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Abstract

We present FusionFS, a direct-access firmware-level in-
storage filesystem that exploits near-storage computational
capability for fast I/O and data processing, consequently re-
ducing I/O bottlenecks. In FusionFS, we introduce a new
abstraction, CISCgpps, which combines multiple I/O and data
processing operations into one fused operation and offloads
them for near-storage processing. By offloading, CISCoys
significantly reduces dominant I/O overheads such as system
calls, data movement, communication, and other software
overheads. Further, to enhance the use of CISCqps, we intro-
duce MicroTx, a fine-grained crash consistency and fast (auto-
matic) recovery mechanism for both I/O and data processing
operations. Finally, we explore efficient and fair use of in-
storage compute resources by proposing a novel Completely
Fair Scheduler (CFS) for in-storage compute and memory
resources across tenants. Evaluation of FusionFS against the
state-of-the-art user-level, kernel-level, and firmware-level
file systems using microbenchmarks, macrobenchmarks, and
real-world applications shows up to 6.12X, 5.09X, and 2.07X
performance gains, and 2.65X faster recovery.

1 Introduction

Modern high bandwidth and low-latency storage technolo-
gies such as NVMe SSDs [50] and 3D-Xpoint [6] have sig-
nificantly accelerated I/O performance leading to better ap-
plication performance. Yet, the combination of software and
hardware I/0O overheads that include system calls, data move-
ment, and communication cost in the application and the
OS, and the storage hardware latency (e.g., PCle) continue
to be an Achilles heel in fully exploiting storage hardware
capabilities.

A recent focus is to reduce software indirections by moving
filesystems to userspace and avoiding system calls and kernel
traps for data and metadata updates [22, 60, 49, 27, 35]. Al-
though effective, the dominating I/O overheads such as data
and metadata movement cost, host and device communication
cost (e.g., PCle latency), and indirect costs like polling or

*The authors contribute equally to this paper.

interrupts remain. Henceforth, we refer to the combination of
above overheads, which includes system calls, as dominating
I/0 overheads.

Another design point to reduce I/O overheads is the rein-
carnation of near-storage processing [46]. Vendors are in-
troducing computational storage devices (CSD) that embed
in-storage processors that range from ARM cores [11], FP-
GAs [49, 52, 30, 44, 47, 14] to RISC-V processors [51].
To reduce I/O cost and offload computations to CSD, re-
cent research has explored application customization tech-
niques [14], software runtimes [47], system software [49],
and databases [46].

More broadly, these techniques can be classified into sys-
tems that focus on (1) in-storage compute offloading and
(2) in-storage filesystems and key-value stores designed to
accelerate I/O and storage management. First, in-storage
compute offloading systems (which includes a majority of
current CSD solutions) such as the seminal ActiveStore [46]
for databases and recent approaches like PolarDB [14] focus
on data processing by rewriting application logic to offload
computation. While beneficial, these systems either lack stor-
age management or delegate management to the host file
system [14]. The former leads to a lack of data and metadata
integrity, crash consistency, durability, or managing in-storage
resources across tenants. In contrast, the latter incurs high
I/0 overheads for basic I/O operations and fails to utilize
the full potential of CSDs. For example, in key-value stores
like LevelDB [5], one could offload data compression to a
CSD, but basic I/O operations would still incur system calls,
data, metadata (e.g., inode, extents), and journal movement
between key-value store, file system, and storage.

In contrast, in-storage management designs like
CrossFS [44], DevFS [30], and Insider [47] offload filesys-
tems and key-value stores [49] inside the storage firmware for
direct-1/O, bypassing the OS. Unfortunately, these designs
lack near-storage processing capability leading to substantial
data movement and failing to manage in-storage resources
such as device compute and memory or handle multi-tenancy.

We envision an ideal near-storage design that co-designs
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and combines storage management and data processing by
rethinking I/O abstractions to reduce dominant I/O overheads,
such as system calls, data and metadata movement, and host
to device communication latency. Importantly, the design
must ensure (storage) correctness, handle crash consistency,
and achieve fairness across tenants.

We propose FusionFS, an near-storage file system design
to exploit device compute and memory resources for reducing
dominant I/O overheads and improving application perfor-
mance. FusionFS provides fine-grained crash consistency,
fast data recovery, and improves system efficiency by provid-
ing in-storage compute and memory fairness across tenants.

Towards the above goals, in FusionFS, we revisit I/O ab-
stractions and take inspiration from seminal RISC (reduced
instruction set computers) and CISC (complex instruction
set computers) architectures. In FusionFS, a RISC operation
is a simple POSIX file system operation (e.g., read, write,
open) that can be directly offloaded to an in-storage filesys-
tem (StorageFS), bypassing the OS. In contrast, our proposed
CISC operations (hereafter referred to as CISCqps) are ag-
gregated 1/O and data processing operations offloaded as one
operation to StorageFS for processing.

For generating CISCoys, we capture frequent I/O (e.g., file-
open-write-close) and 1/0O + data processing sequences on
a file (e.g., append-checksum-write) and combine them to
one CISC operation. Intuitively, aggregating 1/0 and data
processing sequences and offloading them for near-storage
processing significantly reduces dominant overheads (system
calls, data movement, and device and host communication
costs). Note that CISCqps support a combination of I/0 and
data processing operations and differ from traditional POSIX
I/O vectors that are homogeneous (e.g., readv, writev).

Supporting in-storage RISC and CISCops introduces new
challenges in terms of (1) applications changes, (2) crash
consistency, and (3) resource management.

Application Support. FusionFS strives to reduce applica-
tion changes by requiring minimal changes. First, a user-
level library file system (UserLib) enables applications to
use POSIX-like extensions for data processing or pack their
custom command vectors supported by an in-storage file sys-
tem (StorageFS). Optionally, FusionFS also provides mecha-
nisms to transparently combine multiple I/O operations (with-
out data processing) into a CISCopps and offload them for
in-storage processing, when feasible.

Fine-grained Crash-Consistency and Fast Recovery. In
FusionFS, for traditional filesystem operations, we support
journaling inside StorageFS. However, questions arise when
packing multiple I/O and data processing operations in a
CISCops: (1) in what granularity should FusionFS sup-
port crash consistency? (2) how to exploit in-storage com-
pute to accelerate recovery? For answering these ques-
tions, in FusionFS, we explore macro-transactions (MacroTx)
and micro-transactions (MicroTx). MacroTx uses an all-or-
nothing approach that only commits and recovers an entire

CISCo, including the data processing state, whereas MicroTx
supports crash consistency of partially committed CISCops.
Further, to reap the benefits of MicroTx, we go a step beyond
current filesystems and use in-storage compute to support
operational logging and automatic recovery by finishing par-
tially completed CISCqyps.
In-storage Resource Fairness. Next, offloading simple I/O
operations and CISCops across tenants could exceed the in-
storage compute (device-CPUs) and memory (device-RAM)
resources. Therefore, there is a need for efficient and fair
allocation of resources in ways that do not starve operations
or tenants. Hence, in FusionFS, we borrow ideas from the
Linux CPU scheduler, Completely Fair Scheduler (CFS) [1],
to design a device-CPU and device-RAM CFS scheduler for
enabling resource fairness and to reduce starvation.
End-to-end Evaluation. We evaluate FusionFS on
a wide range of microbenchmarks, macrobenchmarks
(Filebench [56]), and applications like LevelDB [5], Snappy
compression [19], and Linux file encryption [2]. FusionFS,
by using CISCqps reduces dominant I/O overheads leading to
6.12X gains over the NOVA kernel file system [61], 6.12X
over the user-level SplitFS, and 1.65X over the firmware-level
CrossFS design. Application workloads like LevelDB [5]
and Snappy compression [19] show gains up to 6.12X and
2.43X over user-level SplitFS. To highlight the benefits of
CISCops as a general principle for kernel file systems, we ex-
tend ext4-DAX with CISCqps and showcase the gains. Next,
the proposed fine-grained crash consistency (MicroTx) com-
bined with automatic recovery accelerates filesystem recovery
by 2.65X. Further, CISCqps support for LevelDB’s restart-
after-failure code accelerates recovery by 3.58X. Finally,
the CFS-based device-CPU and RAM management reduce
unfairness and improve storage efficiency.

The source code of FusionFS is available at https://
github.com/RutgersCSSystems/FusionFS

2 Background and Related Work

Hardware Near-storage Processing Advancements.
Although modern solid-state and nonvolatile memory stor-
age devices have significantly accelerated I/O performance,
software and hardware data access cost continues to be ex-
pensive. This has motivated hardware vendors to move away
from legacy storage controllers with wimpy device cores for
handling firmware functionalities (e.g., FTLs [33]) and sup-
port powerful in-storage compute. For example, ARM is
introducing CSDs with Cortex-R82 64-bit 16-core processors
(yet to be commercially available) [11] . In contrast, prod-
ucts like Newport CSDs with 16GB device-RAM, 1.5GHz
16 core processors, and TCP/IP stack support run Linux OS
inside the CSD [20]. Finally, FPGA-based CSDs, such as
SmartSSD [21], LSM-FPGA [14], ScaleFlux’s CSD [52],
implement fixed functions (e.g., filtering, compression, and
encryption) and continue to evolve.

Software Innovation and Limitations. Software inno-
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Computing

Properties KernFS | UserFS | DeviceFS Offload FusionFS
Direct-1/0 X Partial v X v
Reduce data copy X Partial Partial Partial v
Reduce PCle cost X X X Partial v
In-storage Mgmt. X X v X v
In-storage process X X X 4 v
Durability Data Data Data Data Data and
compute
Resource
Menmt. v X X X v
. . . Same as
Security v Partial v Partial KernFS

Table 1: Capabilities and Limitations of State-of-the-art Storage Ap-
proaches. The last column shows our proposed FusionFS.

vations for modern storage can be broadly categorized as
(a) kernel file system (KernFS) and user-level file system
(UserFS), (b) in-storage firmware file systems (DeviceFS)
and key-value stores (DeviceKV), and (c) computational of-
floading (comp. offload) solutions mainly for processing. In
Table 1(b), we qualitatively compare these designs.
Host-level KernF'S and UserFS: Modern KernFS designs
for fast storage devices reduce software indirections (e.g.,
page cache) and guarantee fundamental properties like crash
consistency, security, and data sharing [58, 61]. Yet, the I/O
overheads such as system calls, data movement, communi-
cation latency, and concurrency bottleneck continue to be a
problem. An alternative trend is the re-introduction of UserFS
designs aimed to bypass the OS (e.g., Strata [35], SplitFS [28],
and others [42, 57, 37, 38]). While effective for applications
that execute in isolation, a lack of a trusted computing base
(e.g., OS) makes it challenging to handle security, data shar-
ing, or multitenancy [30, 37, 38]. In contrast, hybrid designs
like SplitFS [28], depend on the OS for metadata manage-
ment, which could increase I/O overheads. Importantly, most
UserFS designs fail to reduce data movement between the
host and the storage and do not utilize in-storage compute.
Device-level File Systems (DeviceFS): As an alternative de-
sign point, prior work explored offloading file systems [30, 44,
45] and key-value stores [29, 49] inside CSDs and providing
applications with direct-1/O. However, these designs gener-
ally lack data processing capability. DevFS [30] offloads file
system into the firmware, whereas CrossFS [44] exploits par-
allel I/O queues for I/O scaling. CrossFS and DevFS reduce
system calls, but data movement and communication costs
remain. Prior solutions have also explored offloading key-
value stores inside CSDs [49, 29, 13], which could benefit
a specific class of applications that do not require file sys-
tems. Unfortunately, issues like high I/O overheads (e.g., data
movement) and lack of near-storage processing and resources
fairness remain in these designs.

In-storage Computation: In-storage computation systems
primarily offload specific functions to the CSD. For example,
seminal systems such as CASSM [54], RARES [36], and
Active-Storage [46] offloaded database search and scan oper-
ations on slow hard drives. Recently, to benefit from fast stor-
age, runtimes like LSM-FPGA [62], PINK [25], KEVIN [34]
and others [11, 30, 44, 48] redesign and offload database com-

4r Mexta-DAX [ SpitFS N FusionFs
[EINOVA [ CrossFS

Throughput (GB/s)

0 append-CRC-write read-modifywrite

Figure 1: Analysis.Y-axis shows cumulative throughput when using 16
applicaiton threads.

paction to FPGA-based CSD, whereas Newport OS deploys a
specialized OS for offloading functions [20]. However, these
systems lack storage management, do not handle critical stor-
age properties like data durability, security, and sharing, and
depend on the host-level file system.

Batching Operations. To reduce 1/O cost, several 1/0
batching strategies have been proposed. Traditional file sys-
tems support vectored I/O, but it is restrictive and only sup-
ports data plane operations (e.g., writev, readv). Notably,
all operations packed in a vector must be the same. Fur-
ther, vectored I/O only provides coarse-grained all-or-nothing
durability. Next, Chen et al. propose NFSv batch remote
NFS I/O operations of the same type to reduce network la-
tency [15], whereas TC-NFS [55] extended NSFv to sup-
port compound transactions. In contrast, FusionFS designs
CISCoyps to reduce dominating I/O overheads by organically
aggregating non-similar I/O sequences that could contain data-
plane, control-plane, and processing operations. FusionFS
also provides fine-grained durability and recovery without
compromising in-storage resource fairness. We also showcase
the benefits of CISCqyps for traditional file systems (§ 5).

3 Motivation

To motivate the need for reducing dominating I/O over-
heads like kernel/userspace crossing, data movement cost,
and communication cost between host and device, we study
the performance of state-of-the-art designs: KernFS ext4-
DAX [58] and NOVA [61] (a log-structured design) de-
signed for fast NVMs; hybrid UserFS SplitFS [27]; DeviceFS
CrossFS [44]; our proposed FusionFS.

We use two workloads modeled after real-world applica-
tions: (1) an I/O-intensive read-modify-write that opens a
12GB file, continuously reads 4K blocks, updates, and writes
them back depicting databases, key-value stores, and oth-
ers; (2) an I/O + processing-intensive append-checksum-write
(hereafter referred to as append-CRC-write) workload that
appends data, computes checksum, and writes the data, repli-
cating the behavior of several applications like key-value
stores (LevelDB [7]), web-servers [56]. For brevity, we show
results for 16 thread configuration of the benchmarks and
show thread sensitivity in § 5. Because state-of-the-art sys-
tems use NVM as storage, we use a machine with 512 GB DC
Optane NVM for storage, 64 CPUs, and 32 GB DRAM [6].

In Figure 1, the y-axis shows the throughput. First, kernel-
level ext4-DAX provides direct access without data copies
to page cache but incurs significant system call and data
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copy cost for read-modify-write workload leading to substan-
tially lower throughput. With its multicore-friendly and log-
structured design, NOVA reduces some I/O overheads (e.g.,
avoiding double writes for a journal), but other overheads
remain. Next, hybrid user-level SplitFS memory-maps stor-
age to userspace and replaces reads/writes with loads/store
operations. SplitFS reduces system calls, but metadata up-
dates require frequent OS interaction. We also observe high
OS locking and pre-paging costs for supporting user-level
memory-map for 16 threads, leading to poor performance
in both workloads. CrossFS, an emulated firmware-level
file system design, reduces system calls and only metadata
movement between filesystem and storage, resulting in higher
performance. In contrast, FusionFS eliminates data move-
ment significantly as well as host and device interaction by
offloading both I/O and data processing. In § 5, we show the
breakdown of FusionFS benefits for these workloads.

4 FusionFS Design

We next discuss FusionFS’s design principles, followed by
system architecture, mechanics for supporting CISCqps, sup-
port for fine-grained durability and fast recovery, permission
management, and in-storage resource management.

4.1 Principles

1. Co-design in-storage management and data process-
ing to eliminate dominating I/O overheads. We design a
near-storage file system that combines storage management
and data processing to reduce dominating I/O overheads such
as system calls, data movement, and communication costs.

2. Design abstractions to reduce host and device in-
teractions. We design CISCgqyps, a novel approach to fuse
identical and nonidentical I/O and data processing opera-
tions. CISCgp aggregate a sequence of I/O and processing
operations and utilize device-CPUs to reduce data movement
and communication between the host and the storage. We
also explore an application-explicit and transparent approach
(without data processing).

3. Exploit in-storage compute for fine-grained crash
consistency and faster recovery. We design fine-grained
crash consistency, micro-transactions (MicroTx), which per-
sist all operations (including intermediate processing state)
and reduce data loss in case after a failure. MicroTx uses an
operational log and device-CPUs for automatic recovery by
completing unfinished CISCop; for faster recovery.

4. Manage in-storage resources for fairness and perfor-
mance efficiency across tenants. We design a completely
fair device-CPU and device-RAM scheduler (CFS) for fair-
ness and for avoiding starvation across tenants.

4.2 System Architecture

To support direct-1/0 design, FusionFS designs a user-level
library (UserLib) and in-storage (StorageFS) components that
work in tandem to offload I/O and computation without com-
promising correctness, crash consistency, recovery, security,

(File2 -> fd,)

Application

Thread | (Filel ->fd)) Thread 2
Opl* append-checksum-write(fdl, buf, size=4K) Op3 write(fd2, buf, size=1K)
Op2+ read-modify-write(fd|, buf, offset=30, size=: 4K Op4 _close(fd2)

- Allocate DMA'able /O F"e' F"ez Converting POSIX /O
command queue :gr -inode 4 syscalls to CISC 1/O ops
comman
queues

- Generate Credential info

}IIO op AutoMerge

OS Component UserLib
[ Credential Table /0 queue scheduler
| Fine-grained Journaling and Auto Recovery I‘—' Compute Engine |StorageFS

Figure 2: FusionFS High-level Design. Figure shows the high-level design
of FusionFS with the UserLib, the StorageFS, and the OS components. For
threadl, Opl and Op2 show a CISCop with data processing, whereas Op3
and Op4 show simple I/O. StorageFS shows the in-device structure with
durability, permission, and scheduling components.

and resource fairness. Figure 2 shows the high-level design
of FusionFS. Applications issue traditional POSIX 1/O re-
quests or CISCgs adding them to an inode-queue. StorageFS
checks permission for each I/O request, dequeues, and sched-
ules for processing, but importantly also provides fine-grained
durability and recovery.

4.2.1 User and Device Components

We next discuss the details of user-level UserLib and in-

storage StorageFS layers.
UserLib. This is an untrusted per-process user library to
interface applications to the in-storage file system using host-
CPUs. Beyond supporting POSIX I/0 through interception
and CISCoqps, UserLib also sets up I/O queues, prepares re-
quests, and handles errors.

I/O Commands.  For regular POSIX I/O, application
changes are not required, whereas CISCops require some
changes to either use pre-defined UserLib CISCgys or con-
struct one. Table 2 shows select pre-defined Compute + I/O
and I/O-only CISCqps. In §4.3, we discuss principles and
mechanics of constructing CISCops and the limited support
for application-transparent I/O-only CISCops.

inode-queue.  To exploit modern NVMe’s 64K hard-
ware I/O queues and increase parallelism across files, we
use a dedicated per-file I/O queue, referred to as inode-queue.
The inode-queues buffer requests and intermediate data to
be processed by StorageFS. The queues are created using
a DMA’able memory region when opening a file [30, 44].
The OS maps the DMA regions, which can be accessed by
the host and the device layers. By default, each inode-queue
has 32 entries for inserting I/O commands and 2MB of data
buffers, but the number of entries is configurable depending
on host DRAM availability.

StorageFS. It is the heart of FusionFS design responsible
for traditional file system functionalities like metadata and
data management and permission control (§ 4.5). StorageFS
houses compute engine ( §4.3), supports traditional and
fine-grained data and metadata journaling (§4.4) and re-
covery (4.4.1), and implements resource schedulers (§ 4.6).
StorageFS is designed for general-purpose device-CPUs (e.g.,
ARM CSD) [11] and implements simple in-memory and
on-disk filesystem structures such as a super-block, bitmap
blocks, inode blocks, and data blocks (see Figure 2). For in-
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Type [Ops. Sequence I Overheads

‘ ‘Dalamove ‘Syscall ‘Comm. ‘Resource

1/0-only open, read, write Hi Hi Med Lo
1/0-only open, read, close Med Hi Hi Lo
1/0-only write, fsync Med Hi Med Lo
1/0-only read, update, write Med Hi Hi Lo
Compute+l/O  |write, CRC, write Med Hi Hi Med
Compute+I/O  |read, CRC Med Med Med Med
Compute+I/O  |read, compress, write |Hi Med Hi Hi
Compute+I/O  |read, encrypt, write  |Hi Med Med Hi

Table 2: Frequently used select I/O-only and I/O+Compute operation
sequences and their overheads. High, Medium, and Low indicate the
relative magnitude of overheads. The columns, Data move, Syscall, Comm.,
and Resource denote data movement, system call, communication between
host and device, and compute and memory usage, respectively.

storage computation, StorageFS parses through all operations
in a CISCo,, vector, executes, and returns operation-specific
return codes. Internally, the StorageFS compute component
currently supports several data processing operations like
checksum, compression, encryption, and decryption, beyond
just parsing and sorting operations. To address the lack of
programmable hardware, StorageFS prototype is currently im-
plemented as a device driver with separate CPUs, memory re-
gions, and disk with carefully emulated hardware parameters.
We next discuss the details of each StorageFS component.

4.3 Operation Types and CISCq,s Mechanics

We first discuss operation types to offload, followed by the
mechanics for offloading.
4.3.1 Operation Types

Applications generally access storage using (1) simple I/O
operations to store or read state, (2) issue a sequence of I/O
operations, or (3) access, process, and store data. The process-
ing could vary from operations like compression, encryption,
checksumming, or complex transformations that search, sort,
or even execute ML operations (e.g., add, multiply, XOR).
Reducing I/O overheads across all such operation types is
critical.
Offloading Simple I/O Operations.  For basic POSIX
I/0, UserLib intercepts system calls and adds them to
inode-queues. We extend the NVMe commands to add new
operation codes for representing filesystem operations (e.g.,
read, write, open, close). After adding a request (command),
UserLib sets a doorbell for the StorageFS to start processing,
which sets the request’s commit flag after completion. All
blocking (e.g., read) and non-blocking (write) data plane oper-
ations are added to inode-queues, whereas metadata-intensive
operations (e.g., mkdir) use a separate global metadata I/O
queue. For error-prone operations like file and directory re-
name [12], FusionFS uses global file system locks.
CISCo) Operations. We next discuss UserLib support to
identify and aggregate identical and non-identical I/O and
data processing operations.
Identical and Non-identical 1/O Operations. We observe
that in several applications, I/O operations are executed in
sequence or pairs. For example, Figure 3(a) shows a widely-
used NoSQL database and webserver sequence that opens,
writes, syncs, and closes the file when inserting values (i.e.,

open()->write()->sync()->close()) or when reading data [5].
The figure also shows overheads for each operation, which
includes system calls between application and the OS (S),
data movement (D), metadata movement (M) such as inode,
and host-storage communication (PCle or memory bus) cost
(C). Note that the direct-access (DAX) filesystems for NVM
incur one less data copy compared to the block-level file sys-
tem. We observe several such sequences contributing to I/O
overheads as listed in Table 2. In contrast, CISCgps aggre-
gates and offloads such sequences to StorageFS reducing I/O
overheads (see Figure 3(b)).

I/O and Data Processing Operations. For supporting data
processing + I/O operations, as opposed to full application
redesign [14] for CSDs, we aim to reduce application changes
for organically supporting I/O and their related pre and post-
processing to reduce I/O overheads. Specifically, as shown
in Table 2, we observe that applications frequently fetch I/O
data to perform operations like checksum generation (CRC),
compression/decompression, encryption, search, sort, and
ML operation pairs (e.g., XOR, multiplication). For exam-
ple, as shown in the code snippet in Figure 3(c), NoSQL
persistent stores like LevelDB avoid expensive file commits
or propagation of corrupted data by adding CRC for integrity
check. After each file system append() system call, the CRC
is computed and appended to the actual data. This sequence
incurs 2 system calls, 4 data and metadata copies (2 for DAX
file systems) , and 2 PCle operations in OS file systems (see
Figure 3(a)). The above sequence repeats for all data reads or
replication to other nodes to check data integrity. In contrast,
an append-CRC-write CISCqps offloaded to StorageFS signif-
icantly reduces I/O overheads to 1 data movement and a PCle
operation without incurring system calls (see Figure 3(b)).
4.3.2 Mechanics for Application-explicit Support

With the explicit approach, applications can use CISCops
pre-constructed by UserLib or construct custom CISCoyps.
CISCop Command Structure: Each CISCqy is a vector of
commands in an extended NVMe format [59] for supporting
multiple operations and added to inode-queue for processing.
For example, Figure 3(d) shows the code snippet for packing a
append-CRC-write CISCg,, in LevelDB. Each CISCq,, vector
element contains an operation code (opc), input and output
address to specify DMA’able address from which data must
be fetched or stored (in), I/O offset (slba), block count (nlb),
and return code (refcode), and a journal commit flag (commit).
The number of elements in the CISCg, is configurable, and
by default, can pack 32 operations to fit in a DMA-able page.
Furthermore, FusionFS could also combine multiple CISCops
to batch operations.
Specifying Dependency. Applications or UserLib developers
can specify inter-dependencies across operations in a CISCqp.
For example, as shown in Figure 3(e), for the append-CRC-
write, the CRC depends on the input of previous append and
the bytes actually written to storage, which is unknown until
append completes. The input dependencies can be specified
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(a). Sequence using Block-based and NVM filesystem

Block-based OS Filesystem NVM OS Filesystem

(c) LevelDB CRC with OS FS
WriteRawBlock(data):

(e) CISCops Request

nvme_cmd req

open  read
(1) (f1, data) (fl, data) (f1) ‘ 0

open read

() (1, dawa) (fl, data) (f1)

write close write close

C

req.num_op = 3

req.iov[0].opc = nvme-cmd-append
req.iov[0].in = (uinté4_t)p
req.iov[0].slba = 0

req.iov[0].nlb = count - chksm-size
req.iov[0].retcode = 0

status = file->Append(data)

crc = cre32c:Value(data, size);

cre = cre32c:Extend(cre, trailer, 1);
EncodeFixed32(...cre32c::Mask(crc))
status = file->Append(Slice(trailer, size)

M+D

req.iov[1].opc = nvme-cmd-chksm
req.iov[l].in = (uinté4_t)p
req.iov[l].slba=0

open-read-write-close
(fl, data) (f1, data)

c+D | c+D!
csb E v ‘

append-CRC-write

(d) With CISCops req.iov[1].nlb = desc.iov[0].retcode
req.iov[|].retcode = 0
req.iov[l].commit =0
WriteRawBlock(data): req.iov[2].opc = nvme_cmd_write

status = file->Append-CRC-Write(data) req.iov[2].in = MACRO_VEC_PREV
req.iov[2].slba = count - chksm_size
req.iov[2].nlb = desc.iov[l].retcode
req.iov[2].retcode = 0

Figure 3: Comparison of I/0 Overheads. (a) and (b) compare data movement (D), communication cost (C), and system call (S) using traditional storage (top)
and envisioned CISCops design that bypasses OS (bottom); (c) and (d) show CRC (checksum) code sequence in vanilla LevelDB (top) and proposed (CISCoyps);
(e) shows packing a CISCops request. For NVM direct-access filesystems, the data copies are reduced to one per operation. Metadata caching could reduce 1/0.

using the DMA address (e.g., req.iov[1].in = (uint64_t)p for
checksum input) and the bytes to process (req.iov[1].nlb =
desc.iov[0].retcode).
Concurrency and Ordering. FusionFS supports out-of-order
processing for concurrency by default (e.g., vectored writes
or combination of reads and writes without conflicts) as well
as in-order processing (e.g., append-CRC-write). To pre-
vent out-of-ordering, the CISCp, structure allows specifying
an "order" field to execute the operation sequentially (e.g.,
req.iov[1].order = MACRO_VEC_PREYV), which are other-
wise parallelized in the presence of free device cores.
4.3.3 StorageFS Compute Engine

Inside the storage, StorageFS implements a generic parser
to disassemble CISCqps and either execute them with file
system logic for basic I/O or use the compute engine for data
processing. We have currently added new data processing
functionalities to the compute engine, which would require
firmware upgrade [53]. However, we will explore alternative
dynamic code injection techniques (e.g., eBPF [4]).
4.3.4 Partial Support for Automatic Offloading

FusionFS enables a partial support for transparently gen-
erating, merging, and offloading CISCg; for a group of 1/O-
only operations without data processing, referred to as Au-
toMerge. This is useful when application changes are not
feasible. AutoMerge primarily reduces system calls, host-to-
device interaction, and overheads such as command gener-
ation, I/O queuing, and scheduling but not necessarily data
movement. AutoMerge can either merge non-dependent oper-
ations on the same file by different threads or asynchronous
operations. UserLib parses all pending operations in a file’s
inode-queue to generate CISCqps. For example, consider
multiple append-CRC-write to different blocks of the same
log file across threads or a sequence of asynchronous writes.
AutoMerge can aggregate two non-dependent operations — ap-
pend in a append-CRC-write with write in previous append-
CRC-write — to generate CISCqps. We study the benefits and
implications of AutoMerge in § 5.
Limitations. While our AutoMerge provides simple batch-
ing, it currently lacks support for offloading data processing
operations (a harder problem). Similarly, it is ineffective for

single-threaded applications with blocking I/0. We plan to
explore automatic data processing offloading (a harder chal-
lenge) and other limitations in our future work.

4.4 Supporting Durability and Fast Recovery
We next discuss the support for basic journaling and fine-
grained crash-consistency support for offloaded POSIX I/0
and CISCgyps, respectively, followed by the support for auto-
matic recovery after failure by utilizing in-storage compute.

Trans CISC Op CISC Op
[ head H (TxB) LE1 LE1 ‘ LE2 ‘ LE3 (TxE)
¥ ¥
0p Log for 1 11 1| op Bitmap [CJop1: (e.g.) Append data

[CJop2: (e.g.) Checksum
[ op3: (e.g.,) write checksum

Auto Recovel 111]0

[oxd [oed LE1 | LE3 |LE4

Figure 4: Micro-transaction (MicroTx) Design. Figure shows an example
of append-CRC-write.

Commit Bitmap

Op Pointers

4.4.1 Traditional Journaling

For POSIX I/O, StorageFS supports traditional REDO jour-
naling. The journal log-entry headers contain a unique trans-
action ID followed by the metadata log (with a pointer to
actual data) and a transaction commit bit. Before a transac-
tion commits, first the data is updated in place, followed by
metadata logging.

To support crash consistency for CISCops, FusionFS first
provides an "all-or-nothing" macro-transaction (MacroTx),
which wraps an entire CISCq, into one transaction and re-
covers only if the entire CISCoy, is committed (to the log)
before the failure. This simple approach resembles crash-
consistency support in today’s vectorized I/O. However, this
approach risks losing I/O data and computation state when
CISCops do not complete.

4.4.2 Durability & Automatic Recovery with MicroTx

We overcome the limitations of MacroTx by designing
MicroTx that provides fine-grained durability of all I/O and
processing operations of a CISCgp, which we refer to as
micro-ops. Each micro-op can be independently committed
and recovered after a system failure. Figure 4 illustrates a
MicroTx structure with append-CRC-write, where a log-entry
for append, checksum, and write micro-ops are independently
committed. Each CISCp, log entry uses a bitmap in 7xB to
represent the number of micro-ops (micro-op bitmaps) and
the address offset of log entries for each micro-op. TxB also
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contains a commit bitmap to mark and track committed micro-
ops, and TxE represents a bit to indicate the completion of
an entire CISCgp,,. Because some compute operations (e.g.,
compression) could have a state larger than the available log
entry size (e.g., 48 bytes by default), users can configure log-
entry size during filesystem mount. We will explore dynamic
log entry sizes in our future work.

Next, we utilize MicroTx and device-CPUs to design an
automatic recovery mechanism and redo incomplete CISCqpg.
This is in contrast to current OS file systems that rely on
applications to redo failed operations, which increases recov-
ery time and developer efforts. For auto-recovery (optionally
enabled during filesystem mount), MicroTx additionally uses
operational log (shown in Figure 4) to write CISCgps and
the input data similar to data logging before processing a
request. After logging, a "commit” flag is set and used as
a receipt by an application. In case of a failure, MicroTx’s
recovery first recovers all committed micro-ops, followed
by recovering CISCp, and input data using the operational
log and then executes all incomplete micro-ops in CISCqps.
In Table 10c, we show the benefits of automatic recovery
in reducing recovery and restart time after a system crash
or failure by reducing I/O costs. Importantly, MicroTx and
automatic recovery could reduce application/developer effort
to check and redo incomplete I/O operations.

4.4.3 Error Handling

To handle errors (e.g., insufficient disk space), for
application-explicit CISCoyps, when using an all-or-nothing
MacroTx, FusionFS aborts the entire sequence and also up-
dates the return code for the operation that caused the failure.
In contrast, when using MicroTXx, all operations starting from
the erroneous micro-op are aborted with an error return code.
However, FusionFS could potentially execute all subsequent
non-dependent operations in the sequence. For example, in
a CISCop with 10 writes, a large write (say, the 6th write)
could fail due to the lack of disk space, but subsequent smaller
writes (7 to 10) could succeed. For the transparent AutoMerge,
because applications expect independent execution of micro-
ops, we allow execution of all I/O operations.

Potential (infrequent) errors could occur during automatic
recovery (say after a system crash and restart). With MicroTx
and operational log enabled, we retain the journaled micro-
ops, abort the erroneous operation, and use operational log
to report the failure with file name, operation type, and error
type, which is later checked by UserLib to identify errors.
Beyond our current design, a careful exploration of opportu-
nities to reduce CISCgp, aborts and failures, and correctness
issues is critical.

4.5 Permission Checking and Data Sharing

We aim to match the security guarantees of OS file systems
for both POSIX I/O and CISCqps by satisfying the following
assertions: (1) only processes with the right permission can
access a file or directory; (2) the file system metadata is

updated only by a trusted entity; (3) for inter-processes file
sharing, only legal writers can update the data.

FusionFS achieves these goals by utilizing trusted OS but
without compromising direct I/O. First, the OS shares creden-
tial information of a process with StorageFS during process
initialization, and StorageFS maintains a per-process creden-
tial table similar to prior designs [44]. Second, inode-queues
and their DMA’able memory regions (e.g., when opening
files) are created by the OS only when requested by a process
with the right credentials. Third, access to inode-queues (i.e.,
DMA’able memory pages) is protected by virtual memory
protection, preventing illegal access by a malicious process.
Finally, the OS shares credentials with StorageFS. For all
requests in the inode-queue, StorageFS checks permission
for operations packed in a CISCp), by comparing against the
credential list before processing, thereby avoiding partial exe-
cution. For example, in a read-compress-write CISCop, issued
to a read-only file, FusionFS’ permission manager does not
allow partial CISCqps execution.

Data Sharing. Supporting direct-1/O via user-level library
and inode-queues complicates secure inter-processes file shar-
ing. When a file is shared and accessed across readers and
writers, the inode-queues used for dispatching requests are
also shared. Unfortunately, a reader process (with read-only
permission) could accidentally or maliciously corrupt I/O or
data processing requests issued by writers. To overcome these
complexities, we employ the following design. First, all legal
writers (without readers) can concurrently access and update
a file, similar to OS file systems. Second, similar to KernFS
and UserFS designs, applications are responsible for ordering
updates to an inode-queue (e.g., using lease-based locks [35]).
However, in the presence of readers (a file opened with read-
only permission), to prevent corruption of writer requests in
the inode-queue, FusionFS detects file opened with read-only
permission and delegates the trusted OS to add I/O commands
from both writers and readers after permission checks.

4.6 Resource Management

We introduce in-storage compute and memory-centric
scheduling to enable in-storage resource fairness across ten-
ants, avoid starvation, and improve performance efficiency.

Update virtime and ]

rebalance RB-Tree

RB-Tree: inode-queues
sorted by virtime

Figure 5: FusionFS scheduler high-level overview

4.6.1 FusionFS Compute-Centric Scheduling

The number of application threads that issue POSIX I/O
and CISCpps could exceed available CSD compute cores.
Specifically, compute-intensive data processing (e.g., check-
sum, compression) will increase in-storage compute use, lead-
ing to workload imbalance, starvation, and impacting the
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performance of POSIX I/O across tenants. Unfortunately,
conventional I/O schedulers and prior in-storage schedulers
are I/O centric (e.g., Linux blk-queue) and fail to consider
device-CPU usage.
In-storage CFS Compute Scheduler. In FusionFS, we take
inspiration from the OS CFS CPU scheduler and explore its
use for device-CPU scheduling [1]. We account for I/O and
data processing operations that use device-CPUs. Figure 5
provides a high-level overview. At a high level, for CPU
fairness, StorageFS scheduler selects and dispatches requests
from inode-queues (of processes) with the least CPU usage
(i.e., virtual CPU runtime). However, unlike OS schedulers,
in-storage StorageFS lacks process state, which makes book-
keeping challenging, specifically for keeping track of virtual
runtime (virtime) usage of device-CPUs by each process. We
overcome this by using the inode-queues of an application
that buffers I/O requests to track and bookkeep device-CPU
usage. For each I/O or data processing request dispatched
from an inode-queue, FusionFS increments the virtime, and
selecting a request from an inode-queue with the least virtime.

Internally the scheduler maintains a global red-black tree
(RB-tree) that stores reference to inode-queues, sorted by
their virtime (see Figure 5). Initially (after mount), the sched-
uler uses a round-robin approach to pick an inode-queue, but
once requests are dispatched, their virtime are updated, and
the tree is rebalanced. Note that the scheduler always dis-
patches requests from the left-most RB-tree node that points
to inode-queue with the least virtime. While we currently im-
plement a simple RB-tree, we will explore alternative device-
optimized (i.e., firmware) data structures [47].
Fairness Across Tenants. We employ a two-pronged ap-
proach to prevent a greedy process (tenant) from increas-
ing compute share by increasing inode-queues and starving
other tenants. First, the trusted OS tags each inode-queue
with a process ID, and StorageFS maintains the overall vir-
time of each process using the sum of all its inode-queue’s
virtime. The scheduler always selects a request from an
inode-queue with the smallest process-level and inode-queue-
level virtime. Second, an administrator can limit the number
of inode-queues per process.
Request Termination and Preemption. To handle misbe-
having or long-running requests with large inputs, StorageFS
first terminates the request for avoiding starvation, then sets er-
ror codes for the request, finally clearing the transaction states
(logs). Our ongoing work is exploring request preemption,
which requires committing intermediate state of CISCgqps us-
ing MicroTx and switching to other operations. However,
preemption introduces correctness challenges. For example,
preempting an append-compress-write after the compress op-
eration could lead to incorrect read operations on the same
file other threads.
4.6.2 Memory-Centric Scheduling

Beyond device-CPUs, efficient management of device-
RAM is critical for fairness. Although modern CSDs are

equipped with 4-16GB of memory, a combination of in-
storage data processing, filesystem operations, and FTL’s
logical to physical block translations could increase memory
contention and starvation across clients [16, 43]. For example,
offloading memory-hungry file compression with large inputs
could starve or block other CISCoy; (€.g., append-CRC-write)
or POSIX I/O from other tenants even when free compute
cores are available.

We overcome the above challenges by extending the CFES to
share device memory capacity efficiently. First, we implement
a simple slab allocator for allocation and deallocation. Next,
we enhance the CFS scheduler with memory usage (memuse)
accounting for each process and inode-queues and maintain-
ing a memory-specific RB-tree with per-inode memuse. When
device CPUs are not a bottleneck, the scheduler selects a
process and inode-queue with the least memuse; this avoids
blocking or failing other requests. Finally, in § 5, we evaluate
the benefits of FusionFS’ memory-centric scheduling with
the multitenant workload. An ideal scheduler must provide
multi-resource fairness across compute, memory, and other re-
sources (e.g., using Dominant Resource Fairness [23]), which
we will explore in our future work.

4.7 Emulation and Application Changes.

Due to a lack of a programmable storage device, FusionFS
is implemented as a device driver. We us Intel Optane Mem-
ory [6] for storage similar to prior work [30, 44, 26]. We
emulate device-CPU and device-RAM by using dedicated
CPUs and memory managed by StorageFS. To emulate PCle
latency, we add 900-1000ns delays [40] for all interactions
between the host and the device. Finally, the storage and the
device-RAM bandwidth could vary across vendors. To un-
derstand the implications, we use DRAM thermal throttling
and study the impact [32, 24]. Note that bandwidth throttling
works only for DRAM technology and in older Intel Haswell
architectures. Therefore, we use a multi-socket DRAM-based
system to emulate and vary memory and storage bandwidths.

‘We built FusionFS by extending CrossFS’ direct-1/0 sup-
port and adding CISCgqyp, fine-grained journaling, fast and
automatic recovery, efficient and fair in-storage resource man-
agement, and optimizations to improve device-compute scal-
ability. UserLib and StorageFS components add 3K and 11K
LOC, and the data processing operations like compression,
checksum, and decryption functions add 2.4K lines of code.
Finally, to use CISCgyps, LevelDB requires < 38 LOC changes
replacing the CRC logic, whereas file encryption and snappy
compression require < 21 LOC changes.

5 Evaluation

Our evaluation answers the following questions:

o How effective is FusionFS and its CISCqps abstraction
in reducing 1/O overheads across microbenchmarks and
macrobenchmarks?

e How sensitive are FusionFS gains towards device-CPU
frequency and memory and storage bandwidth?
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CPU Intel Xeon(R) Gold 3.1GHz, dual-socket, 64-core

DRAM 96GB DDR4 2666 MT/s
NVM 256GB Intel Optane DC PMM (2*128GB)
Device-CPU 4-cores, Fast (2.7GHz) and Slow (1.2GHz) CPUs
Device-RAM 2GB dedicated for device operations

PClIe Latency 900us

Table 3: Experiment Platform and Setup.The device-CPUs and device-
RAM are emulated through DVFS and thermal throttling.

CISCops extd-DAX | extd-DAX-CISCqps | FusionFS
append-CRC-write | 0.85 GB/s 1.18 GB/s 2.81 GB/s
read-modify-write | 0.75 GB/s 0.84 GB/s 3.43 GB/s

Table 4: CISCos under traditional ext4 file systems.

e Is CISCoqyps effective for traditional OS filesystems?

e Can MicroTx and auto-recovery improve durability and
accelerate recovery?

e How effective is the CFS-based compute and memory
scheduler in improving resource fairness across tenants?

e What is the overall impact of FusionFS on real-world
applications?

5.1 Experimental Setup and Methodology

Due to the lack of programmable CSD, we carefully em-
ulate our FusionFS with the parameters shown in Table 3.
Our Optane NVM storage provides 8 GB/sec read and 3.8
GB/sec write bandwidth. We compare. For StorageFS pro-
cessing, we reserve 4 CPUs [50]. We also study the impact
of varying CPU speeds using fast (2.7GHz and default) and
slow (1.2GHz) CPUs resembling ARM-based CSDs [11].
For device-RAM, we reserve 2 GB memory managed by
StorageFS. We study the impact of device-RAM bandwidth
using a 64-core CloudLab machine. For PCle latency, we add
900ns [40] delay before a request is processed.
Methodology. We compare FusionFS against the state-of-
the-art KernFS — ext4-DAX [58] and NOVA [61], hybrid
UserFS — SplitFS [28], and DeviceFS — CrossFS [44]. Note
that some file systems do not support macro-benchmarks and
applications evaluated in this paper. The throughput shown
for workloads (in GB/s) combines data (payload) I/O and
processing times.

5.2 Benchmark Analysis

We evaluate microbenchmarks and Filebench macrobench-
mark [56] to understand CISCgys benefits and implications.
5.2.1 Microbenchmark

We evaluate I/0 data and metadata intensive file-open-
write-close in Figure 6a, I/O and data processing intensive
append-CRC-write in Figure 6b, and data plane heavy read-
modify-write benchmark in Figure 6¢. The file-open-write-
close is modeled after NoSQL databases, file-servers, and
web-servers that operate on several files. The workload opens
a file, performs a 2MB write, and closes the file, repeating
this for 10K files. Next, the append-CRC-write benchmark
(as discussed extensively in this paper) is used for providing
integrity in NoSQL databases [5, 3], key-value stores [10],
and others. Each thread appends a 4KB block, computes
the checksum, and writes the checksum on a 12GB file. The
data plane-intensive read-modify-write mimics several widely-

Direct-1/0 + Direct-T/O +
Workload Syscall I/O | Direct-1/O CISC CISCops +
Ops CFS-sched
append-CRC-write | 1.15 GB/s 2.23 GB/s 2.74 GB/s 2.81 GB/s
read-modify-write 0.75 GB/s 1.91 GB/s 2.85 GB/s 2.98 GB/s
Table 5: Breakdown of FusionFS incremental gains.
# of threads 1 2 8 16

ext4-DAX 0.26 GB/s | 0.66 GB/s | 0.99 GB/s | 0.85 GB/s
FusionFS-AutoMerge | 0.26 GB/s | 0.93 GB/s | 1.66 GB/s | 2.70 GB/s
FusionFS 0.27GB/s | 0.95GB/s | 1.94GB/s | 2.81 GB/s
FusionFS-Batch 0.29GB/s | 1.05GB/s | 2.06 GB/s | 2.98 GB/s

Table 6: FusionFS Optimizations. (append-CRC-write).

used applications [5, 3, 10, 56] by reading a random 4KB
block, modifying with random text, and writing back data
blocks on a 12GB file.

Methodology. We vary the number of benchmark threads
in the x-axis, and the y-axis shows the throughput (GB/sec),
and the threads use separate files. We compare ext4-DAX,
NOVA, SplitFS, CrossFS, and FusionFS. Additionally, to un-
derstand the impact of slower device-CPUs, we also evaluate
in-storage StorageFS to use 1.2GHz device-CPUs (CrossFS-
slow-device-cpu and FusionF'S-slow-device-cpu).
Observation. As shown in Figure 6a, in KernFS designs
ext4-DAX and NOVA, each I/O operation incurs system call,
data copy, and the device communication latencies, resulting
in high I/O overheads. However, NOVA performs better
than ext4-DAX due to its log-structured design and per-CPU
(multicore-friendly) block management. Next, SplitFS, a
hybrid UserFS, memory-maps staging files to userspace and
performs load and store operations. However, SplitFS uses
the OS for metadata operations. Specifically, we observe
increased kernel overheads that increase with workload size
and thread count from metadata operations, internal data
copies, and block lookup and pre-paging (MAP_POPULATE)
cost for the userspace mmap’ed files that stage I/O.

In contrast, in-storage CrossFS bypasses the OS and avoids
system calls but suffers from data copies between the host
and the device (for read and write I/O), PCle latency (hard-
ware), and the software cost to allocate, enqueue, and dequeue
requests. The blocking reads() also stall the host CPUs.

Finally, FusionFS merges the open->write->close into a
file-open-write-close CISCqps, avoids system calls, reduces a
data copy between the application and the OS, and the PCle
latency, all leading to up to 4.58X gains over ext4-DAX,
6.12X over SplitFS, and 1.65X over CrossFS. Table 5 shows
the incremental benefits of FusionFS’ design optimizations.

Next, as shown in Figure 6b, for append-CRC-write, simi-
lar to file-open-write-close, prior approaches lack in-storage
compute capability for CRC, resulting in two system calls
(except CrossFS) and a data copy. In contrast, FusionFS im-
proves performance over ext4-DAX, SplitFS, and CrossFS
by up to 3.3X, 6.1X, and 1.3X, respectively. Finally, for
read-modify-write, FusionFS outperforms all other systems.
Device Compute Speed. In Figure 6, we show FusionFS-
slow-device-cpu and CrossFS-slow-device-cpu configura-
tions using slower device compute by throttling them to
1.2GHz. FusionFS outperforms CrossFS and, importantly,
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Figure 7: Sensitivity to Device Bandwidth. The x-axis shows the device
storage bandwidth. For CrossFS and FusionFS, we show results when using
slow device memory throttled to same bandwidth as storage.

other filesystems that use 2.5 x faster host CPUs, highlighting
the importance and benefits of reducing I/O overheads.
Impact of Memory and Storage Bandwidth. The band-
width of device storage and device-RAM could vary across
vendors. To understand the sensitivity, in Figure 7, we use
DRAM thermal throttling to study the impact. As discussed
earlier, we use a 64-core dual-socket CloudLab machine [17]
that uses DRAM as storage. In Figure 7, we vary the storage
bandwidth from 1GB to 30GB (maximum without throttling)
along the x-axis. The bars CrossFS-slow-device-memory and
FusionFS-slow-device-memory represent the case where both
CrossFS and FusionFS use slower but the same device-RAM
and storage bandwidth by pinning them to a slower NUMA
socket.

Observation. FusionFS consistently delivers higher gains.
For example, when varying the storage bandwidth without
slower device-RAM results in 1.35X and 3.09X gains over
CrossFS and ext4-DAX. Next, when the device-RAM band-
width is also reduced, FusionFS’ throughput reduces but is
still higher than other systems. The results show that dominat-
ing I/0 overheads add more constraints for storage-intensive
workloads, and reducing them is critical.

Effectiveness of CISCgps for ext4-DAX. To understand the
effectiveness of CISCops as a general principle for all file
systems, we extend ext4-DAX to support append-CRC-write
and read-modify-write CISCops and compare the throughput
against vanilla ext4-DAX and FusionFS in Table 4. The
vanilla ext4-DAX incur two system calls and two data moves
(see Figure 3a) for both workloads. Next, ext4-DAX-CISCops
reduces system calls by half with one data copy leading to
better throughput. In contrast, FusionFS eliminates all system
calls and one data copy leading to 4.08X higher throughput.
Optimizations: Application Explicit Batching and Trans-
parent CISCgqps. First, FusionFS can batch multiple, non-
dependent CISCops as a vector to eliminate data copy, system
call, and other software overheads, such as enqueuing and de-
queueing requests. The number of requests to batch depends
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Figure 8: Macrobenchmark. (a) shows the Filebench performance with
three workloads. (b) varies the number of threads when encrypting target files

on the available DMA memory used as a data buffer for each
inode-queue (a configurable parameter in FusionFS). Table 6
shows the performance for explicitly batching 10 CISCqps
(FusionFS-Batch) and varying the number of threads. As
shown, FusionFS with batching shows 5.02X and 1.45x
gains, respectively, compared to not batching.

Next, as discussed in §4.3.4, FusionFS provides partial
support for transparently generating and offloading CISCqps
by aggregating non-dependent and pending I/O requests in
an inode-queue, mainly for asynchronous I/O or requests
across multiple threads but without offloading data processing.
As shown in Table 6, FusionFS-AutoMerge provides gains
over ext4-DAX for higher thread counts, but as expected, the
application-explicit approach outperforms all cases.

5.2.2 Macrobenchmark - Filebench

To validate the microbenchmark gains, we next evaluate
FusionFS for the widely-used Filebench [56] in Figure 8a.
We use the fileserver, the webserver, and the varmail work-
loads. The fileserver opens a file, randomly appends 16K
bytes, and closes the file. In FusionFS, these operations are
aggregated to one file-open-write-close and offloaded using
a temporary file’s inode-queue. The webserver opens a file,
reads the whole file, and closes it, which is aggregated to
open-read-close. Finally, varmail issues a combination of file
create, write, sync, and close operations and open file, read,
and close file operations, which are aggregated to open-write-
close and open-read-close, respectively. The I/0O sequences
are repeated on thousands of files by 16 worker threads. The
workloads are metadata-heavy issuing file create, delete, di-
rectory update operations that contribute to 69%, 63%, and
64% of the overall I/O in the varmail, the fileserver, and the
webserver workloads, respectively. FusionFS and CrossFS
outperform other file systems by eliminating system calls,
reducing data movement, communication, and software costs
such as queuing delays, delivering 36% gains for webserver
workload over ext4-DAX. Furthermore, despite NOVA’s mul-
ticore parallelism friendly design, reducing I/O overheads is
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Figure 9: Scheduler. (a) shows the normalized throughput (THP) for each workload relative to no-sharing of device-CPU resources. (b) shows the throughput
factor relative to the no-sharing of device-memory resources. The device memory budget is set to 2GB. (c) compares CPU scheduling against CrossFS.

critical, as showcased by FusionFS-slow-device-cpu gains.
5.2.3 Macrobenchmark - File Encryption

We next study FusionFS on widely used Linux encryption
and decryption service, Cryptsetup [2]), which is used by sev-
eral applications (e.g., OpenSSL [8]). Cryptsetup uses widely-
used AES-128 [39] symmetric block cipher to encrypt files.
The application threads read data from a 4GB file, encrypt,
and write back the encrypted data. In Figure 8b’s x-axis, we
vary the application’s thread count. For FusionFS, we replace
the read, encrypt, write sequence with read-encrypt-write
CISCops. FusionFS, by aggregating operations, reduces 1/O
cost and outperforms its counterparts achieving up to 2.48X
gains over NOVA.

5.3 Crash Consistency and Recovery

We next study FusionFS’ crash consistency and recovery
capabilities. We use (1) a append-CRC-write workload and
(2) a vector-write (ten writes) benchmark. For both, we in-
ject failures at different points to test durability, as shown in
Table 10a. For the append-CRC-write, we add three failure
states (F1, F2, and F3), whereas for the vectored write, we in-
ject a failure before any writes (F4), a failure between writes
4 and 5 (F5), and a failure after all the writes complete (F6).
In Table 10b, we show crash-consistency correctness of com-
mitted and uncommitted operations for different file systems.
Note that FusionFS offers the basic all-or-nothing (MacroTx),
and an optional (and optimistic) auto-recovery, AutoRec that
uses MicroTx and operational log for fast recovery.

First, as shown in Table 10a, for the append-CRC-write,
for the case when the failure happens before append commits
(FI), ext4-DAX, NOVA, SplitFS, CrossFS, and FusionFS’s
MacroTx provide crash consistency excluding the uncommit-
ted append (C). In contrast, FusionFS’s AutoRec provides
operational logging; hence during restart, it can recover and
re-execute append-CRC-write to completion if a valid op-
erational log entry exists, as indicated by the (C/R) state.
Similarly, for a failure after checksum (F2), AutoRec recov-
ers both append and checksum’s state from MicroTx, and
finishes writing, providing better recoverability after failure.
Next, F4-F6 shows the failure points for the vectored 4KB
write workload. When a failure occurs at F5 (partial writes
of a vector), all file system approaches, excluding FusionFS’
AutoRec, do not recover due to their all-or-nothing approach
restoring the file system to a consistent state. In contrast,
AutoRec uses MicroTx with fine-grained commits, recovers

.4 - [l Append-CRC-Write-CFScpu [ Compress-Write-CFScpu I
[E] Append-CRC-Write-CFSmm Compress-Write-CFSmm

# of threads
(b) Memory-based Scheduling

B Write-only-RR-CrossFS

m5 Append-CRC-Write-RR-CrossFS

g 4 @ Write-only-CFScpu-FusionFS

5 B Append-CRC-Write-CFScpu-FusionFS

bl

16
# of threads

(¢) Comparison with CrossFS Scheduler

|
6

partially completed writes in a vector (C/R), and finishes the
vectored write.

Recovery Time. To study the impact on recovery time,
in Table 10c, we run the append-CRC-write workload with
16 threads that issue 16MB appends and inject failures at
crash points FI (before append) and F2 (after checksum).
For ext4-DAX without data atomicity, applications must re-
execute the entire operation sequence and incur system calls
and data movement costs, also increasing recovery time. In
contrast, NOVA and SplitFS provide atomic appends. We
assume applications when using NOVA file system keep a
record of appends and only re-execute checksum and write
operations during the restart. This reduces data movement
and system call costs. Next, MacroTx must re-execute the
entire sequence, but offloading as CISCoy reduces cost. Fi-
nally, AutoRec uses MicroTx to automatically recover state
at FI and F2 and uses the operational log to re-execute and
complete the CISCq), without application interaction. Conse-
quently, this provides up to 2.65X gains over ext4-DAX.
Latency Impact. To understand the performance impact of
AutoRec, in Table 10d, we compare the average latency of
append-CRC-write and vector-write. First, MacroTx reduces
the average latency of all operations, including a substan-
tial reduction for vectored writes by reducing I/O overheads.
Next, MicroTx provides fine-grained durability (i.e., commit
for each operation of a CISCqp), but the latency increase
over MacroTx is negligible because it reuses the same journal
blocks, reducing the block allocation cost. In contrast, the op-
tional AutoRec’s operational logging with request commands
and input, marginally increases the latency.

5.4 Device Compute and Memory Fairness

We next evaluate the effectiveness of FusionFS CFS-
based scheduling in providing storage compute and mem-
ory fairness across tenants using workloads that are bottle-
necked by (a) device-CPU and (b) device-RAM. We con-
sider I/O intensive random write-only benchmark, compute-
intensive append-CRC-write, and compute + memory-
intensive read-compress-write workloads. We compare
FusionFS CFS schedulers against round-robin I/O scheduler
(RR-scheduler) as proposed in recent studies [44].

Device Compute + I/O Scheduling We first analyze the
effectiveness of FusionFS’s compute-centric CFS by co-
running append-CRC-write with 1/O-intensive write-only
workload performing 4KB writes. In Figure 9a, the x-axis
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append-CRC-write Before append completes (F1), after checksum

calculation (F2), after checksum write (F3)

vector-write (10 writes)  before first write completes (F4), between writes

4 and 5 (F5), after all writes complete (F6)
(a) CISCgy; Failure (F) Condition.

Systems Crash No.

F1 F2 F3 F4 F5 F6
ext4-DAX, NOVA, SplitFS, CrossFS C C C/R C C C/R
FusionFS-MacroTx C C C/R C C C/R
FusionFS-AutoRec C/R CR CR | CR CHR CR

(b) Consistency (C) and Recovery (R) after crash. C and R denotes
successful crash-consistency and recovery after failure.

No. ext4-DAX  NOVA  SplitFS CrossFS MacroTx AutoRec  Operation ext4-DAX  NOVA SplitFS CrossFS MacroTx AutoRec
F1 75.5 55.6 239 43.7 30.4 28.5 append-CRC-write ~ 18.4 17.3 16.5 16.9 15.6 23.4
F2 74.3 55.1 24.6 41.3 29.4 8.3 vector-write 44.6 41.1 35.3 39.1 29.2 46.6

(c) Recovery time (ms) append-CRC-write running 16 threads
with 16MB 1/O size.
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Figure 12: Snappy Compression Throughput. (a) varies file size and use
16 threads and 100K files. (b) varies storage bandwidth and use 16 threads,
100K files and 2MB each file.

varies application thread count for all workloads, the y-axis
shows normalized throughput, and errors lines on the bars
show max and min throughput variation across threads. The
application threads operate on separate files. Further, we also
compare the performance against the state-of-the-art CrossFS
with round-robin scheduling in Figure 9c.

Observations. First, when using the baseline round-robin
RR-scheduler, StorageFS picks a request from either the
inode-queues of the append-CRC-write or the write-only
workloads and dispatches them for processing. When us-
ing RR-scheduler, append-CRC-write-RR with higher com-
pute needs could unfairly delay or starve I/O-intensive write-
only-RR requiring short bursts of CPU for executing the file
system logic, journals, and checkpointing; this impacts the
throughput. In contrast, FusionFS’ CFS scheduler accounts
for both workloads’ virtual device CPU usage time, equally
prioritizes the write-only and the append-CRC-write work-
loads, consequently improving the throughput of write-only-
CFScpu workload by 1.34X. The throughput of append-CRC-
write-CFScpu reduces marginally. Finally, our CFS scheduler
achieves higher gains over CrossFS for 8 and 16 thread con-
figurations.

Memory-based Scheduling To understand the effectiveness
of device memory-centric scheduling, we study capacity-
intensive read-compress-write (shown as Compress-Write)
co-scheduled with append-CRC-write workloads in Figure 9b.

Throughput(MB/s

(d) Average latency (us) for each CISCgp.

Figure 10: Crash consistency and Fast Recovery.
80
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Figure 11: LevelDB Evaluation. (a) shows YCSB benchmark result, (b) and (c) show db_bench benchmark results, (d) shows Level DB Recovery benchmark

(d) Recovery benchmark.

S.

We limit the device-RAM budget for in-storage process-
ing to 2GB. We compare append-CRC-write-CFScpu and
compress-write-CFScpu against append-CRC-write-CFSmm,
and compress-write-CFSmm scheduler that treats memory
capacity as a first-class citizen towards CISCpps scheduling.
Observations. The CFS CPU scheduler lacks memory ca-
pacity awareness. Consequently, the memory-intensive com-
pression workload often stalls append-CRC-write despite the
availability of device-CPUs. Moreover, stalling leads to side-
effects such as frequent polling to check for free device mem-
ory availability. In contrast, FusionFS’s CFS enables fairness
based on each workload’s memory usage, thereby equally pri-
oritizing append-CRC-write and read-compress-write work-
loads. As shown, append-CRC-write-CFSmm’s through-
put improves by 1.76X, whereas compress-write-CFSmm’s
throughput only reduces by 15%.

5.5 Real-World Applications

We next study the benefits of FusionFS for real-world appli-
cations, LevelDB [7] and Snappy Compression [19]. Beyond
performance, we also explore recovery and restart perfor-
mance through simple changes to LevelDB’s recovery and
restart code.

For LevelDB, we modify the append->checksum->write
sequence designed to avoid frequent commits (fsync) for SST
files and WAL and replace them with append-CRC-write
CISCopyps. Similarly, we offload read operation using read-
checksum. We evaluate the random write workload in Fig-
ure 11c and the random read workload in Figure 11b using
the widely-used db_bench for 1 million key-value pairs and
16 application threads. The value size is varied from 4KB
to 128KB. Note that recent LevelDB versions use 64K in-
ternal buffer for smaller appends. Further, we also evaluate
YCSB [18] cloud benchmark using workloads A-F with vary-
ing read/write ratios issued with Zipfian distribution [31].
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Observations. First, FusionFS provides considerable gains
for both random write and read workloads. For random writes,
smaller appends in append-CRC-write (e.g., 4K) are buffered,
resulting in one system call instead of two calls for the larger
values (64K). FusionFS gains stem from a combination of re-
duced system call, data movement, and communication costs.
Offloading CRC to the device helps in the better utilization
of host-CPUs for other work across application threads. We
also observe that, in contrast to CrossFS, FusionFS CFS is
more effective in multiplexing 4 device cores compared to
CrossFS, which uses linked lists to schedule requests. For ran-
dom reads, beyond offloading CRC to the device-CPUs and
efficient scheduling, FusionFS reads only data without CRC
bytes. In summary, FusionFS achieves gains between 1.23X-
2.23x and 1.81X- 2.51X, respectively, over ext4-DAX.
Next, YCSB uses Zipfian access pattern, and therefore,
the application-level caching is beneficial for all approaches.
Despite caching, FusionFS provides high gains for write-
intensive C, D, and F workloads. Furthermore, we believe
adding more CISCops to other parts of the application (e.g.,
SST compaction) [14] would further increase the gains.
Restarts using Application-Customized CISCqps. We
next study the benefits of application-customized CISCgps in
reducing restart cost using LevelDB. We observe that LSMs
such as LevelDB [5], and others (e.g., Redis [10]), persist
in-memory state to a write-ahead log (WAL) before updating
the data file (e.g., SST files). LevelDB reads and checks the
integrity of key-value pairs during restarts using the checksum
and then sorts and writes them to disk files (SST files). All of
these operations consume high I/O costs and data movement.
Notably, the restart cost increases with the memory buffer
(i.e., memtable size) and the WAL size.
Observations. Figure 11d shows the recovery cost for all
prior systems, FusionFS (without application-customized
restart), and FusionFS-app-recover with customized recovery.
FusionFS offloads just the read-checksum achieving up to
1.17X faster restarts. In contrast, for FusionF'S-app-recover,
we reduce restart costs by enabling developers to construct
and offload a custom read-checksum-sort-write CISCqps. For
each key-value pair, the offloaded operation validates check-
sum, sorts them using a RB-tree in StorageFS, and writes
them directly to the SST file. This results in up to 2.69X and
3.58X faster recovery over FusionFS and ext4-DAX, respec-
tively.
Snappy Compression. Next, we evaluate FusionFS on the
widely-used snappy file compression [19]. Figure 12a shows
results for compressing 100K files using 16 threads. We
vary the file sizes along the x-axis, and the y-axis shows the
throughput in terms of bytes compressed. For FusionFS, we
add a open-read-compress-write CISCqps.
Observations. First, we observe that NOVA performs well
with its multi-core friendly structures and log-structured file
system. Second, SplitFS avoids system calls but suffers
from high kernel activity and pre-paging cost for staged

mmap() files when opening 100K files. Third, CrossFS lacks
CISCoyps and incurs higher overhead from creating file de-
scriptor queues and data movement. In contrast, FusionFS
avoids data copy overheads by aggregating I/O operations and
offloading compression to device-CPUs resulting in 1.63X
and 1.67X gains over ext4DAX and NOVA, respectively.
However, for large 4MB files, the high compression cost dom-
inates I/O costs, thereby reducing throughput for all cases.
Sensitivity to Device-CPU Speeds. We evaluate Level DB
(in Figure 11) and snappy compression (in Figure 12a) using
FusionFS and CrossFS that use slower device-CPU (slow-
device-cpu). Despite using slower CPUs, FusionFS gains
significantly over other designs, specifically for I/O-intensive
workloads. For example, LevelDB’s FusionF'S-slow-device-
cpu provides 1.79X gains over ext4-DAX.

Sensitivity to Storage and Device Memory Bandwidth.
Finally, in Figure 12b, we study the impact of device-RAM
and storage bandwidth for memory and I/O-intensive snappy
compression by throttling memory on a dual-socket Cloud-
Lab machine that uses DRAM for storage. In the x-axis, we
vary the storage bandwidth from 1GB/s to 30GB/s, and the
values 8GB and 16GB emulate the bandwidth of PCle Gen4
and GenS5 SSDs [9]. Further, for CrossFS and FusionFS, we
also study the impact of memory bandwidth (CrossFS-slow-
device-memory and FusionFS-slow-device-memory) and the
impact of slow CPU and memory bandwidth (FusionF'S-slow-
device-memory-and-cpu).

Observations. For all storage bandwidths, FusionFS pro-
vides considerable gains. For extremely low device-memory
bandwidth (say, 1GB), FusionFS throughput is similar to
KernFS and UserFS that use faster host DRAM. However,
real devices are expected to have higher bandwidth (8GB
and above) [11, 41], for which FusionFS shows considerable
gains.

6 Conclusion

We designed and evaluated FusionFS, an in-storage
firmware design that combines file system and data process-
ing capabilities in modern CSDs. To reduce the impact of
system calls, data copy, and other software and hardware over-
heads, we introduced CISCqps, which fuses multiple I/O and
compute operations and offloads them to storage. Evaluation
of FusionFS with several benchmarks and applications show
significant performance benefits.
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