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Abstract. Medical image segmentation has significantly benefitted
thanks to deep learning architectures. Furthermore, semi-supervised
learning (SSL) has led to a significant improvement in overall model
performance by leveraging abundant unlabeled data. Nevertheless, one
shortcoming of pseudo-labeled based semi-supervised learning is pseudo-
labeling bias, whose mitigation is the focus of this work. Here we pro-
pose a simple, yet effective SSL framework for image segmentation-
STAMP (Student-Teacher Augmentation-driven consistency regulariza-
tion via M eta Pseudo-Labeling). The proposed method uses self-training
(through meta pseudo-labeling) in concert with a Teacher network that
instructs the Student network by generating pseudo-labels given unla-
beled input data. Unlike pseudo-labeling methods, for which the Teacher
network remains unchanged, meta pseudo-labeling methods allow the
Teacher network to constantly adapt in response to the performance of
the Student network on the labeled dataset, hence enabling the Teacher
to identify more effective pseudo-labels to instruct the Student. More-
over, to improve generalization and reduce error rate, we apply both
strong and weak data augmentation policies, to ensure the segmentor
outputs a consistent probability distribution regardless of the augmen-
tation level. Our extensive experimentation with varied quantities of
labeled data in the training sets demonstrates the effectiveness of our
model in segmenting the left atrial cavity from Gadolinium-enhanced
magnetic resonance (GE-MR) images. By exploiting unlabeled data with
weak and strong augmentation effectively, our proposed model yielded
a statistically significant 2.6% improvement (p < 0.001) in Dice and a
4.4% improvement (p < 0.001) in Jaccard over other state-of-the-art SSL
methods using only 10% labeled data for training.

Research reported in this publication was supported by the National Institute of Gen-
eral Medical Sciences Award No. R35GM128877 of the National Institutes of Health,
and the Office of Advanced Cyber infrastructure Award No. 1808530 of the National
Science Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Yang et al. (Eds.): MIUA 2022, LNCS 13413, pp. 371–386, 2022.
https://doi.org/10.1007/978-3-031-12053-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12053-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-12053-4_28


372 S. M. K. Hasan and C. Linte

Keywords: Meta pseudo-label · Cardiac MRI segmentation · Weak
and strong augment · Confidence threshold · Student-teacher model

1 Introduction

While deep learning has shown potential for improved performance across a
wide variety of medical computer vision tasks, including segmentation [4,5],
registration [2], and motion estimation [25], many of these successes are achieved
at the cost of a large pool of labeled datasets. Obtaining labeled images, on the
other hand, requires substantial domain expertise and manual labor, making
large-scale deep learning models challenging to implement in clinical settings.
Moreover, when the annotation of medical images requires the assistance of
clinical experts, the cost becomes unaffordable. Hence, this ineffectiveness in
the low-data domain, in turn, hampers the clinical adoption and use of many
medical image segmentation models. Therefore, instead of attempting to improve
high-data regime segmentation, this work focuses on data-efficient segmentation
training that only uses a few pixel-labeled data and takes advantage of the wide
availability of unlabeled data to improve segmentation performance, with the
goal of closing the performance gap with supervised models trained with fully
pixel-labeled data.

Our work is motivated by the recent progress in image segmentation using
semi-supervised learning (SSL), which has shown good results with limited
labeled data and large amounts of unlabeled data. Recent research has yielded
a variety of semi-supervised learning techniques. Successful examples include
MeanTeacher [20], MixMatch [3], and FixMatch [19]. One outstanding key fea-
ture of most SSL frameworks is consistency regularization, which encourages the
model to produce the same output distribution when its inputs are perturbed
[7,16]. As such, pseudo-labeling or self-training is also utilized in conjunction
with semi-supervised segmentation to incorporate the model’s own predictions
into the training [1,11]. As such, to increase training data, models incorporate
pseudo-labels of the unlabeled images obtained from the segmentation model
trained on the labeled images.

To execute a task, semi-supervised learning (SSL) uses a small number of
labeled examples along with unlabeled samples. Most methods follow one or
combinations of directions, such as consistency regularization [18,19] or pseudo-
labeling [9,11]. Existing methods use conventional data augmentation [10,20]
to provide alternative transformations of semantically identical images, or they
blend input data to create enhanced training data and labels [8,23]. Liu et al. [13]
revisit the Semi-Supervised Object Detection and identify the pseudo-labeling
bias issue in SS-OD. However, they updated the Teacher network using a non-
gradient exponential moving average (EMA), which concentrates on weighting
the Student’s parameters at each stage of the training process, without explic-
itly evaluating parameter quality. Sohn et al. introduce FixMatch [19], which
matches the prediction of the strongly-augmented unlabeled data to the pseudo
label of the weakly-augmented counterpart when the model confidence on the
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weakly-augmented counterpart is high. In contrast to these approaches, here we
redesign the pseudo label as well as data augmentations for semantic segmenta-
tion utilizing both consistency regularization, as well as pseudo labeling.

A self-training based approach was used by Bai et al. [1] for cardiac MR image
segmentation. They use an initial model trained on labeled data to predict the
labels on unlabeled data, so that these labels, although less accurate, can be
used for training an updated, more powerful model. Recent approaches involve
integrating uncertainty map into a mean-Teacher framework to guide the Student
network [22] for left atrium segmentation. Zeng et al. [24] propose a Student-
Teacher framework for semi-supervised left atrium segmentation. However, they
haven’t applied any data augmentation and thus omit the idea that a segmentor
should output the same probability distribution for an unlabeled pixel even after
it has been augmented.

Nevertheless, pseudo-labeling techniques, despite their benefit, suffer from
one major flaw: if the pseudo-labels are erroneous, the Student network will
learn from inaccurate data, much like the analogy of a Student’s performance
(i.e., the accuracy of the segmentation labels output by a model) not being able to
significantly exceed the Teacher’s performance (i.e., the accuracy of the pseudo-
labels used for training the model). This flaw is also known as the problem
of confirmation bias in pseudo-labeling. To this extent, this paper investigates
pseudo-labeling for semi-supervised deep learning from network predictions and
shows that in contrast to previous attempts at pseudo-labeling [15,24], simple
modifications to correct confirmation bias results in state-of-the-art performance.

To address these issues, we propose a three-stage semi-supervised frame-
work - STAMP: Student-Teacher Augmentation-Driven Meta Pseudo-
Labeling, inspired by the framework in Noisy-Student [21], a method of training

Unlabeled Image

Student Prediction

Teacher Prediction

Fig. 1. STAMP model applied to the left atrium dataset, where a large amount of
unlabeled data is available. Both the Student and Teacher predictions are shown during
a random training iteration.
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a Student and a slowly progressing Teacher (Fig. 1) in a mutually advantageous
manner. In the first stage, we train a fully convolutional network (FCN) using
all labeled data until convergence. In the second stage, the weak data augmen-
tations are applied to each unlabeled image where the Teacher model is trained
with unlabeled data and the Student learns from a minibatch of pseudo-labeled
data generated by the Teacher. The prediction of strongly-augmented data is
then optimized to match its corresponding pseudo-labels with the labeled data
pre-trained in the first stage. Later on, the Student progressively updates the
Teacher using the response signal in the third stage. Unlike the non-gradient
EMA [10] method, this reward signal is utilized to motivate the Teacher dur-
ing the Student’s learning process through a gradient descent algorithm. We
evaluate our approach using the Left Atrial Segmentation Challenge dataset by
comparing our results to those of existing SSL methods. STAMP achieves a 2.6
fold mean improvement over the state-of-the-art RLSSS [24] method.

Our proposed method presents several key contributions which are summa-
rized as follows: (1) STAMP presents simple and effective strategy for dealing
with the pseudo-labeling bias problem by adopting a threshold where pixels with
a confidence score higher than 0.5 will be used as pseudo labels, while the remain-
ing are treated as ignored regions. Additionally, since a large pool of labeled data
is not available, the proposed method inherently mitigates the over-fitting prob-
lem; (2) The different strong and weak data augmentation policies improve the
generalization performance and reduce the error rate significantly. Our obser-
vation shows that when replacing weak augmentation with no augmentation,
the model overfits the predicted unlabeled labels; (3) The use of pseudo-labels
enables a gradient descent response loop from the Student network to the Teacher
network that improves the teaching of the Teacher network and minimizes the
prediction bias; and (4) Extensive experimental studies on the MICCAI STA-
COM 2018 Atrial segmentation challenge dataset and comparative analyses are
conducted to validate the effectiveness of this method at not only the low-data
regime, but also the high-data regime.

2 Methodology

2.1 STAMP Model Framework

2.1.1 Segmentation Model Formulation
We define the semi-supervised image segmentation problem in a semi-supervised
setting as follows: given an (unknown) data distribution p(x, y) over images and
segmentation masks, we have a source domain having a training set, DL =
{(xl

i, y
l
i)}nl

i=1 with nl labaled examples and DUL = {(xul
j )}nul

j=1 with nul unla-
baled examples which are sampled i.i.d. from p(x, y) and p(x) distribution and
nl � nul, where xl

i is the i-th labeled image with spatial dimensions H ×W , yl
i ∈

{0, 1}C×H×W is its corresponding pixelwise label map with C as the number of
categories, and xul

j is the j-th unlabeled image. Empirically, we want to minimize
the target risk φt(θS , θT ) = minθS ,θT LL(DL, (θS , θT ))+γLUL(DUL, (θS , θT )),
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Fig. 2. Schematic of STAMP model: The Teacher model is trained using all labeled
data until convergence. Weak data augmentations are applied to each unlabeled image,
such that the Teacher model is trained with unlabeled data and the Student learns from
a mini-batch of pseudo-labeled data generated by the Teacher. In turn, the Teacher’s
parameters θT are updated based on the response signal from the Student’s parameters
θS via gradient-descent in the later stage.

where LL is the supervised loss for segmentation, LUL is unsupervised loss
defined on unlabeled images and θS , θT denotes the learnable parameters of
the overall network.

2.1.2 Model Architecture and Components
We propose STAMP – a simple yet effective Student-Teacher SSL framework
for image segmentation based on Augmentation driven Consistency regulariza-
tion and Self-Training (through Meta Pseudo-labeling), as illustrated in Fig.
2. The overall model entails three stages of training, where we train a Teacher
model using all available labeled data in the first stage as a pre-trained initializer,
while in the second stage, we train STAMP using both labeled and unlabeled
data. We manage the quality of pseudo labels constituted of segmentation masks
using a high confidence-based threshold value inspired by FixMatch [19]. The
training steps for STAMP are summarized in the subsequent sections.
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(a) Training a Teacher Model: It is critical to start with an appropriate
initialization for both the Student and Teacher models because we’ll be rely-
ing on the Teacher to create pseudo-labels to subsequently train the Student.
Hence, we first apply the supervised loss LL to improve our model using the
existing supervised data. For a labeled set DL = {(xl

i, y
l
i)}nl

i=1, the segmentation
network is trained in a traditional supervised manner which minimizes the cross-

entropy (CE) loss, LL = 1
nl×|DL|

∑

x∈DL

nl∑

i=1

CrossEntropy{yl
i, fT (xl

i; θ
T )}, where

the definitions of parameters are defined in Problem Description section.

(b) Generating Pseudo-Labels: STAMP assigns each unlabeled example
an artificial label, which is subsequently employed in a standard cross-entropy
loss to train the Student model. We initially compute the model’s predicted
distribution using a weakly-augmented (e.g. horizontal flip) version of a given
unlabeled image xul

j in an unlabeled set DUL to obtain an artificial label,
yul ∼ P (fT (Aweak(xul); θT )). To avoid the cumulatively detrimental effect of
noisy pseudo-labels (i.e., confirmation bias), we first set a confidence threshold
τ of predicted masks to filter low-confidence predicted masks, which are more
likely to be false-positive samples. Then, the final pseudo-labels are obtained
by selecting the pixels having the maximum predicted probability of the cor-
responding class, ŷul = (argmax(P (fT (Aweak(xul)); θT )) ≥ τ), where Aweak

denotes the weak-augmentation operation.

(c) Student Learning from Pseudo-Labels: In this stage, the Student
model fS(., θS) is trained with the pseudo-labels generated from the Teacher
model, where we use both the labeled and unlabeled datasets DL, DUL. We
enforce the cross-entropy loss against the Student model’s output for the strong-
augmentation of the unlabeled images having the idea that the Student model
would output the same probability distribution for an unlabeled pixel even after
it has been augmented. Additionally, we utilize a consistency regularizer func-
tion to enforce consistency between the generated pseudo masks and the masks
predicted by the Student model itself (Eq’n 1).

1
nul × |DUL|

∑

x∈DUL

nul∑

j=1

CrossEntropy{ŷul
i , fS(Astrong(xul

j ); θS)} +,

∑

xi∈D
||(ŷul) − (fS(Astrong(xul

j ); θS))||2

︸ ︷︷ ︸
Regularizer

(1)

where Astrong denotes the strong-augmentation (Cutout, Gaussian blur, Shift-
ScaleRotate) operation. Since the Student parameters always depend on the
Teacher parameters via the pseudo labels, we need to compute the Jacobian, as
shown in Eq’n (2) (Algorithm 1).
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Algorithm 1. STAMP’s main learning algorithm
Input:
Training set of labeled data xl, yl ε DL, and unlabeled data xul ε DUL
Require: Learned parameters: (θT , θS), number of pre-train epoch, number of main-
train epoch, confidence threshold, τ
for each epoch do

if epoch < maintrain then
Sample mini-batch from xl

i; x
l
1, . . . , x

l
nl

;

θT ← θT + γ
∂Lsup

∂θT {Train the Teacher network with all the labeled data}
else

Teacher UPDATE STAGE:
Sample mini-batch from xl

i; x
l
1, . . . , x

l
nl

; and xul
j ; xul

1 , . . . , xul
nul

;
Apply weak data augmentation to xul, xul = Aweak(xul) to train the Teacher
model
Apply strong data augmentation to xul, xul = Astrong(xul) to train the Student
model
Sample a pseudo label yul ∼ P (fT (Aweak(xul); θT ))
Use a confidence threshold, τ
if P (fT (Aweak(xul); θT )) ≥ τ then

pseudo-mask, ŷul = argmax(yul)
end if
Update the Student using the pseudo label ŷul:

θS
(t+1) = θS

(t) − ηS ∇θS CE(ŷul, fS((Aweak(xul); θS))|θS=θS
(t)

(2)

Compute the Teacher’s response coefficient

h = ηS.
(
(∇θ′S CE(yl, fS(xl; θS

(t+1))))
�.

∇θSCE(ŷul, fS(Aweak(xul); θS))
)

(3)

Compute the Teacher’s gradient from the Student’s response signal:

gT
(t) = h. ∇θT CE(ŷul, fT (A(xul); θT ))|θT =θT

(t)
(4)

Compute the Teacher’s gradient on labeled data:

gT,Sup
(t) = ∇θT CE(yl, fT (xl; θT )) (5)

Update the Teacher:

θT
(t+1) = θT

(t) − ηT.
(
gT
(t) + gT,Sup

(t)

)
(6)

end if
end for

(d) Updating the Teacher Model: To obtain more stable meta pseudo-
labels, we use the response signal from the Student to gradually update the
Teacher model. Unlike the non-gradient EMA [10] method, this reward signal is
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Fig. 3. Visualization of different types of augmentation strategies. Original image,
Horizontal Flip, ShiftScaleRotate, Gaussian Blur, and Cutout (left to right).

utilized to motivate the Teacher during the Student’s learning process through
the gradient descent algorithm as described in [17] (Eq’n 3–6).

2.2 Data Augmentation Strategies

A robust data augmentation is a vital aspect in the success of SSL approaches
like MixMatch [3], FixMatch [19] etc. We leverage the Cutout augmentation [6]
(strong augmentation) with a rectangle of 50×50 pixels because of its consistent
results. We investigate various transformation techniques including Horizontal
Flip (weak augmentation), Gaussian Blur, ShiftScaleRotate colorJitter, etc. Each
operation has a magnitude that determines the degree of strength augmentation.
We visualize transformed images with the aforementioned augmentation strate-
gies in Fig. 3.

2.3 Experiments

Data: The model was trained and tested on the MICCAI STACOM 2018 Atrial
Segmentation Challenge datasets featuring 100 3D gadolinium-enhanced MR
imaging scans (GE-MRIs) and LA segmentation masks, with an isotropic res-
olution of 0.625 × 0.625 × 0.625mm3. The dimensions of the MR images vary
depending on each patient, however, all MR images contain exactly 88 slices in
the z axis. All the images were normalized and resized to 112 × 112 × 80 before
feeding them to the models. We split the dataset into 80 scans for training and
20 scans for validation, and apply the same pre-processing methods.

Baselines Architecture: For a fair comparison, we use V-Net [14] as the back-
bone for both the Teacher and the Student models in our semi-supervised seg-
mentation experiments.

Training: The performance of semi-supervised models trained for image seg-
mentation can significantly be enhanced by the selection of the regularizer,
optimizer, and hyperparameters. We implement our method using the PyTorch
framework and set the batch size to 4. In self-training, a batch of 4 images is
composed of 2 labeled images and 2 unlabeled images. Both the Teacher and
the Student models are trained for 6000 iterations, with an initial learning rate
0.01, decayed by 0.1 every 2500 iterations. We train the network on varying
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proportions of labeled data – 10%, 20%, 30%, 50%, and 100% – while enforcing
that |DL| ≤ |DUL|. We include an ablation study to elucidate and investigate the
effects of the different components and hyperparameters of our model. All exper-
iments were conducted on a workstation equipped with two NVIDIA RTX 2080
Ti GPUs (each 11GB memory). The detailed training procedure is presented in
Algorithm 1.

2.4 Evaluation

To evaluate the performance of semantic segmentation of cardiac structures,
we use several standard metrics, including Dice score (Dice), Jaccard index,
Hausdorff distance (HD), Precision, and Recall. We compare the segmentation
results achieved using our proposed STAMP architecture with those achieved
using five other frameworks: V-Net, MT, UA-MT, SASSNet, and RLSSS.

To justify the choice of these frameworks as benchmarks, here we briefly high-
light their features. The UA-MT [22] model is based on the uncertainty-aware
mean Teacher framework, in which the Student model learns from meaning-
ful targets over time by leveraging the Teacher model’s uncertainty information.
The Teacher model not only generates the target outputs, but it also uses Monte
Carlo sampling to quantify the uncertainty of each target prediction. When com-
puting the consistency loss, they use the estimated uncertainty to filter out the
faulty predictions and keep only the dependable ones (low uncertainty).

Similarly, to take advantage of the unlabeled data and enforce a geometric
form constraint on the segmentation output, SASSNet [12] offered a shape-aware
semi-supervised segmentation technique. Meanwhile, in semi-supervised image
segmentation, self-ensembling approaches, particularly the mean Teacher (MT)
model [20], have received a lot of attention. The mean Teacher (MT) structure
guarantees consistency of predictions with inputs under varied perturbations
between the Student and Teacher models, boosting model performance even
more. In RLSSS [24], the Teacher updates its parameters autonomously accord-
ing to the reciprocal feedback signal of how well Student performs on the labeled
set.

3 Results and Discussion

3.1 Image Segmentation Evaluation

We first evaluate our proposed framework on Left Atrium MRI dataset. The
quantitative comparison of various approaches in terms of Dice score (Dice), Jac-
card index, Hausdorff distance (HD), Precision, and Recall is shown in Table 1.
A better segmentation yields a higher Dice, Jaccard, Precision and Recall val-
ues and lower values for the other metrics. All semi-supervised approaches that
take advantage of un-annotated images enhance segmentation performance sig-
nificantly when compared to fully-supervised V-Net trained with only 8 (10%)
annotated images.
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Table 1. Quantitative comparison of left atrium segmentation across
several frameworks. Mean (standard deviation) values are reported for
Dice(%), Jaccard(%), 95HD(%), ASD(%), P recision(%), and Recall(%) from all
networks against our proposed STAMP. The statistical significance of the STAMP
results compared to those achieved by the other top performing models, including
RLSSS, for 10% and 20% labeled data are represented by ∗ and ∗∗ for p−values 0.1
and 0.001, respectively. The best performance metric is indicated in bold text.

SCANS USED METRICS

METHODS Labeled Unlabeled Dice(%) ↑ Jaccard(%)↑ HD95(mm) ↓
V-Net [14] 10% 0 79.98 ±1.88 68.14±2.01 21.12±15.19

MT [20] 10% 90% 83.76±1.03 73.01±1.56 14.56±14.03

UA-MT [22] 10% 90% 84.25±1.61 73.48±1.73 13.84±13.15

SASSNet [12] 10% 90% 87.32±1.39 77.72±1.49 12.56±11.30

RLSSS [24] 10% 90% 88.13±1.68 79.20±1.78 11.59±9.28

STAMP (Proposed) 10% 90% **90.43±0.75 **82.67±.82 **6.22±4.55

V-Net [14] 20% 0 85.64±1.73 75.40±1.84 16.96±14.37

MT [20] 20% 80% 88.23±1.01 79.29±1.80 10.64±9.32

UA-MT [22] 20% 80% 88.88±0.73 80.20±0.82 8.13±6.78

SASSNet [12] 20% 80% 89.54±0.66 81.24±0.75 8.24±6.58

RLSSS [24] 20% 80% 90.07±0.76 82.03±0.84 6.67±3.54

STAMP (Proposed) 20% 80% *91.90±0.64 **84.38±0.83 7.15±4.74

SCANS USED METRICS

METHODS Labeled Unlabeled ASD(mm)↓ Precision(%) ↑ Recall(%)↑
V-Net [14] 10% 0 5.47±1.92 83.67±1.79 74.55±1.90

MT [20] 10% 90% 4.43±1.08 87.23±1.06 76.31±1.88

UA-MT [22] 10% 90% 3.36±1.58 87.57±1.53 77.85±1.65

SASSNet [12] 10% 90% 2.55±1.86 87.66±1.38 87.22±1.37

RLSSS [24] 10% 90% 2.91±0.59 90.33±1.66 87.08±1.70

STAMP (Proposed) 10% 90% *1.82±0.40 90.96±0.74 **90.30±0.75

V-Net [14] 20% 0 4.03±1.53 88.78±1.70 83.79±1.51

MT [20] 20% 80% 2.66±1.26 89.89±0.92 87.54±0.66

UA-MT [22] 20% 80% 2.35±1.16 89.57±0.73 88.82±0.72

SASSNet [12] 20% 80% 2.27±0.81 89.86±0.65 90.42±0.66

RLSSS [24] 20% 80% 2.11±4.67 90.16±0.77 89.97±0.76

STAMP (Proposed) 20% 80% 2.04±0.34 90.92±0.93 *91.43±0.92

Our proposed model outperformed the fully supervised method according to
all metrics, achieving a 90.4% Dice and 82.7% Jaccard scores, which represent
a 13% and 21.3% improvement, respectively. Moreover, in comparison to other
methods, our proposed framework more efficiently utilized the limited labeled
data by employing a Teacher-Student mutual learning strategy, which allowed
the Teacher model to update its parameters autonomously and generate more
reliable annotations for unlabeled data.

The paired statistical test reported in Table 1 shows that our proposed model
significantly improved the segmentation performance compared to the semi-
supervised, fully-supervised, models in terms of the Dice, Jaccard, 95% Haus-
dorff Distance (95HD), average surface distance (ASD), Precision, and Recall. In
addition, by effectively exploiting unlabeled data with weak and strong augmen-
tation, our proposed model yielded a statistically significant 2.6%improvement
(p < 0.05) in Dice and 4.4% Jaccard (p < 0.05) over the RLSSS framework,
while using only 10% labeled data for training.
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Fig. 4. Qualitative comparison result in 2D as well as 3D of the MICCAI STACOM
2018 Atrial Segmentation challenge dataset yielded by six different frameworks (V-
Net, MT, UA-MT, SASSNet, RLSSS, and STAMP). The comparison of segmentation
results between the proposed method and five typical deep learning networks indicates
that the performance of our proposed network is superior. The black arrows indicate
the locations where the segmentation masks yielded by the other networks used as
benchmarks fail to correctly capture the aorta (AO) in 3D.

Figure 4 shows the results obtained by V-Net [14], MT [20], UA-MT [22],
SASSNet [12], RLSSS [24], our proposed STAMP framework, and the corre-
sponding ground truth on the MICCAI STACOM 2018 Atrial Segmentation
Challenge. Figure 4 (bottom row) also shows that all frameworks but STAMP
yield segmentation masks that miss portions of the aortic (AO) region (indi-
cated by the red arrows in 2D and black arrows in 3D). On the other hand, the
STAMP framework yields a complete segmentation of the left atrium that closely
matches the ground truth segmentation mask, preserves more details, and yields
fewer false positive results, overall demonstrating the increased efficacy of the
proposed learning strategy.

Figure 5(a) shows the best segmentation contours yielded by the STAMP
framework (green) and the corresponding ground truth contours (red). We
trained our model on varying proportions of labeled data – 10%, 20%, 30%,
50%, and 100% – while enforcing that |DL| ≤ |DUL|. Figure 5(b) shows that
STAMP accuracy further increases with increasing proportions of labeled data
for training. The mean Dice score (%) increases from 90% with only 10% labeled
data to 93% with 100% labeled data. This experiment clearly emphasizes the
robustness and high performance of STAMP using mostly (90%) unlabeled data,
and its only incremental improvement with the addition of large quantities of
labeled data.
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Fig. 5. (a) Axial, coronal and sagittal views of the of the STAMP (green) and ground
truth (red) left atrium segmentation contours; (b) robust and high performance (90%
Dice score) STAMP segmentation with 10%: 90% labeled: unlabeled data and consis-
tent steady performance increase (up to 93% Dice score) with additional labeled data.
(Color figure online)

Fig. 6. Ablation study designed to investigate the effect of gradient-based teacher
training (GTT) on Dice score for left atrial segmentation using only 20% labeled data
with and without GTT.

3.2 Ablation Study

We also conducted ablation studies to demonstrate the effectiveness of incorpo-
rating a response signal loop by gradient descent step from the Student network
to the Teacher network to improve the teaching of the Teacher network and
minimize the prediction bias in a semi-supervised setting, as well as study the
benefit of different forms of augmentation.

3.2.1 Effect of the Gradient-based Teacher Training
To illustrate the impact of Gradient-based Teacher training (GTT), we com-
pared our model performance with and without GTT. Figure 6 shows that
the incorporation of GTT significantly improves segmentation performance, as
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quantified by the Dice score. This significant improvement can be explained by
the fact that while conventional training (without GTT) often generates imbal-
anced pseudo-labels, where most pixel category instances in the pseudo-labels
vanish, leaving just instances of specific pixel categories, GTT constrains the
generation of imbalanced pseudo-labels, leading to improved performance.

3.2.2 Effect of Pre-Training Stage
For both the Student and Teacher models, a proper initialization is critical.
Figure 7 shows the effects of using a pre-training stage. We observe that using
the pre-training step, the model may generate more accurate pseudo-labels early
in the training process. As a result, the model can attain lower loss in the training
process, as well as better performance once the model converges.

Fig. 7. Experiment conducted on a left atrial image datasets consisting of only 20%
labeled data showing the benefits of using a pre-training stage (right) in concert with
STAMP, which leads to lower loss compared with no pre-training stage (left).

Fig. 8. Experiment conducted on a left atrial image datasets consisting of only 20%
labeled data showing the benefits of using data augmentation (orange) in concert with
STAMP, which leads to higher accuracy (Dice and Jaccard) compared with no data
augmentation (purple). (Color figure online)
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3.2.3 Effect of Data Augmentation
To improve generalization and significantly reduce error rate, we applied different
strong and weak data augmentation strategies. Figure 8 shows a comparison
of the model with and without the augmentation strategies. Our observation
shows that when replacing weak augmentation with no augmentation, the model
overfits the predicted unlabeled labels. The statistical significance of the *Dice
and **Jaccard for STAMP model with and without data augmentation for 20%
labeled data are represented by * and ** for p−values 0.1 and 0.001, respectively.

4 Conclusion

In this paper, we propose an effective Student-Teacher Augmentation-driven
Meta pseudo-labeling (STAMP) model for 3D cardiac MRI image segmentation.
The proposed framework mitigates the pseudo-labeling bias problem arising due
to class imbalance by adopting a threshold where pixels with a confidence score
higher than 0.5 will be used as pseudo labels, while the remaining are treated
as ignored regions. Additionally, the proposed model also mitigates the over-
fitting challenge induced by the lack of a large pool of labeled data. The meta
pseudo-labeling approach generates pseudo labels by a Teacher-Student mutual
learning process where the Teacher learns from the Student’s reward signal,
which, in turn, best helps the Student’s learning. Unlike the non-gradient expo-
nential moving average (EMA) method, this reward signal is utilized to motivate
the Teacher during the Student’s learning process through the gradient descent
algorithm. Moreover, the application of different strong and weak data augmen-
tation strategies improve the generalization performance and reduce the error
rate significantly. We evaluated our proposed framework within the SSL setting
by comparing the segmentation results with those yielded by several existing
methods. When using only 10% labeled data, STAMP achieves a 2.6 fold mean
Dice improvement over the state-of-the-art RLSSS model. In addition, our pro-
posed model outperforms existing methods in terms of both Jaccard and Dice,
achieving 90.4% Dice and 82.7% Jaccard with only 10% labeled data and 91.9%
Dice and 84.4% Jaccard with only 20% labeled data for atrial segmentation, both
of which showed at least 2.6% improvement over the best methods and more than
11% improvement over fully-supervised traditional V-Net architecture.
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