention that this is the first study of pricing in the context of
fair routing for general road networks.

KEYWORDS

Traffic Assignment; Congestion Games; Nash Equilibria

ACM Reference Format:

Devansh Jalota, Kiril Solovey, Matthew Tsao, Stephen Zoepf, and Marco
Pavone. 2022. Balancing Fairness and Efficiency in Traffic Routing via In-
terpolated Traffic Assignment. In Proc. of the 21st International Conference

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

678

Astronautics, Stanford University
Stanford, California, USA
pavone@stanford.edu

on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Traffic congestion has soared in major urban centres across the
world, leading to widespread environmental pollution and huge
economic losses. In the US alone, almost 90 billion US dollars of
losses are incurred every year, with commuters losing hundreds of
hours due to traffic congestion [13]. A contributing factor to increas-
ing road traffic is the often sub-optimal route selection by users
due to the lack of centralized control [23, 24]. In particular, selfish
routing, wherein users choose routes to minimize their travel times,
results in a user equilibrium (UE) traffic pattern that is often far
from the system optimum (SO) [27, 32]. To cope with the efficiency
loss due to the selfishness of users, several methods including the
control of a fraction of compliant users [26] and marginal cost tolls,
where users pay for the externalities they impose on others, have
been used to enforce the SO solution as a UE [20, 30].

While determining SO tolls is of fundamental theoretical impor-
tance, it is of limited practical interest [31] since SO traffic patterns
are often unfair with some users incurring much larger travel times
than others. This discrepancy among user travel times is referred
to as unfairness, which, more formally, is the maximum possible
ratio across all origin-destination (O-D) pairs of the travel time of a
given user to the travel time of the fastest user between the same
O-D pair. The unfairness of the SO solution can be quite high in
real-world transportation networks, since users may spend nearly
twice as much time as others travelling between the same O-D
pair [16]. Moreover, a theoretical analysis established that the SO
solution can even have unbounded unfairness [22].

The lack of consideration of user-specific travel times in the SO
problem has led to the design of methods that aim to achieve a
balance between the total travel time of a traffic assignment and
the level of fairness that it provides. In a seminal work, Jahn et al.
[16] introduced the Constrained System Optimum (CSO) to reduce
the unfairness of traffic flows by bounding the ratio of the normal
length of a path of a given user to the normal length of the shortest
path for the same O-D pair. Here, normal length is any metric for an
edge that is fixed a priori and is independent of the traffic flow, e.g.,
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edge length or free-flow travel time. While many approaches to
solve the CSO problem have been developed [1-3], they suffer from
the limitation that the level of experienced unfairness in terms of
user travel times can be much higher than the bound on the ratio
of normal lengths that the CSO is guaranteed to satisfy. In addition
to this drawback, the algorithmic approaches to solve the CSO
problem are often computationally prohibitive and do not provide
theoretical guarantees in terms of the resulting solution fairness
and efficiency. Furthermore, it is unclear how to develop a pricing
scheme to enforce such proposed traffic assignments in practice.
In this work, we study a problem analogous to CSO that differs
in the problem’s unfairness constraints. In particular, we explicitly
consider the unfairness in terms of user travel times as in [4], which,
arguably, is a more accurate representation of user constraints as
it accounts for costs that vary according to a traffic assignment.
Our work further addresses the algorithmic concerns of existing
approaches to solve fairness-constrained traffic routing problems
by developing (i) a computationally-efficient approach that trades
off efficiency and fairness in traffic routing, (ii) theoretical bounds
to quantify the performance of our algorithm, and (iii) a pricing
mechanism to enforce the resulting traffic assignment.

Contributions. We study the f-fair System Optimum ($-SO) prob-
lem, which involves minimizing the total travel time of users sub-
ject to unfairness constraints, where a f > 1 bound on unfairness
specifies the maximum allowable ratio between the travel times of
different users with shared origins and destinations.

We develop a simple yet effective approach for f-SO that involves
solving a new convex program, the interpolated traffic assignment
problem (I-TAP). I-TAP interpolates between the fair UE and ef-
ficient SO objectives to achieve a solution that is simultaneously
fair and efficient. This allows us to approximate the f-SO problem
as an unconstrained TAP, which can be solved quickly. We fur-
ther present theoretical bounds on the total system travel time and
unfairness level in terms of the interpolation parameter of I-TAP.

We then exploit the structure of I-TAP to develop two pricing
schemes which enforce users to selfishly select the flows satisfying
the f bound on unfairness computed through our approach. For
homogeneous users with the same value of time we develop a
natural marginal-cost pricing scheme. For heterogeneous users, we
exploit a linear-programming method [12]. We mention that our
work is the first to study road pricing in connection with fair routing
for general road networks as opposed to, e.g., parallel networks.

Finally, we evaluate the performance of our approach on real-
world transportation networks. The numerical results indicate sig-
nificant computational savings as well as superior performance
of I-TAP for all desirable levels of unfairness f, as compared to
the algorithm in [16]. Moreover, our results demonstrate that our
approach can reduce unfairness by 50% while increasing the total
travel time by at most 2%, which indicates that a huge gain in user
fairness can be achieved for a small loss in efficiency, making our
approach a desirable option for use in route guidance systems.

This paper is organized as follows. Section 2 reviews related
literature. We introduce in Section 3 the 5-SO problem and metrics
to evaluate the fairness and efficiency of a traffic assignment. We
introduce the I-TAP method and discuss its properties in Section 4,
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and develop pricing schemes in Section 5. We evaluate the per-
formance of the I-TAP method through numerical experiments in
Section 6 and provide directions for future work in Section 7.

In the extended version of our paper [17], we provide omitted
proofs, numerical implementation details of our approach and ex-
tensions to fairness notions beyond the one considered here.

2 RELATED WORK

The trade-off between system efficiency and user fairness has been
widely studied in applications including resource allocation, reduc-
ing the bias of machine-learning algorithms, and influence maxi-
mization. While different notions of fairness have been proposed,
the level of fairness is typically controlled through the problem’s
objective or constraints. For instance, fairness parameters that trade-
off the level of fairness in the objective can be tuned to investigate
the loss in system efficiency in the context of influence maximiza-
tion [21] and resource allocation [6] problems. On the other hand,
fairness parameters that bound the degree of allowable inequality
between different user groups through the problem’s constraints
have been proposed to reduce bias towards disadvantaged groups
[28], e.g., through group-based or diversity constraints [15, 29].

In the context of traffic routing, several traffic assignment formu-
lations have been proposed to achieve a balance between multiple
performance criteria [9, 10], with a particular focus on fairness con-
siderations in traffic routing [16]. Since Jahn et al. [16] introduced
the CSO problem, there have been both theoretical studies [25]
as well as the development of heuristic approaches to solve the
NP-hard CSO problem. For instance, [16] proposed a Frank-Wolfe
based heuristic, while others have considered linear relaxations of
the original problem [1-3]. Each of these approaches bounds the
level of unfairness in terms of normal lengths of paths by restricting
the set of eligible paths on which users can travel to those that meet
a specified level of normal unfairness. However, the experienced
unfairness in terms of the travel times may be much higher than
the level of normal unfairness, which is an a priori fixed quantity.

This inherent drawback of the CSO problem in limiting the ex-
perienced unfairness in terms of user travel times was overcome
by [4], which proposed two Mixed Integer Non-Linear Program-
ming models to capture traffic-dependent notions of unfairness.
Their approach to solve these models relies on a linearization heuris-
tic for the edge travel-time functions, which are in general non-
linear. Achieving a high level of accuracy of the linear relaxations
in approximating the true travel-time functions, however, requires
solving a large MILP which is computationally expensive. Unlike [4],
our I-TAP method is computationally inexpensive, while directly
accounting for non-linear travel-time functions.

A further limitation of the existing methods for fair traffic rout-
ing is that there are limited results in providing pricing schemes
to induce selfish users to collectively form the proposed traffic
patterns, e.g., those satisfying a certain bound on unfairness. For
instance, [11] provides tolling mechanisms to enforce fairness con-
strained flows which applies only to parallel networks. In more
general networks, [19] proposes an auction-based bidding mech-
anism for users to be assigned to precomputed paths. However,
this approach cannot be applied as-is to our setting as users are
unconstrained with respect to a specific path set.
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3 MODEL AND PROBLEM DEFINITION

We model the road network as a directed graph G = (V, E), with
the vertex and edge sets V and E, respectively. Each edge e € E
has a normal length 7., and a flow-dependent travel-time function
te : R>9 — Rso, which maps xe, the rate of traffic on edge e, to the
travel time #,(x,). As is standard in the traffic routing literature, we
assume that the function e, for each e € E, is differentiable, convex,
locally Lipschitz continuous, and monotonically increasing.

Users make trips between a set of O-D pairs, and we model users
with the same origin and destination as one commodity, where K
is the set of all commodities. Each commodity k € K has a demand
rate d. > 0, which represents the amount of flow to be routed
on a set of directed paths P between its origin and destination.
The edge flow of each commodity k is given by x* = {x’e‘}eeE,
while the aggregate edge flow is denoted as x := {x¢}ecp. For an
edge flow x := {x¢}ecp and a path P € P = Uy Pk, the amount
of flow routed on the path is denoted as xp, where the vector of
path flows f = {xp : P € P}. Then, the travel time on path P is
tp(X) = Yeep te(xe), while np = Y. cp 1e is its normal length.

We assume users are selfish and thus choose paths that minimize
their total travel cost that is a linear function of tolls and travel time.
For a value of time parameter v > 0, and a vector of edge prices
(or tolls) T = {7e}eeE, the travel cost on a given path P under the
traffic assignment x is given by Cp(x, 7) = 0tp(X) + X ecp Te-

3.1 Traffic Assignment

In this work we will consider several variants of the traffic assign-
ment problem (TAP). The goal of the SO traffic assignment problem
(SO-TAP) is to route users to minimize the total system travel time.
This behavior is captured in the following convex program:

DEFINITION 1 (PROGRAM FOR SO-TAP [27]).

min Kh%0(x) = Z Xete (Xe), (1a)
f ecE
s.t. Z Z Xp = Xe, Ve €E, (1b)
k€K PePy:ecP
Z xp=dy, VkeKk, (1c)
PePy
xp >0, VPe®P, (1d)

with edge flow Constraints (1b), demand Constraints (1c), and non-
negativity Constraints (1d).

We mention that the total travel time objective is only a function
of the aggregate edge flow x, which is related to the path flow f
through Constraint (1b). Note for any given path flow f that both
the edge flow x and the commodity-specific edge flows x¥ for each
commodity k € K are uniquely defined. Closely related to SO-TAP
is the UE traffic assignment problem (UE-TAP) that emerges from
the selfish behavior of users that minimize their own travel time,
and is described by the following convex program:

DEFINITION 2 (PROGRAM FOR UE-TAP [27]).

o 5= 3 [

ecE

(1b) - (1d).

(2a)

s.t. (2b)
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While the integral objective used to define UE-TAP has not found
a clear economic or behavioral interpretation within the transporta-
tion and game-theory communities [27], the optimal solution of
UE-TAP corresponds to an equilibrium, which can be seen through
the KKT conditions of this optimization problem. That is, UE-TAP
provides a polynomial time computable method to determine the
user equilibrium flows. A defining property of the UE solution
is that it is fair for all users since the travel time of all the flow
that is routed between the same O-D pair is equal. In contrast, at
the SO solution the sum of the travel time and marginal cost of
travel is the same for all users travelling between the same O-D
pair. Thus, marginal cost pricing is used to induce selfish users
to collectively form the SO traffic pattern. While the number of
constraints, which depend on the path sets %, can be exponential
in the size of the transportation network, both SO-TAP and UE-TAP
are efficiently computable since they can be formulated without
explicitly enumerating all the path level flows and constraints [27].

3.2 Fairness and Efficiency Metrics

We evaluate the quality of any traffic assignment x using two met-
rics, namely: (i) efficiency and (ii) fairness.

We evaluate the efficiency of a traffic assignment by comparing
its total travel time to that of the SO edge flow x%©. Recalling that
hS© (x) denotes the total travel time of the edge flow x, the ineffi-

SO
ciency ratio of x is p(x) := hﬁ‘Tég‘)}). Note that for the UE solution

xUE the inefficiency ratio is the Price of Anarchy (PoA) [18].

To evaluate the fairness of a traffic assignment, we first introduce
the notion of a positive path from [5].

DEFINITION 3 (PosITIVE PATH). For any path flow f with corre-
sponding commodity-specific edge flows x| a path P € Py is positive
for a commodity k € K if for all edges e € P, x]eC is strictly positive.
The set of all positive paths for a flow f and commodity k is denoted
as P;(f) ={P:Pe€ Pk,xif > 0, foralle € P}.

The importance of the notion of a positive path is that the path
decomposition of the commodity-specific edge flows xk may be
non-unique; however the set of positive paths is always uniquely
defined for such edge flows. That is, for commodity specific edge
flows x* the set of positive paths for any two path decompositions
fi and f, are equal, i.e., P/:'(fl) = P;(fg).

We evaluate the fairness of a traffic flow f with an edge decom-
position x through its corresponding unfairness U, which is defined
as the maximum ratio across all O-D pairs of (i) the travel time
on the slowest, i.e., highest travel time, positive path to (ii) the
travel time on the fastest positive path between the same O-D pair,
ie, U(f) = maxgeg maxgp pept % That is, U(f) returns the
maximum possible ratio of travel times on positive paths across
all commodities with respect to the path flow f. As a result, the
unfairness U is a number between one and infinity, and a traffic
assignment has a high level of fairness if its unfairness is close to
one while it has a low level of fairness if the corresponding un-
fairness is much larger than one. In contrast, other valid notions
of unfairness could also be considered. For instance, for a given
path flow decomposition f with a corresponding edge flow x, the
unfairness U(+) of the path flows can be evaluated as the maximum
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ratio between the travel times of any two users travelling between

the same O-D pair, i.e., U(f) = maxgcg MaXQ RePyixo,xp>0 %.
Note here that we only consider a ratio of travel times on paths
with strictly positive flow for the path decomposition f rather than
the ratio of travel times for all positive paths. We defer a detailed
treatment of other path-based unfairness measures to the extended
version of our paper [17] and highlight here some key features of
the positive path based unfairness measure U.

The unfairness measure U(f) can be efficiently computed and
has the benefit that it applies to all possible path decompositions of
the commodity specific edge flows x¥. As aresult, in the context of a
single O-D pair travel demand, the unfairness measure U (f) has the
benefit that it is a property of the unique edge flow x and is relevant
when users are not constrained to a specific path decomposition,
as happens in practice. In contrast, path decomposition specific
unfairness measures, e.g., U(f), are likely to be more sensitive to
the method used to compute the path decomposition. Furthermore,
we note that the positive path based unfairness notion serves as an
upper bound on the ratio of travel times for any two users travelling
between the same O-D pair for the path flow f, i.e., U(f) < U(f)
for all f. As a result, our theoretical bounds on unfairness obtained
for the positive path-based unfairness notion will naturally extend
to path decomposition specific unfairness measures such as U (f).
Thus, in the rest of this paper we focus on the positive path-based
unfairness measure and, for numerical comparison, we present
other path decomposition specific unfairness measures, e.g., U(f),
in the extended version of our paper [17].

3.3 Toy Network Example

To illustrate the fairness and efficiency properties of the two opti-
mization problems, SO-TAP and UE-TAP, we present a toy example
of a two-edge Pigou network, as depicted in Figure 1. In particular,
consider a demand of one that needs to be routed from the origin
o1 to the destination vy, with two edges (e; and ez) connecting the
origin to the destination. Observe that if the travel time functions
on the two edges are given by #1(x1) = 1 and t2(x3) = xg, then
under the UE-TAP solution all users will be routed on edge two,
while the SO-TAP solution that minimizes the total travel time will
route 0.5 units of flow on both edges. The level of unfairness and
the total travel time of the two traffic assignments are presented
in the following table, which indicates that the UE-TAP solution is
fair but inefficient while the SO-TAP solution is efficient but unfair.

&1 UETAP SO-TAP
Total Travel 1 3/4
v1Q V2 Time
e, Unfairness 1 2

Figure 1: A two-edge Pigou network to illustrate the fairness and efficiency
properties of SO-TAP and UE-TAP. For a demand of one, the UE-TAP solution
routes all the flow on edge e; resulting in a fair solution but a total travel
time of one. On the other hand, the SO-TAP solution routes 0.5 units of
flow on both edges, resulting in an efficient solution with the minimum
total travel time but an unfairness of two.
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3.4 f-Fair System Optimum

To trade-off between user fairness and system efficiency, we con-
sider the following S-fair System Optimum (-SO) problem, wherein
we impose an upper bound f € [1, o) on the maximum allowable
unfairness in the network, i.e., U(f) < f for a path flow f.

DEFINITION 4 (PROGRAM FOR [-FAIR SYSTEM OPTIMUM).

mfin eze;ixete (xe), (3a)
st (1b) - (1d), (3b)
U(f) < B. (3¢)

Note that without the unfairness Constraints (3c) (or when f =
), the above problem exactly coincides with SO-TAP. Furthermore,
the $-SO problem is always feasible for any f € [1, o), since a
solution to UE-TAP exists and achieves an unfairness of § = 1.

We also note that the difference between the f-SO and CSO
problems is in the unfairness Constraints (3c). While the f-SO
problem explicitly imposes an upper limit on the ratio of travel times
on positive paths, the CSO problem imposes normal unfairness
constraints for each path P € £ and any commodity k € K of the
form np < ¢ minp:cp, np+ for some normal unfairness parameter
¢ > 1. That is, the CSO problem minimizes the total travel time
subject to flow conservation constraints over the set of paths with a
normal unfairness level of at most ¢. The authors of [16] use normal
unfairness, which is a fixed quantity, as a proxy to limit the ratio of
user travel times, which vary according to a traffic assignment.

The optimal solution of the -SO problem corresponds to the
highest achievable system efficiency whilst meeting unfairness con-
straints. However, solving f8-SO directly is generally intractable as
the unfairness Constraints (3c) are non-convex if the travel time
function is non-linear. Moreover, since the unfairness metric stud-
ied in this work accounts for user costs that vary according to a
traffic assignment, unlike normal unfairness that is an apriori fixed
quantity, the NP-hardness of the CSO problem [16] suggests the
computational hardness of $-SO [4, 5].

Finally, we mention that we consider a setting wherein the travel
demand is time invariant and fractional user flows are allowed,
as is standard in the traffic routing literature. Also, for notational
simplicity, we consider for now a model where all users are homo-
geneous, i.e., they have an identical value of time v, and present
an extension of our pricing result to the setting of heterogeneous
users in Section 5.2.

4 A METHOD FOR S-FAIR SYSTEM OPTIMUM

In this section, we develop a computationally-efficient method for
solving -SO with edge-based unfairness constraints, to achieve
a traffic assignment with a low total travel time, whose level of
unfairness is at most f. In particular, we propose a new formulation
of TAP, which we term interpolated TAP (or I-TAP), wherein the
objective function linearly interpolates between the objectives of
UE-TAP and SO-TAP. Our main insight is that the UE solution
achieves a high level of fairness, whereas the SO solution achieves
a low total travel time, and we wish to get the best of both worlds—
high level of fairness at a low total travel time.
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In this section, we describe the I-TAP method and evaluate its effi-
cacy for the $-SO problem by addressing three key concerns regard-
ing the solution efficiency, feasibility and computational tractability.
In particular, we establish a relationship between I-TAP and -SO
through theoretical bounds on the inefficiency ratio (Section 4.2)
and its optimality for two-edge Pigou networks (Section 4.3). We
also establish the feasibility of I-TAP for $-SO by finding the range
of values of the interpolation parameter such that the unfairness
of the optimal I-TAP solution is guaranteed to be less than f (Sec-
tion 4.2). Finally, we present an equivalence between I-TAP and
UE-TAP to show that I-TAP can be computed efficiently (Section 4.4).
These results indicate that we can approximate -SO as an uncon-
strained traffic assignment problem that can be solved quickly. We
also mention that we perform a sensitivity analysis to establish the
continuity of the optimal traffic assignment and its total travel time
in the interpolation parameter of I-TAP in the extended version of
our paper [17].

4.1 Interpolated Traffic Assignment
We provide a formal definition of interpolated TAP:

DEFINITION 5 (I-TAP). For a convex combination parameter a €
[0, 1], the interpolated traffic assignment problem, denoted as I-TAP,,
is given by:

mfin Rl (x) == ah59(x) + (1 - @)Y E (x), (4a)

st (1b) - (1d). (4b)

A few comments are in order. First, it is clear that I-TAPy and I-
TAP; correspond to UE-TAP and SO-TAP, respectively. Next, under
the assumption that the travel time functions are strictly convex,
we observe that for any & € [0, 1] the program I-TAP,, is a convex
optimization problem with a unique edge flow solution x(«).

For numerical implementation purposes, we propose a dense
sampling procedure to compute a solution for f-SO with a low
total travel time while guaranteeing a  bound on unfairness. In
particular, to compute a good solution for -SO, we evaluate the
optimal solution f(«) of I-TAP, (with corresponding edge flows
x(a)) for « taken from a finite set A := {0,s, 2s, ..., 1} for some
step size s € (0,1). That is, in O( %) computations of I-TAP, we can
return the path flow f(a*) (with edge decomposition x(a*)), for
some a* € A, with the lowest total travel time that is at most -
unfair, i.e., U(f(a*)) < f, and the value #5° (x(a*)) is minimized.

We observe experimentally (Section 6.2) that this method of
computing the I-TAP solution achieves a good solution for -SO
in terms of fairness and total travel time. We note here that our
approach also naturally extends to other unfairness notions wherein
the user equilibrium achieves the highest possible level of fairness,
while the system optimum achieves the lowest total travel times
(see the extended version of our paper [17]). Finally, we restrict
«a to lie in the finite set Ay since the exact functional form of the
optimal solution f () (with edge flow x()), and thus the unfairness
U(f(a)) and the total travel time h5° (f(«)) functions, in « is not
directly known, though we show that x(a) and hSC (x(a)) are
continuous in « in the extended version of our paper [17].

We also test (Section 6) an alternative approach to I-TAP, which
instead of taking a convex combination of the SO-TAP and UE-TAP
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objectives, interpolates between their unique edge flow solutions.
That is, we first compute the optimal edge flow solutions of UE-TAP
(xYE) and SO-TAP (x59), and return the value (1—y)xYE +yx5 for
v € [0, 1]. While this Interpolated Solution (I-Solution) method only
requires two traffic assignment computations as compared to O(%)
computations of the I-TAP method, it leads to poor performance
in comparison with the I-TAP method (see Section 6) and does not
induce a natural marginal-cost pricing scheme, as I-TAP does (see
Section 5). Thus, we focus on I-TAP for this and the next sections.

4.2 Solution Efficiency and Fairness of I-TAP

In this section, we study the influence of the convex combination
parameter o of I-TAP on the efficiency and fairness of the optimal
solution f(«) (and edge flow x()). In particular, we characterize
(i) an upper bound on the inefficiency ratio as we vary «, and (ii) a
range of values of & that are guaranteed to achieve a specified level
of unfairness f for any optimal solution f(«).

We first evaluate the performance of I-TAP by establishing an
upper bound on the inefficiency ratio of the optimal solution of
I-TAP, as a function of «. Theorem 1 shows that this bound is a
minimum between (i) the PoA, which we denote as p, and (ii) a
more elaborate bound that is monotonically non-increasing in a.

TaEOREM 1 (I-TAP SoruTIoN EFFICIENCY). Foranya € (0,1), let
x(a) be the optimal edge flow of I'TAP,. Then, the inefficiency ratio
1-a hUE(x(l))—hUE(x(O))}

hSO(x(1))

For a proof of Theorem 1 and all subsequent results, see the
extended version of our paper [17]. Theorem 1 establishes that,
even in the worst case, the ratio between the total travel time of the
edge flow x(a) and that of the system optimal solution is at most
the PoA. This result is not guaranteed to hold for other state-of-
the-art CSO algorithms, e.g., the algorithm in [16] (see Section 6).

Further, Theorem 1 shows that the upper bound on the inefficiency
h50.

p(x(a)) Smin{p, 1+

ratio becomes closer to one as the objective hl« gets closer to

We now establish a range of values of & at which the any opti-
mal solution f(a) of -TAP,, is guaranteed to attain a f bound on
unfairness for polynomial travel time functions, e.g., the commonly
used BPR function [27].

THEOREM 2 (FEASIBILITY OF I-TAP For -SO). Suppose that the
largest degree of the polynomial travel time functions te(x,) is m
for some e € E. Then, the unfairness of any optimal solution f(a) of

I-TAPy is upper bounded by p, i.e, U(f(a)) < B, forany a < %

We can further show that the bound in Theorem 2 is in fact
tight by demonstrating an instance such that for any o > % the
unfairness of the solution f(«) of I-TAP,, is strictly greater than f.

LEMMA 1 (TIGHTNESS OF UNFAIRNESS BOUND). Supposef () isan
optimal solution to I-TAP, for any a € [0, 1]. Then, there exists a two-
edge parallel network with polynomial travel time functions of degree
at most m such that for any o > ‘B—;ll the unfairness U(f(a)) > p.

Together, Theorem 2 and Lemma 1 imply that a  level of un-
fairness can be guaranteed using I-TAP on all traffic networks only
p-1

when a < ==, where m is the maximum degree of the polynomial

corresponding to the travel time functions for each edge e € E.
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4.3 Optimality of I-TAP

In this section, we show that I-TAP exactly computes the minimum
total travel time solution for any desired level of unfairness f in any
two edge Pigou network. That is, there is some convex combination
parameter a* for which the solution of I-TAP,+ is also a solution
to the $-SO problem for any two edge Pigou network.

LEMMA 2 (OpTIMALITY OF I-TAP). Consider a two edge Pigou
network where the optimal solution of the f-SO problem is xz for any

B € [1,00). Then, there exists a convex combination parameter o*
such that x(a™) = xz,.

We mention that Lemma 2 compares only the edge flows of I-
TAP and $-SO since the path and edge flows coincide for a two
edge Pigou network. We also note that while the optimality for a
Pigou network may appear restrictive, such networks are of both
theoretical [20, 24] and practical significance [8].

4.4 Computational Tractability of I-TAP

Having established that we can solve I-TAP to obtain an approxi-
mate solution to f-SO, we now establish that I-TAP can be computed
efficiently due to its equivalence to a parametric UE-TAP program.

OBseRVATION 1 (UE EQuivaLENcY OF I-TAP). Foranya € [0,1],
I-TAP,, reduces to UE-TAP with objective function ). cg foxe ce(y, a) dy,
where ce(y, @) = te(y) + ayt,(y).

Observation 1 follows from the fundamental theorem of calculus.
Note that for each a € [0, 1], the differentiability, monotonicity,
and convexity of many typical travel time functions ., e.g., any
polynomial function such as the BPR function [27], imply that the
corresponding properties hold for the cost functions ce (xe, @) in
Xe. For numerical implementation, the equivalency of I-TAP, and
UE-TAP implies that I-TAP, inherits the useful property that the
linearization step of the Frank-Wolfe algorithm [27], when applied
to I-TAP,, corresponds to solving multiple unconstrained shortest
path queries. The latter motivates the highly efficient approach
which we employ in Section 6 to solve I-TAP,.

5 PRICING TO IMPLEMENT FLOWS

In this section, we leverage the structure of I-TAP to develop pricing
mechanisms to collectively enforce the I-TAP solution in the pres-
ence of selfish users that independently choose routes to minimize
their own travel costs. We first consider the case of homogeneous
users and show that I-TAP results in a natural marginal-cost pricing
scheme. Then, we characterize conditions under which tolls can be
used to enforce the I-TAP flows for heterogeneous users.

In this section, for the ease of exposition, we focus our discussion
on inducing the optimal edge flow x(«) of I-TAP,. We mention
that our approach can naturally be extended to enforcing optimal
path flows f(«) that satisfy a given level of unfairness. In particular,
we can consider a setting wherein users are recommended to use a
specified path set, e.g., by traffic navigational applications, as given
by f(«) and the tolls set are such that no user will have an incentive
to deviate from their recommended paths. Finally, we also mention
by Theorem 2 that focusing on the edge flow x(a) is without loss
of generality for certain ranges of « since the unfairness bound for
any optimal path flow solution f(«) is guaranteed to be satisfied.
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5.1 Homogeneous Pricing via Marginal Cost

In the setting where all users have the same value of time v, the
structure of I-TAP, yields an interpolated variant of marginal-cost
pricing to induce selfish users to collectively form the optimal edge
flow x(a) of I-TAP,. This result is a direct consequence of the
equivalence between I-TAP and UE-TAP from Observation 1.

LEmMMA 3 (PRICES TO IMPLEMENT FLOWS). Suppose that x(«) is a
solution to I'TAP, for some a € [0, 1]. Then x(c) can be enforced as
a UE by setting the prices as 1, = axe(a)t,(xe(a)) for eache € E.

Note from Lemma 3 that the edge prices are equal to  multiplied
by the marginal cost of users.

5.2 Heterogeneous Pricing via Dual Multipliers

The pricing mechanism in Section 5.1 is inapplicable to the hetero-
geneous user setting as it would require unrealistically imposing
different prices for users with different values of time for the same
edges. In this section, we consider heterogeneous users and lever-
age a linear-programming method [12] to establish that appropriate
tolls can be placed on the roads to induce heterogeneous selfish
users to collectively form the equilibrium edge flow x(a).

Before presenting the pricing scheme, we first extend the notion
of a commodity to a heterogeneous user setting. In particular, each
user belongs to a commodity k € K when making a trip on a set
of paths Py between the same O-D pair and has the value of time
v > 0. Then, under a vector of edge prices 7 = {7¢ }.cE the travel
cost that users in commodity k incur on a given path P € £ under
the traffic assignment x is given by Cp(x, 7) = X .cp (v te(xe) + 7e)-
Note that more than one commodity may make trips between the
same O-D pair, and a user equilibrium forms when the travel cost
for all users in a particular commodity is equal. We further note
that we maintain the unfairness notion presented in the work even
for heterogeneous users. That is, irrespective of the value of time
of two users travelling between the same O-D pair, the maximum
possible ratio between their travel times can be no more than f.

We now leverage the following result to provide a necessary and
sufficient condition that the optimal edge flow x(«) of -TAP, must
satisfy for it to be enforceable as a UE through road pricing.

LEmMMA 4 (CONDITION FOR FLOW ENFORCEABILITY). [12, Theorem
3.1]) Suppose that the non-negative flow x satisfies the edge flow and
demand constraints in Definition 1. Further, consider the linear pro-
gram: min gk .o Yikek Ok 2PeP; tp(x)d}ﬁ, where the non-negative

P

variables df, represent the flow of commodity k on path P € ka, and
Py denotes the set of all possible paths for commodity k. Here Q is the
set described by non-negative flows satisfying capacity constraints,
i.e, YkeK 2PePyiecP dllf, < X for all edges e € E, and demand con-
straints, i.e., Y pep, dllg = dy forallk € K. Then x can be enforced as
a UE if and only if the capacity constraints are met with equality for
each edge at the optimal solution of the linear program.

We now show that x(«) satisfies the condition in Lemma 4.

LEmMA 5 (HETEROGENEOUS USER FLOW ENFORCEABILITY). Sup-
pose that the edge flow x() is a solution for I'-TAP, for some a €
[0, 1]. Then for the heterogeneous user setting, x(a) can be enforced
as a user equilibrium.
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Table 1: Problem instance attributes and computation time. For each in-
stance we report the number of vertices |V, edges |E|, and OD pairs |K|. In
addition, we report the computation time of each instance for the previous
method of Jahn et al. [16] and our I-TAP method using 100 iterations of the
Frank-Wolfe algorithm.

attributes runtime (sec.)
Region Name IVl |E| |K| | Jahnetal. I-TAP
Sioux Falls (SF) 24 76 528 20.0 0.03
Anaheim (A) 416 914 1406 74.0 0.33
Massachusetts (M) 74 258 1113 243 0.09
Tiergarten (T) 361 766 644 18.2 0.20
Friedrichshain (F) 224 523 506 19.8 0.12
Prenzlauerberg (P) | 352 749 1406 74.4 0.32

Lemma 5 implies that even when users are heterogeneous the
edge flow x(@) can be enforced as an equilibrium flow using tolls
set through the dual variables of a linear program.

6 NUMERICAL EXPERIMENTS

We now evaluate the performance of our I-TAP method for f-SO
on several real-world transportation networks. The results of our
experiments not only characterize the behavior of I-TAP but also
highlight that, compared to the algorithm in [16], our approach has
much smaller runtimes while achieving lower total travel times for
most levels S of unfairness. We present the implementation details
of the I-TAP method and the unfairness metric in the extended
version of our paper [17]. In the following, we describe the data-
sets we use and present the corresponding results to evaluate the
performance of our approach.

6.1 Data Sets

Table 1 shows the six instances we use for our study, which were ob-
tained from [14]. We use the BPR travel time function [27], defined
as te(xe) = & (1+ 0.15(),2—2)4), where &, is the free-flow travel time
on edge e, and k. is the capacity of edge e, which is the number of
users beyond which the travel time on the edge rapidly increases.

6.2 Results

Assessment of Theoretical Upper Bounds. We now assess the
theoretical upper bounds on the inefficiency ratio and unfairness
that were obtained in Section 4.2. We present the results for the
Prenzlauerberg data-set and note that the results extend to other
problem instances in Table 1 as well.

Figure 2 depicts both (i) the change in the inefficiency ratio
(left) and unfairness (right) of the solution of I-TAP using dense
sampling, and (ii) the theoretical upper bound of the inefficiency
ratio (Theorem 1) and unfairness (Theorem 2). As expected, the
dense sampling procedure results in both an inefficiency ratio and
unfairness that is below the theoretical upper bound for every value
of a.

Behavior of I-TAP. For each of the transportation networks in
Table 1, we now study the relationship between the convex combi-
nation parameter  and the (i) total travel time, and (ii) unfairness.

Figure 3 (left) shows the relationship between the inefficiency
ratio and a. Note that when @ = 1, the inefficiency ratio is one,
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Figure 2: Comparison between the inefficiency ratio (left) and unfairness
(right) of the solution of [-TAP sampling on the Prenzlauerberg data-set
and the theoretical bounds obtained in Theorems 1 and 2. The convex
combination parameters were chosen at increments of 0.01.

since the interpolated objective is the SO-TAP objective, and when
a = 0, the inefficiency ratio is the Price of Anarchy (PoA), since the
interpolated objective is the UE-TAP objective.

The relationship between unfairness and « is depicted on the
right in Figure 3, where for readability we have marked outliers
where large changes in the unfairness occur for small changes in a.
For an explanation of the jumps in the unfairness at certain values
of @, see the extended version of our paper [17].

Finally, for each transportation network the general trend of a
decrease in the inefficiency ratio and an increase in the unfairness
with an increase in a suggests that decreasing the total travel time
comes at the cost of an increase in the unfairness and vice versa.

Solution Quality Comparison. We now explore the efficiency-
fairness tradeoff through a comparison of the Pareto frontier of
the I-TAP method to the approach in [16], which is a benchmark
solution for fair traffic routing, and the I-Solution method described
in Section 4.1. To this end, we depict the Pareto frontier of the (i)
I-TAP method for 0.01 and 0.05 increments of the parameter «, (ii)
I-Solution method for 0.01 increments of the convex combination
parameter y, and (iii) Jahn et al’s approach [16] for 0.05 increments
of the normal unfairness parameter ¢ lying between one and two.

Figure 4 depicts the Pareto frontiers, i.e., the set of all Pareto
efficient combinations of system efficiency and user fairness, for
the six transportation networks in Table 1. In particular, observe
that the Pareto frontiers of the I-TAP method are below that of the
other two approaches for most values of unfairness. This observa-
tion indicates that the I-TAP method outperforms the other two
approaches since the inefficiency ratio of the I-TAP solution is the
lowest for most desired levels of unfairness. Only for the Sioux Falls
and Prenzlauerberg data-sets, the algorithm in [16] achieved lower
inefficiency ratios than both the I-TAP and I-Solution methods for
higher values of unfairness, which, in practice, would be undesir-
able. Furthermore, note that, unlike the two convex-combination
approaches, the solution of the algorithm in [16] can result in inef-
ficiency ratios that are much greater than the PoA for low levels of
unfairness. The I-TAP method outperforms the I-Solution method
since the set of paths that users can traverse is not restricted to
the union of the routes under the UE and SO solutions as is the
case for the I-Solution method. In particular, there may be traffic
assignments with lower total travel times that use paths not encap-
sulated by the restricted set of paths corresponding to the I-Solution
method. Furthermore, while the PoA for each of the data-sets is
quite low, some real-world transportation networks may have much
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Figure 3: Variation in the inefficiency ratio (left) and the level of unfairness (right) of the optimal solution of I-TAP, with the parameter a € [0, 1] for six
different transportation networks from Table 1. The values of the convex combination parameter were chosen at increments of 0.01.
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Figure 4: Pareto frontier depicting the trade-off between efficiency and fairness for the (i) I-TAP method with a step size s = 0.01, (ii) I-TAP method with
s = 0.05, (iii) I-Solution method with s = 0.01, and (iv) Jahn et al’s method [16] with s = 0.05.

higher PoA values (even as high as two) [32], which would make
the trade-off between efficiency and fairness even more prominent.

Runtime Comparison. We report in Table 1 the runtime of the
Jahn et al. method [16] and our I-TAP method. For each instance
we report the average runtime over the parameters ¢ and « for
the competitor and our method, respectively. We observe that our
approach is faster by at least three orders of magnitude. This is
unsurprising since our method solves unconstrained shortest-path
queries, which can be implemented in O(|E| + |[V]log|V]) time,
within each Frank-Wolfe iteration, whereas [16] solves constrained
shortest-path queries which are NP-hard. We do mention that a
more efficient implementation of constrained shortest-path query
can be achieved by directly implementing a label-correcting algo-
rithm rather than using the r_c_shortest_paths routine from
Boost, which is overly general for our setting and hence less effi-
cient. Nevertheless, even with this improvement it would still be
much slower than the unconstrained near-linear algorithm. Notice
that both approaches can be sped up via parallel computation of
shortest-path queries, and our method can be made even faster
through modern heuristics for shortest-path queries [7].
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7 CONCLUSION AND FUTURE WORK

In this paper, we developed (i) a computationally efficient method
for traffic routing that trades-off system efficiency and user fairness,
and (ii) pricing schemes to enforce fair traffic assignments as a UE.

There are various directions for future research. First, it would
be valuable to develop theoretical bounds for I-TAP to demonstrate
its applicability to other notions of unfairness, some of which are
studied in the extended version of our paper [17]. Next, it would be
useful to investigate fairness notions that compare user travel times
across O-D pairs. Finally, it would be interesting to study I-TAP’s
generalizability when accounting for costs beyond the travel times
of users, such as environmental pollution and user discomfort.
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