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Abstract

Medical image segmentation has significantly benefit-

ted thanks to deep learning architectures. Furthermore,

semi-supervised learning (SSL) has recently been a grow-

ing trend for improving a model’s overall performance

by leveraging abundant unlabeled data. Moreover, learn-

ing multiple tasks within the same model further improves

model generalizability. To generate smooth and accu-

rate segmentation masks from 3D cardiac MR images, we

present a Multi-task Cross-task learning consistency ap-

proach to enforce the correlation between the pixel-level

(segmentation) and the geometric-level (distance map)

tasks. Our extensive experimentation with varied quan-

tities of labeled data in the training sets justifies the ef-

fectiveness of our model for the segmentation of the left

atrial cavity from Gadolinium-enhanced magnetic reso-

nance (GE-MR) images. With the incorporation of un-

certainty estimates to detect failures in the segmentation

masks generated by CNNs, our study further showcases

the potential of our model to flag low-quality segmentation

from a given model.

1. Introduction

While deep learning has shown its potential in a va-

riety of medical image analysis problems including seg-

mentation [1], motion estimation [2] etc., many of these

successes are achieved at the cost of a large pool of la-

beled datasets. Obtaining labeled images however is la-

borious as well as costly, making the adoption of large-

scale deep learning models in clinical settings difficult. To

address the limited labeled data problem, semi-supervised

learning (SSL) [3] has been a growing trend for improving

the deep learning model performance through utilizing the

unlabeled data. Furthermore, multi-task learning (MTL)
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Figure 1: Schematic of the MTCTL model: we combine

four different decoders who share the same backbone en-

coder – V-Net.

[4] techniques have shown promising results for improv-

ing the generalizability of any models by jointly tack-

ling multiple tasks through shared representation learn-

ing [5]. To date, a number of approaches address SSL

along with MTL-based segmentation from MRI including

adversarial learning-based method [6], mutual learning-

based approach [7] and techniques based on signed dis-

tance map [8]. Recent approaches involve integrating un-

certainty map into a mean-teacher framework to guide stu-

dent network [9] for left atrium segmentation. However,

this method lacks the geometric shape of semantic objects,

leading to poor segmentation at the edges. Li et al. [10]

proposed an adversarial-based decoder to enforce the con-

sistency between the model predictions on the original data

and the data perturbed by adding noise into it.

As a departure from the existing SSL and MTL mod-

els, we propose a novel semi-supervised module exploiting

adversarial learning and task-based consistency regulariza-

tion for jointly learning multiple tasks in a single backbone

module – uncertainty estimation, geometric shape genera-

tion, and cardiac anatomical structure segmentation. The
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network takes as input a 3D volume and outputs an uncer-

tainty map, a 3D distance map, and a segmentation map.

The distance map is fed to a transformer to produce a seg-

mentation map which is then used to share the supervisory

signal from the predicted segmentation map. To leverage

the unlabeled data, the distance map is fed to an adversarial

discriminator network to distinguish the predicted distance

map from the labeled data. The same encoder backbone is

used to estimate the uncertainty of the predicted segmen-

tation map with Monte Carlo sampling.

2. Multi-Task Cross-Task Learning

As shown in Figure 1, our proposed MTCTL model has

two distinctive features. First, we combine four different

decoders who share the same backbone encoder – V-Net

[11]. The uncertainty map generated by the uncertainty de-

coder is used as the local guidance between the predicted

segmentation mask and the mask generated by transform-

ing the distance map. Second, we enforce the correlation

between the pixel-level (segmentation) and the geometric-

level (distance map) tasks for the generation of smoother

and more accurate segmentation masks by introducing the

cross-task loss function and include a guidance loss as an

uncertainty estimation to smooth out the predicted seg-

mentation mask.

We define the learning task as follows: given an (un-

known) data distribution p(x, y) over images and seg-

mentation masks, we have a source domain having a

training set, DL = {(xl
1, y1), ..., (x

l
n, yn} with n labeled

data and another domain having a training set, DUL =
{xul

1 , ..., xul
m} with m unlabeled data which are sam-

pled i.i.d. from p(x, y) and p(x) distribution. Empiri-

cally, we want to minimize the target risk ∈t (φ, θ) =
minφ,θ LL(DL, (φ, θ))+γLUL(DUL, (φ, θ)), where LL

is the supervised loss for segmentation, LUL is unsuper-

vised loss defined on unlabeled images and φ, θ denotes

the learnable parameters of the overall network.

In this work, our architecture is composed of a shared

encoder e and a main decoder d, which constitute the seg-

mentation network f = d ◦ e. We introduce a set of J

auxiliary decoders dja, with j ∈ [1, J ].
Dice Loss: For a labeled set DL, the segmentation net-

work is trained in a traditional supervised manner compris-

ing dice loss, LL
(seg)(x, y) =

�

xi,yi∈DL
Ldice(xi, yi) =

�

xi,yi∈DL

�

1−
2
�

xj∈xi,yj∈yi
f1(xi)yi

�
xj∈xi,yj∈yi

f1(xj)+
�

yj∈yi
yj

�

. Then we

define the supervised loss for distance map generation task

as the mean squared error (MSE) loss between the pre-

dicted probability map f2(x) and the transformed ground

truth map π(y): LL
(dis)(x, y) =

�

xi,yi∈DL
||f2(xi) −

π(yi)||.
Smoothing Loss: We utilize a smoothing loss func-

tion L(cross−task) to enforce smoothness between the

predicted segmentation mask and the inverse transform

of the distance map as in [12]: L(cross−task)(x) =
�

xi∈D ||f1(xi) − π−1(f2(xi))||
2 =

�

xi∈D ||f1(xi) −
1

1+e−k.(f2(xi))
||2.

Guidance Loss: As the uncertainty maps give the model

some amount of interpretability with which we can de-

cide whether the final segmentation is to be trusted,

we consider using Monte-Carlo dropout (MC-dropout)

[13] thanks to straightforward implementation. Voxel-

wise segmentation uncertainty from MC dropout mod-

els is estimated as the mean entropy over all N sam-

ples generated by running inference on an input vol-

ume N times providing outputs with a set of probabil-

ity vector of softmax scores, {Pn}
N
n=1 which captures

a combination of aleatoric and epistemic uncertainty as,

U(x) = − 1
N

�N

i=1 p(x)log(pi(x)). We exploit the un-

certainty as the guidance to filter out the high uncertainty

(unreliable) predictions to minimize the voxel-level mean

squared error (MSE) loss between the predicted mask and

the transformed mask generated from the distance map:

LG =
�

xi∈(h×w×d) B̂(U(x)<t)||f1(xi)−π−1(f2(xi))||
2

�
xi∈(h×w×d) B̂(U(x)<t)

; where

ˆB(.) represents the indicator function for the uncertainty

U(x) with threshold t; f1(x) and π−1(f2(xi)) are the pre-

diction of main decoder and the distance map auxiliary de-

coder respectively.

Adversarial-Geman-McClure Loss: On the other hand,

the data with no corresponding segmentations are trained

by minimising the unsupervised loss via a KL diver-

gence which is based on LeastSquares-GAN. However,

least-square loss is not robust. Instead, we adopt a

new divergence loss function by incorporating it into

a Geman-McClure model fashion called adversarial-

Geman-McClure (adv-GM) loss between the labeled data

xl and the unlabeled data xul:

LU
(adv−GM) =

D{xl, distl;φ}
2 + {D(xul, distul;φ)− 1}2

2β +D{xl, distl;φ}2 + {D(xul, distul;φ)− 1}2
;

(1)

where distul = fdis(x
ul; θ), β is the scale factor which

varies in the range of [0, 1] and we set β = 0.5 in our

experiment.

Data: The model was trained and tested on the MICCAI

STACOM 2018 Atrial Segmentation Challenge datasets

featuring 100 3D gadolinium-enhanced MR imaging scans

(GE-MRIs) and LA segmentation masks, with an isotropic

resolution of 0.625 × 0.625 × 0.625mm3. The dimen-

sions of the MR images may vary depending on each pa-

tient, however, all MR images contain exactly 88 slices in

the z axis. All the images were normalized and resized to

112×112×80 before feeding them to the models. We split

them into 80 scans for training and 20 scans for validation,

and apply the same pre-processing methods.
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Figure 2: Qualitative comparison of left atrium segmentation result in 2D as well as 3D of the MICCAI STACOM 2018

Atrial Segmentation challenge dataset yielded by four different frameworks: V-Net, UA-MT, SASSNet, and MTCTL. The

comparison of segmentation results between the proposed method and three typical deep learning networks indicates that

the performance of our proposed network is superior. Red arrow indicates the networks fail to capture the masks near Aorta

(AO) region in 3D.

3. Results and Discussion

Figure 2 shows the results obtained by V-Net [11], UA-

MT [9], SASSNet [10], our MTCTL, and the correspond-

ing ground truth on the MICCAI STACOM 2018 Atrial

Segmentation Challenge from left to right. The second

row of the figure shows that all the three frameworks

shows a portion of missing masks (red arrow) near Aorta

(AO) region, whereas MTCTL generates more complete

left atrium segmentation following the addition of multiple

tasks (distance map, cross-tasks, and uncertainty guidance)

as multiple decoders in either 3D or 2D view.

We conducted a paired statistical test to compare the

segmentation performance in Table 1 which shows that

our proposed model significantly improved the segmenta-

tion performance compared to the semi-supervised, fully-

supervised, singletask, and multitask models in terms of

the Dice, Jaccard, 95% Hausdorff Distance (95HD), aver-

age surface distance (ASD), relative absolute volume dif-

ference (RAVD), Precision, and Recall. By exploiting un-

labeled data with multiple tasks effectively, our proposed

MTCTL model yielded a statistically significant 7.2% im-

provement (p < 0.05) in Dice and 12.5% Jaccard (p <

0.05) over the single tasked V-Net framework; a statisti-

cally significant 2.5%improvement (p < 0.05) in Dice and

4.4% Jaccard (p < 0.05) over the SASSNet framework

with only 20% labeled training data.

Figure 3 shows a visual comparison of the uncertainty

for segmentation of left atrium images in the coronal view.

The first and second row presents the uncertainty over seg-

mentation and the uncertainty only for two different slices

obtained by the UA-MT and MTCTL framework respec-

tively. In the uncertainty maps, blue pixels have low un-

certainty values and red-ish pixels have high uncertainty

values. It can be observed from the uncertainty map that

the highest uncertainties are located near the border of the

segmented foreground, while the pixels with a larger dis-

tance to the border have a very low uncertainty.

Figure 3: Visual comparison of segmentation predictions

overlayed with uncertainty and uncertainty-only (predic-

tive entropy) slices. Segmentation accuracy decreased

while predictive uncertainty increased (low uncertainty

shown in purple and high uncertainty shown in yellow).

Segmentation mask overlaid with uncertainty ((a) & (c)),

along with uncertainty maps ((b) & (d)) for two different

slices of a patient.

4. Conclusion

In this paper, we proposed a multi-task cross-task learn-

ing network (MTCTL) for atrial segmentation. To improve

robustness beyond that of the recent SOTA framework, we

utilize model uncertainty derived from Monte Carlo Sam-

pling to serve as local guidance between the predicted seg-

mentation mask and the mask generated by transforming
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Table 1: Quantitative comparison of left atrium segmentation across several frameworks. Mean (standard deviation) val-

ues are reported for Dice(%), Jaccard(%), 95HD(%), ASD(%), RAV D(%), P recision(%), and Recall(%) from all

networks against our proposed MTCTL. The statistical significance of the results for MTCTL model compared against

the baseline model SASSNET for 10% and 20% labeled data are represented by ∗ and ∗∗ for p−values 0.1 and 0.05,

respectively. The best performance metric is indicated in bold text.

SCANS USED METRICS

METHODS Labeled Unlabeled Dice(%) ↑ Jaccard(%)↑ HD95(mm) ↓ ASD(mm)↓ RAVD(%) Precision(%) ↑ Recall(%)↑
V-Net [11] 10% 0 79.98 ±1.88 68.14±2.01 21.12±15.19 5.47±1.92 -1.34±2.78 83.67±1.79 74.55±1.90

UA-MT [9] 10% 90% 84.25±1.61 73.48±1.73 13.84±13.15 3.36±1.58 -0.13±2.56 87.57±1.53 77.85±1.65

SASSNet [10] 10% 90% 87.32±1.39 77.72±1.49 12.56±11.30 2.55±1.86 -0.09±2.26 87.66±1.38 87.22±1.37

MTCTL (Proposed) 10% 90% *89.28±0.76 *80.92±.79 *7.74±6.05 2.0±1.02 0.56±1.58 *89.74±0.71 *89.40±0.68

V-Net [11] 20% 0 85.64±1.73 75.40±1.84 16.96±14.37 4.03±1.53 -0.05±2.64 88.78±1.70 83.79±1.51

UA-MT [9] 20% 80% 88.88±0.73 80.20±0.82 8.13±6.78 2.35±1.16 -2.74±1.58 89.57±0.73 88.82±0.72

SASSNet [10] 20% 80% 89.54±0.66 81.24±0.75 8.24±6.58 2.27±0.81 0.03±1.55 89.86±0.65 90.42±0.66

MTCTL (Proposed) 20% 80% **91.80±0.67 **84.80±0.83 **5.50±4.74 1.55±0.28 0.01±1.65 91.15±0.76 91.04±0.75

the distance map. Our enforced cross-task loss correlates

between the pixel-level (segmentation) and the geometric-

level (distance map) tasks to generate smoother and more

accurate segmentation masks. We evaluated its perfor-

mance on the MICCAI STACOM 2018 Atrial Segmen-

tation Challenge dataset. We also conducted an “uncer-

tainty” estimation analysis to determine where our al-

gorithm “fails” to segment regions of interest in an im-

age. Our proposed model outperforms existing methods

in terms of both Jaccard and Dice, achieving 89.3% Dice

and 80.9% Jaccard with only 10% labeled data and 91.8%

Dice and 84.8% Jaccard with only 20% labeled data for

atrial segmentation, both of which showed at least 2.5%

improvement over the best methods and more than 7% im-

provement over single-task traditional V-Net architecture.

To our best knowledge, the proposed MTCTL frame-

work constitutes the first approach to adopt adversarial ap-

proach along with uncertainty estimation and most accu-

rate semi-supervised left atrium segmentation performance

on the LA database. As part of future work, we will use

these uncertainty maps to detect regions where the seg-

mentation of the left and right ventricle myocardium and

blood pool fails, which is a critical feature for both re-

search and clinical applications.
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