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Abstract

This paper studies M-estimators with gradient-Lipschitz loss function regularized with convex
penalty in linear models with Gaussian design matrix and arbitrary noise distribution. A practi-
cal example is the robust M-estimator constructed with the Huber loss and the Flastic-Net penalty
and the noise distribution has heavy-tails. Our main contributions are three-fold. (i) We provide
general formulae for the derivatives of regularized M-estimators ,3 (y, X) where differentiation is
taken with respect to both y and X; this reveals a simple differentiability structure shared by all
convex regularized M-estimators. (ii) Using these derivatives, we characterize the distribution of
the residual r; = y; — x; ,8 in the intermediate high-dimensional regime where dimension and
sample size are of the same order. (iii) Motivated by the distribution of the residuals, we propose a
novel adaptive criterion to select tuning parameters of regularized M-estimators. The criterion ap-
proximates the out-of-sample error up to an additive constant independent of the estimator, so that
minimizing the criterion provides a proxy for minimizing the out-of-sample error. The proposed
adaptive criterion does not require the knowledge of the noise distribution or of the covariance of
the design. Simulated data confirms the theoretical findings, regarding both the distribution of the
residuals and the success of the criterion as a proxy of the out-of-sample error. Finally our results
reveal new relationships between the derivatives of B (y, X) and the effective degrees of freedom
of the M-estimator, which are of independent interest.

Keywords: Robust estimation, M-estimator, Adaptive tuning, High-dimensional statistics, Resid-
ual distribution.

1. Introduction

This paper studies properties of robust estimators in linear models y = X 3* + € with response
y € R", unknown regression vector 3* and X is a design matrix with n rows 1, ..., . Each row
x; being a high-dimensional feature vector in R”, centered and normally distributed with covariance
3., and each ¢; is independent of X with continuous distribution. Throughout, let 3 = 3(y, X ) be
a regularized M -estimator given as a solution of the convex minimization problem

,3( , X)) = argmin — Zp x] b) + g(b) (1.1)

beRp
where p : R — R is a convex data-fitting loss function and g : R” — R a convex penalty. We
may write 3, 4(y, X ) for (1.1) to emphasize the dependence on the loss-penalty pair (p, g); if the
argument (y, X) is dropped then 3 is implicitly understood at the observed that (y, X). Typical

examples of losses include the square loss p(u) = u?/2, the Huber loss H(u) = 0‘"' min(1,¢)dt
or its scaled version p = A2H (u/A) for some tuning parameter A > 0, while typical examples of
penalty functions include the Elastic-Net g(b) = \||b]|1 + 1||b]|* /2 for tuning parameters A, jz > 0.
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The paper introduces the following criterion to select a loss-penalty pair (p, g) with small out-
of-sample error || X/2(3 — B*) ||2: for a given set of candidate loss-penalty pairs {(p, g)} and the
corresponding M -estimator 3, 4 in (1.1), select the pair (p, g) that minimizes the criterion

df 2 r=y-XBy € R
Crit(p, g) = ||r + et ) | with { df = X (0/09)B,.) _ €R
V = ding{e/ () }(I — X(0/0y)B,,) €R™"

(1.2)
where tr[-] is the trace, ¢ : R — R is the derivative of p, ¢ the derivative of ¢ and we extend v
and 1)’ to functions R"” — R™ by componentwise application of the univariate function of the same
symbol. Above, (0/ 8y)prg € RP*™ denotes the Jacobian of (1.1) with respect to y for X fixed,
at the observed data (y, X). As we will see while studying particular examples, for pairs (p, g)
commonly used in robust high-dimensional statistics such as the square loss, Huber loss with the ¢; -
penalty or Elastic-Net penalty, the ratio df / tr[V] in (1.2) admits simple, closed-form expressions.
The criterion (1.2) has an appealing adaptivity property: it does not require any knowledge of the
noise € or its distribution, nor any knowledge of the covariance 3. of the design.

IE2(8 — B — I+ gligb(r)|12/n + €]/l

d4EE=288282558¢%

Figure 1: Heatmaps for | £/2(8 — 8*)||2, its approximation ||r + (df /tz[V])y(7)||2/n — ||€||?/n
and the approximation error || 21/2(3 — 8*)||2 — ||r + (df /tz[V])¥(¢)||2/n — ||e||?/n]
for the Huber loss and Elastic-Net penalty on a grid of tuning parameters (A, 7) where
A € [0.0032,0.41] and 7 € [1071°,0.1]. Each cell is the average over 100 repetitions.
See Section 6 for more details.

1.1. Contributions

1. The end goal of this paper is to provide theoretical justification and theoretical guarantees for the
criterion (1.2) in the high-dimensional regime where the ratio p/n has a finite limit and X has
anisotropic Gaussian distribution. The theoretical results will justify the approximation

|7+ (df/ e [V]) o () |2/ = ||| /n + | ZV2(B - 8|12 (1.3)

Figure 1 illustrates the accuracy of (1.3) on simulated data. To study the criterion (1.2) and derive
the approximation (1.3), we develop novel results of independent interest regarding M -estimators
in (1.1):

2. The paper derives general formula for the derivatives (0/0y;) B and (0/0x5) (. This sheds light
on the differentiability structure of M -estimators for general loss-penalty pairs: for any p, g
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with g strongly convex, there exists A € RP*? depending on (y, X) such that for almost every
(y, X),

(0/0y)B(y, X) = AX Teit/(ri),  (9/02i)B(y, X) = Aeji(ri) — AX Teit!(ri)Bj,
forr; = vy; — acZTB, Vi € [n],j € [p] where e; € RP and e; € R™ are canonical basis vectors.

3. The paper obtains a stochastic representation for the residual y; — chTE for some fixed ¢ =
1,...,n, extending some results of El Karoui et al. (2013) on unregularized M -estimators to
penalized ones as in (1.1). In short, for each ¢ = 1, ..., n the ¢-th residual satisfies r; = y; — a:iT,B

ri+ 53u(r) ~ £+ Zi| SV2(B - 8Y)| (1.4)

where Z; ~ N(0,1) is independent of ¢;. This stochastic representation is the motivation for
the criterion (1.2) as the amplitude of the normal part in the right-hand side is proportional to the
out-of-sample error || £'/2(3 — 3*)|| that we wish to minimize, while the variance of the noise
g; does not depend on the choice of (p, g).

Simulated data in Figure 2 confirms that the stochastic representation for the i-th residual r; =
Yi — aclT 3 is accurate. Our working assumption throughout the paper is the following.

Assumption A For constants -y, i > 0 independent of n, p we have p/n < =, the loss p : R — R
is convex with a unique minimizer at 0, continuously differentiable and its derivative 1) = p' is
1-Lipschitz. The design matrix X has iid N (0, X) rows for some invertible covariance 3 and the
noise € is independent of X with continuous distribution. The penalty g : RP — R is u-strongly
convex w.r.t. 3 in the sense that b — g(b) — (11/2)b" Xb is convex in b € RP.

Throughout the paper, we consider a sequence (say, indexed by n) of regression problems with
p, 3%, 3 and the loss-penalty pair (p, g) depending implicitly on n. For some deterministic sequence
(an), the stochastically bounded notation Op(a,,) in this context may hide constants depending on
7, i only, that is, Op(a,,) denotes a sequence of random variables W, such that for any ¢ > 0 there
exists K depending on (e, 7y, 1) satisfying P(|W,,| > Ka,) <.

Since Assumption A requires p/n < =, the Bolzano-Weierstrass theorem lets us extract a sub-
sequence of regression problems such that p/n — ' along this subsequence, for some constant 7.
This is the asymptotic regime we have in mind throughout the paper, although our results do not
require a specific limit for the ratio p/n. For some results, we will require the following additional
assumption which is satisfied by robust loss functions and penalty that shrink towards O.

Assumption B The penalty is minimized at 0, that is, g(0) = mingcgre g(b); the loss is Lipschitz as
in || < M for some constant M independent of n, p; the signal is bounded as in | X'/?3*(|? < M.

1.2. Related works

The context of the present work is the study of M -estimators in the regime £ has a finite limit. This
literature pioneered in Bayati and Montanari (2012); El Karoui et : al. (2013); Donoho and Montanari
(2016); Stojnic (2013) typically describes the subtle behavior of 3 in this regime by solving a system
of nonlinear equations. This system depends on a prior distribution for the components of 3*, and
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either depends on the covariance 3 (Celentano et al., 2020; Dobriban and Wager, 2018) or assume
3. = I, (Bayati and Montanari, 2012; Thrampoulidis et al., 2018; Celentano and Montanari, 2019,
among many others). Solutions to the nonlinear system are a powerful tool to understand E in
theory, e.g., to characterize the deterministic limit of || X1/2(3 — 8%)]|, see e.g., the general results
in Celentano and Montanari (2019) for the square loss and Thrampoulidis et al. (2018) for general
loss-penalty pairs. However, since the system and its solution depend on unobservable quantities (3
and prior on 3%), the system solution is not directly usable for practical purposes such as parameter
tuning.

The present work distinguishes itself from most of this literature as the goal is to describe the
behavior of 3 using observable quantities that only depend on the data (y, X ) (and not unobservable
ones such as X or a prior distribution on 3* that appear in the aforementioned nonlinear system of
equations). As we will see this view lets us perform adaptive tuning of parameters in a fully adaptive
manner using the criterion (1.2). The criterion (1.2) appeared in previous works for the square loss
only: Bayati et al. (2013); Miolane and Montanari (2018) studied (1.2) for the Lasso with 3 = I,
and (Bellec, 2020, Section 3) for the square loss and general penalty (note that for the square loss
p(u) = u2/2, (1.2) reduces to n2||7||2/(n—df)? due to ¥(u) = wand tr[V] = n—df. The property
1(u) = u of the square loss hides the subtle interplay between r, 1)(7), df and tr[V] in (1.2) for p
different than the square loss).

A criterion different from (1.2) is studied in Bayati et al. (2013); Miolane and Montanari (2018)
(for the Lasso and 3 = I})) and Bellec (2020) (for general loss-penalty pairs), with the purpose of
estimating the out-of-sample error ||3'/2 (B — B%)||. In the case of an M-estimator and with the
notation in (1.2), this criterion is the right-hand side of the approximation

I=V2(8 = 817 = V]2 (Il () [P (2df — p) + | B7/2X Ty (r) ).

That criterion from Bayati et al. (2013); Miolane and Montanari (2018); Bellec (2020) has the
drawback to require the knowledge of the covariance X, and is thus not readily usable unless 3
is known or can be consistently estimated. On the other hand, the criterion (1.2) is fully adaptive:
it does not depend on 3, and can thus be used even if 3 cannot itself be consistently estimated.
Another line of work (Rad et al., 2020; Xu et al., 2021; Rad and Maleki, 2020) proposed the ALO

criterion
n

Z(” + Iéfw(ri))Q (1.5)

i=1 v

(when specialized to linear models), where V is the matrix defined in (1.2) and H;; = ar;ZT a%lﬁ (y, X)
in the notation of the present paper. This criterion differs from (1.2) proposed in the present
paper, in that (1.2) replaces H;; and Vj; by their respective averages, df /n = %Z:;l H;; and
tr[V]/n = 13" | Vi;. This extra averaging step lets us prove, for non-smooth penalty functions,
theoretical guarantees for selecting a loss-penalty pair by minimizing the criterion (1.2) (cf. Sec-
tions 4 and 5 below). On the other hand, we are not aware of similar theoretical guarantees for
selecting a loss-penalty pair based on (1.5), since the theoretical analysis of (1.5) is so far restricted
to twice continuously differentiable loss and penalty functions, with a uniform upper bound on the
Lipschitz constant of the second derivatives (Rad and Maleki, 2020, Assumption 6 required in The-
orem 3 and Corollary 1). This rules out the Elastic-Net and other non-smooth penalty functions

typically used for high-dimensional data, as well as the Huber loss which is not twice continuously
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differentiable. The criterion (1.2) of the present paper thus improves upon (1.5) since it enjoys
theoretical guarantees for non-smooth penalty functions and the Huber loss.

This work leverages probabilistic results on functions of standard normal random variables Bel-
lec and Zhang (2019)(Bellec, 2020, §6, §7) which are consequences of Stein’s formula Stein (1981).
Consequently, the main limitation of our work is that it currently requires Gaussian design for the
probabilistic results, although simulations in Appendix G suggest that the results hold for more gen-
eral distributions, including design with Rademacher entries. On the other hand, the differentiability
result (2.1) is deterministic and does not rely on any probabilistic assumption.

2. Differentiability of regularized M-estimators

The first step towards the study of the criterion (1.2) is to justify the almost sure existence of the
derivatives of ,@ that appear in (1.2) through the scalar scalar df and the matrix V in (1.2). Although
the criterion (1.2) only involves the derivatives of B (y, X) with respect to y for a fixed X, the
proof of our results rely on the interplay between the derivatives with respect to y and with respect
to X: this differentiability structure of M -estimators is the content of the following result.

Theorem 1 Let Assumption A be fulfilled. For almost every (y, X) the map (y, X ) — ,é (y,X)is
differentiable at (y, X)) and there exists a matrix A € RP*P depending on (X, y) with | S1/2Ax1/2 llop

(np) =t s.t.
(0/0y:)B(y, X) = AX Teq! (r:),

—~ ~ where r; = y; — ac;—,é, 2.1)
(a/axm)ﬁ( ) Aeﬂ/’(n) AXTei¢,(Ti)Bja

e; € R", e; € RP are canonical basis vectors , 1\ := p’ and ¢}’ denote the derivatives. Furthermore,

df = tr[ X (9/0y)B] = tr[ X AX T diag{y/(r)}], 2.2)
V = diag{¢/(r)}(I,, — X(0/0y)B) = diag{y/(r)} — diag{e/(r)} X AX " diag{¢/(r)}
2.3)

satisfy 0 < df <nand0 < tr[V] < n.

Since the same matrix A appears in both the derivatives with respect to Yi and to z;;, (2.1)
provides relationship between 0/ ayl)ﬂ and (0/ (9x,])ﬂ for instance (0/ 8x,])ﬁ Aejl/J(n)
ﬂ] 0/ ayl)ﬁ Although the matrix A is not explicit for arbitrary loss-penalty pair, closed-form
expressions are available for particular examples such as the Elastic-Net penalty as discussed in
Section 6.

Remark 2 For the square loss p(u) = u? /2, the differentiability formulae (2.1) reduce to

~ AT
(a/ayl)g(y,X) AX e, (2.4)

(8/0x:;)B(y, X) = Ae;(yi — x] B) — AX "e;f3;

for almost every (y, X ) and some matrix A € RPXP depending on (y, X)), since in this case ' = 1.
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In the simple case where g is twice continuously differentiable, (2.1) follows (Bellec and Zhang,

2019) with
1

A= (X diag{¢/(r)} X +nV3g(3))” (2.5)
by differentiating the KKT conditions X Ty(y — X8 ) = nVyg(B ) To illustrate why this is true,
provided that B(y, X) is differentiable, if (y(t), ( )) are smooth perturbations of (y, X') with
(y(O)LX(O)) = (y,X) and/g%(y(t)7 X (t)]i=0 = (9,X), differentiation of X (¢)"¢(y(t) —
X(t)B(y(t), X (t))) =nVg(B(y(t), X (t))) at t = 0 and the chain rule yields

X Typ(r) — X T diag{y/(r)}(y — XB(y, X)) = AL B(y(t), X (1))|,_,

with A in (2.5). This gives (2.1) if the penalty g is twice-differentiable. Theorem 1 reveals that for
arbitrary convex penalty functions including non-differentiable ones, the differentiability structure
(2.1) always holds, as in the case of twice differentiable penalty g, even for penalty functions such
as g(b) = p||b]|?/2+ A||mat(b)||nuc where mat : RP — R%1%92 is a linear isomorphism to the space
of di x dy matrices and || - || is the nuclear norm: in this case by Theorem 1 there exists a matrix
A € RP*P guch that (2.1) holds although no closed-form expression for A is known.

The representation (2.1) is a powerful tool as it provides explicit derivatives of quantities of
interest such as 7 = y — X 3, ||1(r)||? or | Z'/2(8 — B*)||2. These explicit derivatives can then be
used in probabilistic identities and inequalities that involve derivatives, for instance Stein’s formulae
(Stein, 1981), the Gaussian Poincaré inequalty (Boucheron et al., 2013, Theorem 3.20), or normal
approximations (Chatterjee, 2009; Bellec and Zhang, 2019).

Remark 3 Similar derivative formulae hold if an intercept is included in the minimization, as in

(Bo(y, X), Bly, X)) = argmin —Zp i~ bo— ] b) + g(b) 2.6)

boER,beRP T i

Let Assumption A be fulfilled, and assume further ||/ (v)||2 > 0 with v := y — 1,50 — chTB where

1, =(1,..,1)T € R™ For almost every (y, X) the map (y, X) — ,B(y, ) is differentiable at
(y, X)), and there exists A € RP*P depending on (y, X ) with H21/2A21/2H0p < (np) ! such
that

(8/0y)B(y, X) = AX ' W'e;, (8/01:)B(y, X) = Aejio(r;) — AX "We;B;, (2.7

where e; € R", e; € RP are canonical basis vectors, p = p' and ¥' = diag{y/(r)} —

() Y ¥ (r2).

3. Distribution of individual residuals

We now turn to the distribution of a single residual r; = y; — :UZT,@ for some fixed observation
i € {1,...,n} (for instance, fix i = 1). By leveraging the differentiability structure (2.1) and the
normal approximation from Bellec and Zhang (2019), the following result provides a clear picture
of the distribution of ;.
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Theorem 4 Let Assumption A be fulfilled and let A € RPXP pe given by Theorem 1. Then for every
i =1,...,n there exists Z; ~ N(0, 1) independent of ; such that

|(ri+ e[S AN () ) — (2t IZ2(B=812) | < Op(n™ ) ()| +IZ2(B-8)1) B.D

Furthermore, if €; has a fixed distribution F, there exists a bivariate variable (€', Z!") converging
in distribution to the product measure F' ® N (0, 1) such that

ri + e[S A (ry) = &7+ | SY2(B — 8| 2P (3.2)

If €; has a fixed distribution F' and Assumption B holds then |¢(g;)| + ||21/2(,§ — B9 =0p(1).

Theoretical Quanties

Figure 2: Histogram and QQ-plot for ¢{; in (3.3) under Huber Elastic-Net regression for different
choices of tuning parameters (), 7). Left Top: (0.036, 10~'°), Right Top: (0.054,0.01),
Left Bottom: (0.036,0.01), Right Bottom: (0.024,0.1). Each figure contains 600 data
points generated with anisotropic design matrix and iid ¢; from the ¢-distribution with 2
degrees of freedom. A detailed setup is provided in Section 6.

Theorem 4 is a formal statement regarding the informal normal approximation

T+ tr[Ezzﬂw(ri) —g
- ~ N(0,1). 3.3)
131/2(8 — B*)|| O

G 1=

Simulations in Figure 2 confirm the normality of (; for the Huber loss with Elastic-Net penalty and
four combinations of tuning parameters. For the square loss p(u) = u?/2, because ¥ (u) = u,
asymptotic normality of the residuals hold in the following form.

Theorem 5 Let Assumption A hold with p(u) = u*/2 and € ~ N(0,0%1,,). Then fori = 1,

(Lt ulSA) @i —=/B)

@ e 34
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It is informative to provide a sketch of the proof of Theorem 4 to explain the appearance of
¥(r;) and tr[3X A] in the normal approximation results (3.1) and (3.3). A variant of the normal
approximation of Bellec and Zhang (2019) proved in the supplement states that for a differentiable
function f : RY — R?\ {0} and z ~ N(0, I,), there exists Z ~ N (0, 1) such hat

EH f(2) 2z — 374 1(0/02) fu(2 > i 10/0z)E (2)|1°
1£(=)] I£(=)]? '

Some technical hurdles aside, the proof sketch is the following: Apply the previous display to ¢ = p,
z = %~1/2z; conditionally on (e, (2;)1c[\ (3) and to f(z) = 21/2(3 — 8*) in the simple case

) _ 2‘2] < ClE[ (3.5)

where 8* = 0 (this amounts to performing a change of variable by translation of ,@ to B — 6.
Then the right-hand side of the previous display is negligible in probability compared to Z, and in
the left-hand side f(2) "z = x, (8 — 8*) and 3% _,(8/0z) fr(2) =~ tr[ZA]t(r;) as the second
term in (2.1) is negligible. This completes the sketch of the proof of (3.3).

Proximal operator representation. From the above asymptotic normality results, a stochastic

representation for the ¢-th residual r; = y; — azZT B can be obtained as follows: With prox[tp](u) the
proximal operator of x — tp(x) defined as the unique solution z € R of equation z + t1)(z) = u,

ri=y; —a! B =proxlip) (&} + |E*(B-B")|12)  withi=u[2A]

where (€7, Z]') converges in distribution to the product measure ' ® N (0, 1) where F' is the law of
Ei.

4. A proxy of the out-of-sample error if 3 is known

The approximations of the previous sections for r; + tr[EK]"L/}(ri) and the fact that ¢; is independent
of Z; ~ N(0,1) in (3.1) suggest that (r; + tr[ZAJy(r;))? ~ e2 + |=V2(B — B)||2Z?; and
averaging over {1, ...,n} one can hope for the approximation ||r + tr[S Al (r)|2/n ~ ||le]|2/n +
|=/2(3 — B*)||. The following result makes this heuristic precise.

Theorem 6 Let Assumption A be fulfilled and A be given by Theorem 1. Then
IZV2(8 = B + [lel?/n = [|r + tr[SAJ(r)||*/n + Op(n~"/?) Rem,
where Rem := [[S12(3 — 8|2+ L[ (r) 2+ (ISY/2(8 — 8|12 + L (r) )2 el Thus
=28 = B2+ e]?/n = (1 + Op(n~1/2) |7 + (S AL (r)||*/n.
Theorem 6 provides a first candidate, ||7 + tr[S Al (r) H2 /n to estimate

ISY2(8 - B9 + |le]|?/n. (4.1)

Estimation of (4.1) is useful as ||€||?/n is independent of the choice of the estimator B and in
particular independent of the chosen loss-penalty pair in (1.1). Given two or more estimators (1.1),
choosing the one with smallest Hr + tr[EEW(r) H2 is thus a good proxy for minimizing the out-
of-sample error.
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Corollary 7 Let B\, B be two M -estimators (1.1) Assumption A with loss-penalty pair (p, g) and
(P, 9) respectively. Assume that both satisfy Assumption A and let ¢ = o' and 1; =p. Letr =
y— XB,7 =y — X3 be the residuals, j, A be the corresponding matrices of size p X p given by
Theorem 1. Further assume that both estimators satisfy Assumption B and that € has iid coordinates
independent with E[|g;|' 7] < M for constants q € (0,1), M > 0 independent of n,p. Let ) =
{(IXZ712),, < 2v/n+ B} N {|e]|? < n?/HDY. Then for any n > 0 independent of ., p there
exists C (v, u,m,q, M) > 0 depending only on {~, u,n, q, M } such that

P(I=Y2(B - B2~ IZ2(B - BYIP > 0, |Ir + u[SAJ(r)|? < |7 + t[SAJ(F )H)
< C(y, o, g, M)n~ 9/ 1H90 L P(Q°) —

Provided that the noise random variables ¢; have at least 1 + ¢ moments, Theorem 7 implies
that with probability approaching one given two M -estimators ﬁ and ﬁ choosing the estimator
corresponding to the smallest criteria among ||r + tr[SA]r||? and |7 + tr[SA]7|? leads to the
smallest out-of-sample error, up to any small constant 7 > (. This allows noise random variables ¢;
with infinite variance. A similar result can be obtained to select among K different M -estimators

(1.1).

Corollary 8 As in Theorem 7, assume E[|;|*T9] < M and let Bl, ey BK be M-estimators of the
form (1.1) with loss-penalty pair (Pks 9k) satisfying Assumptions A and B. For each k=1,..,K,
letry =y — X ,Bk be the residuals and Ak be the corresponding matrix of size p X p from Theo-
rem 1. Let k € argming_; g [|re + tr[S ALy (rr)|| where iy, = - Then if (y, p,m, q, M) are
constants independent of n, p

P(IBY2(8; — B9 > min B3B8~ 877 +0) 20 FK =o(n?/(H).

In other words, if K = o(nq/ (1+q)), the selector k picks an optimal M-estimator in the sense

I=12(8; = B7)]1° — _min_[IS3(B — 8)|* =" 0.

Given K different loss-penalty pairs and the corresponding M -estimators in (1.1), minimizing
the criterion ||r + tr[SA]r|| thus provably selects a loss-penalty pair that leads to an optimal out-
of-sample error, up to an arbitrary small constant n > 0 independent of n,p. The requirement
K = o(n‘J/ (1+q)) means that the cardinality of the collection of M -estimators to select from should
grow more slowly than a power of n. This is typically satisfied for default tuning parameter grids
in popular libraries (e.g., sklearn.linear_model.Lasso from Pedregosa et al. (2011)) with
tuning parameters evenly spaced in a log-scale that consequently have cardinality logarithmic in the
parameter range. The major drawback of the criterion || + tr[SA]r|| is the dependence through
tr[EA\] on the covariance X of the design, which is typically unknown. The next section introduces
an estimator of tr[Zﬁ] that does not require the knowledge of X.

5. Degrees of freedom and estimating tr[Eﬁ] without the knowledge of X

This section focuses on estimating Atr[EfT] The matrix A from Theorem 1 can be estimated from
the data (y, X) in the sense that A is a measurable function of (y, X) (thanks to the observation



C. BELLEC SHEN

that derivatives are limits, and limits of measurable functions are again measurable). The difficulty
is thus to estimate tr[3 A] without the knowledge of 3. To illustrate this difficulty, consider Ridge
regression with square loss p(u) = u?/2 and penalty g(b) = 7||b||?/2. Then B(y, X) = (X " X +
nI,) ' X Ty and A in Theorem 1 is given explicitly by A = (X ' X + 7nI,)~! and

tr[SA] = tr[(GT G+ nrE 1), where G = XX 71/2,

Above, G is a random matrix with iid N (0, 1) entries the value of tr[Z]A\] is highly dependent on
the spectrum of 31, In this particular case, the limit of tr[(G'T G' + n73~1)~!] can be obtained
using random matrix theory (Marcenko and Pastur, 1967) as the limiting behavior of the Stieltjes
transform of G T G /n+ ¥ 1andits spectral distribution is known; however the limit of the spetral
distribution depends on the spectrum of 7X~!. This is not desirable here as we wish to construct
estimators that require no knowledge on 3. For more involved loss-penalty pairs such as the Elastic-
Net in Example 1, such random matrix theory results do not apply as tr[Eﬁ] depends on the random
support of 3. R

Instead, we do not rely on known random matrix theory results. With the matrix A € RP*P
given by Theorem 1, our proposal to estimate tr[$A] is the ratio df/ tr[V] with df and V in (2.2)-
(2.3). Both the scalar df and the matrix V' € R™ " are observable; in particular they do not depend
on 3.

Theorem 9 Let Assumption A be fulfilled and A be given by Theorem 1. Then
E[| tr[SA] tx[V]/n — df /n]] < Ca(y, p)n~ /2. (5.1)

Simulations in Figure 3 and table 1 confirm that the approximation tr[XA] ~ df/ tr[V'] is accurate
for the Huber loss with Elastic-Net penalty. For the square loss, ¢’ =1 and tr[V] = n — df so that
(5.1) becomes E|(1 — df /n)(1 + tr[EA]) — 1| < C3(7, u)n~/? and the following result holds.

Corollary 10 Let Assumption A be fulfilled with p(u) = u?/2 and e ~ N(0, o?I,). Then (1 —
df /n)(1 +tr[X A]) —=F 1 and the normality (3.4) holds with 1 +tr[S A] replaced by (1 —df /n)~L.

For general loss p, the criterion (1.2) replaces tr[Zg] by df/ tr[V] in the proxy of the out-of-
sample error ||r + tr[Z AJp(r)||? studied in | the previous section. Thanks to (5.1), this replacement
preserves the good properties of || + tr[$ A]t(r)||? proved in Theorems 7 and 8.

Theorem 11 Fork =1, ..., K, let (P, gr) be a loss-penalty pair satisfying Assumptions A and B
with iy, = pj, let By, Ty, Ay, be the corresponding M-estimator residual vector and matrix of

size p X p given by Theorem 1 as in Theorem 8 and let df, = tr[XﬁkXT diag {4yt (ry)}] and
Vi, = diag{v, (r) }(I, — X Ap X " diag{¢}.(r)}). For a small constant > 0 independent of
n, p, say n = 0.05, define
7 &fk 2 1 n
k € argmin HTk + 7 Vk(Tk H subject to = (rki) > .
k=1,...,.K tr[ V] (k) n ; K (Ti)

If &; has 1 + q moments in the sense that E[|;|*T] < M for constants ¢ € (0,1),M > 0. If
(M,q,n, 1,~) andn > 0 are independent of n, p then

P(”El/Q(B\];_ﬁ*)H > min HZl/Q(B\k_IB*)H_’_ﬁ) =0 lfK _ o(nQ/(1+q)).
k=1, K SO0 ¥ (rri) >0

10
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0. . == df/n =
. . % — . £ df/tr[v]
: . = = | u[EA] - df/t|V]|

0.8 % % 3 tr[V]/n

& 1 |df — w[ZA] tr[V]|/n °
0.6 # %I !
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Figure 3: Above: Boxplots for df, p, 7, tr[V], tr[S.A] and | tr[$A] — df/ tr[V]| in Huber Elastic-
Net regression with 7 = 1070 and A € [0.0032,0.41]. Each box contains 200 data
points. Below: heatmaps for df /n, tr[V]/n and f/n = o W' (i) /n under the simu-
lation setup in Figure 1. The detailed simulation setup is given in Section 6.

di/r

n

gEgE
€83

0.016
0.024-

0.0032-

Figure 1 illustrates on simulations the success of the criterion (1.2) over a grid of tuning pa-
rameters for M-estimators with the Huber loss and Elastic-Net penalty. The criterion (1.2) is thus
successful at selecting a M -estimator with smallest out-of-sample error up to an additive constant
7], among those M -estimators indexed in {1, .., K'} that are such that 2 3" | 4} (r4;) > 7. On the
one hand it is unclear to us whether the restriction % Yo Yp(rki) > n can be omitted. On the
other hand there is a practical meaning in excluding M -estimators with small % >y . (rg;): For
the Huber loss H (u) := u?/2 for [u| < 1 and |u| — 1/2 for |u| > 1 the quantity £ >°7 | 4} (ry;) is
the number of of data points in {1, ..., n} such that the residual y; — az;r Bk fall within the quadratic
regime of the loss function. Observations ¢ € {1,...,n} that fall in the linear regime of the loss
are excluded from the fit, in the sense that for some ¢ with ry; = y; — :L';'—Bk > 1, replacing y; by
1; = y;+1000 (or any positive value) does not change the M -estimator solution Ek (this can be seen
from the KKT conditions directly, or by integration the derivative with respect to y; in (2.1)). Thus
the constraint % Yoy W (ri) > m requires that at most a constant fraction of the observations are
excluded from the fit (or equivalently, at least a constant fraction of the n observations participate
in the fit). For scaled versions of the Huber loss, py(u) = a>H (a~'u) for some a > 0, the value
n = % Yoy Wy (rR;) again counts the number of residuals falling in the quadratic regime of the
loss, i.e., the number of observations participating in the fit. The heatmaps of Figure 3 illustrate 7
in a simulation for a wide range of parameters. Similarly, for smooth robust loss functions such as

11
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pr(u) = V14 u?, the constraint % >y Yp(rki) > n requires that at most a constant fraction of
the n observations are such that ¢y (rx;) < 1/2, i.e., such that the second derivative ;. is too small
(and the loss py, too flat).

Theorems 1, 5, 6 and 9 provide our general results applicable to a single regularized M-
estimator (1.1) while corollaries such as Theorem 11 are obtained using the union bound. The next
section specializes our results and notation to the Huber loss with Elastic-Net penalty and details
the simulation setup used in the figures.

6. Example and simulation setting: Huber loss with Elastic-Net penalty

In simulations and in the example below, we focus on the loss-penalty pair

p(usA) = A2H(A ), g(bs A, 7) = Alblls + (7/2) b3 6.1)
for tuning parameters A, \, 7 > 0 where H (u) := u?/2 for |u| < 1 and |u| — 1/2 for |u| > 1.
Example 1 With (p, g) in (6.1), matrix Ain (2.1) matrix V in (2.3) and df in (2.2) we have
= (X;r diag{¢/(r)}X ¢ +n7l;) ™", Ay =0ifigSorj¢ S,

diag{y(r)} — diag{y/(r)} X gAg ¢ X diag{y/(r)}, (6.2)
df = tr[XSKSSX; diag{y’(r)}],

Ag g
V p—

where S is the active set {j €[p] : Bj # 0} and p is the size of S; X g is the submatrix of X
selecting columns with index in Sand A g g 1s the submatrix of A with entries indexed in S x 8.

(A7) (0.036,1071%)  (0.054,0.01)  (0.036,0.01)  (0.024,0.1)
df/n 0.31£0.012  0.214+0.0095 0.3 +0.011 0.37 £ 0.0093
p/n 0.314+0.012  0.22+£0.0098 0.314+0.012  0.4740.014
n/n 0.834+0.011  0.76+0.014  0.834+0.012  0.8440.012
tr[ZA] 0.584+0.039  0.39+£0.027  0.58+0.038  0.8+0.038

| tr[SA] — df/ tr[V]] 0.0019 +0.0015 0.0015 4 0.0012 0.0021 + 0.0016 0.0023 = 0.0017
=128 — B%)||2 1.340.18 1.740.25 1.340.19 1.94+0.21

G 0.056 + 1 0.021 £ 1 0.0044 + 1 0.042 +0.97

Table 1: Simulation for Huber Elastic-Net regression under different choices of (A, 7). (n,p) =
(1001, 1000). For each choice of (A, 7), 600 data points are simulated with anisotropic
design matrix and i.i.d. ¢-distributed noises with 2 degrees of freedom. A detailed setup is
provided in Section 6.

The identities (6.2) are proved in (Bellec, 2020, §2.6). Simulations in Figures 1 to 3 and table 1
illustrate typical values for df, tr[V], tr[$ A], the out-of-sample error and the criterion (1.2), i =
Yo (r;) and p = |S| under anisotropic Gaussian design and heavy-tailed ;. The simulation
setup is as follows.

12
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Data Generation Process. Simulation data are generated from a linear model y = X3* + ¢
with anisotropic Gaussian design X and heavy-tail noise vector €. The design matrix X has n =
1001 rows and p = 1000 columns. Each row of X is i.i.d. N(0,3), with the same X across all
repetitions, generated once by ¥ = R" R/(2p) with R € R?"*? being a Rademacher matrix with
iid. entries P(R;; = £1) = % The true signal vector 3* € RP? has its first 100 coordinates set to
p'/2/100 = +/10/10 and the rest 900 coordinates set to 0. The noise vector € € R™ has i.i.d. entries
from the t-distribution with 2 degrees of freedom (so that Var[e;] = oo, i.e., &; is heavy-tailed).

Estimation Process. Each dataset (y, X) is fitted by a Huber Elastic-Net estimator with
loss-penalty pair in (6.1). We focus on 2d heatmaps with respect to the two penalty parameters
(A, 7) of the penalty; to this end the Huber loss parameter A is set to A = 0.054n'/2 and a
grid for (X, 7) in then set so that df /n varies on the grid from 0 to 1 (cf. the middle heatmap
in Figure 3). The Elastic-Net penalty g(b;\,7) = M||bll1 + (7/2)||b]|3 is used with (\,7) €
{(0.036,10719),(0.054,0.01), (0.036,0.01), (0.024,0.1)} in Figure 2 and table 1, (A, 7) € [0.0032,0.41] x
{10719} in Figure 3, and (), 7) € [0.0032,0.041] x [1071°,0.1] in Figure 1. More simulation re-
sults are provided in the supplementary materials. In these simulations, the criterion (1.5) from Rad
and Maleki (2020) was also computed and was not noticeably different from (1.2), cf. the lower
half of Figures 6 and 7.

7. Relaxing the strong convexity assumption

While previous results rely heavily on the u-strong convexity assumption (with respcet to 3, as
stated in the last part of Assumption A), the proof of the following proposition presents a device
that lets us generalize the results under the following condition: For any e, there exists an open set
Ue C R™*P such that the mapping

Uz — R"1P,

Peif o, (70— X B(y, X)), ZI/QA(B(%X) - B))
(v (y — XB(y, X))|I? + | Z12(B(y, X) — B)||>)1/?

L
S -Lipschitz. (7.1)
n

In this definition, € is held fixed and ,@(y, X)) is the composition of B with the function X +—
(e + X3, X) so that &, is a function of X only. The following proposition shows that strong
convexity on the penalty function can be relaxed, provided that the above Lipschitz condition holds
and the expectations are restricted to the event { X € U,}.

Proposition 12 Ler L,~ > 0 be constants and assume p/n < ~y. Consider a convex differentiable
loss p : R — R such that 1 = p' is 1-Lipschitz and a convex penalty g, assume X has iid N (0, X)
rows with invertible 3 and the noise € is independent of X with continuous distribution. Assume
that for some open Uz C R™*P, the Lipschitz condition (7.1) holds and that almost everywhere in
U., the derivative formulae (2.1) hold for some matrix A € RP*P satisfying HZlﬂAEl/QH
L/n. Then

-~

E[11X e U} tr[mﬂ”m—‘f} SCH%L) (1.2)
-~ 2
[HX 0l gy LS8 L BAMOIY G0

13
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where I{X € U} is the indicator function of the event { X € U} and Rem is defined in Theo-
rem 6.

Proposition 12 is proved in Appendix E. Consequently, if the event {X € U} has high proba-
bility and the Lipschitz condition (7.1) holds in this event, the main results Theorems 6 and 9 still
hold, with no strong convexity assumption on the penalty. The proof relies on an application of
Kirszbraun’s theorem already presented in (Bellec, 2020).

The Lipschitz condition (7.1) and inequality ||%'/2AX/2||,, < L/n have been proved to hold
in the regime n < p for covariance 3 such that X;; = 1,V € [p] in the following two cases:

* The Lasso (i.e., square loss and L1 penalty) under the assumption that ||3*|op < s.n for some
enough small constant s,;

* The Huber Lasso (i.e., Huber Loss and L1 penalty) under the assumption that ||3*|op < s.«n
for some small enough constant s,, and that at least (1 — sx)n components of the noise (the
“inliers”) are iid standard normal,

cf. (Bellec, 2020, Assumption 2.3 and Proposition 12.1). In both cases, the constant s, only depends
on -y, the condition number of ¥ and the multiplicative constant of the tuning parameters.

Our results can thus be extended on a case-by-case basis for loss-penalty pairs such that the
Lipschitz condition (7.1) holds, for instance for the two above examples.
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Appendix A. Proof of the main results

Notation. For vectors in R? or R”, the Euclidean norm is || - || and || - ||, is the ¢4-norm for
1 < ¢ < +o0. For matrices, || - || op is the operator norm (largest singular value), || - || » the Frobenius
norm. We use index ¢ only to loop or sum over [n] = {1,...,n} and j only to loop or sum over
[p] = {1,...,p}, so that e; € R" refers to the i-th canonical basis vector in R" and e; € RP the j-th
canonical basis vector in RP. Positive absolute constants are denoted Cy, C1, Co, ...,, constants that
depend on y only are denoted Cy(7), C1(7), ... and constant that depend on ~, u only are denoted
by Co(v, 1), Cr(y, ), ... If f : R? — R™ is differentiable at z € RY, we denote the Jacobian
matrix in R"*9 by g—ﬁ or 0f/0z. For an event (2, its indicator function is denoted by I or I{2}.

Organization of the proofs. Appendix B provides the proof of the main results from the main
text (Theorems 4 to 9 and 11) and the overall proof strategy. Appendix C gives the proof of the prob-
abilistic tools used in Appendix B. Appendix D proves the differentiability formulae in Theorems 1
and 3.

Additional simulations. Additional simulations and figures are given in Appendix F for Gaus-
sian designs and in Appendix G for non-Gaussian Rademacher design. The simulations for Rademacher
design suggests that our results generalize to non-Gaussian design, although it is unclear at this point
how to extend the proofs to non-Gaussian X.

Appendix B. Proof of the main results

We perform the following change of variable to reduce the anisotropic design regression problem to
an isotropic one, G = X X~1/2 ¢ R™*P a Gaussian matrix with iid N (0, 1) entries and

1 n
h(e,G) = argmin — Z p(ei — €] Gu) + g(B* + X71%u) (B.1)
i=1

ucRp T T

and denote by (h;);1,.., the components of (B.1). Then 21/2(3(;:;, X) — B*) = h(e, X) with
B(y, X) the M-estimator in (1.1). With y = GX'/23* + ¢, by the chain rule and (2.1),

X %(0/0gi;)h(e, G)
= (0/09:)B(GZ'?B" + ¢,GE'/?)
= AX T/ (r;)(SY28%)e; + ASV2e0)(r;) — AX Tei! (1) (212 B)e;
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where e; € R", e; € RP denote canonical basis vectors. Define 1 (e, G) = ¢(¢ — Gh) and let
A:=Xx12A%1/?,
Then we have

(8/agi]‘)h(€, G) = Aej’(/J(Ti) - AGTei’(ﬁ/(ﬁ)h]‘ (B.Z)
(0/0gi)¢ (e, G) = — diag{y'(r)}G Ae;)(r;) — Veih; (B.3)

where the second line follows by the chain rule for Lipschitz functions in in (Ziemer, 1989, The-
orem 2.1.11). The crux of the argument is that the quantities of interest appearing in our results,
|h|? = HZI/Q(B — BN () tr[jx] = tr[A], tr[V] and df naturally appear from tensor
contractions involving the derivatives in (B.2)-(B.3). For instance, denoting D = diag{v'(r)} €
R™ ™ if hj,1); are the j-th and i-th component of (B.1) and (e, G) and denoting > ;" ; Z§:1 b
>_;; for brevity,

p .
Z ihj — tr[AJ; —h' AG De;  foragiveni=1,..,n, (B-4)
]
Z ng = ¢ DGAe; — tr[V]h;  foragivenj=1,..,p, (B.5)
ij

i i

ol I
> a(h]ZGh) = tr[AJ" Gh — h' AG' Gh +n||h|* + 4" GAh —||h|*df,  (B.7)
ij Y

Gij

= -1 DGAG "¢ —tr[V]$p'Gh — h' G 'V + (p — df)|[4|* (B.8)
ij
where we used that df = S" e/ GAG" De; = tr[GAG D] in the fourth line and df =
_1e] GTDGAe; = tr[G" DG A] in the fifth thanks to the commutation property of the trace.
The terms in colored purple indicate terms that will be proved to be negligible later on. The proba-
bilistic tool that leads to asymptotic normality of the residuals is the following.

Proposition 13 [Variant of Bellec and Zhang (20]9)] Let z € N(0,1;) and f := f(z) : RY —
R?\ {0} be locally Lipschitz in z with E[|| f|| 72 >4 _, | gz{ %] < 4oc. Then

E{(f—rz— ‘%;|1’2(6/8Zk)fk —Z)Q] 7+2\f [Hf” QZH 2} < +oo0. (B.9)

Proposition 13 is proved in Appendix C. From here, asymptotic normality of the residuals in the
square loss case is readily obtained using the explicit formulae for the derivatives and the contraction
(B.4). We start with the square loss and the proof of Theorem 5.

Proof (Proof of Theorem 5) Apply Proposition 13 with ¢ = p + 1 and z = (g;,&;/0) ~
N(0,I,.1) conditionally on (g;,&;)ie[np (i} and with f = (h,—0) € RPT!. Note that the last
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component of f is constant and || f||*> = ||h|> + o2, By (B.4) and D = I,, for the square loss,
tr[0f /0z] = tr[AJy); — hT AG " e; and by symmetry in i = 1,...,n, E[|lhT AGe;?/||f|?] =
LS EIRTAG e /|£12) = LIGA R/ FIP) < LEIIGIE AL, < n-2Co(y, ) thanks
to || Aflop < 1/(np) and E[||G||2,] < C7(v)n. Similarly, for the square loss 7; = ¢; = &; — g;' h
and

IFII 0 /0zllr = (IB]* + o) 7 /2] Av; — AG Teih ||
< | Allopl[v/Pleil/o + vpIRI g Bl + [ Gllop)-
By the triangle inequality, || A||,, < 1/(nu) and p < yn,

Ellf17210/0213]" < Y2 (B[} /o) + El(g] B)*/IIRI*]'/?) + LE(IGI3,].

By symmetry in i = 1,...,n, El(g] b)2/[Al[2] = 1 S0, El(g7 h)2/IR|2] < LE[|G]3,). Since
LE[|G|2,] < Cs(7), the right-hand side in the previous display is bounded from above by Co (v, p)n /2.
Since f 'z = —r; we obtain —r; — tr[A]r; = (||h|? + 02)2(Z + Op(n~'/?)) which completes
the proof of (3.4). |

Proof (Proof of Theorem 4) Let U ~ N(0,1) be independent of everything else. We apply the
previous proposition with z = (g;,U) ~ N(0,I,;1) conditionally on (e, g;,l € [n] \ {i}) to
f = (h,n"Y*)(g;)). Note that the last component of f is constant. By (B.4), tr[0f/0z] =
tr[A]y; — hT AG" De; and by (B.2),

1717 0F /02]1F = (IRI* +n~ "2 (e:)*) /2| Ay — AGT Desh || (B.10)

< | Allop[n'"* /b + /bl R g Al + [ Gllop) (B.11)

where we used ||Al|p < /p||Al|op and |¢;] < ¥(e;) + |g; k| thanks to ¢ being 1-Lipschitz. We
have [|Alop < 1/(nu) and E[||k]|=*|g] h|?] = . X7 E[l[RII"%lg, hI] = JE[lh]2IGR|?] <

%E[HGH?);;] by symmetry in i = 1,...,n, so that E[|| f|| 2|0 f /0z||%] < n~'/2C1o(v, ). Thus by
Proposition 13,

(—ri — tr[A]ys) + (e5 — |R]| Z) = g b — tr[A]; — [|h|| Z
= —Un""*(ei) + [If]| = |bl]Z + | f| Rem —~h" AG " De;

where E[Rem?] < C11E[|| £||72||0£/02||%] < n~'/2C12(y, i). By properties of the operator norm
and symmetry ini = 1,...,n,

— _ C 3.
E[|h]|"2|hT AGT De;?] = 1E[||n|| 2| DGATh|?] < LE[|G|32,|A2,) < CeG) . (B.12)

n2

By the triangle inequality, ||| f]| — ||k||| < n~Y4|1(e;)| so that the right-hand side is of the form
Op(n=Y*)([¢(g;)| + ||h||) as desired. The previous display can be rewritten as r; + tr[A]y; =

&+ || 27 for
& = e+ Un~V4(e) — [| £l = [BI)(Z +Rem), 2 = —Z —Rem+[|h|~'hT AGT De,.

If ; has a fixed distribution F', then [¢)(g;)| < [(0)| + |ei] = |ei| = Op(1) thanks to 4(0) = 0 and
1 being 1-Lipschitz so that (67, Z1") = (i, —Z) +Op(n~'/*). Since (&;, —Z) are independent, by

Slutsky’s theorem this proves that (¢7', ZI*) converges weakly to the product measure /' ® N (0,1).
|
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Proposition 14 Let h : R™"*P — RP, 1) : R™*P — R"™ be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

[(wTGh — 2 WY N (HGth - 3, 2 ;th) )2 IGT|? =32 W)z}

1Rl + ll9]12/n [RI? + (117 /n nlh]? + 4]
- LHIGIE,/n
< Culn+p+1GI5 + (00 33 s g om (H@gm [+ Hagw )

i=1 j=1
(B.13)

for some positive absolute constant in the second line.

Proposition 14 is proved in Appendix C; it is a consequence of (Bellec, 2020, Proposition 6.3).
By Proposition 14 combined with the identities (B.6)-(B.7)-(B.8), and by showing that the purple-
colored terms in (B.6)-(B.7)-(B.8) are negligible, we obtain the following.

Proposition 15 Let Assumption A be fulfilled. Then

E[{n 2 (|h]? + |9 /n) " (¥ T Gh — tr[A]|9p]2 + tr[V]|R[?)}?] < Cis(v,m),  (B.14)
E[{n 2 (|R]? + [l]2/n) " (R 1GT9|? - 25842 + "My TGh) }?) < Cig(v, 1), (B.15)

E[{n"2 (Rl + [$]1*/n) " (IGR|* - tr[Al$" Gh — (n — df)||R[*)}*] < Cir(y, ). ]
(B.16)

m\»a m\»a

Proof We bound from above the derivatives in (B.13). For the norm of (0/dg;;)h and (9/0g;;)
by (B.3)-(B.2) and % (a + b)% < a? + b2,

‘ - IDGAJEI$1* + IVIEIRI*

H < | AIF Il + |AGTDIF|RI2, Y .

2” 2nH69w

Using || Allop < 1/(np), || D|lop < 1, p/n <~ and V in (2.3), it follows that in (B.13) we have

1]J* + H¢H /1= Z Z<H 9gij

Since IE[Hn_l/ZGHﬁp] < Chg(7) (Davidson and Szarek, 2001, Theorem II.13), this shows that
(B.13) is bounded from above by Cyo(+y, £)n. The contractions appearing in the left-hand side of
(B.13) are given in (B.6)-(B.7)-(B.8), so that it remains to bound from above the purple colored
terms in these three equations. This is done by using the upper bounds on the operator norms
| Allop < 1/(np), ||Dllop < 1 and again that IE[Hn‘lﬂGHﬁp] < C1(7), so that (B.13) yields the
three inequalities in Proposition 15. |

’ ) < 018(7,/1,)<1 n ”Gn”gp> (B.17)

’ 7H89,

The next result is another probabilistic result where the contractions in (B.4)-(B.5) appear.
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Proposition 16 Let h : R™"*P — RP, 1) : R™*P — R" be locally Lipschitz functions. If G € R™*P
has iid N (0, 1) entries then

E[mnwn?—; P (T Ge; - I, g;i;)gl}+E[|n\|h\2—2?1(9@h S0, Dy \}
[l2+ [ ]2/n TR+ ]2/

< O (VTR0 + 2%+ 2) where = = B o ZZ(H%

)

Proposition 16 is proved in Appendix C; it is a consequence of (Bellec, 2020, Theorem 7.1).
Using the contractions (B.4)-(B.5) in the left-hand side of Proposition 16, and by showing that the
purple colored terms are negligible, we obtain the following two inequalities.

il

Proposition 17 Let Assumption A be fulfilled. Then

_1 -
Eln=z(|hl* + 9l /n) "' (RlI9l* = 3G "4 + te[VIR|*)| < Cas(y, p), (B.18)

_1 -
Eln=2 ([hl* + 9] /n) =" (nllh]]* — |Gh — tr[A]|*)| < Caa(y, p)- (B.19)
Proof For = in Proposition 16, the fact that = < Cos(y, ) is already proved in (B.17). For the

first inequality we use Proposition 16 and the contraction (B.5). To control the purple terms in (B.5)
inside the left-hand side of Proposition 17,

(zp: gda G + t2[V hu( ‘szDGA(zGsz+2tr[V]h+ATGTD1/;>‘
7=1 l]

< (I9l*/n + ||h|| )2nlGlI5, | Allop + 231l Glopl| Allop + nllAlIZ, 1 GI2,)

thanks to | tr V| < n in Theorem 1. With the bound obtained by multiplying the previous display
by n=3/2(||h||> + [[¢[|*/n) !, and using the previous bounds on ||A|,, and E[[n~1/2G|12,], we
obtain (B.18) from Proposition 16 and (B.5). The second claim is obtained by Proposition 16, the
contraction (B.4) and an argument similar to the previous display bound the purple term in (B.4).
|

We are now ready to prove Theorem 9.
Proof (Proof of Theorem 9) Define

& =" Gh — tr[A]||y|]* + tr[V]|| k|2 (bounded in (B.14)),
&= 1GT )2 — =8| 2 + t My T ah (bounded in (B.15)),
11 = ||Gh|? — tr[A]y TGh — (n — df)||h|)? (bounded in (B.16)),
&rv = 2|lp)> — LG + V]| (bounded in (B.18)),
¢v =n|h|* - |Gh — tr[A]p|? (bounded in (B.19)).

Then by expanding the square in &7y and &y, and simple algebra (for instance by computing first
&1+ &y and 177 + &y separately),

(tr[V]/n — tr A)Es + &1 + Err + v + & = ()12 /n + |2 (df — tr[A] tx[V]).
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Since | tr[V]/n < 1, tr[A] < ~/u by Theorem 1, the previous display divided by n'/2(||4||?/n +
|h||?) and the bounds (B.14), (B.15), (B.16), (B.18) and (B.19) complete the proof. |

To prove Theorem 6, we need this extra proposition whose proof is closely related to Proposi-
tion 15.

Proposition 18 Let Assumption A be fulfilled. Then

E[{(|R?+ [¢12/n) 2 |lell"ev}*] < Cos(y. i) for &vi=e' (Gh—tr[Aly). (B.20)

Proposition 18 is proved in Appendix C. We are now ready to prove Theorem 6.
Proof (Proof of Theorem 6) We have n||h||? + |e||> — ||r + tr[A]||? = &v + 2&y 1 by simple
algebra and the definitions of &y, and &y/;. Hence

IB]2 + [[€]?/n — |7 + tr[AJe|12/n] i
E < Cor (7, B.21
{max{uhw + 1 l2/n, (R + ||¢||2/n>1/2<|e||2/n>1/2}] snP0n(np) - B2D)
thanks to (B.20) and (B.19). |

Proof (Proof of Theorem 7) We perform the change of variable (B.1) to 5 as well, giving h (the
counterpart of h), ¥ (counterpart of 1») and A (counterpart of A). Let €2 be the event defined in the
theorem, i.e,

Q= {||Gllop < 2V + /p} N {[le]|* < n¥/(FD}, (B.22)

Then P(Q2¢) — 0 by (Davidson and Szarek, 2001, Theorem 2.13) for the first event and Pinelis
(2021) to show that ||e||?/n?/ (179 —F 0 under the assumption that E[|¢;|'*9] is bounded.

Under Assumption B, Io(||% 1?/n + ||h|| ) is bounded by a constant. Indeed, since the penalty
g is minimized at 0, (3 — O)TXTw e n(B - 0)(9g(B8) — 99(0)) since 0 € dg(0). By strong
convexity of ¢ in Assumption A, (,6 0)' X Ty > MHZl/QBHZ In €, this implies ||El/2,6|| <
| Gllopll ¥l < Cas(v, ) |l|/v/m and ||| /v/n < M in Assumption B. Since || £'/28%||* < M
in Assumption B, this yields Io(||R||® + [|4]|2/n) < Cag(7,u, M) and the same holds for h, t):

Io(|[RI* + [[4]1?/n) < Cso(v, 1, M).
Inequality (B.21) thus implies

Ello(|[R]” + [le]*/n — |Ir + tr[A]|?/n| + HI5II2 + [lel?/n — |IF + tl"[Av]'%ZHQ/nm
< Cy (v, p, M)(n™H/2 v /()

Since ¢ € (0,1) we have n~ /2 v n=9/(1+0) = n=¢/(1+4) in the right-hand side. Let Q = {||h|*> —
|h||? > n,||r + tr[A]p||? < |7 + tr[A]2p]||?} be the event for which we are trying to control the
probability. By the triangle inequality,

Ello[|R]* — [h]* — [|r + tr[ AJ9p|*/n + |7 + [ AJ3p|*/n]] < Csa(y, p, M)n~9/0F9),

In 2, the random variable in the expectation sign is larger than 1I,. Thus nE[Iq1, o) < Csz(y, p, M yn—4/(1+a)
and P(Q) < = C34(y, p, M)n=9/(1+0) £ P(Qe). [ |

Proof (Proof of Theorem 8) We follow the same strategy. Let € be the same event as in the
previous proof, so that P(£2°) — 0 as before. We perform the change of variable (B.1) for each
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k=1,..., K giving hy, ¥, and Aj. We have Ig maxg—1__x(||hi]|® + |[¢x]|?/n) < Cs5(v, p, M)
as explained in the previous proof.

Summing over k the inequality (B.21) gives [T S r_, ||[g]|2+ [|e]|? — |7, +tr[Ag]er 2] <
K C36(7y, p, M)n=9/(+9)_ Let k be the minimizer of ||y, + tr[Ay]yy||? as defined in the statement
of Theorem 8 and let & € {1,..., K} be such that [hi]|? > ||hgl? + 7 in the event Q where

such % exists. Then by the triangle inequality, nE|[I olg] < Csr(y,p, M Yn~9/(+9) Tt follows that
P(Q) < = Cas(y, p, M)n~=9/(+9) £ P(Q°) — 0 as desired. ]

Proof (Proof of Theorem 11) Using ||a||?> — ||b||?> = (a — b) " (a + b) we have
IGh — tr[AJ3p|* — |Gh — (df/ a[V])||* = (df/ tx[V] = tr[A])9p T (2GR — (tr[A] + df/ [V ])3p).
Hence using | tr[A]| < v/u, |df| < n and the Cauchy-Schwarz inequality

IGh — tr[AJ|* — |Gh — (df/ [V])|?
< Co(v, 1) (5% v Ddf/n — t[V]tr[A]/n] (9] + |G lop || RII*)-

Let €2 be the event in Theorem 7. Using the bound on the operator norm of G in 2, for any
deterministic > 0 we have proved

IGh — tr[AJ3p|* — |Gh — (df/ tr[V]) [’} _ Cao(r. p) nl/2
1R + ll]12/n Y

E[I{Q}I{trmn > 1)

thanks to Theorem 9. By (D.8), in the event {2 where the operator norm of ||n~'/2G/||,, is bounded
by a constant, tr[V] > tr[diag{¢’(r)}]/Ca1 (7, ). Hence combining the previous display with
(B.21), we have proved

[I{Q}I{Z?—l V' (ri) = nn}[[|h]* + [le]*/n — || + tfifleQ/n\] < Cay, 1)
max{[[h|? + [[¢[12/n, (|RI> + [19]2/n)' 2(le]?/n)t/2} 27 Vi

At this point the proof is similar to that of Theorem 8: We perform the change of variable (B.1)
for each k = 1,..., K giving hy, vy, dfy, and V4. We have Io maxp—1 __x (||he|? + [|[9]2/n) <
Cys(7y, p, M) as explained in the previous proofs. Summing over k = 1, ..., K the previous display,
using To maxg—1___r(|[hkll® + [|90r]|2/n) < Cua(y, 1, M) and Iq||e||? < n?*(1+9) we find

K n N

df K Cls((y,1,1)

k(Thi 2 2/n — LT K50, po1)
E[I;I{Q}I{;wk(m) > [l + lle]?/n = llrs + vl /nH < Sl

Let Q) be the event that there exists & with LS, @Z}”;(r,}i) > n satisfying ||k |2 +7 < || h;||%, then

by the previous display and the triangle inequality, using ||7; + tff"}k Pl < flrg + tff"}é ;|| by

definition of %, we obtain iP(Iolg) = O(K/n?/(1+9). Since 7j is a constant independent of n,p
and IP(Q2) — 1, the probability P(€) converge to 0 if K = o(n4/(1+2)), [ |
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Appendix C. Probabilistic results and their proofs

Proposition 13 [Variant of Bellec and Zhang (20]9)] Let z € N(0,1;) and f := f(z) : R? —
RY\ {0} be locally Lipschitz in z with E[|| |72 >°4_, || gz{c %] < +o0. Then

o (PR <o vavielun St <o

Proof Letg :=g(z) = ”ﬁi;” E[Hfgz;”] and set

7=TREEN Y v = e[

so that Z ~ N(0,1) and V is deterministic with V' < 1 by Jensen’s inequality. As a first step, we
proceed to prove inequality

sz—Zk 1(8/azk) Ly q 8f )
E —VVZ) | <6E of 2] c1
( 112 )] <oEis ;n(%kn} (R
Then at any point z where f is differentiable we have
. T
IO JC ST Y A £ 4

This implies that almost surely,

P12 = 50 002 s rpy z*i@ S0 I 0F/02)
1£12 = I£I?

where 0 f /0z is the matrix with entries (I, k) entry (0/0z) f; forall, k,l =1, ..., q

By the triangle inequality and (a + b)? < 2a? + 2b?, this implies that the left-hand side of (C.1)
is bounded from above by 2E[(21g — tr[0g/02])?] + 2E||| f||~2(|0f/0=|%]. The first term can
be bounded using the main result of Bellec and Zhang (2018) and the Gaussian Poincaré inequality
(Boucheron et al., 2013, Theorem 3.20)

E[(z"g — tr[0g/0z))*] = Elllg|*] + Etr[(0g/02)%] < 2E[|0g/0z|%].
This proves (C.1). To bound |v/V — 1|, we have by the triangle inequality
- b f
WV =1l = WV = |5l < [Elgh) - il = Dl
By another application of the Gaussian Poincaré inequality,
VV —11* <Elllgl3] < E[|0g/0=IF] < E[|l £ 20 /0=||%]. (C2)

Combining Equations (C.1) and (C.2) using (a + b)? = a® +2ab+b? < a® +1/v6a® +/6b% + 12,
we obtain the constant 7 + 21/6.
|
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Proposition 14 Ler h : R™*P — RP, 1) : R"*P — R™ be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

O(Yih; d(hje] Gh (el GTap)
KT/JTGh_Zij (ijJ))Q <HGhH2—Zij (Jg”)>2+ HGTT/’HQ_ZU !;1-]-)2}
1RIZ + [l /n 1R][2 + [|%[2/n [ + 4]

LI 1+ ]GIR,/n
2 p
< Gl 101 + 00 223 (gt (1

=1 j=1

)]

[+l
(B.13)

for some positive absolute constant in the second line.

Proof (Proof of Proposition 14) We prove the claim separately for the three terms in the left-hand
side of Proposition 14; we start with the first of the three terms. We will apply the probabilistic
result given in Proposition 6.3 in Bellec (2020): if n : R"*P — RP and p : R"*P — R" are locally
Lipschitz and G € R"*P has iid N(0, 1) entries,

B[(s7 G- 3 220N < w[loiP ] + 26 [ Il o2 P + Lol 2 €
ij ij

The proof only relies on Gaussian integration by parts to transform the left-hand side. Let f :
R™*P — R™P be locally Lipschitz. For any ¢, j and at a point where both h and v are differentiable

and f # 0,
.

i 1 7\ of
dgij <Hf\|> ~i7l (I"“’ - W) Dy oAt H

We use this inequality applied with

I
09ij (H.f”>H N H.f”2 Hagw

1 1w _
f=Mh ¥, P=L5mm =0 (€4

To bound from above the right-hand side of (C.3), the inequality in the previous display can be

rewritten
on ap 1

I -2+ 22 < (22 4 22 P).
99ij 99i; [R]12 4+ (1912 /n \" Dgi; n' dgi;
Since ||p|| < 1 and HnH < 1by deﬁmtlon, the right-hand side of (C.3) is bounded from above by

1+ QE[W(H B9i h 241 H B0y 1?)]. Thus the proof of Proposition 14 for the first term in the
left-hand side is almost complete it remains to control inside the parenthesis of the left-hand side,

(C.5)

3 O(pin~"?hy) 0 ( hin~2h; )_22¢ 12y, h' g+ o
7 IRl 912 /n Bgi 9gij \|[h[* + H¢H2/n I RIE IR )2

By multiple applications of the Cauchy-Schwartz inequality, the absolute value of the previous dis-
play is bounded from above by 2(||h||% + ||1,Z)||2/n)_1/2(zw | -2 D95 |+ 8¢ |)*/2. This completes
the proof of Proposition 14 for the first term in the left-hand side.
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For the second and third term in the left-hand side of Proposition 14, apply instead (C.3) to
p = Gnandn = G ptoobtain

e[ (1Ga-3 XS] < kG ial?] +22 ]S P lean +6 2

ij ij

Ipip  Ge;)\2
B[(167 o130 222 EY] < B[IGT ool +26 [ 16T oIl 5 2 Pl e it 6T

ij g ij
Setting p = ﬁ'(,b /I FIl, m = h/|| f|| we obtain the claim in Equation (C.3) by bounding the right-
hand side of the previous displays using the operator norm of G and arguments similar to (C.5).
The term involving %ﬁ (W) in the left-hand side is controlled similarly to the previous
paragraph.

|

Proposition 16 Ler h : R™*P — RP, 1) : R™"*P — R™ be locally Lipschitz functions. If G € R"*P
has iid N (0, 1) entries then

|2lfl2 — L3P (v Ge; — Y0, 3;‘;;)2\} LI~ i (e~ 25 L) \}
Rl + % ]?/n [RIP + ||¢||2/n

< Cor(VAF0+ 2+ 2) where= = B[ Z Z<H 09:

) 7H 09ij

Proof (Proof of Proposition 16) We first focus on the first term in the left-hand side. Theorem 7.1
in Bellec (2020) provides that if p : R™*P — R™ is locally Lipschitz with ||p|| < 1 then
09gij )

E|plol* - Z(p Ge; - Zgiz)\w@f(mazu N 49EZH
(C.6)

Let p = n~ Y24 /| f|| as in (C.4). Inequality (C.5) lets us bound from above the right-hand side
of the previous display by the right-hand side of Proposition 16. In the left-hand side, p||p||*> =
2|lgp|I2/(||R]I* + ||9]|>/n) as desired. For the left-hand side, using some algebra in (Bellec, 2020,
Section 7), for any random vectors a, b € RP by the triangle and Cauchy-Schwarz inequalities we
have

09ij

pllel* = llal? = Ipllel® — [1B]%] < lla - bl|[la + b]
< la = b|* + 2[|la - b]l||b]|
< lla = bl* + 2[la — blI(V/[[b] — pllol?l + Vplel?)
< 3lla —bl* + 5l[[blI* — pllol? +2lla - b]V/plpl

so that [p[lp[* — [lal®] < 3Ipllel? — [IbI?] + 3lla — bl|* + 2[la — bl|\/p[p]>. Applying this
tob; = p'Gej — >0 9pi e use (C.6) to bound |p||p||2 — [|b]|2] and ||p|| < 1 to bound
J

i=1 Og;
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V/pllpl|? < /p. It remains to specify a so that |p||p||* — ||a||?| coincides with the first term in the
left-hand side of Proposition 16 and bound ||a — b||. Consequently, we set

T ) n 0P n Oy
,l/) Ge] - 21:1 ag” T Z'L 1 591] 1

= —p'Gej — =
ORI+ )2 P T T Rl )2 /) Zf agw

where D = (||h|*+||%||%/n)*/? so that by the Cauchy-Schwarz inequality [|[a—b||? < +[|2[|* 3=, ( agwl))2
and

(D) oh o T O 1 8¢
> 09:; ) Daz( Tagw 8 agz) 7D4ZH ||2 8%;\. (C.7)

i

using again the Cauchy- Schwarz inequality and max{||h||?, ||1||*/n} < D?. We obtain ||a—b||? <
D2y j |2 D90 h 241 || .7 Y ||2 which completes the proof for the first term in the left-hand side of
Proposition 16. For the second term in the left-hand side, the proof is similar with by exchanging
the role of n and p in (C.6) and applying (C.6) to h/D instead of ¥»/(1/nD). [ |

Proposition 18 Ler Assumption A be fulfilled. Then
E[{ (IRl + 1] /n) "2 [lel| " evi}*] < Cso(v,1)  for  &vi =€ (Gh—tr[Aly). (B.20)

Proof (Proof of Proposition 18) Apply (C.3) with p = &/||¢|| and n = h/D where D = (||h||* +
|%]|2/n)/? as in the previous proof (this scalar D is not related to the diagonal matrix D =
diag{t’(r)}). Since € has 0 derivative with respect to G we find

[(5ef - Zusn e

The right-hand side is bounded from above by C51 (7, i) thanks to (C.5) and (B.17). For the second
term above we use product rule and (B.4),

2].

on

Z D7) _ tr[A]wTe hTAGT diag(v' (v Z eih;
H€H 89w Dlle] Dlell HEH 3%

To complete the proof we need to prove that the expectation of the square of the second and third
terms colored in purple are bounded by Cs2(7y, it). Since || h|| < D, the second term is bounded from
above by [| A op|Glp since [1/] < Land E[J| A|[2,|G[12,] < Css(7. 1) thanks to || Ay < 1/(np)
and (Davidson and Szarek 2001, Theorem II 13) For the third term, we use the Cauchy-Schwarz

. . ih; 8(D
inequality (3°;; 5”5” o D)2 < ||n? ZU( 9 1)2(C.7) and (B.17). |
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Appendix D. Proof of differentiability results

Theorem 1 Let Assumption A be fulfilled. For almost every (y, X') the map (y, X) B\(y, X)is
differentiable at (y, X ) and there exists a matrix A € RP*P depending on (X, y) with || »1/24%1/2 llop

(np)~ ! s.t.
(0/0y:)B(y, X) = AX "e) (1),
(8/8xij)3(y, X) = geﬂb(ri) — A\XTeiw/O'i)gja

e; € R", e; € RP are canonical basis vectors , 1 := p' and )’ denote the derivatives. Furthermore,

where r; = y; — :BZTB, 2.1)

df = tx[X (9/9y)B] = tr[ X AX " diag{y/(r)}, (2.2)
V = diag{y/(r) }(I — X (0/0y)B) = diag{y/(r >}—diag{w'm}xﬁxTdiag{wm}z3
(2.3)

satisfy 0 < df <nand0 < tr[V] < n.

The first part of the following proof is similar to the argument using the KKT conditions in

Bellec (2020). After (D.3), the argument is novel and lets us derive the convenient formula (2.1)
and the existence of matrix A which plays a central role in the contractions (B.4)-(B.8).
Proof (Proof of Theorem 1) Xt X +tU andy; = y + tv with ¢ € R where U € R"*P
and v € R" are fixed. Let 3; = B(yt,Xt) and 7, =y — XiB(ye, Xy) and P (yr, Xi) = $(7).
By convention, without arguments ,8 % refer to (y, X)) which is (y;, X¢) at ¢ = 0. By the KKT
conditions, X "t € ndg(B) and X T1/Jt € n@g(ﬁt) by strong convexity of g, we have

nu||SY2(B — B)|1P < (B — B) T (X by — X Teh). (D.1)

By the fact that v is non-decreasing and 1-Lipschitz, for any two real numbers ¢ < b, 0 <

¥(b) —¢(a) < b—a. Multiplying 9(b) — 9(a), we have (¥(b) — ¢(a))* < (¥(b) —¥(a))(b — a).
Thus

I — P> < (Wb — )" (7 — 7).
Adding up the above two displays we have
np| B2 (B = B2 + e — 1> < (Be — B) (X[ py — X Top) + (P — ) (7 — 7). (D.2)

By XtTIZt—XT{l; = (Xt_X)T/lZ"i_X;r(";/b\t_"Z) and Xt(B\t_B)‘i‘?t_?: yt_y_(Xt_X)TB’
we have

[ E2 By = BN + e — BI* < (B~ B (Xe = X) TP+ (e —y — (X = X)"B) " (bt — %)
By the Cauchy-Schwartz inequality, the above implies
(nal[ 27 (Be = B + ldbe = 1) < () 22720 = X) Tl + e~y — (XK = X) B,

Since ¢, U, v are arbitrary, for (y;, X;) and (y, X) both in a compact subset K of RP x R"*P, the
above display also implies

(| =28y — BY|1? + llhe — B12) " < const(K) (|=2( Xy — X)lop + [l — yll2)s
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where const(K) := sup(, x)cx { (n1e) /2| ]l2+1+]| =12 B|2}. This says that B(y, X ), 9 (y, X)
are locally Lipschitz in (y, X ). By Rademacher’s Theorem, 8,@ /0y; and 8,@ /0x;; exist almost ev-
erywhere.

Taking the limit £ — 07 in (D.1) and using the chain rule, where the derivatives exist we have

o232 DB )
(35 +§§<U>) (U7 + X diag(d) (~UB - X§§< >+<I"‘ng>”))
(o B0 o0 0o (o B

(D.3)
where (98/0y)v = 3 ;c(,(98/0y;)v;, the Jacobian with respect to X and the linear map B :
R™ P x R™ — RP are defined as

0B

d - . .
axU) = > aﬁ uij €RP, B(U,v):=U"v+ X" diag(¢")(-UB +v) € R?

ijelmxp 709

where (uij)izlyl_”nvjzl,,_’p are the entries of U. By the Cauchy-Schwartz inequality, (D.3) provides
us the following two main ingredients:

B 0B . -

g%+ ax(U) = 0forall (U, v) such that BU, v) = 0, (D.4)
1/2 B 3[3 1 1psee1/2

|22 (Gp0 + g @), < w o I= B ) e 05

Since both g—gfv + %(U) and B(U,v) are linear in (U, v) € R™*P x R" into R?, Proposition 19
implies that there exists a matrix A € RP*? such that g—gv + g—g(U) = AB(U,v) for all (U, v),
and by (D.5), A can be chosen such that \\21/21321/2“ < (nu)~! thanks to the operator norm
identity in Proposition 19. With (U, v) = (e, , ) for (z j) €n ] [p] and (U, v) = (0, ey) for
k € [n], we obtain the stated formulae for (0/ 856”) Band (9/ 8yk) Bin (2.1).

Now we show that both tr[V] := tr[D — DXAXTD] and df := tr[XAXTD] are in [0, n]
where D := diag{¢/(r)}. Using the symmetric part of A defined as A := (A+AT) /2 we have
tr[V] = tr[D — DXAAXTQ] and df = tr[DY/2X AX T D'/2] by property of the trace. In (D.3),
take U = 0 so that g—gv +8(U) = AB(U,v) = AX " Dv and we have with G = X %1/2

(1+ )[|DY?X AX " Dv|? < nu| AX " Dv|? + |DV2XAX Dv|?>  (D.6)

||D1/2GH2
<v'DXAX'"Dv=v'DXAX'Dv (D.7)

for all v. This implies the positive semi-definite property of the symmetric matrix DX AX'D,
and thus df > 0 and tr[V] < tr[D] < n. With ¥ = D'/?v, it also implies

(1+ /|| DV2GI,) |DY2X AX T D'*5)? < 5 DY2X AX T D'V,
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which, by the Cauchy-Schwartz inequality, yields (1+nu/| D'/2G|2,)||D/?X AX T D'/?||,, <
1. The same operator norm inequality yvith A replaced by its symmetric part A= (ﬁ + ET) /2
thanks to the triangle inequality. Thus df < tr[D](1 + n,u/HDl/QGng)_l < nas well as
V] = t[DY*(I, - D'?XAXTD'?)D'?] > [ D](1 — (1 + np/||DG3,) ")
— t[D]/(ID"2GIP%,/ (nr) + 1)
> u[D)/(IGI5/() +1) D)
>0

thanks to /' € [0, 1]. Inequality (D.7) with & = D'/?v and M = I,, — DY2X AX T D'/? implies
(M — I,)3||> < 9" (I, — M)v. As the left-hand side is || M9||> — 20" Mo + ||9||?, this yields

|M3|? < " Mv < ||9||||Mwv||. If v has unit norm and is such that ||M®v|| = || M|, this
gives || M||,p < 1o that | V||, = |[DY2M D'/?|,, < ||D|lop < 1. This gives another proof of
tr[V] < n. [

Proof (Proof of Theorem 3)
The proof for the intercept term included is the same to that of Theorem 1. The only difference
is that when computing the derivatives,

i, T ) o - 9B 0B
g =0 0o=Uv+X (8 +87( )) @v—dlag(zp)(I _1@_X8y)
B o 9
% (1) — diog(@)(-122(0) - UB - x 2 (o)

e B g X+ (o — dine B UB,

We have an additional KKT conditions providing us 0 = lT(ath /dt)|i=o. Multiplying 1T on both
sides of the above display, we have

dﬁ0t| PTX dp; PTv P TUB
dt t=0 = 1T,¢)/ dt =0 1T,$/ 1T,(Z/ ’
d d ~
% =0 = —¥'X 5t |t 0o+ P'v—P'UB,
where W’ ;= diag({b\’) — ¢’¢’T/1T$’. By taking limit of ¢ — 0 in Equation (D.2),
By 1P < 4By d(XTY) Bt (T wat
el < 2oy R V)
[ “tio|, < L0 o = S (U6 + X T o)

/\

d ~
= gtt O(UTdy—i—XT( foX—|t 0+ ¥'v - \IJ’UB))

d ~ d 2
_ Zt L 0<UT¢+XTlI’/ XT‘I’/U,B> H‘Illl/QX /Bt‘ _OH '
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Proposition 19 Let A and B be two real matrices with shape n by p. Assume that Bv = 0 for
all v € RP such that Av = 0. Then the matrix C := BA™ where AT is the Moore-Penrose
pseudoinverse of A satisfies B = C A and ||C||,p = maxyecrn: Auxol || Bull2/| Awl2}.

Proof Let r be the rank of A. We let A = UDV | be the SVD of A with U € R"*", D € R"*"
diagonal with positive entries, V' € RP*" and U, V' both with orthonormal columns. Then A+ =
VD 'U"and CA=BVV' =B -B(I,-VV"). Sinceker A C ker Band (I, - VVT)
is the orthogonal projection onto ker A we have B(I, — V'V ') = 0. This proves B = C A.

For || BA™||,p, for any vector u, ||[Bul|| = ||[CAul|| < ||C|loplAul| by definition of ||C||sp.
This proves ||C||op, > M for M = maxycrn: auzol|Bu|2/|Aul2}. For the inequality M >
|Clop» if |C|lop = ||Cv|| for some unit vector v then AATv = UU "v # 0 since v is a right
singular vector of C = BV DU " and cannot belong to ker(U ). | = |BATv|| <
M||AA"v|| and the conclusion follows since || AA™||,, < 1and ||v| = 1. [ ]

Appendix E. Relaxing strong convexity: Proof of Proposition 12

Consider the notation for G, v (e, G), h(e, G), D defined around (B.1). Let Q = {X € U.}. Let
us first rewrite the Lipschitz condition (7.1) using the change of variable G = X »-1/2 explained
around equation (B.1): the mapping

. [({M=V?2 M U} — R™P, L
P, is -Lipschitz
G — D7 (n "1 ?p(e,G), h(e,G)) vV

where we recall the notation D = (2|4 (e, G)[|> + || h(e, G)||?)'/2. After the change of variable,
the identities (B.2)-(B.8) all hold in the event ).

All previous calculations made in the strongly convex case hold here is well, but only in the
event €. Outside of event {2, the derivatives may not exist at all. As in Theorem 6, the device that
lets us work around this is Kirszbraun’s theorem: there exists an L/,/n Lipschitz function ®. (the

“extension”) such that ®.(G) = ®.(G) for all G in the domain {MX /2 M € U,} of ®..

Now define p : R™P — R" and 5 : R™P — RP by ®(G) = (p(G), 1n(G)). Using the
Lipschitz condition and the fact that the Frobenius norm of a Jacobian is bounded from above by it
rank times the square of its operator norm,

0
>l P < 22 2
7]

so that the right-hand side of (C.6) is bounded above by Cs4(L,y),/p and the right-hand side of
(C.3) is bounded from above by Cs5(L,~). After we have bounded the right-hand side, we are
allowed to add the indicator function 7{€2} in the left-hand sides of (C.6) and of (C.3) since adding
an indicator function only makes it smaller. This devices lets us obtain analogs of Proposition 14
and Proposition 16 where the right-hand sides are of the same order as in the strongly convex case,
provided that we add the indicator function {2} in the left-hand sides.

From here, in the event {2 we use the bound ||S!/2 A%1/2 llop < L/n assumed in Proposition 12
instead of the bound || 3!/ 2AR1/2 llop < 1/(nu) from Theorem 1. This device provides the bounds

2 Do
L
ang
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(B.14), (B.15), (B.16), (B.18), (B.19) and (B.20) on &;, ...&y 1, with the modification that the left-
hand sides present the indicator function /{{2} and the right-hand sides are Cs4(7y, L) instead of
C57(7y, i) in the strongly convex case. The algebra is then the same as in the strongly convex case
and Proposition 12 follows.
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Appendix F. Additional Figures (anisotropic Gaussian design)
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Figure 4: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.054n'/? and (A, 7) where A € [0.0032,0.41] and 7 € [10~°,0.1]. Each cell is
the average over 100 repetitions. See the simulation setup in Section 6 in the paper for
more details.
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Figure 5: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.024n'/? and (), 7) where A € [0.00062,0.081] and 7 € [10~1°,0.1]. Each cell
is the average over 50 repetitions. See the simulation setup in Section 6 in the paper for
more details.
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Figure 6: Heatmaps for the Huber loss and Elastic-Net penalty on a grid of tuning parameters with
A = 0.054n'/2 and (X, 7) where A € [0.0032,0.41] and 7 € [1071°,0.1]. Each cell is
over 1 repetition. See the simulation setup in Section 6 in the paper for more details.
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Appendix G. Additional Figures (non-Gaussian, Rademacher design)
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Figure 8: Boxplots for df, p, i, tr[V], tr[$A] and | tr[SA] — df/ tr[V]| in Huber Elastic-Net re-
gression with 7 = 10710 and \ € [0.0032, 0.41]. The data are generated with X having
iid entries taking value £1 each with probability 0.5 (so that 3 = I},). Each box contains
30 data points.
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Figure 9: Histogram and QQ-plot for {; in (3.3) under Huber Elastic-Net regression for different
choices of tuning parameters (), 7). Left Top: (0.036, 10~1°), Right Top: (0.054,0.01),
Left Bottom: (0.036,0.01), Right Bottom: (0.024,0.1). Each figure contains 100 data
points generated with Rademacher design matrix (each entry has value &1 with probabil-
ity 0.5) and iid ¢; from the ¢-distribution with 2 degrees of freedom.
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