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a b s t r a c t

Decision-makers in foreign policy and national security are constantly confronted with an adversarial,
networked environments. In such an environment, the ‘‘entities’’ (i.e., political establishments and
military organizations) to whom those decision-makers are answerable are connected through a web
of friendly and adversarial relationships. By a ‘‘networked political behavior’’ means that one’s behavior
can always propagate influences across the world for the world’s connectedness. This paper contains a
general, mathematical framework of rational agents’ strategic interactions in the international security
environment, which helps to draw theoretical and practical implications thereof. The theoretical
framework called ‘‘games on signed graphs’’ examines how countries strive to survive and succeed in
a globally networked environment through security and relation dynamics. Two games will be studied,
with one called the power allocation game and the other called the signed network formation game.
Theoretical findings, real-world applications, and possible extensions will be presented and discussed.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

A signed graph (Harary et al., 1953) is a graph whose edge(s)
etween two connected nodes is (are) characterized with either
negative or positive sign, which is commonly used to present

riendly or adversarial connections among agents in a network.
n application of signed graphs in the social sciences is in the
ipartite consensus problem (e.g., Altafini (2012)), where two
ntagonistic groups of agents converge to a ‘‘modulus consensus’’
two groups’ opinion values equal in modulus but opposite in

ign – based on a communication algorithm. This paper uses a
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igned graph to conveniently depict an international environ-
ent, where both cooperative and conflicting relationships coex-

st. Fig. 1 illustrates the conflicts and cooperation of all countries
n the world during the WWI era in 1916.

The games-on-signed-graphs framework consists of two
ames (Li, 2018). The first game is ‘‘the power allocation game (Li
Morse, 2017b)’’. A power allocation game takes place on a

equence of signed graphs. In the game, countries allocate their
ower to support their friends and oppose their adversaries.
he game would serve as a foundation for learning about how
ountries compete for survival and success in a networked, an-
agonistic environment. More broadly, the potential applications
f the game include resource allocation scenarios in strategic,
actical, and operational planning, one of which is the power
llocation between countries. The second game is ‘‘the signed net-
ork formation game (Li & Morse, 2017a)’’. In a signed network

ormation game, countries strategically change the cooperative
nd conflictual relationships. The game is a basis for understand-
ng how they may alter the environment to improve the odds of
urvival and success.

.1. Contributions

The games on signed graphs, which were inspired by con-
erns in political science, add a new technological problem to
he study of system sciences (Bryen, 2012; Deutsch, 1966). In
he network games literature (e.g., Bauso, Tembine, and Başar
2016), Cheng, He, Qi, and Xu (2015), Ding, Li, Lu, and Wang
2021), Myerson (1977), Stier-Moses (1958) and Zhao, Wang,
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Fig. 1. The relationships in 1916: Red Edge (Conflict) and Green Edge (Cooper-
ation). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and Li (2016)), network resource allocation games have been
xtensively investigated. This is not surprising, given that re-
ource allocation is a fundamental problem that lends itself well
o abstract multidimensional modeling. Many applications in
conomics, military, and political science have been identified
n games in which budget-constrained players strategically dis-
ribute resources across numerous, simultaneous fronts (see Rober
on (2011)). In our paper, the power allocation game is used as
n example of network resource allocation games in international
elations. The signed network formation game offers fresh in-
ights into the formation and dissolution of links between agents
n the same context. We also provide theoretical results, such as
he existence of a pure strategy Nash equilibrium in both games.

In turn, the games contribute a new methodology to the study
f international relations. With the exception of Goyal, Vigier,
nd Dziubinski (2015), Jackson and Nei (2015), and others, much
f the game-theoretic literature in international relations focuses
n games with two or three players. A game on signed graphs
s also distinct from the N-coalition games investigated in papers
uch as Ye, Hu, Lewis, and Xie (2019). We expect the games in our
aper will broaden the theoretical scope of many previous games
n international relations to more realistic scenarios, sharpen
xisting insights derived previously without the use of mathe-
atical modeling, and generate new insights and predictions that
ay help countries navigate strategic interactions in networked
nvironments. Overall, they propose an alternative "network"
pproach to international relations, which could supplement the
tatistical approaches that extract information from international
etworks data (e.g., Cranmer, Menninga, and Mucha (2015)).
Furthermore, considering Neumann and Morgenstern (1944),
game on signed graphs may pose a challenge to the conven-

ional distinction between ‘‘noncooperative’’ and ‘‘cooperative’’
ames. By definition, both the power allocation game and the
igned network formation game are noncooperative games. These
ames, on the other hand, accommodate both agents’ ‘‘noncoop-
rative’’ behaviors (with adversaries) and ‘‘cooperative’’ behaviors
with allies). It also calls into question the application of some
idely held game theory concepts. The idea of Pareto optimal-

ty (Mock, 2011), for example, is frequently used as a criterion
or evaluating resource allocative efficiency. Pareto-optimality,
efined as a state in which no additional adjustments in allo-
ation may make one person better off without making another
orse off, has been widely applied in welfare economics. How-
ver, this may not be a desirable goal in resource allocation
ames on signed graphs, where agents may strive to make them-
elves better off by making others worse off. Another example
s the concept of Coalition-proof Nash equilibrium (Bernheim,
eleg, & Whinston, 1987) in the study of cooperative games.
oalition-proof Nash equilibrium is a state where no subgroup of
articipants may collectively deviate in a mutually advantageous
ay. Fundamentally, assuming a group of adversaries will strate-
ize for their mutual benefit is unrealistic, rendering this concept
nsuited for a game on signed graphs.
2

.2. Paper plan

The paper proceeds as follows. The first part of the theoretical
ramework is the power allocation game, which takes place on
signed graph. We will study a static power allocation game in
oth normal form and extensive form, and the applications in
ountries’ survival problem. The second part of the framework
s the signed network formation game. A country’s network for-
ation strategy is to change the signed graph itself to improve

ts power allocation outcomes. We will cover a static signed
etwork formation game and the applications in alliance politics,
specially great powers’ ‘‘optimal network design’’. Lastly, we will
iscuss future work.

. The power allocation game

.1. Static power allocation game in normal form

The normal form of the static power allocation game contains
specification of the players, their strategies, game outcomes, and
heir preferences for those outcomes. Assume that the players
old complete information of these elements (Fudenberg & Tirole,
991).

ountries, power, and relationships

Each country in a networked, strategic environment is distinc-
ively characterized by a territory, several ethnic groups, cultures,
nd languages/dialects. Let n countries in the environment be

with labels in n = {1, 2, . . . , n}.
Each country is endowed with a nonnegative quantity of total

power pi, with which it pursues affairs with other countries.
Different aspects may have to be weighed in when evaluating
a country’s total power for different contexts. pi is a nonnega-
tive integer if it measures the number of i’s destroyers, aircraft,
and tanks, and a nonnegative real number if it measures i’s
weaponry in a present-value currency. In this paper, we treat pi
as a nonnegative real number.

Each country has its relationships with other countries in a
given environment. A country may have friendly or adversarial
relationships with some and no specific relationships with the
rest. For each i ∈ n, the disjoint sets Fi and Ai denote the
sets of labels of country i’s friends and adversaries, respectively.
Assume that each country is a friend of itself i ∈ Fi and that the
relationships are bilateral. The relationships of all countries in an
environment make up a relation configuration.

An undirected graph EE = {V, EE} called ‘‘an environment
graph (Li, Morse, Liu, & Başar, 2017)’’ represents a networked,
strategic environment, which consists of countries, their power,
and relationships. The graph’s n ∈ Z≥0 vertices represent the
countries and m ∈ Z≥0 edges represent relationships between
countries. An edge between distinct vertices i and j, denoted by
the unordered pair {i, j}, is labeled with a plus sign if countries
i and j are friends and with a minus sign if countries i and j are
adversaries. Let the set of all friendly pairs be

RF = {{i, j} : j ∈ Fi, i ∈ n} (1)

and the set of all adversarial pairs be

RA = {{i, j} : j ∈ Ai, i ∈ n}. (2)

Power allocation strategy

An allocation of this power pi, called a power allocation strat-
egy, is a nonnegative 1 × n row vector ui whose jth component
uij is that part of pi which country i allocates under the strategy
in the support of country j if j ∈ F or to the demise of country j
i
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f j ∈ Ai; accordingly uij = 0 if j ̸∈ Fi ∪Ai and the allocations are
subject to the total power constraint

ui1 + ui2 + · · · + uin = pi. (3)

Each set of country strategies {ui : i ∈ n} determines an n× n
matrix U whose ith row is ui. Thus

U =
[
uij

]
n×n (4)

is a nonnegative matrix such that, for each i ∈ n, ui1 + ui2 +· · ·+

uin = pi. Any such matrix is called a strategy matrix and U is the
set of all n× n strategy matrices.

A weighted directed graph EA = {V, EA} called ‘‘an allocation
graph’’ represents the power allocations in a networked, strategic
environment. Two edges with opposite directions are denoted as
ordered pairs (i, j) and (j, i). The edges are labeled with a plus sign
if countries i and j are friends and with a minus sign if countries i
and j are adversaries. In addition, uii is the vertex weight of i, and
uij is the edge weight of (i, j), i ∈ n.

Accordingly, each strategy matrix U determines for each i ∈ n,
the total support σi(U) of country i and the total threat τi(U)
against country i. Here σi : U → R and τi : U → R are
nonnegative valued maps defined by

σi(U) =
∑
j∈Fi

uji +
∑
j∈Ai

uij (5)

and

τi(U) =
∑
j∈Ai

uji (6)

respectively. Thus country i’s total support is the sum of the
amounts of power each of country i’s friends allocate to its
support plus the sum of the amounts of power country i allocates
to the destruction of all its adversaries. Country i’s total threat, on
the other hand, is the sum of the amounts of power country i’s
adversaries allocate to its destruction. These allocations, in turn,
determine country i’s state xi(U) which may be safe, precarious,
or unsafe depending on the relative values of σi(U) and τi(U).
xi : U → {safe, precarious, unsafe} is the map defined such that⎧⎨⎩

xi(U) = safe σi(U) > τi(U),
xi(U) = precarious σi(U) = τi(U),
xi(U) = unsafe σi(U) < τi(U).

(7)

where country i is said to survive if xi(U) = safe or precarious (Li
et al., 2017). A row vector x(U) = [xi(U)]1×n is the state vector,
which is an element of the state space,

X = {safe, precarious, unsafe}n. (8)

Preference axioms

The following axioms are sufficient conditions for three basic
preference relations – weak preference, strong preference, and
the indifference relation – regarding power allocation matrices
and a basis on which countries optimally determine their power
allocation strategies.

(1) U ⪯i V , which means country i weakly prefers strategy
matrix V over U , if

(a) ∀j ∈ Fi, (xj(V ) ∈ {safe, precarious}) ∨ (xj(U) =

unsafe) and
(b) ∀j ∈ Ai, (xj(V ) ∈ {unsafe, precarious}) ∨ (xj(U) =

safe).

(2) U ∼i V , which means country i is indifferent between
strategy matrices V and U , if
(a) ∀j ∈ Ai ∪ Fi, xj(U) = xj(V ).

3

Fig. 2. A partial order of the state vectors.

(3) U ≺i V , which means country i strongly prefers strategy
matrix V over U , if

(a) (xi(V ) ∈ {safe, precarious}) ∧ (xi(U) = unsafe).

By the first and the second axioms, country i cares positively
bout its friends’ survival, negatively about its adversaries’ sur-
ival, and indifferently about the rest’s survival. By the third
xiom, amongst all, country i is to achieve self-survival as its first
riority, which is consistent with Waltz (1979). By the preference

axioms, country i can partially order the state vectors in X .
y the following Theorem 1 whose proof is in Li and Morse
2018a), a utility function for i that satisfies the axioms exists,
hus extending the partial order into a total order.

heorem 1. A utility function that satisfies the preference axioms
xists.
xample 1. Consider a power allocation game where

(1) Countries: n = {1, 2, 3}.
(2) Relationships: F1 = {1} and A1 = {2}; F2 = {2} and

A2 = {1, 3}; F3 = {3} and A3 = {2}.
(3) Preferences: assume the preference axioms.

There are a total of twenty-seven state vectors in X . How-
ver, by the preference axioms, country i will be indifferent
s to whether its friends are safe or precarious or whether
ts adversaries are unsafe or precarious. Then, to have a total
rder of these twenty-seven vectors, country i only needs to
otally order the following eight state vectors, abbreviated as
sss], [ssu], [sus], [suu], [uss], [usu], [uus], and [uuu], where ‘‘s’’
means the state being safe or precarious and ‘‘u’’ means the state
being unsafe or precarious.

Fig. 2 illustrates the three countries’ preference orders using
three chain graphs. Each node in a graph denotes one of the above
eight vectors. An edge directed from node A to node B means
that the country weakly prefers A to B, and an undirected edge
between A and B means the country is indifferent between them.
Transitivity holds for the three preference orders, by which any
two nodes on the same chain are comparable.

Fig. 3 shows that country 1 and country 3’s preference orders
are total orders, and that country 2’s preference order is a partial

order for its inability to compare [ssu] to [uss], and [suu] to [uus].
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Fig. 3. A total order of the state vectors.

Assume the following for country 2’s preferences (or utility).
y Theorem 1, suppose country 2 derives a higher utility from
aving country 3 as an unsafe or precarious adversary than coun-
ry 1 as such an adversary. If country 2 can only overwhelm
ne of these two adversaries, it will choose to attack country 3.
herefore, country 2 strictly prefers [ssu] to [uss], and [suu] to
uus]. As illustrated in Fig. 3, country 2’s preference order is now
total order as well.

quilibrium concept

The Nash equilibrium concept is naturally employed in the
ower allocation game to make predictions. Let country i’s devia-
ion from the strategy matrix U be an n-dimensional row vector di
such that ui + di satisfies the total power constraint for country
i. The deviation set Di(U) is the set of all possible deviations of
ountry i from the strategy matrix U . A strategy matrix U is a pure
strategy Nash Equilibrium if no unilateral deviation in strategy by
any country i is ‘‘profitable’’. In other words,

U + eidi ⪯i U, for all di ∈ Di(U), (9)

where ei is the ith n× 1 unit vector.

Equilibrium equivalence class

Denote by U∗ the set of pure strategy Nash equilibria. Call
U ∈ U∗ equilibrium equivalent to V ∈ U∗ if and only if x(U) = x(V ).
The relation ‘‘equilibrium equivalence’’ is the equivalence kernel
of the restriction of x to U∗ and thus is an equivalence relation
on U∗. Let [U]∗ be the equilibrium equivalence class of U ∈ U∗.
The total number of equilibrium equivalence classes is at most 3n,
which in turn is the cardinality of the co-domain of x.

Example 2. Consider a power allocation game where

(1) Countries: n = {1, 2, 3, 4}.
(2) Their total power: p = [10 8 20 8].
(3) Relationships: F1 = {1, 2, 4} and A1 = ∅; F2 = {1, 2} and

A2 = {3}; F3 = {3} and A3 = {2, 4}; F4 = {1, 4} and
A4 = {3}.

(4) Preferences: assume the preference axioms.
 i

4

Fig. 4. The environment graph and two equilibria.

Optimally, country 3 would hope to make both country 2 and
country 4 unsafe or precarious. However, country 1 is a friend
of both country 2 and country 4, and these three countries’ total
power exceeds that of country 3. For this reason, country 3 cannot
make both of its adversaries, country 2 and country 4, unsafe.
Then the best outcome country 3 can achieve in equilibrium is
to make at least one of its two adversaries precarious. Fig. 4
suggests a pure strategy Nash equilibrium in which both coun-
try 2 and country 4 are precarious, and another pure strategy
Nash equilibrium in which country 2 is safe, and country 4 is
precarious. In fact, country 3 can make neither country 2 nor
country 4 unsafe in any equilibrium of this game. Having to save
enough resources in precautions against country 4 or 2’s attacks,
country 3 cannot attack country 2 or 4 with all its power. So when
country 3 does make one of its adversaries unsafe, country 1 can
always support this adversary to be at least precarious. Therefore,
country 3 will settle by making both adversaries precarious. This
game will have no pure strategy Nash equilibria if the preference
axioms do not hold — when country 3 is no longer indifferent
between the adversaries being unsafe and precarious. A cycle
would ensue, with country 3 ever adding allocations to make its
adversaries unsafe and country 1 ever adding allocations to make
them survive.

Result I. Equilibrium existence

To the best of our knowledge, there are no general equilibrium
existence results that can be directly applied to the power alloca-
tion game,1 which is an infinite game (Fudenberg & Tirole, 1991)
with a discontinuous utility representation of countries’ prefer-
ences. Algorithm 1 establishes pure strategy Nash equilibrium
xistence for the normal form game by recursively constructing
ne such equilibrium.

1 Nash (1950, 1951) have established the mixed strategy Nash equilibrium
xistence for any finite game. Prior work such as Monderer and Shapley (1996)
nd Reny (1999) has also shown that pure strategy Nash equilibrium may exist
n games with particular properties.
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lgorithm 1. Let q be the number of adversarial pairs in Ra, and
= {1, 2, . . . , q} be the set of distinct labels for elements in Ra.
y an ordering map is meant a bijection γ : Ra → q; any such

map determines an ordering of Ra with {i, j} being the γ ({i, j})-th
term in the ordering.

Let zi(k) be the ith entry in z(k) and ek be the kth n × 1 unit
vector. Consider the first recursion where countries’ remaining
power is updated during a traversal of the adversarial relationships.
During the traversal of each relationship, the smaller remaining
power of the two countries is subtracted from both countries’
powers in Eq. (11):

z(0) = p (10)

z(k) = z(k− 1)−min{zi(k− 1), zj(k− 1)}(ei + ej) (11)

where k ∈ q, z(k) ∈ Rn×1, and {i, j} = γ−1(k− 1).
Then in the second recursion, derive the final allocation matrix

U(q) by taking into account both the countries’ remaining powers
after the traversal and their allocations toward and from adver-
saries and friends. Countries’ remaining powers are denoted using
U(q)’s diagonal elements as in Eq. (12). Their allocations toward
and from adversaries (as computed during the traversal) and
friends (assumed to be 0) are denoted using U(q)′s non-diagonal
elements as in Eq. (13):

U(0) = diagonal{z1(q), z2(q), . . . , zn(q)} (12)

U(k) = U(k− 1)+

min{zi(k− 1), zj(k− 1)}(eieTj + ejeTi )
(13)

where k ∈ q, U(k) ∈ Rn×n, and {i, j} = γ−1(k− 1)2
Alternatively, the second recursion of Algorithm 1 can be

restated as
U(0) = diagonal{z1(0), z2(0), . . . , zn(0)}

= diagonal{p1, p2, . . . , pn}
(14)

U(k) = diagonal{z1(k), z2(k), . . . , zn(k)}

+

k∑
r=1

min{zi(r − 1), zj(r − 1)}(eieTj + ejeTi )

(15)

where k ∈ q, U(k) ∈ Rn×n, and {i, j} = γ−1(k− 1).

Incidence Matrix for the Subgraph of All Adversary Pairs. The q
adversary pairs make up a subgraph E′

E of the environment graph
EE . The incidence matrix of E′

E is B = [bik]n×q, whose ith row is
bi. bik = 1 if country i is in the kth (1 ≤ k ≤ q) adversary pair and
0 otherwise.

Lemma 1. The normal form game has a pure strategy Nash
Equilibrium if the vector of countries’ power p = [pi]n×1 can be
decomposed as

p = Bd+ c (16)

where the following conditions are satisfied:

(1) B is an n× q incidence matrix for the subgraph E′
E .

(2) d is a q × 1 nonnegative-valued column vector, and c is an
n× 1 nonnegative-valued column vector.

2 Note that the first equilibrium in Example 2 can be regarded as having
been constructed with Algorithm 1. The first recursion is: z(1) = z(0) −
8[0 1 0 0]T − 8[0 0 1 0]T = [10 0 12 8]T , and z(2) = z(1) − 8[0 0 1 0] −
8[0 0 0 1] = [10 0 4 0]. And the second recursion is: U(0) = diagonal{10, 0, 4, 0},
U(1) = U(0) + 8 ∗ ([0 1 0 0]T ∗ [0 0 1 0] + [0 0 1 0]T ∗ [0 1 0 0]), and
U(2) = U(1)+ 8 ∗ ([0 0 1 0]T ∗ [0 0 0 1] + [0 0 0 1]T ∗ [0 0 1 0]).
5

(3) ∄{i, j} ∈ Ra, ci > 0 and cj > 0.

Proof of Lemma 1. Suppose a decomposition of the total power
vector that satisfies the three conditions exists. We then derive a
strategy matrix U such that for i ∈ n:

(1) uij = uji = di ≥ 0
(2) uii = ci ≥ 0
(3) uij = uji = 0, and j ∈ Fi − {i} as a consequence of (1) and

(2).
(4) uij = uji = 0, and j ̸∈ Ai ∪ Fi by default.

U is a valid strategy matrix because
n∑

j=1

uij =
∑
j∈Ai

uij + uii = bid+ ci = pi. (17)

No country i with adversaries will unilaterally deviate from ui,
ecause it must fall into either case:

(1) ci = 0. For country i, it must be that xj(U) = precarious,
because σi(U) = τi(U) = pi. For any j ∈ Ai, uij = uji, and
uii = 0. Thus, i cannot deviate to make itself strictly better
off due to power deficiency.

(2) ci > 0. For country i, it must be that ∀j ∈ Ai, cj = 0, which
means xj(U) = precarious, and that ∀j ∈ Fi, xj(U) = safe or
precarious. By the preference axioms, given any arbitrary
V ∈ U , country i must weakly prefer U to V and therefore
does not need to deviate.

Any country i without adversaries will not unilaterally deviate
from ui, either, because the following holds:

(1) pi = uii.
(2) xi(U) = safe or precarious, j ∈ Fi.

By the preference axioms, given any arbitrary V ∈ U , country i
must weakly prefer U to V , and does not need to deviate, either.

Therefore, if the total power vector can be decomposed as
p = Bd+ c , for which the three requirements hold, we can derive
a strategy matrix that is a pure strategy Nash equilibrium. □

Theorem 2. In the normal form game, pure strategy Nash equilib-
rium always exists.

Proof of Theorem 2. In what follows, we prove that Algorithm 1
guarantees to construct a set of allocations that satisfy the con-
ditions in Lemma 1. We decompose the total power vector p =

Bd+ c by defining d and c as follows based on Algorithm 1:

(1) let dk = min{zi(k − 1), zj(k − 1)} for γ−1(k − 1) = {i, j},
k ∈ q

(2) let ci = zi(q), i ∈ n.

The first two conditions about the decomposition in Lemma 1
are thus proven. First, d is a q × 1 nonnegative-valued column
vector. Second, c is an n × 1 nonnegative-valued column vector.
Next, we prove the third condition. By Algorithm 1, at the kth
recursion where γ−1(k − 1) = {i, j} is traversed, the remaining
power of i and j, zi(k) and zj(k), cannot be both positive. zi(k) is
also non-increasing with k. Therefore, zi(q) and zj(q) cannot be
both positive. In other words,

∄{i, j} ∈ Ra, ci > 0 and cj > 0. (18)

The decomposition is also valid, which means satisfying the
total power constraint:

bid+ zi(q) = pi, i ∈ n (19)

Therefore, the normal form game always has a pure strategy

Nash equilibrium, which can be constructed by Algorithm 1. □
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esult II. Equilibrium set

Another algorithm is developed to generate the pure strategy
ash equilibrium set U∗. Algorithm 2 is to establish the geometric
roperty of the equilibrium set by deriving the set’s algebraic
epresentation.

lgorithm 2. The input of Algorithm 2 consists of the countries
et, n, the total power vector p, the friend set Fi, the adversary
et Ai, and the preference order ⪯i of each country i ∈ n. For
ountry i, let a valid total order of the 3n state vectors in X be

X1 ⪰i X2 · · · ⪰i Xk ⪰i · · · ⪰i X3n (20)

ext we derive three sets of constraints the kth equilibrium
quivalence class (1 ≤ k ≤ 3n) must satisfy — namely, each coun-
ry’s total power constraint, state constraint, and locally feasible best
esponse constraint.

otal Power Constraint: Country i’s total power constraint Pi(k) is
he intersection of the linear inequalities each dimension of i’s
llocations must satisfy in any strategy matrix U . The symbols

⋂
nd

⋃
refer respectively to logical AND and logical OR.

Pi(k) :=
⋂

j∈Fi∪Ai

(uij ≥ 0)
⋂

(
∑

j∈Fi∪Ai

uij = pi) (21)

which gives the upper and lower bounds for i’s each dimension
of allocations.

State Constraint: Country i’s state constraint Si(k) is the inter-
section of the linear inequalities that i’s allocations in its total
support σi and total threat τi must satisfy in the kth equilibrium
quivalence class.

Si(k) :=

⎧⎨⎩
(σi(U) > τi(U)) xi(U) = safe
(σi(U) = τi(U)) xi(U) = precarious
(σi(U) < τi(U)) xi(U) = unsafe

(22)

Locally Feasible Best Response Constraint: Country i’s locally feasi-
ble best response constraint Bri(k) can be obtained by intersecting
the total power constraint and the state constraint for the kth
equilibrium equivalence class,

Bri(k) =
⋂

j∈Ai∪Fi

(Sj(k) ∩ Pj(k)). (23)

Every formula can be expanded into an equivalent conjunctive
or disjunctive normal form (‘‘CNF’’ or ‘‘DNF’’) computationally.3
We represent the right-hand side of Eq. (23) in a conjunctive nor-
al form, an intersection of Ti ≥ 0 disjunctive clauses (Whitesitt,
012)

CNF(
⋂

j∈Ai∪Fi

Sj(k) ∩ Pj(k)) =
⋂

1≤ti≤Ti

Clauseti (24)

f the tith clause (0 ≤ ti ≤ Ti) contains only the linear inequalities
f i’s own allocations, denote it as Stratti (k), a strategy clause of i.
therwise, denote it as Condti (k), a condition clause of i.

on-Deviation Condition: Given the intersection of countries’ lo-
ally feasible best response constraints

⋂
i∈n Bri(k) for the kth

quilibrium class, any country i cannot deviate to a different class
y unilaterally changing its strategy. If this non-deviation condi-
ion holds, it means that the kth class is a valid equilibrium equiv-
lence class. Denote

⋂
i∈n Bri(k) that satisfies the non-deviation

ondition as ⋂
i∈n

Bri(k)∗ (25)

3 A class of games based on Boolean algebra is called ‘‘Boolean Games’’
e.g., Ding et al. (2021)).
6

Pure Strategy Nash Equilibrium Set: The pure strategy Nash equi-
librium set U∗ is the union of all valid equilibrium equivalence
classes,

U∗
:=

⋃
1≤k≤3n

(⋂
i∈n

Bri(k)∗
)
. (26)

he output of Algorithm 2 is each equilibrium equivalence class
n its algebraic representation. However, obtaining the exact al-
ebraic representation of the classes using Algorithm 2 is a con-
traint satisfaction problem (CSP), which can be of high complexity.
herefore, we aim only to establish the geometric property of
he equilibrium equivalence classes below, which then helps de-
ermine the equilibrium set’s geometric property, and will do so
hrough Theorems 3 and 4.

alf-space Representation of Convex Polytopes: A half-space repre-
entation of a polytope is

P = {x ∈ Rn×1
: Ax ≤ b}, (27)

here A ∈ Rm×n, b ∈ Rm×1, and m, n ∈ Z (m > n ≥ 1).

heorem 3. The strategy space of the normal form game is a
m-dimensional convex polytope, where m is the number of pairs
f distinct countries that are friends or adversaries.

roof of Theorem 3. Let the set of allocations between any pair
f distinct countries which are friends or adversaries be

⋃
i∈n{uij :

∈ Fi ∪ Ai \ {i}} whose cardinality is 2m.
Label all allocations in the above set. The labeling set is z =

i∈n zi = {1, 2, . . . , 2m}, where zi is the labeling set for the
llocations in {uij : j ∈ Fi ∪ Ai \ {i}}.
For each n×n allocation matrix U , a 2m-dimensional vector û

can be constructed such that ∀i, j ∈ n such that i ̸= j, the k-entry
ûk is equal to the kth allocation in z. The projection π : U ↦→ û is
bijective. As π is a bijection, û and U can be used interchangeably.
The idea is that subject to the total power constraint, the number
of independent nonzero entries in U is 2m.

Let A = [aij]n×2m be a real matrix, whose ith row vec-
tor ai is defined such that aiq = 1 if and only if q ∈ zi,
and 0 otherwise. And let I = [Iij]2 m×2m be an identity matrix
and 0 = [0]2 m×1. Eq. (41) yields both the total power con-
straint and the nonnegative requirement for all the allocations.
P =

{
û ∈ R2 m×1

:
[

A
−I

]
û ≤

[ p
0

]}
. in the half-space representa-

tion of the strategy space. Therefore, the strategy space of the
normal-form power allocation game is a 2m-dimensional convex
polytope. □

Theorem 4. Each equilibrium equivalence class of the power
allocation game is a convex polytope with at most 2m dimensions.
The equilibrium set U∗ is a collection of convex polytopes.

Proof of Theorem 4. By Algorithm 2, if the non-deviation con-
dition is not satisfied for the kth equilibrium equivalence class,
the class will have been ruled out in the equilibrium set. If
the non-deviation condition is satisfied, the kth class is a valid
equilibrium equivalence class. Recall that the intersection of the
locally feasible best response constraints

⋂
i∈n Bri(k)

∗ is a finite
intersection of simple linear inequalities of countries’ allocations
for this class.

Since each linear inequality represents a half-space, each can-
didate equilibrium equivalence class is either empty or a
nonempty convex polytope. Therefore, the equilibrium set U∗ is
a union of convex polytopes. □



Y. Li and A.S. Morse Automatica 140 (2022) 110243

2

o
m
s
t

C

{

w
f
t

A

v
n
{

F
a

D

a

t

t
u

w
t

w
t

p
h
t

A
w
o

t
n

T
l
p
t
i
w
f
a

s
t

m
t
s

a
t

E

A

B
b

T
e

P
u
o
i

A

.2. Static power allocation game in extensive form

In contrast with the normal form game, the extensive form
f the power allocation game assumes a sequencing of countries’
oves and can be set up as follows. We also show that the exten-
ive form game can be used for refining equilibrium predictions of
he corresponding normal form game (Li & Morse, 2018c, 2018d).

ountries and power

There are a set of countries labeled from 1 to n in n =

1, 2, . . . , n}. At t ∈ {0, 1, 2, . . . , T }, each country is endowed
ith a nonnegative quantity of total power pi(t). As an extensive

orm game is not strictly ‘‘dynamic’’, it can be reasonably assumed
hat pi(t) does not change over time.

sequence of spanning subgraphs

The extensive form game takes place on a sequence of time-
arying environment graphs. Denote ∆E as the set of all span-
ing subgraphs of EE . Let a sequence of graphs EE(t), t ∈

0, 1, 2, . . . , T } from ∆E be such that

EE(t) ∈ ∆E, t ∈ {0, 1, 2, . . . , T }. (28)

i(t) and Ai(t) are respectively the label sets of country i’s friends
nd adversaries at time t .

ecision rule

At time t ∈ {0, 1, 2, . . . , T }, every country i decides on how to
llocate

pi(t) =
∑

j∈Fi(t−1)∪Ai(t−1)

uij(t − 1), (29)

o its friends and adversaries at time t .
Country i’s decision rule is the following.4 i will keep constant

he allocations to its neighbors that remain so at time t . And i will
pdate the reserved power uii(t − 1) to be uii(t) by adding back∑

j∈Fi(t−1)−Fi(t)

uij(t − 1)+
∑

j∈Ai(t−1)−Ai(t)

uij(t − 1) (30)

hich are its allocations to the neighbors that disappear at time
, and then subtracting∑

j∈Fi(t)−Fi(t−1)

uij(t)+
∑

j∈Ai(t)−Ai(t−1)

uij(t) (31)

hich are its allocations to the neighbors that newly appear at
ime t . Therefore, the following equality holds

uii(t) = uii(t − 1)+ (12)− (13). (32)

Denote U(t) as a strategy matrix and U(t) ⊂ U as the set of
ower allocation matrices at time t ∈ {1, 2, . . . , T }. Each country
as perfect information of the power allocation path before time
, which is

U(0),U(1), . . . ,U(t − 1) ∈ U(0)× U(1)× · · · × U(t − 1). (33)

nd at time T , the game outcome, the state vector x(U(T )) ∈ X
hose ith component is country i’s state, is realized. Country i
rders the state vectors based on the preference axioms.

4 It is worth noting that an extensive form game is not exactly equivalent
o a dynamic game, but rather an alternative mathematical formulation of the
ormal form game by assuming this decision rule.
7

A sequence of subgames

Assume that countries have complete information about each
other’s power, strategies, game outcomes, and preferences for
those outcomes. Then countries’ allocations from t = 0 to t =

can be represented using the following tree structure T. At
ayer t ∈ {0, 1, . . . , T } of T, each decision node represents the
oint at which countries decide on the allocations at time t . As
he number of strategy matrices can be infinite, there grows an
nfinite number of branches from each decision node at layer t ,
hose pth branch represents a matrix Up(t) at time t . Each path

rom the root node to a terminal node of T represents a power
llocation path from t = 0 to t = T , U(0),U(1), . . . ,U(T ).
A power allocation path from t = 0 to t = T traverses a

equence of T + 1 subgames. Let κ(t) be the set of subgames at
ime t ∈ {0, 1, . . . , T }. A function η :

U(0)× U(1) . . .× U(T ) −→ κ(0)× κ(1) . . .× κ(T ) (34)

aps a power allocation path to the sequence of subgames it has
raversed. Using backward induction, the ρth subgame of this
equence can be denoted as

η(U(0),U(1), . . . ,U(T ))ρ (35)

nd be represented by the subtree of T, whose root node denotes
he point where the following strategy matrix is made

U(T − ρ + 1), ρ ∈ {1, 2, . . . , T + 1}. (36)

quilibrium concept

Let the power allocation path from t = 0 to t = T be

U(0),U(1), . . . ,U(T ), (37)

nd denote country i’s deviation at time T ′
∈ {0, 1, . . . , T } as

U(0),U(1), . . . ,U(T ′
− 1),U∗(T ′) . . .U∗(T ). (38)

y the Decision Rule and the one-shot deviation principle (Fuden-
erg & Tirole, 1991), country i’s future allocations beyond time T ′

may have to change accordingly after the deviation at time T ′.
A power allocation path U(0),U(1), . . . ,U(T ) is a subgame

perfect Nash equilibrium if no unilateral deviation in strategy at
any time by any country i is ‘‘profitable’’. This means that given
i’s deviation at time T ′

∈ {0, 1, . . . , T },

U∗(T ) ⪯i U(T ) (39)

heorem 5. In the extensive form game, subgame perfect Nash
quilibrium always exists.

roof of Theorem 5. A traversal of the adversarial relationships
sing Algorithm 1 gives rise to a sequence of spanning subgraphs
f EE that reach EE at the last step. The edge sets of these graphs
n the sequence are

EE(0) = RF , (40)

E(k) = RF ∪ r−1(0) ∪ . . . ... ∪ r−1(k− 1), k ∈ q. (41)

sequence of strategy matrices can be derived by Algorithm 1

U(0) = diagonal{z1(0), . . . , zn(0)}
= diagonal{p1, . . . , pn}

(42)

U(k) = diagonal{z1(k), z2(k), . . . , zn(k)}+
k∑

r=1

min{zi(r − 1), zj(r − 1)}(eieTj + ejeTi )
(43)

where k ∈ q,U(k) ∈ Rn×n, and {i, j} = γ−1(k− 1). These alloca-
tions are consistent with the Decision Rule. A sequence of q + 1
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ubgames is thus derived. Proceeding backwardly, η(U(0),U(1),
. . ,U(q))h is the subgame where the path U(q−h+1),U(q−h+
), . . . ,U(q) is chosen, h ∈ {1, 2, . . . , q+ 1}.
In this extensive form game, no country i will want to deviate

rom its strategy ui(k), k ∈ {0, 1, 2, . . . , q}:

(1) At k = 0, either i has no neighbors, or has at least a friend
j. In either case, it does not need to deviate.

(2) At k ∈ q, if r−1(k−1) is one of i’s adversarial relationships,
then either zi(k) > 0 or zi(k) = 0. In the former case, i
does not have to deviate because all its adversaries have
zero remaining power, and all its friends are either safe
or precarious. In the latter case, i cannot deviate due to
power deficiency. If r−1(k− 1) is not one of i’s adversarial
relationships, i does not have an allocation strategy at time
k.

herefore, the sequence of allocations represents a subgame per-
ect Nash equilibrium. □

As in the normal form game, the power allocation path U(0),
(1), . . . ,U(q) depends on the chosen ordering map γ , with the
mplication that different sequences of environment graphs may
ive rise to different subgame perfect Nash equilibria.

xample 3. Consider a normal form game where

(1) Countries: n = {1, 2, 3}.
(2) Total power: p = [8 6 4].
(3) Relations: F1 = {1} and A1 = {2, 3}; F2 = {2} and

A2 = {1, 3}; F3 = {3} and A3 = {1, 2}.
(4) Preferences: assume the preference axioms.

Assume three different sequences of graphs. The first sequence
contains the following edge sets, EE(0) = {1, 2}, E(1) = {1, 2} ∪
{1, 3}, and EE(2) = {1, 2} ∪ {1, 3} ∪ {2, 3}. The second sequence
contains the following edge sets: EE(0) = {2, 3}, E(1) = {2, 3} ∪
{1, 2}, and EE(2) = {2, 3} ∪ {1, 2} ∪ {1, 3}. The third sequence
contains the following edge sets: EE(0) = {1, 3}, E(1) = {1, 3} ∪
{1, 2}, and EE(2) = {1, 3} ∪ {1, 2} ∪ {2, 3}.

We construct a subgame perfect Nash equilibrium for each
of the three graph sequences by applying Algorithm 1 as in
heorem 5. The state vectors predicted by the three equilibria
re, respectively, [precarious, precarious, safe], [safe, precarious,
recarious], and [precarious, safe, precarious]. All of the three
tate vectors are possible predictions from the pure strategy Nash
quilibria of the normal form game. In contrast, only one of
he vectors can be predicted from the subgame perfect Nash
quilibria in the extensive form game. Equilibrium refinement
ith regard to the normal form game is thus achieved.

.3. Application

.3.1. Application I. Survival problem

An application of the power allocation game is countries’
urvival problem. It is of natural interest to identify networked,
dversarial environments where a country can survive in at least
pure strategy Nash equilibrium of the power allocation game.
For example, country i will survive in the power allocation

ame if its power is no smaller than that of its adversaries, or
f it is involved in a set of countries, any two of which are friends
nd the total power of which is no smaller than that of their
dversaries. That is to say, there exists a strategy matrix U such
hat xi(U) ∈ {precarious, safe} if either of the following conditions
olds

pi ≥
∑

pj (44)

j∈Ai

8

∀i, j ∈ S ⊂ n, j ∈ Fi

and
∑
i∈S

pi ≥
∑
j∈AS

pj

where AS =
⋃

i∈S Ai

(45)

oreover, when either (44) or (45) holds, country i will survive
in any equilibrium of the power allocation game. Other possible
environments where country i may survive in the power alloca-
tion game exist, and Li et al. (2017) contain several results along
this line.

For countries’ survival problem, it is also worth exploring
the kind of pure strategy Nash equilibria with particular proper-
ties, such as ‘‘Balanced Equilibrium (BE) (Li & Morse, 2018b)’’. A
balanced equilibrium satisfies the following three requirements.
First, any two adversaries balance out their offense toward each
other. Second, any country with adversaries exhausts its power
on offense. Third, any two friends invest zero toward each other.
Consequently, any country with adversaries is precarious. That is
to say, a strategy matrix U is a BE if three conditions below hold

∀j ∈ Ai, uij = uji, (46)

∀i ∈ n s. t. Ai ̸= ∅, pi =
∑
j∈Ai

uij, (47)

∀j ∈ Fi, uij = uji = 0. (48)

The properties of BE may invoke a rationale for countries
o play the ‘‘bait and bleed strategy (Mearsheimer, 2001)’’ in
certain environments because a county would ‘‘have its hands
free’’ if its adversaries ‘‘bloodlet (Mearsheimer, 2001) ’’ — in
other words, play a kind of BE among themselves. Li and Morse
(2018b) contains a discussion of possible environments for the
strategy’s success — namely, for the existence of BE in the power
allocation game. For example, if the adversarial relationships in
the environment make up a complete graph, a necessary and
sufficient condition for BE to exist is that the total power of any
country in antagonisms does not exceed that of its adversaries,

∀i, j ∈ n s. t. Ai ̸= ∅ and Aj ̸= ∅, j ∈ Ai (49)

BE exists if and only if the following holds

∀i ∈ n s. t. Ai ̸= ∅, pi ≤
∑
j∈Ai

pj (50)

And below we prove the condition for the BE to exist in games
on structurally balanced graphs (Li & Morse, 2018b), which takes
a similar form with that of the Hall’s Maximum Matching Theo-
rem (Hall, 1935).

Theorem 6. A power allocation game on a structurally balanced
graph (Harary et al., 1953), in other words, in an environment
where the adversary pairs make up a bipartite graph, has a balanced
equilibrium if and only if the following power condition holds for the
countries with adversaries:

(1) ∀S ⊆ L,
∑

j∈AS
pj ≥

∑
i∈S pi

(2) ∀S ⊆ R,
∑

j∈AS
pj ≥

∑
i∈S pi (AS =

⋃
i∈S Ai)

y definition, the two sets of nodes, L and R, represent the two
roups of countries in adversaries relationships, where each country
n either set is only connected to countries in the other set. S is a
ubset of either set.

roof of Theorem 6.

(1) Sufficient condition: The proof is by contradiction.
Suppose the power condition holds and a balanced equi-

librium does not exist. Suppose then that for all symmetric
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allocation matrices U of the bipartite graph, ∃i ∈ L, the
remaining power zi > 0. Then ∥zi∥1 > 0.
By the power condition, there must exist another node,
j ∈ R, with zj > 0.
By the property of a connected graph, alternating paths
exist between i and j, whose lengths should be odd. Since
this is a directed graph with symmetric edges, the length
of the path is given by the number of edges on it.
Below will be shown that there is at least an augmenting
path P between i and j such that the positive ∥z∥1 can
be further minimized. This would contradict the fact that
when the power condition holds, ∥zi∥1 is positive. Then a
balanced equilibrium must exist.
Suppose on all alternating paths between i ∈ L and j ∈ R
with zi > 0 and zj > 0, there must be an even edge in the
path with zero allocations.
Then a case that contradicts the above statement is derived
below:

(a) Initialize L′
= {i}, and R′

= ∅.
(b) Update L′

= L′, and R′
= R′

∪ AL′ . This step
generates the first odd edge of the paths and its
symmetric edge.

(c) For each m ∈ R′, if ∃n ∈ AR′ such that unm =

umn > 0, update L′
= L′

∪ {n}. Update R′
= R′.

This step gives the first even edge of the paths and its
symmetric edge, on which the symmetric allocations
are positive.

(d) Repeat step 2 and 3 until L′ and R′ stay fixed.

At the end of the above process, a subgraph G′ of L′ and
R′ is derived, where R′

= AL′ but L′
̸= AR′ . Also in G′, all

the alternating paths starting at i have positive allocations
on the even edges.
It has been supposed that for all alternating paths between
two nodes with positive node allocations, there must be an
even edge in them with zero allocations. G′ does not have
any alternating path starting with iwith zero allocations on
even edges. Also, by the property of the connected graph,
any path that starts at i can end at any node in R′. Then it
must be that all nodes in R′ have zero node allocations.
Given that R′

= AL′ , Σm∈L′pm > Σn∈R′pn = 0. Then the
power condition does not hold for G′. Contradiction. There
will not be a balanced equilibrium as countries in S will
not exhaust their power by allocating to their adversaries.

(2) Necessary condition: If the power condition does not hold,
it means that there is a set of countries S whose total
power exceeds that of their adversaries. There will not be
a balanced equilibrium as countries in S will not exhaust
their power by allocating to their adversaries. □

2.3.2. Application II. Prediction

Usually, there are multiple equilibrium equivalence classes,
except in cases where no adversarial relationships exist. Estimat-
ing the probabilistic distribution of the equilibrium equivalence
classes is a necessary task for understanding countries’ likelihood
of survival and success from power allocation. Naturally, the
probability of an equilibrium equivalence class in the game can
be associated with the class volume. However, the output of
Algorithm 2 suggests the calculation of class volumes to be a chal-
lenging task. In Li, Yue, Liu, and Morse (2018), we have proposed
an ‘‘update-rule-based’’ algorithm like in a networked evolution-
ary game (e.g., Cheng et al. (2015)) to obtain an approximation of
the class volumes.

The algorithm’s input is the parameters of the normal form
game, which are countries’ power, relationships, and preference
axioms.
9

• At time 0, initialize the pure strategy Nash equilibrium set
U to be empty and a strategy matrix U(0).

• At time t , each country i updates its power allocation strat-
egy ui(t − 1) to have the best possible state vector based on
a total order ⪯i on the set of state vectors X , by assuming
the strategies of all the others uj(t−1), j ̸= i to be fixed and
the total power constraint to be time constant,

pi =
∑
j∈n

uij(t). (51)

• Stop updating if reaching a pure strategy Nash equilibrium
U∗ or the maximum number of rounds t = T .

• Update the equilibrium set U∪{U∗
} and go back to initialize

a different strategy matrix.

The output of the algorithm is the pure strategy Nash equilib-
rium set of the normal form game. In Li et al. (2018), we have
computed the classes’ likelihoods for a power allocation game
assuming real-world data of countries including China, Russia,
and the US, which can be used to calculate these countries’
likelihoods of survival in different environments.

3. The signed network formation game
We now design a ‘‘signed network formation game’’ as the

second part of the games-on-signed graphs framework. While the
power allocation game predicts countries’ survivability in a given
environment, the signed network formation game studies how
they may change the environment to improve such survivability.
Instead of allocating power on a given graph, countries’ strategy
would be now to change the graph itself.

3.1. Static signed network formation game

Countries and Strategies: Countries in the environment are la-
beled from 1 to n in n = {1, 2, . . . , n}. Country i’s signed
network formation strategy means choosing a friendly relation-
ship, an adversarial relationship, or no specific relationship to
be formed with every country in n, and by default i is its own
friend. That is to say, i picks a vector li = [lij]1×n, where lij ∈

{friend, adversary, null} is the relationship intended by i to be
formed with j and lii = friend. Each set of countries’ signed
network formation strategies {li : i ∈ n} determines a linking
matrix, L = [lij] whose ith row is li. Denote a relation configuration
of the n countries as R = [rij]n×n whose ij-th element represents
the relationship between i and j.

A relation function

τ : L → R (52)

maps a linking matrix L to a relation configuration R such that:

(1) rii = friend.
(2) rij = friend if (lij = friend) ∧ (lji = friend).
(3) rij = adversary if (lij = adversary) ∨ (lji = adversary).
(4) rij = null for the rest of the cases.

The set of all possible linking matrices is L and the set of all
possible relation configurations is R. The two sets’ cardinalities
are |L| = 3n(n−1) and |R| = 3n(n−1)/2.

Basic Preference Axioms: Country i’s preference for relation config-
urations depends importantly on its power allocation outcomes
from the configurations. We formalize the linkage between the
power allocation outcomes and countries’ preferences below.

Given two relation configurations R = [rij]n×n and R̂ = [r̂ij]n×n,
let the pure strategy Nash equilibrium sets of the two correspond-
ing power allocation games be respectively U∗ and Û . A sufficient
condition for country i weakly preferring R̂ to R, written as R ⪯i R̂,
is that one of the following must be satisfied for any country
j ∈ n:
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(1) if rij = r̂ij = friend,
(a) (∀Û ∈ Û, xj(Û) ∈ {safe, precarious}) ∨
(∀U∗

∈ U∗, xj(U∗) ∈ {unsafe, precarious}).
(2) if rij = r̂ij = adversary,

(a) (∀Û ∈ Û, xj(Û) ∈ {unsafe, precarious}) ∨ (∀U∗
∈

U∗, xj(U∗) ∈ {safe, precarious}).
(3) if rij = friend and r̂ij = null,

(a) ∀U∗
∈ U∗, xj(U∗) ∈ {unsafe, precarious}.

(4) if rij = null and r̂ij = friend,
(a) ∀Û ∈ Û, xj(Û) ∈ {safe, precarious}.

(5) if rij = adversary and r̂ij = null,
(a) ∀U∗

∈ U∗, xj(U∗) ∈ {safe, precarious}.
(6) if rij = null and r̂ij = adversary,

(a) ∀Û ∈ Û, xj(Û) ∈ {unsafe, precarious}.
(7) if rij = null and r̂ij = null,

no condition is needed for j’s state.

For the above scenarios, Axioms (1) - (7) contain the most
ntuitive criteria for evaluation. Other scenarios where country i
ay have to compare an environment in which country j is i’s

riend to another in which country j is i’s adversary are much
ore ad hoc, usually requiring a case-by-case analysis. Axioms

8) and (9) provide an example of criteria for evaluating these ad
oc scenarios.

(8) if rij = friend and r̂ij = adversary,
(a) (∃U∗

∈ U∗, xj(U∗) ∈ {unsafe, precarious}) ∧
(∀Û ∈ Û , xj(Û) ∈ {unsafe, precarious}), or

(b) (∀U∗
∈ U∗, xj(U∗) ∈ {unsafe, precarious}) ∧

(∃Û ∈ Û , xj(Û) ∈ {unsafe, precarious}).
(9) if rij = adversary and r̂ij = friend,

(a) (∃U∗
∈ U∗, xj(U∗) ∈ {safe, precarious}) ∧

(∀Û ∈ Û , xj(Û) ∈ {safe, precarious}), or
(b) (∀U∗

∈ U∗, xj(U∗) ∈ {safe, precarious}) ∧
(∃Û ∈ Û , xj(Û) ∈ {safe, precarious}).

Equilibrium Concept: The Nash equilibrium concept is employed
in the signed network formation game to make predictions. Let
country i’s deviation from the strategy matrix li be l̂i, and the
linking matrix where i makes the unilateral deviation be L̂. The
deviation set Zi(L) is the set of all possible deviations of country i’s
strategies from the linking matrix L. Therefore, a linking matrix L
is a pure strategy Nash Equilibrium if no one deviation in strategy
by any country i is ‘‘profitable’’. In other words,

τ (L̂) ⪯i τ (L), ∀li ∈ Zi(L). (53)

3.2. Theoretical result

A utility function that satisfies the basic preference axioms ex-
ists. Nevertheless, a pure strategy Nash equilibrium for this signed
network formation game exists independently of any preference
axioms.

Theorem 7. In the static signed network formation game, a pure
strategy Nash equilibrium always exists.

Proof of Theorem 7. For a linking matrix L, suppose that ∀i ∈
n, lii = friend and ∀i, j ∈ n, lij = lji = adversary. No country
can unilaterally deviate to change any adversarial relationship.
Therefore, L is always a pure strategy Nash equilibrium of the
signed network formation game. □
10
3.3. Application: Optimal network design

An application of the signed network formation game is opti-
mal network design by great powers. For instance, if a country is a
‘‘great power’’, then there exists a linking matrix realizing this
relation configuration in an equilibrium of the signed network
formation game (Li & Morse, 2017a). Great power is defined as
a country whose power exceeds that of all the other countries
combined and with an optimal relation configuration about the
environment. That is to say, if for country i,

pi ≥
∑
j∈n\{i}

pj, (54)

∃R ∈ R and ∀R̂ ∈ R such that R̂ ̸= R, R̂ ⪯i R. (55)

then there exists L as a pure strategy Nash equilibrium where
τ (L) = R. This definition can somehow approximate the US’s
current status, and if certain conditions for a set of countries
are met, they can be regarded indistinguishably from a great
power. In Li and Morse (2017a), we call such a set of countries
a ‘‘power bloc’’, which is necessarily an alliance, within which
no adversarial relationships exist, and explain that the lack of
great power conflicts in the unipolar, postwar world order is the
product of optimal network design by a power bloc — NATO.

An alliance’s reducibility

If an alliance S ⊂ n, which is a subset of nodes without
any adversarial relationships, satisfies the above definition, then
it is reducible. A condition for its reducibility is summarized in
Theorem 8.

Theorem 8. Suppose that there are two power allocation games
with the sets of countries’ labels respectively being n and ñ, and that
the former game has an alliance S . The game with ñ is a reduced
form of the game with n if the following conditions hold for the
alliance S ,

(1) Any two members are allies: ∀i, j ∈ S , rij = friend.
(2) Members sharing the external relations with outsiders: ∀i, j ∈

S and ∀k ∈ n \ S , rik = rjk.

Proof of Theorem 8. When an alliance S satisfying the above two
conditions exists, a surjection f : n → ñ can be constructed such
that

(1) ∀i ∈ S , f (i) = s.
(2) ∀j ∈ n \ S , f (j) = j.
(3) ∀i, j ∈ S , h ∈ n \ S , rih = rjh = r̃sh.
(4)

∑
i∈S pi = p̃s.

where conditions (1) and (4) in the definition of a game’s reduced
form are easily satisfied.

Conditions (2) and (3) are also satisfied because for any equi-
librium U in the game with n, let Ũ be such that ∀p, q ∈ ñ, ũpq =∑

i∈f−1(p)
∑

i∈f−1(q) uij. Then we have∑
i∈S

σi(U) =
∑
i∈S

(
∑
j∈Fi

uji +
∑
j∈Ai

uij) =
∑
p∈F̃s

ũps +
∑
q∈Ãs

ũsq = σ̃s(Ũ)

(56)∑
i∈S

τi(U) =
∑
i∈S

∑
j∈Ai

uji =
∑
k∈Ãs

ũks = τ̃s(Ũ) (57)

For i ∈ S , either σi(U) ≥ τi(U) or σi(U) ≤ τi(U) holds.
In the former case, σ̃s(Ũ) ≥ τ̃s(Ũ). Therefore, xi(U), xs(Ũ) ∈

{safe, precarious}. In the latter case, σ̃s(Ũ) ≤ τ̃s(Ũ). Therefore,
x (U), x (Ũ) ∈ {unsafe, precarious}.
i s
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In addition, ∀j ∈ n \ S, σj(U) = σ̃j(Ũ) and τj(U) = τ̃j(Ũ).
Just as no country hopes to deviate from U , no country has any
incentives to deviate from Ũ . Then Ũ is an equilibrium of the
game with ñ. The alliance S is thus reducible into node s under
f . In turn, the game with n is reducible to the game with ñ. □

The goal of reducibility could be unrealistic for many alliances.
ext, we explore how a ‘‘power bloc’’ may form in an equi-
ibrium of the signed network formation game, which achieves
‘reducibility’’ for itself and an ‘‘optimal network design’’ of the in-
ernational environment. This speaks to the literature of unipolar
olitics (e.g., Monterio (2014)) in the world system (e.g., Deutsch

and Singer (1964)).

Power blocs and optimal network design

Suppose there are k ∈ N ‘‘power blocs’’, meaning k alliances,
where bloc nφ ⊂ n, 1 ≤ φ ≤ k, satisfies the following four
properties:

(1) Conditions for the bloc’s power preponderance:
∑

i∈nφ pi ≥∑
j∈n\nφ pj.

(2) Conditions for members’ internal relations: ∀i, j ∈ nφ , rij =
rji = friend.

(3) Conditions for members’ relations with outsiders: ∀i, j ∈

nφ and ∀q ∈ n \ nφ , riq = rjq.
(4) Conditions for members’ preferences: let countries in nφ

have a nonempty intersection of their sets of ‘‘optimal’’
relation configurations, ⋂

i∈nφ

Ri = Rφ, (58)

where Ri ⊂ R is country i’s set of ‘‘optimal’’ relation
configurations. By ‘‘optimality’’ is meant that for i ∈ nφ ,

(a) It is indifferent between any two relation configura-
tions which are elements in Ri :

∀R̂, R̄ ∈ Ri, R̂ ∼i R̄. (59)

(b) It weakly prefers any relation configuration which is
an element in Ri to another relation configuration
which is not an element in Ri:

∀R̂ ∈ Ri and ∀R ∈ R \Ri, R ⪯i R̂. (60)

In each relation configuration in Rφ , the relations of coun-
tries in nφ satisfy conditions (2) and (3).

Condition (4) suggests a power bloc’s political dimension,
which is the homogeneous preference structures of its members.
A power bloc also has a command and control dimension, which
primarily consists in its ‘‘optimal network design’’ of the world
by its preferences.

Theorem 9. If at least a power bloc exists and Axioms (1) – (9) hold,
there exists a pure strategy Nash equilibrium of the signed network
formation game that realizes an optimal relation configuration for
the bloc nφ .

Proof of Theorem 9. By Condition (1) in the definition of a power
bloc, any adversary of countries in nφ will always be unsafe or
precarious, and any friend of them will always be safe or precari-
ous in power allocation. By Axioms (4) and (6), each country in nφ
weakly prefers either a friend or an adversary relationship with
every outsider in n \ nφ to having no relationships with them.

Then there are two sets of outsiders to consider in n \ nφ ,
with which countries in nφ are friends (n \ nφ)F or adversaries
(n \ n ) . Let a linking matrix L be:
φ A

11
Fig. 5. The equilibrium of the signed network formation game.

(1) ∀i ∈ n, lii = friend.
(2) ∀i, j ∈ nφ and ∀p, q ∈ (n \ nφ)F , lip = ljp = lpi = lpj = lpq =

lqp = friend.
(3) ∀i, j ∈ nφ and ∀g, h ∈ (n \ nφ)A, lig = ljg = lgi = lgj = lgh =

lhg = adversary.
(4) ∀p ∈ (n \ nφ)F and g ∈ (n \ nφ)A, lpg = lgp = adversary.

No country has incentives to deviate from L:

(1) Any country in nφ has no incentives to deviate from the
optimal relation configuration τ (L).

(2) Any country in (n \ nφ)F has no incentives to change the
friend relations with any country in or outside of nφ to
otherwise.

(a) By Axiom (4), they do not hope to change any friend
relation to a ‘‘null’’ relation.

(b) By Axiom (9a), they do not hope to change any friend
relation to an ‘‘adversary’’ relation.

(3) They also cannot unilaterally change the adversary rela-
tions with countries in (n \ nφ)A.

(4) Countries in (n \ nφ)A cannot unilaterally change any ad-
versary relation. □

xample 4. Consider a relation formation game where

(1) Countries: n = {1, 2, 3, 4}.
(2) Their total power: p = [10 8 20 8].
(3) Preferences: assume that countries 1 and 3 form a power

bloc, and in their optimal relation configuration, they are
friendly with country 2 but antagonistic against country 4.

Fig. 5 shows the only equilibrium of the signed network for-
ation game, which realizes countries 1 and 3’s optimal relation
onfiguration. Given the power preponderance of countries 1 and
, it is optimal for country 2 to have country 4 as an adversary by
xioms (8)–(9).

tructural balance and ‘‘buffer states’’

Suppose that there are k power blocs, which are not nec-
ssarily disjoint. If k > 1, the only case where those sets are
isjoint is when k = 2, and the total power of either bloc
as to be equal,

∑
i∈n1 pi =

∑
j∈n2 pj. In this case, ‘‘structural

alance (Harary et al., 1953)’’ can be achieved in equilibrium. In
his equilibrium, two blocs will be formed, with each country in
ne bloc antagonistic with each country in the other bloc. In other
ases, as long as k > 2, ‘‘buffer states’’ must exist — country i is a
uffer state in between blocs if it is indifferent being in each bloc

i ∈ n ∩ n , where φ ̸= ψ, and φ,ψ ∈ {1, 2, . . . , k}. (61)
φ ψ
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hen the equilibrium relation configuration in Theorem 9 de-
pends crucially on the preferences and actions of these buffer
states, as in the Cold War era, the current diplomatic competition
over the Indo-Pacific region between the Biden administration
and China, and many others.

4. Concluding remarks

What we regard as several minimal fundamentals about coun-
tries’ behaviors have motivated the development of the games-
on-signed graphs framework. First, each country faces two real-
istic constraints from a given security environment – its power
and relationships. Second, with the constraints, a country pursues
survival and success in a constant or a changing environment, and
may bring about some of the changes to the environment itself.
These motivate the usage of a signed graph (‘‘the environment
graph’’) to describe the environment and the development of the
‘‘games on signed graphs’’ to model countries’ strategies therein.

Due to the scope of the paper, we leave out two discussions:
the first is the extensions of the games to dynamic horizons,
preferably with incomplete information as well, as applicable to
the particular setting in international relations. One example is
how, without complete knowledge about others, countries can
best control their power allocation strategies over time or across
multiple layers of the sea, land, and air, where their powers and
relations may change based on an evolutionary law. This may lead
to an extension of networked evolutionary games like Cheng et al.
(2015). The second is a non-technical study of countries’ decision-
making, focusing on the game parameters like countries’ powers
and decision makers’ preferences in historical and contemporary
contexts and the outcomes thereof. We will present them in our
future work.
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