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Abstract— While convolutional neural networks (CNNs) have
shown potential in segmenting cardiac structures from magnetic
resonance (MR) images, their clinical applications still fall
short of providing reliable cardiac segmentation. As a result,
it is critical to quantify segmentation uncertainty in order to
identify which segmentations might be troublesome. Moreover,
quantifying uncertainty is critical in real-world scenarios, where
input distributions are frequently moved from the training
distribution due to sample bias and non-stationarity. Therefore,
well-calibrated uncertainty estimates provide information on
whether a model’s output should (or should not) be trusted in
such situations. In this work, we used a Bayesian version of our
previously proposed CondenseUNet [1] framework featuring
both a learned group structure and a regularized weight-
pruner to reduce the computational cost in volumetric image
segmentation and help quantify predictive uncertainty. Our
study further showcases the potential of our deep-learning
framework to evaluate the correlation between the uncertainty
and the segmentation errors for a given model. The proposed
model was trained and tested on the Automated Cardiac
Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac
MRI patient dataset for the segmentation and uncertainty
estimation of the left ventricle (LV), right ventricle (RV), and
myocardium (Myo) at end-diastole (ED) and end-systole (ES)
phases.

Index Terms— Cine MRI, learned group-convolution, ventri-
cle segmentation, uncertainty, segmentation errors

I. INTRODUCTION

Deep neural networks (DNNs) have been widely used
in practice in light of their recent accomplishments in a
variety of domains. As a result, the predictive capabilities
of these DNN models have been increasingly used to make
decisions in crucial applications ranging from machine-
learning-assisted medical diagnostics [2] to self-driving cars.
In addition to class predictions, such high-stake applications
necessitate reliable quantification of predictive uncertainty,
i.e. meaningful confidence levels.

For assessing predicted uncertainty in DNNs, a number of
approaches, including Bayesian and non-Bayesian, have been
proposed. Despite the fact that Bayesian neural networks
(BNNs) provide a theoretical foundation for generating well-
calibrated uncertainty estimates, learning BNNs is difficult
due to the intractable nature of integrating over the posterior
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in high-dimensional space. As such, approximate inference
approaches such as Monte Carlo (MC) Dropout [3], [4], Deep
Ensembles [5] and techniques based on Learned Confidence
[6] are becoming increasingly prominent.

Recent work by Sander et al. [4] used MC Dropout on
a CNN for cardiac MRI segmentation, demonstrating that
training with a Brier loss or cross-entropy loss yielded well-
calibrated pixel-wise uncertainty, and that correcting uncer-
tain pixels may consistently enhance segmentation outcomes.

In this work, we study predictive uncertainty estimation
for semantic segmentation with fully convolution network
(FCN) and propose a Bayesian dropout for reliable predictive
uncertainty estimation of segmented cardiac structures. The
network takes a 2D image as input and outputs an uncertainty
map, and a segmentation map, as illustrated in Fig. 1.

Fig. 1. System diagram for our proposed pipeline. A semantic segmentation
network takes an input image and produces a segmentation prediction along
with errors and an uncertainty map.

We computed a probability calibration to prove the concept
that the generated probabilities represent the empirical prob-
ability of being correct due to the unavailability of human
intervention in a timely manner. The overall goal of this
work is to demonstrate how this method can be employed to
evaluate uncertainty in cardiac MRI segmentation, to inform
an expert whether and where the generated segmentation
should be corrected and the extent to which it can be trusted.

II. METHOD

A. Imaging Data
For this study, we used the Automated Cardiac Diagnosis

Challenge (ACDC) dataset, consisting of short-axis cardiac
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cine-MR images acquired for 150 different patients divided
into 5 evenly distributed subgroups according to their cardiac
condition: normal- NOR; myocardial infarction- MINF; di-
lated cardiomyopathy- DCM; hypertrophic cardiomyopathy-
HCM; and abnormal right ventricle- ARV; available as a part
of the STACOM 2017 ACDC challenge [7]. The acquisitions
were obtained over a 6 year period using two MRI scanners
of different magnetic strengths (1.5T and 3.0T). The images
were acquired using retrospective or prospective gating and
the SSFP sequence with the following settings: thickness 5-
8mm, inter-slice gap of 5 or 10mm, spatial resolution 1.37
to 1.68 mm2/pixel, 28 to 40 frames per cardiac cycle. The
manual segmentation for RV blood-pool, LV myocardium,
and LV blood-pool were performed by a clinical expert for
the end-systole (ES) and end-diastole (ED) image frames.
Since the slice thickness was large, ranged from 5 mm to
10 mm, we re-sampled the dataset to 1.4 × 1.4 mm2. The
image intensity values are normalized pixel intensity values
lie between 0 and 1 according to the 5th and 95th percentile.

B. Segmentation

The segmentation of the MR images is the first step
towards extracting further information. In this study, we used
our previously proposed CondenseUNet [1] segmentation
method, which is both a modification of DenseNet, as well
as a combination of CondenseNet [8] and U-Net [9]. The
CondenseUNet framework substitutes the concept of both
standard convolution and group convolution (G-Conv) with
learned group convolution (LG-Conv). Our network learns
the group convolution automatically during training through
a multi-stage scheme. The capability of our network to learn
the group structure allows multiple groups to re-use the
same features via condensed connectivity. Moreover, the effi-
cient weight-pruning methods we implemented lead to high
computational savings without compromising segmentation
accuracy [10].

As CondenseUNet is based on both U-Net and DenseNet,
it comprises both a down-sampling and up-sampling path.
The down-sampling path is similar to CondenseNet and the
up-sampling path is comprised of transposed convolutions,
condense blocks and skip-connections with a soft-max layer
to generate the image mask. Concatenation in the skip-layer
has been replaced by an element-wise addition operation
to mitigate the problem of the feature-map explosion. We
employ a number of layers per block as 2,3,4,5,4,3,2 with 32
initial feature maps, 3 max-pooling layers, a growth rate of k
= 16, and condensation factor, C = 4. e. Softmax probabilities
are calculated over the four tissue classes (LV, RV, MYO,
background). By applying dropout after each convolutional
layer during training and test time, the Monte Carlo dropout
CondenseUNet approximates the probabilistic uncertainty
similar to a Bayesian neural network from segmentation
models. We construct 10 slightly different samples for each
input, average the voxelwise probability over these samples
to generate a final segmentation probability map, and then
binarize this map to generate a final segmentation result for
MC dropout CondenseUNet (MCOUNET) models.

The weights are updated during the back-propagation
operation by minimizing the dual loss function, LTotal as
mentioned in [10].

C. Segmentation Accuracy

We evaluated the performance of the segmentation using
Dice similarity coefficient, and Hausdorff distance (HD).
Given the set of all pixels in the image, set of foreground
pixels by automated segmentation Sa

1 , and the set of pixels
for ground truth Sg

1 , DICE score can be compared with [Sa
1 ,

Sg
1 ]⊆ Ω, when a vector of ground truth labels T1 and a vector

of predicted labels P1,

Dice(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

(1)

DICE score will measure the similarity between two sets, T1

and P1 and |T1| denotes the cardinality of the set T1 with
the range of D(T1,P1) ∈ [0,1].

Let, ST and SP , be surfaces (with NT and NP points, re-
spectively) corresponding to two binary segmentation masks,
T and P, respectively.

Hausdorff Distance (HD) is the maximum distance be-
tween two contours and is calculated as:

HD = max
(
max
p∈ST

d(p, SP ),max
q∈SP

d(q, ST )

)
(2)

where,
d(p, S) = min

q∈S
d(p, q)

D. Uncertainty Quantification

In this work, we used the sample variance as the voxel-
wise uncertainty measure, computed on a voxel-by-voxel
basis. The metric is calculated as the variance of N Monte-
Carlo prediction samples of a voxel (i.e. each voxel (x, y) has
N softmax predictions (p(x,y,c)1 ...p

(x,y,c)
N )) over all classes of

the MC probability maps. In Eq. 3, u(x, y) is the sample
variance of each voxel (x, y) of the image. The mean
variance of softmax probabilities is computed as follows:

u(x, y) =
1

C

C∑
c=1

[ 1

N − 1

N∑
n=1

(
p(x,y,c)n − 1

N

N∑
n=1

p(x,y,c)n

)2]
,

(3)
where p

(x,y,c)
n represents the softmax probability of the c−th

class in the n−th time, C is the number of classes and N
is the number of samples. We set the dropout rate to q =
0.1 and produce 10 MC samples. We employ dropout layers
after every encoder and decoder block with a dropout rate to
create a probabilistic encoder decoder network. By also using
dropouts during testing, we obtain per voxel samples from
the posterior distribution. The segmentation loss is the Brier
(B) loss, which measures how closely the neural network
segmentation probabilities represent the likelihood of being
correct on a per-pixel basis by computing the mean squared
error between the predicted and ground truth probabilities:

Bseg =
∑
i

c−1∑
c=0

[
p(ŷi = c)− p(y = c)

]2

, (4)
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where p denotes the probability for a specific voxel with
corresponding reference label yi for class c. Hence, the total
loss is computed as a sum of the segmentation loss and
uncertainty loss, LTotal = Bseg + λ u(x, y) (Fig. 1).

E. Network Training and Testing

To solve the class-imbalance problem in multi-slice car-
diac MR images, a patch of size 128 × 128 was extracted
around the LV center from a full-sized cardiac MR and slice-
wise normalization of voxel intensities was performed. The
training dataset was divided into 70% training data, 15% val-
idation data, and 15% testing data with five non-overlapping
folds for cross-validation. Networks implemented in PyTorch
were initialized with He normal initializer [11] and trained
for 100,000 epochs with a batch size of 16. We used the
Adam optimizer with a learning rate of 0.001 and decay
rate of 0.1 after every 25,000 step. All experiments were
performed on a workstation equipped with two NVIDIA
GTX 1080 Ti GPU (11GBs of memory).

III. RESULTS

A. Segmentation Evaluation

The proposed model was trained for the joint segmen-
tation and uncertainty estimation of RV blood-pool, LV-
Myocardium, and LV blood-pool from the ACDC chal-
lenge dataset. The provided reference segmentation and the
corresponding automatic segmentation obtained from the
MCOUNET model for a test patient is shown in Fig. 2.

Fig. 2. Representative ED and ES frame segmentation results of a complete
cardiac cycle from the base to apex showing RV blood-pool, LV blood-pool,
and LV-Myocardium in green, purple, and blue respectively.

Automatic segmentation obtained from the model, for ED
and ES phases, are evaluated against the reference segmenta-
tion and summarized in Table I; also shown as the graphical
representation in Fig. 3. Our proposed model achieved
Dice score (Std. Dev.) of 96.8%(0.01) and 95.1%(0.07) for
the LV bloodpool, 89.5%(0.03) and 90.3%(0.03) for the
LVMyocardium and 93.5%(0.02) and 88.3%(0.09) for the
RV blood-pool in end-diastole and end-systole, respectively.

Accordingly, the Hausdorff distance (Std. Dev.) for the LV
bloodpool, 7.9mm (10.40) and 6.4mm (6.10) for the LV
bloodpool, 8.9mm (8.92) and 9.1mm (10.17) for the LVMy-
ocardium and 11.2mm (8.10) and 11.9mm (9.12) for the RV
blood-pool in end-diastole and end-systole, respectively.

TABLE I
QUANTITATIVE EVALUATION OF THE SEGMENTATION RESULTS IN

TERMS OF MEAN DICE SCORE (STD. DEV.) (%) AND HD - HAUSDORFF

DISTANCE (STD. DEV.) (MM), ON THE ACDC DATASET FOR LV, RV
BLOOD-POOL AND LV-MYOCARDIUM.

End-Diastole (ED) End-Systole (ES)
LV MYO RV LV MYO RV

Dice 96.8 89.5 93.5 95.1 90.3 88.3
(0.01) (0.03) (0.02) (0.07) (0.03) (0.09)

HD 7.9 8.9 11.2 6.4 9.1 11.9
(10.40) (8.92) (8.10) (6.10) (10.17) (9.12)

Fig. 3. Mean Dice score (%) and Hausdorff distance (mm) for LV blood-
pool, LV myocardium, and RV blood-pool segmentation achieved on images
from the ACDC dataset.

Fig. 4. Correlation between the segmentation error and model-predicted
uncertainty.
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B. Segmentation Uncertainty

Theoretically, incorrectly segmented voxels should be cov-
ered by higher uncertainty than correctly segmented voxels.
The spatial uncertainty maps are perfectly calibrated in
this scenario. Fig. 4 illustrates the correlation between the
erroneous pixels and the uncertainty. The error is calculated
by finding the difference between the reference mask and the
predicted mask. The computed correlation value of r=0.94
indicates that there is a very good correlation between the
error and the uncertainty in terms of pixels. The qualitative
uncertainty maps from our proposed model for both the ED
and ES phases are visualized in Fig. 5.

Fig. 5. Representative uncertainty maps (red areas correspond to higher
uncertainty as shown in the color bar) of a cardiac cycle in ED and ES
phase from the base to apex showing RV blood-pool (green), LV blood-
pool (cyan), LV-Myocardium (blue), and segmentation errors (red). The
first column shows SSFP cine cardiac MR images. The second column
shows the MRI overlaid with segmentation predictions and errors (red) of
U-Net architecture. The third column shows the errors in predictions of our
model trained with our custom loss. The last column shows the Bayesian
uncertainty maps for the Brier score.

As seen from Fig. 5, our model-predicted uncertainty
maps closely match the regions where the segmentation
algorithm under-performs compared to the ground truth.
As such, these predictive maps show lower uncertainty in
the periphery of the LV blood pool an LV myocardium,
and higher uncertainty (on the order of 80%) close to the
periphery of the RV blood pool. Similarly, these regions also
show the greatest discrepancies between the proposed and
ground truth segmentation masks.

One benefit of the uncertainty maps is their behavior in the
regions featuring poor segmentation. The panels in columns
1 and 3 of Fig. 5 show the proposed and ground truth
segmentation masks overlaid onto the ED and ES images
slice, while columns 2 and 4 illustrate the segmentation
uncertainties. These panels, when visualized side-by-side
clearly show how that Bayesian uncertainty maps are highly
indicative of the poorly segmented regions, confirming the
94% correlation between the erroneously segmented regions
and the cumulative segmentation uncertainty regions shown
in Fig. 4. Hence, these uncertainty maps are key to raising

awareness and caution about the reliability of the segmenta-
tion at various locations.

IV. CONCLUSION

In this paper, we propose a segmentation pipeline that
integrates a Monte Carlo dropout CondenseUNet model with
inherent uncertainty estimation, with the overall goal to study
the uncertainty associated with the obtained segmentations
and errors, as a means to flag regions that feature less
than optimal segmentation results. This overall pipeline will
increase the reliability of automatic segmentation for both
research and clinical use.

Our future research will explore the use of uncertainty
measures to flag low-quality segmentation for automatic
detection using a deep neural network in place of human
review to detect and correct the low-quality segmentation
maps.

REFERENCES

[1] SM Kamrul Hasan and Cristian A Linte. CondenseUNet: A memory-
efficient condensely-connected architecture for bi-ventricular blood
pool and myocardium segmentation. In Medical Imaging 2020: Image-
Guided Procedures, Robotic Interventions, and Modeling, volume
11315, page 113151J. International Society for Optics and Photonics,
2020.

[2] S M Kamrul Hasan and Cristian A Linte. A multi-task cross-task
learning architecture for ad hoc uncertainty estimation in 3D cardiac
MRI image segmentation. In 2021 Computing in Cardiology (CinC),
volume 48, pages 1–4, 2021.

[3] Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, and Christian
Wachinger. Inherent brain segmentation quality control from fully
convnet Monte Carlo sampling. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages
664–672. Springer, 2018.

[4] Jörg Sander, Bob D de Vos, Jelmer M Wolterink, and Ivana Išgum.
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