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Structural Completeness of a Multichannel
Linear System With Dependent Parameters

Fengjiao Liu

Abstraci—It is well known that the “fixed spectrum” (i.e.,
the set of fixed modes) of a multichannel linear system
plays a central role in the stabilization of such a system
with decentralized control. A parameterized multichannel
linear system is said to be “structurally complete” if it has
no fixed spectrum for almost all parameter values. Neces-
sary and sufficient algebraic conditions are presented for
a multichannel linear system with dependent parameters to
be structurally complete. An equivalent graphical condition
is also given for a certain type of parameterization.

Index Terms—Decentralized control, multichannel lin-
ear systems, structural completeness, structurally fixed
modes.

|. INTRODUCTION

HE classical “decentralized control” problem considered
in [1] and [2] focuses on stabilizing or otherwise control-
ling a k& > 1 channel linear system of the form

k
T = A.’L’+ ZBiui,

i=1

y; = Ciz. (1)

Decentralization is enforced by restricting the feedback of each
measured signal y; to only its corresponding control input
u;, possibly through a linear dynamic controller. Wang and
Davison [ 1] were able to show that no matter what these feedback
controllers might be, as long as they are finite dimensional
and linear time-invariant (LTI), the spectrum of the resulting
closed-loop system contains a fixed subset depending only on
A, the B;, and the C;, which they elected to called the set of
“fixed modes” of the system. In the sequel, we will use the
term “fixed eigenvalues,” because, technically, modes are not
eigenvalues. Roughly speaking, the set of fixed eigenvalues of
(1), henceforth called the “fixed spectrum” of (1), is the the
spectrum of A that cannot be shifted by the decentralized output
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feedback laws u; = Fiy;, i € {1,2,...,k}. That is, for given
A e R™" B, e R™™: (C; e R, the fixed spectrum of
(1), written A, is precisely

Ar= )

F‘_E[Rm‘;xi'-’
ic{1,2,...,k}

k
o (A +> Biﬂc‘i)

i=1

where o (-) denotes the spectrum. Since the F; can be zero, it is
clear that the fixed spectrum of (1) is a subset of the spectrum
of A. It is possible that the fixed spectrum is an empty set, in
which case it is said that the system has no fixed spectrum.

Wang and Davison showed that A - is contained in the closed-
loop spectrum of the system which results when any given finite-
dimensional LTI decentralized control is applied to (1). Thus,
A must be a stable spectrum if decentralized stabilization is to
be achieved with a decentralized LTI control. Wang and Davison
also showed that the stability of A is sufficient for decentralized
stabilization with linear dynamic controllers. Not surprisingly,
the notion of a fixed spectrum arises in connection with the
decentralized spectrum assignment problem treated in [2]. In
particular, it is known that a necessary and sufficient condition
for “free” assignability of an overall closed-loop spectrum with
finite-dimensional LTI decentralized controllers is that there is
no fixed spectrum [1], [2]. However, it should be noted that
unlike the centralized case, free spectrum assignability in the
decentralized case presumes that the overall spectrum admits
a suitable partition into a finite number of symmetric sets, the
partition being determined by the SCCs in a suitably defined
directed graph of (1) [2].

It is clear from the preceding that Az plays a central role in
both the decentralized stabilization and decentralized spectrum
assignment problems for a multichannel linear system. Accord-
ingly, many characterizations of Agyeq exist [3]. Using the canon-
ical form in [4], a test closely related to the existence test for Ap
is given in Corollary 4 of [5]. The idea is further explored and a
unifying necessary and sufficient matrix-algebraic condition is
proposed for a complex number A to be a fixed eigenvalue [6].
Another algebraic condition is established in [7] and [8]. Equiv-
alent graph-theoretic criteria for (1) to have a fixed eigenvalue
are developed in [9]. Frequency domain characterizations of A
are presented in [10]-[15].

While the original work in [1] defines Az and the role it plays
in decentralized stabilization, [1] does not provide a detailed
description of Ap, which reflects the fact that different fixed
eigenvalues in Ap may have different properties. In particular,
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itis known that some of the eigenvalues in Az play no significant
role in system behavior if one broadens the class of decentralized
controllers to include appropriately defined time-varying linear
systems [16], [17], or employs other techniques [18]-[21]. The
remaining eigenvalues in A, called the firmly fixed eigenvalues,
have been characterized previously in [22] where they are called
the “quotient fixed modes.” The influence of the firmly fixed
eigenvalues cannot be avoided with any decentralized control
even if it is time-varying and/or nonlinear. The firmly fixed
spectrum (i.e., the set of firmly fixed eigenvalues) of (1) is
the union of the centralized uncontrollable and/or unobservable
spectra of all strongly connected subsystems of (1) [2], [22].
As pointed out in [23], fixed eigenvalues arise from either one
of the following two distinct causes: first, some fixed eigenvalues
may be present due to exact matchings of certain nonzero entries
in various locations in system coefficient matrices A, the B;,
and the C;, so slight independent perturbations of these nonzero
entries might circumvent such fixed eigenvalues. Second, other
fixed eigenvalues may be a consequence of certain zero and
nonzero patterns of entries in the system coefficient matrices;
thus, the existence of such fixed eigenvalues is intrinsic in the
sense that they cannot be avoided by zero/nonzero pattern-
preserving perturbations, though their values may vary with
these perturbations. Just to clarify, a fixed eigenvalue of the
second type and a firmly fixed eigenvalue are two different
concepts; a fixed eigenvalue of the second type may or may
not be a firmly fixed eigenvalue. In models of real physical
systems, parameter values are usually not known exactly; thus,
in such cases, it is unlikely that there will be perfect matchings of
system parameter values. For this reason, the existence of fixed
eigenvalues of the second type is the main concern of practical
importance. Fixed eigenvalues arising in this manner were first
studied by Sezer and §iljak in 1981 [23], and were called “struc-
turally fixed modes” [24]. The term “structural” originates from
the concept of structural controllability introduced by Lin in
1974 [25], who assumed that each entry of the system coefficient
matrices is either a fixed zero or a distinct scalar parameter and
all parameters are algebraically independent. However, unlike
fixed eigenvalues, “structurally fixed modes™ and the number
of them are in general not numerically “fixed” but functions of
the parameters or the zero pattern-preserving perturbations. To
avoid confusion, it makes more sense to define a new property
of the system rather than to adopt the term “structurally fixed
eigenvalues™ or “structurally fixed spectrum.” This new property
is called “structural completeness,” where the term “complete-
ness” comes from [2], [5] and is generalized a little bit (by
allowing a zero transfer matrix) in the context of this article.
Accordingly, a linear system of the form (1) whose coefficient
matrices A, the B;, and the C; depend algebraically on a vector
p of parameters is said to be sfructurally complete if it has no
fixed spectrum for some value of p. The algebraic condition
in [6] (restated as Proposition 1 in Section V of this article) and
Lemma 2 in this article clearly suggest that the set of values
of p for which such a parameterized linear system has no fixed
spectrum is either an empty set or the complement of a proper
algebraic set in the parameter space. Thus, if such a system is
structurally complete, it has no fixed spectrum for almost every

value of p; if not, it has a fixed spectrum for each fixed value of
p and, of course, the fixed spectrum may depend on p.

With Lin’s assumption of algebraically independent nonzero
entries, Sezer and §iljak derived necessary and sufficient matrix-
algebraic conditions for a linear system of the form (1) to be
structurally complete. An equivalent but less explicit algebraic
condition was provided in 1983 [26]. The algebraic conditions
in [23] were soon converted to equivalent graph-theoretic con-
ditions in [27]-[29]. Based on the graphical conditions, some
design problems with the requirement of structural completeness
are considered in [30]-[32].

However, Lin’s assumption that each nonzero entry in the
system coefficient matrices is a distinct scalar parameter is
not applicable to systems in which a parameter may appear in
multiple locations of the system coefficient matrices. Therefore,
there is need to study the genericity of a fixed spectrum using
more general types of parameterizations, such as “linear param-
eterizations™ [33], [34], or more general parameterizations in
which the nonzero entries of the system coefficient matrices are
polynomials in the parameters of interest. This is what this article
does.

The rest of the article is organized as follows. Three more
general types of parameterizations are defined and the prob-
lems studied in this article are formulated in Section II. Some
terminology and concepts are defined in Section III. The main
results of this article are presented in Section IV and proved in
Section V.

Il. PROBLEM FORMULATION

First, various parameterizations of multichannel linear sys-
tems are defined in the order from the most general to the most
specific. Then, the problems regarding the parameterizations are
formulated in the last paragraph of this section.

Let p € IR? be a vector of g > 0 algebraically indepen-
dent parameters pi, p2, ---, pq. A k-channel linear system
{A(p), Bi(p), Ci(p); k} is polynomially parameterized if all the
entries of its coefficient matrices are in the polynomial ring
R[p1,p2,...,pq]- A good example of a polynomially param-
eterized multichannel system is given by Example 1.36 on page
33 of [24], in which a system of two identical inverted pendulums
coupled by a spring is modeled with

0 1 0] 0 0

g _ ka® g ka® 0 1 0
=1 mi? mi2 T+ mi2 uy + u
0 0 0 1 ol ""lo|?

bz 0 2% ) 0 T
y1=[1 0 0 o}x, w=[0 0 1 0}3: ?)

where g is the local acceleration of gravity, m and [ are, respec-
tively, the mass and the lengths of the two pendulums, k is the
stiffness of the spring, and a is the length measured from the pivot
point of a pendulum to the point on the pendulum rod to which
the spring is attached. Due to inevitable measurement errors, the
exact values of these physical characteristics of the system may
be unknown. Let p; = g, p» = =, ps = }, and ps = ka2, then
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the two-channel system (2) is polynomially parameterized in the
four algebraically independent parameters p; through py.

Linear parameterization is a special case of polynomial pa-
rameterization, which addresses some simple but commonly
encountered modeling situations such as when A, by, ba, c1,
and ¢, are of the forms

O S
€1 = [P4 0] , C2= [Pl Pl] 3)

where at least one parameter, in this example p; and p,, appears
in more than one location. Let

Cy

C2

Bﬂxm = [Bl BZ Bk]a CIx'n £ . (4)
Ck

where m £ 3% m;andl 2 S | I;. A k-channel linear sys-
tem {A(p), Bi(p), Ci(p); k} is linearly parameterized if the
partial derivative of the block partitioned matrix ‘é ‘g] with
respect to each parameter is a rank-one matrix, where B and
C are given by (4). That is, a linearly parameterized k-channel

system { A(p), Bi(p), C;(p); k} can be written as

Anyn(p) anm(p)] =3 gimih 5)

icq

len(p) 0

where q £ {1,2,...,q}, and foreach i € q, g; € R"*', h; €
R**("+™) Note that (5) implies that a parameter cannot appear
in both B and C, otherwise the lower right block of the par-
titioned matrix on the left-hand side of (5) would be nonzero.
As in [34], it will be assumed for simplicity and without loss
of generality that the set of matrices {g1 h1, g2ho, ..., gghg} is
linearly independent. This implies that ¢ < n(n +m +1).

Before proceeding, we point out that not every system
{A(p), Bi(p), Ci(p); k} with parameters entering its coefficient
matrices “linearly” is a linear parameterization as defined here.
For example, while the system shown in (3) is linearly parame-
terized, the system

) sl
a=lp 0, 2= n ©)

is not. The same argument in [34] applies here that a k-channel
linear system {A(p), B:(p), Ci(p); k} of which the entries of
the coefficient matrices depend linearly on g parameters py, pa,
++, pg Will be linearly parameterized if and only if all minors
of the partitioned matrix [‘é Jg] are multilinear functions of the
g parameters. It is clear that the matrices in (6) do not have this
property.
Some common scenarios of linear parameterization arise
in multiagent networks, flow networks, resistor networks, and
spring networks, whose dynamics are characterized by the

Laplacian matrices! of the networks [35]-[37]. Suppose on such
a network some vertices are controlled by external inputs, the
states of some vertices are measured as output signals, and
the output feedback structure satisfies a certain decentralized
constraint, then the network can be modeled with a decentral-
ized multichannel system. If each nonzero off-diagonal entry
of the (possibly signless) Laplacian matrix of this network
is represented by a distinct parameter, the system is linearly
parameterized, for the diagonal entries of the Laplacian matrix
are linear combinations of the off-diagonal entries in the same
TOW.

The linear parameterization defined above is said to satisfy
the binary assumption if all of the g; and h; appearing in (5) are
binary vectors, i.e., vectors of 1’s and 0’s. So the binary assump-
tion requires that all nonzero coefficients of the parameters are
1's, which is a special case of linear parameterization. As a quick
example, if all edges in a multiagent network described in the
paragraph above have negative signs, the resulting Laplacian
matrix is signless, and thus the network can be written as a
linearly parameterized multichannel system which satisfies the
binary assumption. Similarly, a linear parameterization satisfies
the unitary assumption if all of the g; and h; appearing in (5)
are unit vector, i.e., vectors with 1 in one entry and O in all other
entries. The unitary assumption is clearly a special case of the
binary assumption. Note that Lin’s assumption is exactly the
linear parameterization satisfying the unitary assumption. The
relations between all the parameterizations studied in this article
are summarized as follows.

Lin’s assumption
= linear parameterization satisfying the unitary assumption;
C linear parameterization satisfying the binary assumption;
C linear parameterization;
C polynomial parameterization.

Let Fy,.; 2 blkdiag {F;, Fs, ..., Fx} be a block diagonal
matrix with G2 Y°F | m,l; nonzero entries. Each of these
nonzero entries can be represented by a distinct parameter
Pi, then the resulting parameterized block diagonal matrix is
denoted by F(p), where 5 € IR? is a vector of § algebraically
independent parameters py, pa, - - - , pg. Note that F'(p) is linearly
parameterized and satisfies the unitary assumption.

With the parameterizations defined above, the problem of
interest is to find conditions for the existence of a parameter
vector p € IR? for which a parameterized k-channel system
{A(p), Bi(p), Ci(p); k} has no fixed spectrum. If such values
exist, the parameterized system is structurally complete. Such
a polynomially parameterized k-channel system has no fixed
spectrum for almost every value of p € IR? in the sense that
the set of values of p € IR? for which the system has no fixed
spectrum is the complement of a proper algebraic set in IRY.
The system is said to be structurally incomplete if it is not

! A standard Laplacian matrix is defined as L = D — .J, where D is the degree
matrix and J is the adjacency matrix of the network, while a signless Laplacian
matrix is defined as L = D + J.

Authonzed licensed use limited to: Yale University. Downloaded on September 27,2022 at 13:10:15 UTC from IEEE Xplore. Restrictions apply.



270

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 1, JANUARY 2022

structurally complete. Thus, if a polynomially parameterized
system { A(p), B;(p), Ci(p); k} is structurally incomplete, it has
a fixed spectrum for each fixed p € IR? and the fixed spectrum
is a function of p. Note that there always exists p € IR? such that
a polynomially parameterized system has a fixed spectrum, for
which a pathological case is that when p = 0, the system has a
fixed spectrum consisting solely of 0’s.

This article gives necessary and sufficient matrix-algebraic
conditions for a polynomially parameterized k-channel system
and a linearly parameterized k-channel system, respectively, to
be structurally complete. This article also provides an equiva-
lent graph-theoretic condition for a linearly parameterized sys-
tem which satisfies the binary assumption. To the best of our
knowledge, these algebraic and graphical conditions are the first
results on more general types of parameterizations that allow a
parameter to appear in multiple system coefficient matrices.

Ill. PRELIMINARIES

In order to state the main results of this article, some termi-
nology and a number of graphical concepts are needed.

The generic rank of a polynomially parameterized matrix M,
denoted by grk M, is the maximum rank of M that can be
achieved as the parameters vary over the entire parameter space.
It is generic in the sense that it is achievable by any parameter
values in the complement of a proper algebraic set in the param-
eter space. For example, grk (A(p) + B(p)F (p)C(p)) is the the
maximum rank of A + BFC that can be achieved as p varies
over IRY and j varies over IRY, and it is achievable by almost any
pand p in IR? x IRY, where x denotes the Cartesian product.
Note that the generic rank of A(p) + B(p)F(p)C(p) depends
only on the parameterized system {A(p), Bi(p), Ci(p); k},
since F'(p) is determined solely by the dimensions of the B;(p)
and the C;(p).

Let (C, A, B) be a real matrix triple. Let % denote the image
of B. Let

(A| B2 B+AB+ A*B+-- -+ A" ' B
be the controllable space of (A, B) and let

[C|A] 2 ﬁ ker(C A1)

i=1

be the unobservable space of (C,A). Let k = {1,2,...,k}.
Suppose S = {iy,42,...,ts} C k with iy < ip < --- < ig, the
complement of Sink isdenotedby k — & = {j1,J2,---, Jk_s}
with 71 < jo < --- < jp_s. Let
O.fl
C.
j
Bs 2B, B, .

- B;], Ciks=

Ojk_s
Similarly, let Zs denote the image of Bg, let (A | %s) denote
the controllable space of (A, Bs), and let [Cx_s | A] denote the
unobservable space of (C_s, A). By convention, (A | %) =
(0 and [Cy| A] = IR™. Given two subspaces 27, 25 C IR", if

21 C &3 and 27 # 23, 27 is called a proper subspace of
Z5.

A strongly connected component of a directed graph is a
maximal subgraph subject to being strongly connected.> The
collection of SSCs of a directed graph forms a partition of
its vertex set. A directed cycle graph is a strongly connected
graph whose vertices can be labeled in the order 1 to ¢ for
some ¢ € IN such that the arcs are (¢,7 + 1) and (¢, 1), where
t=1,2,...,t — 1. Soinadirected cycle graph, each vertex has
exactly one incoming arc and one outgoing arc. One vertex with
a single self-loop is also a directed cycle graph. As this article
is concerned with directed graphs only, a directed cycle graph
will be simply called a cycle graph in the rest of the article. The
disjoint union of two or more graphs is the union of these graphs
whose vertex sets are disjoint.

The graph of a linearly parameterized k-channel system
{A(p), Bi(p), Ci(p); k}, written G = {V, £}, is defined to be
an unweighted directed multigraph® with vertex set ) and arc set
£. With a slight abuse of notation, let ;, u;, and y; denote a state
vertex, an input vertex, and an output vertex, respectively. Let
Vy & {x1, 23, ..., z,} bethe setof state vertices, one vertex for
each state variable. Let V,, = {u1, ug, ..., un } be the set of in-
put vertices, one vertex for each input. Let V, = {v1,92,---,ui}
be the set of output vertices, one vertex for each output. Then,
the vertex set

VAV, UV, UV,

which has n + m + [ vertices. Each arc in G has a color associ-
ated with it, indicating the parameter that attributes to this arc.
In the sequel, (v;, v;), denotes an arc from v; to v; with color?
T, where v;,v; € V. Let

Ea = {(z;j,z:), | the ijthentry of A(p) contains p,;
zj, T € Vo}

Ep = {(uj,z:), | the ijth entry of B(p) contains py;
uj € Vu,z; € Va}

Ec = {(z4,vi)r | the ijth entry of C(p) contains p;;
zj € Vo, yi € Vy}.

Then, the arc set
ELELUERUEC.

Graph G has ¢ colors, as there are g parameters in A(p), B(p),
and C(p).

However, graph G does not tell which input or output vertex
belongs to which channel, and thus does not show which is the
allowed configuration for decentralized control. As the pattern
of nonzero entries in the block diagonal matrix F'(p) reveals the
allowed configuration for decentralized output feedback, it is
desirable to have a graph capturing this allowed configuration.

2 A directed graph is strongly connected if there is a path from every vertex to
every other vertex.

3 A multigraph is a graph that allows parallel arcs and self-loops.

“In this article, each color is labeled by a distinct integer.
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Fig. 1. Feedback graph G of the two-channel system in (7).

Because each nonzero entry of F'(p) is a distinct parameter p;
and corresponds to an arc from an output vertex to an input ver-
tex, there are g allowed arcs for decentralized output feedback,
each of which has a distinct color from the g colors in G. Let

Er = {(yj,u:)7 | the ijthentry of F(p) contains pr;
y; € Vy,u; € Vu}.

It is clear that |€p| = ¢, where | e | denotes the cardinality
of a set. The feedback graph G of a linearly parameterized
k-channel system {A(p), Bi(p), Ci(p); k} with decentralized
output feedback matrices { F;(p); k} is defined as

Gp £ {V,g U 51:'}

Graph Gp has g + G colors, as there are g + ¢ parameters in
A(p), B(p), C(p), and F(p). It is worth pointing out that
although the feedback graph G seemingly depends on both
the k-channel system and the block diagonal matrix F'(p), in
fact, G is uniquely determined only by the k-channel system,
for matrix F'(p) is determined solely by the dimensions of the
B;(p) and the C;(p).

Fig. 1 shows the feedback graph G of a two-channel system

P 0 3 E;'] == 0 1 bZ = P
j 221 0

P2 P3

¢ = [Pz 0] , €= [P2 P3] (7

where the arcs in £ are drawn in solid lines, the arcs in £
are drawn in dashed lines, and symbol (%) labels color k for
k=12,...,6.

Note that a feedback graph G has four properties: 1) Input
vertices have incoming arcs only from output vertices and have
outgoing arcs only to state vertices. Similarly, output vertices
have incoming arcs only from state vertices and have outgoing
arcs only to input vertices. 2) An arc in £4 and an arc in £
may have the same color. An arc in £4 and an arc in £ may
have the same color. But an arc in £ and an arc in £- never
share the same color, as a parameter never appears in both B(p)
and C(p). Each arc in £ has a distinct color from all the colors
in £. 3) In &, there may be more than one arc from one given
vertex j to another vertex ¢, for the corresponding entry of the
system coefficient matrices may be a linear combination of more
than one parameter. If this is the case, all arcs from vertex j to
vertex ¢ will have distinct colors. In £, there are no parallel

A:

arcs. 4) In £4 U Ep (respectively, £4 U &¢), if there are two
arcs of color r € q, one leaving vertex j and the other pointing
toward vertex 7, then there must be an arc (v;,v;)r in €4 U ER
(respectively, £4 U &¢). This is due to the rank-one constraint
for each parameter in linear parameterization.

As noted before, a feedback graph G is uniquely determined
by a linearly parameterized k-channel system. However, from
G, one cannot recover the linearly parameterized system. This
is because G is unweighted, which means it cannot reflect the
coefficients or the specific functions of the parameters appearing
in the nonzero entries of the matrices.’ Nevertheless, from a
feedback graph Gy, one can write down a unique linearly param-
eterized k-channel system which satisfies the binary assumption.
So it is possible to characterize such a system solely in terms of
its feedback graph. Therefore, this article deals exclusively with
graphical characterizations of linearly parameterized systems
which satisfy the binary assumption.

A multicolored cycle subgraph of a feedback graph G is a
subgraph of G, which is the disjoint union of a finite number
of cycle graphs with all state vertices contained in the union
graph and with each arc in the union graph of a different color.
Let C(G ) denote the set of all multicolored cycle subgraphs
of G . Two multicolored cycle subgraphs S;,S2 € C(Gp) are
called similar if S; and S, have the same set of colors. Note
that similar multicolored cycle subgraphs also have the same
number of arcs. Graph similarity is an equivalence relation
on C(Gp). The corresponding equivalence classes induced by
this relation are called similarity classes. A multicolored cycle
subgraph is odd (respectively, even) if it has an odd (respectively,
even) number of cycle graphs. A similarity class of multicolored
cycle subgraphs is balanced if the numbers of odd and even
multicolored cycle subgraphs in the similarity class are equal.
Otherwise, it is unbalanced.

To illustrate these concepts, let G be the feedback graph
in Fig. 1. Then, G has four multicolored cycle subgraphs, as
shown in Figs. 2 and 3. The two graphs in Fig. 2 are in the
same similarity class with colors 1, 2, 3, and 6. As the graph in
Fig. 2(a) is even and the graph in Fig. 2(b) is odd, this similarity
class is balanced. On the other hand, each of the two graphs in
Fig. 3 forms its own similarity class, which is unbalanced. Thus,
the feedback graph in Fig. 1 has a balanced similarity class and
two unbalanced ones.

V. MAIN RESULTS

The following three theorems give necessary and sufficient
conditions for the structural completeness of three types of
parameterized multichannel linear systems, respectively.

Theorem I: A polynomially parameterized k-channel system
{A(p), Bi(p), Ci(p); k} is structurally complete if and only if
¥S C k, 3p € IR? such that

A, —A Bg
Ck_g 0

rank >n forevery L € o(A) (8)

3By introducing “weights” on G, one can uniquely identify a linearly
parameterized k-channel system from a weighted G .
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Y1 Y2
o
‘.\
~
N\
A
A
]
o ;
1
]
X1 X2 /
r
/®
o -7
uq u;

(a) An even multi-colored cycle subgraph.

Fig. 2.

1 Y2
o o
@;’1 xz :
o o
uq u;

(a) An even multi-colored cycle subgraph.

Fig. 3.

or equivalently

N o|A+) BiE;+ Y K;C;|=0.
E;eIR™i*™ ic8§ iES jek-§
K;eR™i | jek—8
(€))

Remark 1: 1f the condition in Theorem 1 is not satisfied, i.e.,
38 c ksuchthatVp € IR, (8) does not hold, and furthermore, if
the transfer matrix Cy_s(p)(A — A(p)) ! Bs(p) = 0, then for
each fixed p € IR?, (A | %s) is a proper subspace of [Cy_s | A
and any eigenvalue of the map induced in the quotient space [38]
[Ck_s|A]/ (A]| Bs) by A is a firmly fixed eigenvalue of the
system. Of course, the numerical values of the firmly fixed
eigenvalues depend on p.

After reparameterization, it is easy to verify that the two-
channel system (2) is structurally complete.

Remark 2: A randomized algorithm can be designed to check
the condition in Theorem 1. That is, for each subset S C k,
pick p € IR? at random and test whether (8) holds. As this is
done for every subset of k, the computational complexity of
the algorithm is at least exponential in k& and polynomial in the
matrix dimensions n, m, and [.

Theorem 2: A linearly parameterized k-channel system
{A(p), Bi(p), Ci(p); k} is structurally complete if and only if
grk (A(p) + B(p)F(p)C(p)) = nand ¥S C k, 3p € IRY such
that (A | Zs) is not a proper subspace of [Cxk_s | A].

o
uy u;

(b) An odd multi-colored cycle subgraph.

A balanced similarity class of multicolored cycle subgraphs of the feedback graph in Fig. 1.

(b) An odd multi-colored cycle subgraph.

Two unbalanced similarity classes of multicolored cycle subgraphs of the feedback graph in Fig. 1.

Remark 3: If grk (A(p) + B(p)F (p)C(p)) < n, the system
has 0 in its fixed spectrum for all parameter values. This is
equivalent to condition (ii) in the Theorem of [23] by Proposition
1 in Section V. While 0 is a fixed eigenvalue, it may or may not
be a firmly fixed eigenvalue. On the other hand, if 35 C k such
that Vp € IR, (A | Bs) is a proper subspace of [C_s | 4], it
follows from Remark 1 that the system has at least one firmly
fixed eigenvalue for each p € IR%.

The next example elucidates how Theorem 2 works. Suppose
a physical network can be modeled with a linearly parameterized
two-channel system

-p1 p1 0 P4 0
A= 0 —p2 p2|, bi=|ps|, b2=10

0 P3  —P3 P4 D5
a=[ps 00, =0 p -p]. 0

It is straightforward to check that grk (A + bie;) = 3. How-
ever, (A | by) = Image by and [cy | A] = ker ¢o. Thus, Vp € R”,
(A |by) is a proper subspace of [cz | A]. By Theorem 2, system
(10) is structurally incomplete. In view of Remark 3, —p; is a
firmly fixed eigenvalue of this system.

Remark 4: The conditions in Theorem 2 can also be tested
using a randomized algorithm as follows. First, randomly assign
values to p € IR? and p € IRY, then check the rank condition.
The computational cost of this step is polynomial in the matrix
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dimensions n, m, and [. Second, for each subset S C k, pick
p € IR? at random and examine whether

Cx-s

Cx_sA

rank [BS ABg --- A"‘_IBS] ~+ rank

Ok_SAn—l

or Cx_sA'Bs #0 for some i€ {0,1,...,n—1}. If yes,
(A|%Bs) is not a proper subspace of [Cyx_s|A]. The time
complexity of checking the second condition is exponential in
k and polynomial in n, m, and [.

Theorem 3: Let{A(p), B;(p), C;(p); k} be a linearly param-
eterized k-channel system which satisfies the binary assumption.
The following statements are equivalent.

i) The system {A(p), Bi(p),Ci(p);k} is structurally
complete.

ii) grk (A(p) + B(p)F(p)C(p)) = n and there exist no sub-
set S C k and no permutation matrix IT such that

Aun 0 0 0
MA(P)IT ' = |Ay Ay, 0|, IBs(p)=|0
Az1 Az Asg By

Cis@U ™ =[C1 0 0 (11)
where A1 is an ny x nq block, Ass is an ng x ns3 block, ny +
ng < 1n.

iii) The feedback graph G r has an unbalanced similarity class
of multicolored cycle subgraphs, and each strongly connected
component of G consists of either an input or output vertex
or at least one input vertex, one state vertex, and one output
vertex.

Remark 5: Note that the algebraic condition in Theorem 3
is the same as the condition for systems satisfying the unitary
assumption [23]. This pattern is also observed in the structural
controllability problem, where the algebraic condition for lin-
early parameterized systems satisfying the binary assumption
is the same as the condition for systems satisfying the unitary
assumption [25], [34]. Obviously, the graphical condition does
not follow this pattern. Condition iii) in Theorem 3 reduces to
Theorem 4 of [28] provided that the system satisfies the unitary
assumption.

Remark 6: If there exist S C k and a permutation matrix II
such that (11) holds, it follows from Remark 1 that the spectrum
of Asz belongs to the firmly fixed spectrum of the system.

Remark 7: The three theorems above imply that if one allows
all entries of the system coefficient matrices to vary indepen-
dently rather than imposes a specific type of parameterization
on them, having no fixed spectrum is a generic property of a
multichannel linear system.

As an example of Theorem 3, the two-channel system given in
(7) is structurally complete because its feedback graph in Fig. 1
satisfies condition iii).

V. ANALYSES

This section focuses on the analyses and proofs of Theorems
1-3.

A. Proof of Theorem 1

A test for checking whether A € o(A) is a fixed eigenvalue
of (1) is cited as follows, which is a direct result of Theorem 4.1
in [6].

Proposition 1: [6] A k-channel linear system {A, B;, C;; k}
has A € o(A) in its fixed spectrum if and only if 35S C k such

that
M — A BS] .
Ck_g 0

Proposition 1 reveals that whether a multichannel linear sys-
tem has a fixed spectrum is in fact a combinatorial problem
involving all of its complementary subsystems [2] of the form
(Cx-s,A, Bs), S C k. For a proof of Proposition 1, refer to [6]
or [39].

Two lemmas are needed to prove Theorem 1. More specif-
ically, Lemma 1 draws a connection between (8) and (9), and
Lemma 2 shows how generic (8) is in the parameter space.

Lemma 1: Let matrices A eC™*", BeC™™, and C €

C'*". Then, rank [‘é ‘03] > n if and only if there exist matrices

E eC™ ™ and K € €™ such that rank (A + BE + KC) =
T.
Proof of Lemma 1: (Sufficiency) Suppose rank [‘é‘, ‘3 | <n,

thenrank [*TPEHHC B] < p forany matrices E € C™" and

K €C™!, as the rank of a matrix remains unchanged under
elementary row and column operations. Thus, rank (A + BE +
KC) < nforany E € C™" and K € C™.

(Necessity) If rank [‘é Jg] > n, by elementary column op-
erations, 3E € C"™*" such that rank [** 2] = n. Similarly,
by elementary row operations, 3K € €"*! such that rank (A +
BE + KC) =n. |

Lemma 2: Let {A(p), Bi(p), Ci(p); k} be a polynomially
parameterized k-channel system. Given S C k, if 3p € IR such
that (8) holds, then (8) holds for almost all p € IRY.

Proof of Lemma 2: Let P* be the set of p € IR for which (8)
holds. Let

rank

Ay —A(p) Bs(p)
Cx_s(p) 0

and let M denote the real algebraic variety of matrices of
the same size as M. Let My be the closed subvariety of My
defined by polynomial equations that the determinants of all n x
n submatrices of M are 0. Then, M;"(C) consists of exactly
those complex matrices M of rank less than n.

Now we identify Spec R[P;, P, ..., P,] with the real affine
space Al, of dimension ¢, and Spec R[Py, P, ..., P,, A] with
the real affine space A%J{l of dimension g + 1. Then, there
is a morphism 7 : Agl — Al by projecting to the first ¢
coordinates; and the matrix M in (12) defines a morphism
[ Aﬁi"l — M.

M(p,2) 2 (12)
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It is claimed that m(p 'Mg") is (Zariski) closed in
AL. Assuming this claim, then P* is the complement of
m(p 'Mg")(R) in AL(R) =R As P* is not empty,
m(p~*Mg") is not the entire affine space Af,, which implies
that m(p~*M5")(IR) has Lebesgue measure zero.

Next the claim will be proved. Let ® £ det(AT, — A), which
is an element in IR[P;, P,,..., P, A]. It is not hard to see
that if (p1,p2,...,pq,A) is not a root of ®, M (p, 1) has rank
at least n. Therefore, p~!My" is contained in the closed
subvariety S 2 Spec R[Py, Py, ..., Py, A]/(®) of AL Let
Tg: S — A?ﬂ denote the restriction of m to S. Since ® has
leading coefficient 1 as a polynomial in A, the morphism 7g is
finite. By Exercise 4.1 in [40], 7g is proper. Thus, 7g (' Mg")
is (Zariski) closed as p~Mg" is closed. [ |

Proof of Theorem 1: By Lemma 1, (8) holds if and only if for
every A € o(A), there exist matrices F' and K of appropriate
sizes such that

rank (Al — A— BsE — KCic_s) =n

i.e.,, A is not an eigenvalue of A + BgFE + KCy_g. This es-
tablishes the equivalence between (8) and (9), so it suffices to
prove the necessary and sufficient condition involving (8). By
the definition of structural completeness and Proposition 1, the
system {A(p), Bi(p), C;(p); k} is structurally complete if and
only if 3p € IR? such that ¥S C k, (8) holds. So the necessity
part of Theorem 1 is obvious. To see why the inverse is true,
suppose VS C k, 3p € IR? such that (8) holds. By Lemma 2,
¥S C k, (8) holds for almost all p € IRY. As there are only finite
choices of S, Ip € IR? such that ¥S C k, (8) holds. The proof
for sufficiency is complete. |

B. Proof of Theorem 2

In the same spirit of the linear parameterization defined by
(5), a matrix pair (A(p), B(p)) is linearly parameterized if it is
of the form

[Ancn(p) Buam(®)] = D gipihs (13)

icq

where g; € IR" and h; € R (™+™)_ A linearly parameterized
pair (A(p), B(p)) is said to be structurally controllable if there
exists a parameter vector p € IR? for which (A, B) is con-
trollable. It is not hard to see that structural controllability
implies controllability for almost every value of p. Lemma 3
and Corollary 1 provide necessary and sufficient conditions for
the structural controllability of a linearly parameterized matrix
pair. It will be shown that these conditions are equivalent to the
one in Proposition 3 of [34].

Lemma 3: A linearly parameterized matrix pair (A(p), B(p))
given by (13) is structurally controllable if and only if
grk [A(p) B(p)] = n and every parameter in (A(p), B(p)) ap-
pears in the matrix

[B() Ap)B@) - A'(p)B)|

for some nonnegative integer 3.
Proof of Lemma 3: By the definition of the transfer graph
T in [34], it is claimed that there is a directed path of length

(14)

j+1>0in T from vertex O to vertex o € q if and only if
parameter p,, appears in A7 (p) B(p). So the transfer graph T has
a spanning tree rooted at vertex O if and only if every parameter
in (A(p), B(p)) appears in the matrix (14) for some 7 > 0. By
Proposition 3 and Lemma 2 in [34], Lemma 3 is true.

Next a slightly stronger statement than the claim will be
proved. The statement is that there is a directed path of length
j+1>0in T from vertex O to vertex o € q if and only if
a nonzero scalar multiple of g,p, is contained in a column of
A7 (p)B(p). It will be proved by induction on the length of a path
from vertex 0 in T. By the definition of T, there is an arc from
vertex 0 to vertex « if and only if hyo # 0 [34]. Suppose the
eth entry of hqo is nonzero forsome e € {1,2,...,m}, then by
equation (2) in [34], the eth column of B(p) contains a nonzero
scalar multiple of g,p,. So the statement is true for j = 0.
Now suppose the statement holds for 7 =i > 0 and consider
the case when j = ¢ + 1. As there is a directed path of length
i+ 2in T from vertex 0 to vertex «, there exists a vertex 5 € q
such that T has a directed path of length 7 + 1 from vertex 0
to vertex 3 and has an arc from vertex /3 to vertex a. By the
induction hypothesis, acolumn of A*(p) B(p) contains a nonzero
scalar multiple of gspgs. By the definition of T, ha1gs # 0. In
particular, hqo1 # 0 means that A(p) contains gapahai [34].
As hq19s # 0, a nonzero scalar multiple of g,p, is contained
in a column of A(p) - A*(p)B(p) = A" (p)B(p). Thus, the
statement is true for j = ¢ + 1. This completes the proof of the
statement. |

Corollary 1: A linearly parameterized matrix pair
(A(p),B(p)) given by (13) is structurally controllable if
and only if grk [A(p) B(p)] =n and every parameter in
(A(p), B(p)) appears in the matrix

[B®) Aw)BG) -+ A"w)BE)|. ()

Proof of Corollary 1: Let

M(p) = [B(p) A(p)B(p) --- A" '(p)B(p)]-

If (A(p), B(p)) is structurally controllable, grk M (p) = n.
Then, all parameters in A(p) will appear in A(p)M (p). So all
parameters in (A(p), B(p)) will appear in [B(p) A(p)M(p)],
which is matrix (15). As grk M (p) = n and Image M (p) C
Image [A(p) B(p)), grk[A(p) B(p)] = n. o

The result from Remark 1 in [5] is also needed for the
following proof of Theorem 2.

Proposition2: [5]Let (C, A, B) be astandard single-channel
linear system. If C(A] — A)~!B # 0, the uncontrollable poly-
nomial of (A + K C, B) equals the remnant polynomial [5] of
(C, A, B) whenever K is selected so that the dimension of
(A+ KC'| %) is as large as possible.

Proof of Theorem 2: (Necessity) If grk(A(p)+
B(p)F(p)C(p)) < n, matrix A+ BF'C has a fixed eigenvalue
of O for all parameter values p and p. Thus, the system
{A(p), Bi(p), Ci(p); k} is structurally incomplete. If 3§ C k
such that ¥p € IR?, (A | Bs) is a proper subspace of [Cx_s | A],
then for each fixed p € IRY, there exists a nonsingular matrix T’
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such that
Aun 0 0 0
TAT ' = Asy Ags 0|, TBs=1]0
Asz1 Aszy Asg Bs

C sT 1 = [Ol 0 0}

where A;; is an ny x n; block, and Ass is an n3 x ng block,
ny +ng < n. So o(Asg) is in the fixed spectrum of system
{A, B;, C;; k}. As this is true for each fixed p € RY, the linearly
parameterized system {A(p), Bi(p), C;(p); k} is structurally
incomplete.

(Sufficiency) If a linearly parameterized system
{A(p), Bi(p), Ci(p); k} is structurally incomplete, by Theorem
1, 38 C k such that ¥p € IRY,

AL, — A Bs

ank
: Ce.s O

<n forsome A € o(A) (16)

or equivalently

N o | A+) BiE:+ Y K;Cj| #0.
E;cIR™i*™ icS = jek-8§
K;eR™ i jek—8
a7
Depending on the value of the transfer function Cyx_s(p)(AL —
A(p))~'Bs(p), two cases are discussed as follows.

Case 1: Cy_s(p)(AI — A(p)) "1 Bs(p) = 0. This is equiva-
lent to the condition that Vp € IR?, (A|%s) C [Cx_s| A]. If
dp € R such that (A | Bs) = [Cx_s | A], then the spectrum of
A+ BsEs + Ey_sCk_s can be freely assigned with suitable
matrices Es and Fyx_s, which violates (17). So & C k is such
that ¥p € IRY, (A | Bs) is a proper subspace of [C_s | A].

Case 2: Cy_s(p)(A — A(p)) 1 Bs(p) # 0. That is, for al-
most all p € RY, Cx_s(AIl — A)"1Bs # 0. By Corollary 4
in [5], (16) implies that for almost all p € IRY, the triple
(Cx-s, A, Bs) is not complete. That is, for almost all p € R9,
the remnant polynomial of (C_s, A, Bs) is not 1. By Proposi-
tion 2, it means that for almost all p € RY, (A + KCx_s, Bs)
is not controllable for any matrix K of appropriate size. This
is equivalent to the statement that for any given matrix K,
(A+ KCyx_s, Bs) is not controllable for almost all p € IRY.
Note that for every fixed matrix K, (A(p) + KCy_s(p), Bs(p))
is a linearly parameterized matrix pair. Thus, for any fixed
matrix K, the pair (A(p) + KCx_s(p), Bs(p)) is not struc-
turally controllable. Since Ci_s(p)(Al — A(p)) ! Bs(p) # 0,
let 7 € {0,1,...,n— 1} be the smallest integer for which

Ci—s(p)A'(p)Bs(p) # 0, then

(A(p) + K Ci_s(p))"™" Bs(p) = A"+ (p) Bs(p)
+ KCyx_s(p)A*(p) Bs(p).

For almost all matrix K

A" (p)Bs(p) + KCx_s(p)A*(p)Bs(p)

has a column in which every entry is nonzero. So for al-
most all matrix K, every parameter in A(p) + KCyk_s(p) ap-
pears in (A(p) + KCx_s(p))*2Bs(p), thus every parameter
in (A(p) + KCx_s(p), Bs(p)) appears in the matrix

[Bs(p) (A(p) + KCi—s(p))Bs(p)
(A(p) + K Ci—s(p))"™?Bs(p)] -

As the pair (A(p) + K Cy_s(p), Bs(p)) is not structurally con-
trollable for any fixed matrix K, Lemma 3 implies that for
almost all matrix K, grk [A(p) + KCx_s(p) Bs(p)] < n. It
follows immediately that for every fixed matrix K, grk [A(p) +
K Cy_s(p) Bs(p)] < n. Therefore

A(p)  Bs(p)
Cx_s(p) O

By Proposition 1, the system {A,B;,Ci;k} has 0 in
its fixed spectrum for all p € IRY. That is, grk (A(p)+
B(p)F(p)C(p)) <n. u

<n

C. Proof of Theorem 3

In the same spirit of the binary assumption defined before, a
linearly parameterized matrix pair (A(p), B(p)) given by (13)
satisfies the binary assumption if all of the g; and h; appearing in
(13) are binary vectors. Let ' denote transposition. Generalizing
the standard notion of irreducibility, a matrix pair (A, B) is said
to be irreducible if there is no permutation matrix IT bringing
(A, B) into the form

A 0
Asr Az

0

AT ! =

], B =

where Aq1 is an ny x nq block, 0 < ny < n.

The following result on the structural controllability of a lin-
early parameterized matrix pair satisfying the binary assumption
is from Theorem 1 in [34] and will be used to prove Theorem 3
in this article.

Proposition 3: [34] Let (Apnxn(p), Bnxm(p)) be a linearly
parameterized matrix pair which satisfies the binary assumption.
Then, the pair (A(p), B(p)) is structurally controllable if and
only if grk [A(p) B(p)] = n and (A(p), B(p)) is irreducible.

In addition to Proposition 3, Lemma 4 facilitates the proof of
the algebraic condition in Theorem 3, and Lemma 5 shows half
of the graphical condition.

Lemma 4: Let {A(p), B:(p), Ci(p); k} be alinearly parame-
terized k-channel system which satisfies the binary assumption.
If grk (A(p) + B(p)F(p)C(p)) = n and there exist S C k and
a permutation matrix I such that

0
B,

A]l 0

MA(p)IT ! =
() Agi Aa

’ HBS(p) =

Cie_s(p)T™! = [Ol 0] (18)

where both pairs (A22, B2) and (A11,’ CY) are irreducible, then
dp € IR for which (A | Bs) = [Ck_s | 4]
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Proof of Lemma 4: Let the size of matrix Cyx_s be lx_s X n
and let the size of matrix Bs be n x mg. It is easy to see that

IMA(p)I!  TIBs(p)

Cr_s(p)IT! 0

— II 0 A(p) Bs(p) ! 0 (19)
o L .| |Cks® O 0 Ims|

As {A(p), Bi(p), Ci(p); k} is linearly parameterized and satis-
fies the binary assumption

A(p) Bs(p)
Cx_s(p) 0

= Z Gipihi

icq

(20)

where g; € IR" T and h; € R™*™> are binary vectors for

eachi € q. Let

ot o
0 I,

I o

gi = 0 I!k_s

l Gis Eizﬁi

l 2n

then, §; € R™ "% and h; € IR™"™ are also binary vectors for
each ¢ € q. Combining (19), (20), and (21), we get

IMA(p)IT~!  TIBs(p) =3 G
Ci—s(p)IT! pe

so both matrix pairs (A2 (p), B2(p)) and (A1, (p), Ci(p)) are
linearly parameterized and satisfy the binary assumption. Sup-
pose § = {i1,1g,...,1s} With iy < iz < --- < 14, then define
FS £ bu{diag{EnFiz: "'1&5}'AS

BFC = BsFsCs + Bx sFx sCx s

the condition that grk (A(p) + B(p)F(p)C(p)) = n implies
grk (ITA(p)IT" 4 T1Bs(p) Fs(p)Cs(p)IT !

+ HBk_g(p)Fk_g(ﬁ)Ck_s(p)H_l) =n.

Suppose A1; in (18) is an nq x ny block, where 0 < ny < n.
Equations (18) and (22) suggest that grk [A22(p) Ba(p)] =
n—ny and grk [A;(p) Ci(p)] = ni. Because matrix pairs
(A22(p), B2(p)) and (A% (p),Ci(p)) are both irreducible, by
Proposition 3, both pairs are structurally controllable. Therefore,
dp € IR? for which (Agg | B2) = [C1 | A11], which implies that
(HAH‘1 |H£3) = [Cyx_sTT71 | TIATT '] and thus (A | Bs) =
[Ci—s | A]. u

Lemma 5: Let {A(p), Bi(p), Ci(p); k} be a linearly param-
eterized k-channel system which satisfies the binary assump-
tion. Then, grk (A(p) + B(p)F(p)C(p)) = n if and only if
the feedback graph G has an unbalanced similarity class of
multicolored cycle subgraphs.

Proof of Lemma 5: The matrix A(p) + B(p)F (p)C(p) has
full generic rank if and only if its determinant is nonzero. The
following proof will show that the determinant is nonzero if
and only if the feedback graph G has an unbalanced similarity
class of multicolored cycle subgraphs. The proof takes three
steps. First, the kind of subgraph of G that corresponds to a
term in the determinant will be characterized. Second, some
of those subgraphs that correspond to terms not appearing

22)

in the final expression of the determinant will be ruled out.
Third, the graphical property for the sign of a term in the
determinant will be specified. After these three steps, it can be
determined purely from Gy that whether the determinant of
A(p) + B(p)F(p)C(p) is identically zero.

The linear parameterization and the binary assumption imply
that a nonzero entry of A(p) + B(p)F(p)C(p) is either a single
parameter p, or a product of three parameters p,pzp;., for some
rteqr#tseq={1,2,...,§4} orasumof finitely many
of them. A term in the determinant of A(p) + B(p)F(p)C(p)
is a signed product of n entries taken from different rows and
columns. If any of the n entries is a sum of multiple summands,
the term in the determinant can be written as a sum of multiple
subterms. So without loss of generality, assume each term in
the determinant is a signed product of n factors, each of which
is either p, or p,pzp; for some r,t € q, 7 # ¢, § € . A factor
pr from the ijth entry of A(p) + B(p)F(p)C(p) corresponds
to an arc (x;,x;)r of color r in Gy from state vertex z; to
state vertex x;. A factor p,pzp; from the ijth entry of A(p) +
B(p)F (p)C(p) corresponds to three arcs of distinct colors in
Gp: an arc (x5, yaq); from state vertex x; to an output vertex,
an arc (yq4, uy )z from the output vertex to an input vertex, and
an arc (uy, ;) from the input vertex to state vertex x;, which
together form a directed path from z; to ;. As no two factors ina
term of the determinant are taken from the same row or the same
column of A(p) + B(p)F(p)C(p),each term in the determinant
corresponds to the union of a finite number of cycle graphs with
all state vertices contained in the union graph and each state
vertex having exactly one incoming arc and one outgoing arc. For
ease of reference, such a union graph is called a ferm subgraph
of G F-

If any output vertex in a term subgraph of Gy has two
incoming arcs or two outgoing arcs, then in the corresponding
term 2y, there are two factors taken from the matrix B;F;’ C?,
where Flj is the jth column of F; and Cg is the jth row of Cj, for
some i € k, j € {1,2,...,1;}. Because rank (B;F;7C/) =1,
in the same determinant, there must be another term z5, which
is the product of the same n factors as in term z; but with the
opposite sign. So terms z; and z3 cancel each other out and both
of them do not appear in the final expression of the determinant.
As the goal is to determine whether the determinant is identically
zero, we can safely ignore those term subgraphs in which an
output vertex has more than one incoming arc or more than one
outgoing arc. Similarly, those term subgraphs in which an input
vertex has more than one incoming arc or more than one outgoing
arc can be safely ignored. Thus, we only care about those term
subgraphs of G i, in which each vertex has exactly one incoming
arc and one outgoing arc, i.e., those term subgraphs which are
the disjoint unions of cycle graphs, because they correspond to
terms that may appear in the final expression of the determinant
of A(p) + B(p)F (5)C(p).

Next, it will be shown that the terms appearing in the final
expression of the determinant correspond to the term subgraphs
of G, in which each arc is of a different color. In other words,
only multicolored cycle subgraphs of G matter. Two cases are
considered as follows. Case 1: If a term z; has a parameter
pr raised to the power of 2 for some r € q, then two factors
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in z; contain p,. But linear parameterization of the system
{A(p), Bi(p), Ci(p); k} implies that ¥r € q, and parameter p,
appears in the matrix A(p) + B(p)F (p)C(p) in a rank-one
fashion, i.e.,

A(p) + B(p)F(B)C(p) = ) griprhea(p, )

TEq)

+ Y gra(p.p)prhm
req—qa

where q; = {r € q|p, appearsin B(p)}, gr1 € R" is the
first n entries of g, given by (5), h,3(p, p) is a parameterized
row vector of size n, gr3(p, p) is a parameterized column vector
of size n, and hyy € IRY™ s the first n entries of h, given by
(5). So in the same determinant, there must be another term z5,
which is the product of the same n factors as in term z; but with
the opposite sign. Thus, terms z; and z cancel each other out
and both of them do not appear in the final expression of the
determinant. Case 2: If a term z; has a parameter p; raised to
the power of 2 for some § € ¢, two factors in z; contain pz.
Suppose p; is the ijth entry of F; for some ¢ € k, then the two
factors in z; are taken from the rank-one matrix B} ﬁgOf, where
B is the ith column of B; and C/ is the jth row of C;. So in the
same determinant, there must be another term z5, which is the
product of the same n factors as in term z; but with the opposite
sign. Thus, terms z; and 23 cancel each other out and both of
them do not appear in the final expression of the determinant.
Therefore, each term appearing in the final expression of the
determinant of A(p) + B(p)F(p)C(p) is a signed product of
distinct parameters and corresponds to a multicolored cycle
subgraph of Gp.

Two multicolored cycle subgraphs of G are similar if their
corresponding terms are the product of the same set of parame-
ters, but possibly with opposite signs. The sign of a term in the
determinant remains unchanged if each factor of the form p, pzp;
is replaced by a new parameter, and the number of cycles in a
multicolored cycle subgraph remains unchanged if a directed
path from state vertex z; to state vertex z; by going through
input and output vertices is replaced by an arc from z; to x;.
By Proposition 4 in [34], the sign of a term in the determinant
of A(p) + B(p)F (p)C(p) is positive if n — ¢ is even, and is
negative if n — ¢ is odd, where c is the number of cycle graphs
in the corresponding multicolored cycle subgraph of Gp. So, a
similarity class of multicolored cycle subgraphs is unbalanced
if among the corresponding terms of the graphs in the class,
the number of positive terms and the number of negative terms
are unequal, i.e., the corresponding terms do not cancel each
other out. Therefore, Gy has an unbalanced similarity class of
multicolored cycle subgraphs if and only if the determinant is
nonzero, which means the matrix A(p) + B(p)F(p)C(p) has
full generic rank. |

Proof of Theorem 3: By Theorem 2, (i) = (ii). The inverse
will be proved by contradiction. Now assume (ii) is true but (i) is
false. That is, assume grk (A(p) + B(p)F (p)C(p)) = n, there
are no subset S C k and no permutation matrix II bringing the
triple (Cx_s(p), A(p), Bs(p)) into the form (11), and the system
{A(p), Bi(p), Ci(p); k} is structurally incomplete. By Theorem

2, structural incompleteness implies that 3S C k such that Vp €
RY, (A | Bs) is aproper subspace of [C_s | A]. Itis well known
that (A | Bs) C [Cx_s | A] is equivalent to Cyx_sA? Bs = 0 for
all 3 > 0. The binary assumption means that the coefficients of
the parameters in the entries of A(p), Bs(p), and Cy_s(p) are
all 1’s, so the nonzero entries in these matrices cannot cancel
each other out in matrix multiplication as they all have positive
signs. Thus, the fact that Cy_sAJBs = 0 for all 7 > 0 implies
that there exists a permutation matrix II; such that

A 0
Asr Aa

0

I A(p)II; " = l B,

] , II1Bs(p) =

Crs(p); ' = [01 0] .

The assumption that there is no permutation matrix II bringing
the triple (Cx_s(p), A(p), Bs(p)) into the form (11) implies
that both pairs (Asg, Bp) and (A;p,’ C7) are irreducible. As
grk (A(p) + B(p)F(p)C(p)) = n, by Lemma 4, 3p € R? for
which (A | Bs) = [Cy_s | A]. This is a contradiction to the fact
thatVp € IRY, (A | Bs) is a proper subspace of [Cy_s | A]. Thus,
(i) = (i).

By Theorem 4 in [28] and its proof, there existnosubsetS C k
and no permutation matrix IT such that (11) holds if and only
if each state vertex is in some strongly connected component
(SCC) of the feedback graph G, which contains an arc from
Er. That is, each SCC of G which has at least one state vertex
also contains an input vertex and an output vertex. If an SCC
of Gp consists solely of input vertices and/or output vertices,
then the SCC has exactly one vertex, because there are no arcs
within input vertices, within output vertices, or from an input
vertex to an output vertex in Gg. So each SCC of G consists
of either an input or output vertex or at least one input vertex, one
state vertex, and one output vertex. By Lemma 5, grk (A(p) +
B(p)F(p)C(p)) = n if and only if the feedback graph Gz has
an unbalanced similarity class of multicolored cycle subgraphs.
Therefore, (ii) < (iii). |

VI. CONCLUSION

This article establishes algebraic conditions for the structural
completeness of polynomially parameterized and linearly pa-
rameterized multichannel systems, respectively. This article also
gives an equivalent graphical condition for the class of linearly
parameterized multichannel systems satisfying the binary as-
sumption. Some future research problems are 1) to determine
the complexity class of checking the graphical condition in
Theorem 3; 2) to study some design problems of a linearly
parameterized multichannel system with the requirement of
structural completeness; for example, given the graph G of
a linearly parameterized system (C'(p), A(p), B(p)), a design
problem is to find the minimum number of feedback arcs (from
the output vertices to the input vertices) that can be added to
G such that the resulting graph is the feedback graph G of a
structurally complete multichannel system; and 3) to extend the
graph-theoretic condition in Theorem 3 to all linearly parameter-
ized multichannel systems using weighted directed multigraphs.
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