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ABSTRACT

While deep learning has shown potential in solving a variety of medical image analysis problems including
segmentation, registration, motion estimation, etc., their applications in the real-world clinical setting are still
not a�uent due to the lack of reliability caused by the failures of deep learning models in prediction. Furthermore,
deep learning models need a large number of labeled datasets. In this work, we propose a novel method that
incorporates uncertainty estimation to detect failures in the segmentation masks generated by CNNs. Our
study further showcases the potential of our model to evaluate the correlation between the uncertainty and the
segmentation errors for a given model. Furthermore, we introduce a multi-task cross-task learning consistency
approach to enforce the correlation between the pixel-level (segmentation) and the geometric-level (distance
map) tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justi�es
the e�ectiveness of our model for the segmentation and uncertainty estimation of the left ventricle (LV), right
ventricle (RV), and myocardium (Myo) at end-diastole (ED) and end-systole (ES) phases from cine MRI images
available through the MICCAI 2017 ACDC Challenge Dataset. Our study serves as a proof-of-concept of how
uncertainty measure correlates with the erroneous segmentation generated by di�erent deep learning models,
further showcasing the potential of our model to 
ag low-quality segmentation from a given model in our future
study.
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1. INTRODUCTION

Cardiac Magnetic Resonance Imaging (CMRI) has made a signi�cant paradigm shift in medical imaging through
the quanti�cation of volumetric changes in the heart during the cardiac cycle, thanks to its capability of imaging
di�erent structures within the heart without ionizing radiation. Cine MRI can capture the full cardiac dynamics
via multiple short-axis acquisitions. In today's clinical routine, though the manual delineation is the standard
image segmentation approach, the huge bene�ts of these comprehensive measurements are still not exploited
due to both the inter-and intra-user segmentation biases, as well as time ine�ciency, suggesting the need for
desirable automatic approaches for simultaneous multi-structure segmentation (LV, RV, Myo).

Recently, convolutional neural networks (CNNs) have shown emerging success in solving high-level computer
vision tasks to develop machine learning tools that are capable of learning hierarchical features in an end-to-end
manner.1,2 Motivated by the superior performance of deep learning, the medical imaging community has also
embraced the implementation of deep learning-based approaches for medical image segmentation.3,4 However, a
major challenge in adopting automated medical image segmentation in a clinical work
ow is the lack of reliability
and trustworthiness.

(�) Code, pretrained models, and additional details are available at https://github.com/smkamrulhasan/BMTCTL.
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To date, most of these studies have been centered solely on automatic segmentation and there have only been
very few research endeavors exploring the ambiguous predictions in some challenging regions generated by the
deep learning models, increasing the model's uncertainty. An e�cient method that can accurately identify the
problematic segmentation generated by the models with the overall goal to avoid the review of all images and
reducing errors in downstream analysis would be a great asset.

To date, a number of approaches have attempted to estimate uncertainty in CNNs for medical image segmenta-
tion including Monte Carlo (MC) Dropout,5,6 Deep Ensembles7 and techniques based on Learned Con�dence.8

Recent work by Wang et al.9 observed positive correlations between segmentation accuracy and uncertainty
measures. Heo et al.10 proposed a method that allows the attention model to leverage uncertainty for the
improvement of both model calibration as well as performance. However, many of these successes are achieved
at the cost of a large pool of labeled datasets. Obtaining labeled images however is laborious as well as costly,
impeding the adoption of large-scale deep learning models in clinical settings. To address the problem of lim-
ited access to labeled data, semi-supervised learning (SSL)11 has been a growing trend for improving the deep
learning model performance by utilizing unlabeled data. Furthermore, multi-task learning (MTL)12 techniques
have shown promising results for improving the generalizability of any models by jointly tackling multiple tasks
through shared representation learning.13 Although these methods were successful for cardiac segmentation and
uncertainty estimation, the estimation of uncertainty calibration in a semi-supervised setting for medical image
segmentation is still rarely reported.

We propose a novel semi-supervised module exploiting adversarial learning and task-based consistency reg-
ularization for jointly learning multiple tasks in a single backbone module { uncertainty estimation, geometric
shape generation, and cardiac anatomical structure segmentation, illustrated in Figure 1. The network takes a
2D image as input and outputs an uncertainty map, a 2D distance map, and a segmentation map. The distance
map is fed to a transformer to produce a segmentation map which is then used to share the supervisory signal
from the predicted segmentation map. To leverage the unlabeled data, the distance map is fed to an adversar-
ial discriminator network to distinguish the predicted distance map from the labeled data. The same encoder
backbone is used to estimate the Bayesian uncertainty map by Bayesian Neural network with Monte Carlo (MC)
sampling. As a departure from the recent work by Sander et al.,6 we computed a probability calibration to
prove the concept that the generated probabilities represent the empirical probability of being correct due to the
unavailability of human intervention in a timely manner. The overall goal of this work is to demonstrate how
this method can be employed to evaluate uncertainty in cardiac MRI segmentation to inform an expert whether
and where the generated segmentation should be adjusted.

2. METHOD

We de�ne the learning task as follows: given an (unknown) data distribution p(x, y) over images and seg-
mentation masks, we de�ne a source domain having a training set, DL = {(xl1, y1), ..., (xln, yn} with n labeled
data and another domain having a training set, DUL = {xul1 , ..., xulm} with m unlabeled data which are sam-
pled i.i.d. from p(x, y) and p(x) distribution. Empirically, we want to minimize the target risk ∈t (φ, θ) =
minφ,θ LL(DL, (φ, θ)) + γLUL(DUL, (φ, θ)), where LL is the supervised loss for segmentation, LUL is unsuper-
vised loss de�ned on unlabeled images and φ and θ denote the learnable parameters of the overall network.

In this work, our architecture is composed of a shared encoder e and a main decoder d, which constitute the
segmentation network f = d ◦ e. We introduce a set of J auxiliary decoders dja, with j ∈ [1, J ].

The overall objective function consists of di�erent loss functions including distance loss, cross-task loss,
adversarial loss, dice loss, and guidance loss. Our goal is to infer the posterior distribution p(w|D) over the
weights, instead of optimizing maximum likelihood using a Bayesian neural network (BNN). This posterior
distribution represents uncertainty in the weights, which could be propagated to calculate uncertainty in the
predictions. Unfortunately, the posterior probability distribution cannot be evaluated in closed form for neural
networks, so one must resort to approximate inference based on variational inference14 methods and stochastic
regularization techniques using dropouts with an aim to �nd a surrogate distribution q(w) by minimizing the
Kullback-Leibler (KL) divergence between the approximate and the posterior probability distribution which is
equivalent to maximizing the evidence lower bound (ELBO) as follows:
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Figure 1: Schematic of the BMT-CTL model: we combine segmentation and uncertainty decoder who share the
same backbone encoder { Deep Bayesian Neural Network.

Eq(w)[log p(Y |X,w)]−KL[q(w)||p(w)], (1)

where Eq(w)[·] denotes expectation over the approximate posterior q(w), log p(Y |X,w) is the log-likelihood of the
training data with given weights w, p(w) represents the prior distribution of w, and KL[·] is the Kulback-Leibler
divergence between two probability distributions.

2.1 UNCERTAINTY QUANTIFICATION

The uncertainty map is obtained by computing the maximum softmax probabilities with a number of samples N
per voxel over all classes over the MC probability maps. The mean standard deviation of softmax probabilities
are computed as follows:
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where p
(x,y,c)
n represents the softmax probability of the c−th class in the n−th time, C is the number of classes

and N is the number of sample. We set the dropout rate to q = 0.1 and produce 10 MC samples. We employ
dropout layers after every encoder and decoder block with a dropout rate to create a probabilistic encoder decoder
network. By also using dropouts during testing, we obtain per voxel samples from the posterior distribution
q(w). To increase the reliability of the segmentation, we have calibrated the probability based on Brier score
(BS) which measures how closely the neural network segmentation probabilities represent the likelihood of being
correct on a per-pixel basis by computing the mean squared error between the predicted and ground truth
probabilities:

BS =
X
i

c−1X
c=0

"
p(ŷi = c)− p(y = c)

#2

, (3)
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where p denotes the probability for a speci�c voxel with corresponding reference label yi for class c.

2.2 Cardiac MRI Data

For this study, we used the Automated Cardiac Diagnosis Challenge (ACDC) dataset∗, consisting of short-
axis cardiac cine-MR images acquired for 100 di�erent patients divided into 5 evenly distributed subgroups
according to their cardiac condition: normal- NOR, myocardial infarction- MINF, dilated cardiomyopathy- DCM,
hypertrophic cardiomyopathy- HCM, and abnormal right ventricle- ARV, available as a part of the STACOM
2017 ACDC challenge.15 The acquisitions were obtained over a 6 year period using two MRI scanners of di�erent
magnetic strengths (1.5T and 3.0T). The images were acquired using a retrospective or prospective gating and
the SSFP sequence with the following settings: thickness 5-8mm, inter-slice gap of 5 or 10mm, spatial resolution
1.37 to 1.68 mm2/pixel, 28 to 40 frames per cardiac cycle. The manual segmentation for RV blood-pool, LV
myocardium, and LV blood-pool were performed by a clinical expert for the end-systole (ES) and end-diastole
(ED). Since the slice thickness was large and ranged from 5 mm to 10 mm, we re-sampled the dataset to
1.4 × 1.4 mm2. The image intensity values are normalized such that the pixel values lie in between 0 and 1
according to the 5th and 95th percentile.

2.3 Network Training and Testing

To solve the class-imbalance problem in multi-slice cardiac MR images, a patch of size 128× 128 was extracted
around the LV center from a full-sized cardiac MR and slice-wise normalization of voxel intensities were per-
formed. The training dataset was divided into 70% training data, 15% validation data, and 15% testing data

∗https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.h

Figure 2: Representative segmentation results and uncertainty maps (red areas correspond to higher uncertainty
as shown in the color bar) of a cardiac cycle from the base (top row) to apex (bottom row) showing RV blood-pool
(green), LV blood-pool (cyan), LV-Myocardium (blue), and segmentation errors (red). The �rst column shows
SSFP cine cardiac MR images. The second column shows ventricular structures of heart annotated by experts.
The third column shows the MRI overlaid with segmentation predictions and errors (red) of U-Net architecture.
The fourth column shows the segmentation predictions of our Bayesian BMT-CTL network trained with our
custom loss. The �fth and sixth column show the Bayesian uncertainty maps for the Brier score.
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with �ve non-overlapping folds for cross-validation. Networks implemented in PyTorch were initialized with He
normal initializer16 and trained for 100k epochs with a batch size of 16. We used the Adam optimizer with a
learning rate of 0.001 and decay rate of 0.1 after every 25k step. All experiments were run on a workstation
equipped with two NVIDIA GTX 1080 Ti GPU (11GBs of memory).

3. RESULTS

Figure 2 shows a qualitative comparison of the segmentation, generated segmentation errors, and uncertainty
maps, illustrating that our proposed model signi�cantly improved the segmentation as well as the uncertainty
estimation against the classical U-Net model. Upon visual assessment, the uncertainty maps of the U-Net model
show high uncertainty in the periphery of the LV and LV-Myocardium and a larger area of high uncertainty in
the RV blood pool region, whereas the uncertainty maps derived from our model have a low uncertainty gradient
at the margins. Images in the third and fourth column visualize the segmentation errors (red) for the U-Net and
BMT-CTL models respectively. We can observe from the error map (fourth column) as well as the uncertainty
map (sixth column) that the estimated errors are accurately captured by the Bayesian uncertainty maps i.e. the
errors are prominent on base and apical slices especially in the RV regions. For instance, U-Net has prominent
red pixels in the regions where there are no actual RV regions segmented in the ground truth and this trend
is also consistent with the information portrayed in the uncertainty maps. The redish color in the uncertainty
map of U-Net model denotes higher uncertainty which is also visible in the U-Net segmentation errors regions.
On the other hand, our proposed BMT-CTL model shows signi�cantly less segmentation error around the LV
boundary. Both the mid and apical slices exhibit similar e�ects.

4. CONCLUSION

In this paper, we propose a new paradigm for accurate LV, RV blood-pool, and LV-myocardium segmentation
associated with uncertainty estimation from cine cardiac MR images by introducing a multi-task cross-task
learning consistency approach to enforce the correlation between the pixel-level (segmentation) and the geometric-
level (distance map) tasks. We have assessed the relationship between the uncertainty distribution and the size of
the erroneous region by computing the correlation. We present model uncertainty estimation derived from a novel
Bayesian multi-task cross-task learning model for the task of cardiac ventricle segmentation. Our focus is not
to achieve state-of-the-art results on the segmentation tasks, but to exploit uncertainty measures to 
ag regions
exhibiting sub-optimal segmentation. This overall pipeline will increase the reliability of automatic segmentation
for both research and clinical use.

Our future research will explore the use of uncertainty measures to 
ag low-quality segmentation for automatic
detection using a deep neural network in place of human review to detect and correct the low-quality segmentation
maps.
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