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Abstract

Citizen science harnesses the power of nonscientist observations, often resulting in a vast network of
data. Such projects have potential to democratize science by involving the public. Yet participants are
mostly white, affluent, and well-educated, participants that contribute data from their residence or places
they frequent. The geography of the United States is heavily segregated along lines of race and class.
Using a Census Tract-level hurdle model, we test the relationship between the locations of the rain gauges
from the citizen science project Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS)
with continuous variables for percent non-Hispanic white and median household income. We find whiter
and more affluent Census Tracts are significantly more likely to have a rain gauge. The highly localized
nature of precipitation combined with the uneven geography of storm-water infrastructure make data
missing from citizen science projects like CoCoRaHS of vital importance to the project’s goals. We warn
that scientific knowledge created from citizen science projects may produce scientific knowledge in
service of wealthy, whiter communities at the expense of both communities of color and low-income
communities.
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Introduction

The continued development of digital technologies to capture and disseminate data has significant
by-products for scientific and social justice communities. Geospatially tagged images or content
generated by non-scientists and voluntarily submitted to a centralized source, or volunteered geographic
information (VGI), can be a rich source of data for citizen science projects (Haklay 2013). According to
the PEW Research Center, 85% of the United States (US) population owns a smartphone (2021). Users
submit VGI using their smartphone, including a range of applications such as participants requesting
non-emergency municipal reporting through 311 applications (Goodchild 2007) to surveying (or listing)
local bird populations while contributing to bird migration monitoring (Sullivan et al. 2009).

The latter is also an example of how VGI contributes to citizen science projects. Projects that
deliberately engage the public to generate “reliable data and information usable by scientists,
decisionmakers, or the public and that is open to the same system of peer review that applies to
conventional science” (McKinley et al. 2017, 16). Despite the growing complexities of participation in
VGI schemes and their location data (F. Harvey 2013; Verplanke et al. 2016), the potential for massive
quantities of data to be collected over large coverage areas from diverse sets of participants and diverse
geographies (Cooper, Shirk, and Zuckerberg 2014; Ries and Oberhauser 2015) as well as for sufficient
sampling of rare phenomenon (Losey, Allee, and Smyth 2012; MacDonald et al. 2015). Citizen science
projects have advanced research at broad temporal and spatial scales. For example, citizen science data
was the basis of half of what's understood about migratory songbirds and climate change (Cooper, Shirk,
and Zuckerberg 2014), and almost twenty percent of research on monarch butterflies was based on citizen
science data (Ries and Oberhauser 2015). The limitations of citizen science are well-documented,
however, including: 1) potential for data quality issues because of opportunistic sampling by participants
(Kelling et al. 2009), 2) unequal participation within projects (Haklay 2016), 3) a lack of diversity in

participants as most participants are white, affluent, and well-educated (Pateman, Dyke, and West 2021;
Allf et al. 2022), and 4) exclusionary project design practices (Montanari et al. 2021).
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In this paper, we explore and test how the pervasiveness of racial segregation across US Census
Tracts affects the quality of data collected in a passive geographic citizen science project. We first discuss
successful large-scale citizen science projects, detail the importance of representation and diversity in
knowledge creation, and review ecological spatial patterns that are intimately connected to social
geographies. We then introduce data on race/ethnicity and income in the US and a citizen science dataset
of rain gauge locations. In the Results section, we detail the Census Tract-level hurdle regression model
to evaluate the relationship between the locations of the citizen science rain gauge project and
race/ethnicity and income. We find that whiter and more affluent tracts are significantly more likely to
have a rain gauge in both urban and rural Census Tracts. Finally, we end with the implications of our
findings on the development of scientific knowledge through citizen science for critical GIS.

Citizen Science and Space
Citizen Science, Ontology, and Epistemology

Citizen science data can be laden with spatial biases stemming from uneven sampling effort,
clumpy distributions, spatially clustered distribution of collections, and unstructured sampling design
(Mair and Ruete 2016) or semi-structured sampling design (Kelling et al. 2019). Spatial bias can arise
from volunteer behaviors, such as spatial and temporal clustering of human activity. Geldmann et al.
(2016) showed that built infrastructure and human population density were direct influences on the extent
of spatial bias in citizen science data. Spatial bias occurs at multiple scales. For example, approximately
one-third of bird species live in the neotropics, but most publicly archived data on bird occurrences were
in North America, Europe, India, Australia, and New Zealand (La Sorte and Somveille 2020), reflecting
the birding legacy of British colonization. Gaps in data on bird occurrences were most prevalent in
northern and central Africa and northern Asia.

Statistical measures and modeling approaches that can alleviate some of these biases (Isaac et al.
2014; Bird et al. 2014; Geldmann et al. 2016; Robinson, Ruiz-Gutierrez, and Fink 2018). For example,
Johnston et al. (2020) found that the accuracy of species distributions predicted by data from the
opportunistic sampling of the United Kingdom (UK) citizen science project BirdTrack were equal to the
uniform atlas bird sampling by weighting sampling density. Nonetheless, modeling the entire UK by
spatially weighted observations made at popular locations visited by citizen science participants assumes
that the environment where samples were collected reflect the broader geography of the UK. According
to Montanari et al. (2021) this assumption would be an example of geographical discrimination. The
spatially weighted opportunistic sampling model was less accurate and less precise in the Scottish
Highlands where the environment is distinct from the rest of the UK and there were fewer observations.
Spatial bias introduced by the overrepresentation of observations in one place or environment, and
consequently the underrepresentation in another place, may reflect broader socio-spatial patterns. In the
US, structural racism and uneven development manifest spatial segregation based on race, class, and
other forms of difference (Lee et al. 2008). Schell et al. (2020) found measurable differences in
environmental quality by race and class using a dataset collected from mostly white participants that
were tasked with collecting information in particular locations. The lack of observations across space
and the potential for differing environments leaves potential for issues in accuracy and precision.

In addition to statistical modeling methods, project design can limit the bias affecting the quality
of data generated by citizen science. Project protocols can limit opportunistic sampling and unequal
participation by either including estimates of volunteer effort and/or standardizing volunteer effort of
time and space. For example, projects that use gridded atlas sampling create more homogenous structure
across space, but might reduce both redundancies and gaps in opportunistic data collection that may lead
to skewed data on spatial scales (Callaghan et al. 2019). Similarly, increasing sampling intervals allows
for more representative data across temporal scales.
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Difference in participation and spatial bias are connected to critiques that feminist geographers
and critical GIS scholars have long warned about, especially as they pertain to map making. The earliest
notion of critical GIS emerged in the 90s as scholars sought to understand the intersections of critical
theory and GIScience (Pickles 1995; Sieber 2004). During the second and third wave of critical GIS (cf
Sieber 2000; Schuurman 2009), scholars increasingly sought to address epistemological issues within
GIS data as well as explore the social outcomes of GIS-based knowledge production. Their insights yield
important implications for VGI and citizen science projects. One such insight stems from an important
critique of the way GIS-based research epistemically privileges certain understandings of the world
(Sheppard 1995), prioritizing the accuracy of data (for example, the exact GPS coordinates or the exact
amount of rainfall captured) without addressing geography and relationship between missing and present
data (Sieber and Haklay 2015; Mahmoudi and Shelton this issue). Another important insight was the
development and use of Participatory GIS (PGIS) methods (Elwood 2008; Leszczynski 2009) that seek
to empower participants and the public by creating new data (Elwood 2006). PGIS brings significant
power in addressing the method of collecting data and the localness of that data, whereas VGI privileges
the data itself and the use of vast quantities of data (Sieber and Haklay 2015; Verplanke et al. 2016).
Sieber and Haklay (2015, 133) point out that the social context of VGI data collection is important and
that misalignment could favor participation by certain groups, making small digital inequalities or social
differences in participation result in significant representation issues.

Haklay (2016) summarizes the challenge for crowd-sourced citizen science projects and VGI
projects alike: data collection is inherently a socio-technical process, especially if researchers do not pay
attention to who or under what context data are collected. ElIwood (2008) and Sieber and Haklay (2015)
emphasize that VGI, crowdsourcing, and PGIS —potential forms of data collection in citizen science
projects—are socio-technical processes that reproduce and embed social values in their process, data of
collection, and data abstraction (Elwood 2008; Sieber and Haklay 2015). These warnings are often
dismissed or minimized when researchers make the implicit assumption that the identity of the participant
has little to no bearing on the quality of the data—a narrow conception of quality that is reduced to the
accuracy and precision of the measurement or its geospatial location—if participants can follow
standardized project protocols (Haklay 2016). Citizen science efforts often seek to expand the quantity
of data collected at the expense of improving diversity of participants, sometimes ignoring available
demographic data. As the dataset gets larger, outliers and issues of representation are assumed to be
negligible in analyses. Following this logic, there is little incentive to alleviate the well-known, albeit
complex, barriers that generally prevent the participation of people of color and low-income individuals
(Pandya 2012). Physical scientists argue this disparity may stem from an assumption that other than
moral obligations, the gender, race, and income level of the participant have no impact on the quality
(see above) of the data (Pandya 2012). In one example, a survey of participants from online citizen
science platform Zooniverse—which hosts citizen science projects—found that 87% of survey
respondents were white (Masters et al. 2016).

In sum, participation in passive citizen science projects reflects broader societal inequities,
heavily falling on lines of race/ethnicity and class, yet there are important co-created projects that hire
and train people from affected communities. Such projects broaden science education while addressing
the spatial inequalities that can arise from passive enrollment. Active engagement approaches have the
potential to improve the spatial coverage of scientific observation, but they are difficult to scale toward,
for example, national data collection. Instead, active engagement projects primarily focus on localized
hazard mitigation— participation is sometimes necessary for the safety of their communities (Wilson
2009). Projects that recruit people based on the availability of outdoor leisure time present a class
privilege that is a barrier to those that have neither time nor money for the activity. Conversely, projects
with high numbers of participants of color are often participating out of necessity for their livelihood due
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to a localized crisis. These differences in participation are directly reflected in who participates in citizen
science projects. Considering how social geography might be intertwined with ecological geography
raises new questions about diversity of participants and the geography of participation, but this discussion
is scarce.

Race, Space, and the Geography of Citizen Science

Many citizen science projects are inherently spatial and the phenomenon they capture is rooted
in, at least in part, the socially-determined geography of its participants. The geography of people, as
participants, and nature, as phenomena, are inextricably linked by racial capitalism. Racial capitalism is
the relational process of value extraction and dispossession through the hierarchical fabrication, and

assignment, of people along lines of race, gender, class, and other forms of difference (N. Leong 2012;
Melamed 2015). As geographers have shown, racial capital accumulation is an inherently spatial process
(D. Harvey 2007) whose logics order and segregate space in distinct and intimately intertwined
geographies (Gilmore 2006). The transatlantic slave trade (Williams 1994), plantations (McKittrick
2011; Davis et al. 2019), prisons (Gilmore 2006), and inner city disinvestment (Rothstein 2018) are just
some of the many examples of spatialized violence that expropriated profit through the devaluation of
Black bodies and Black spaces (McKittrick 2011; Fraser 2018). The urban geography created through
redlining and racial restrictions in homeownership are some of the most common forms of segregation
whose resulting urban spatial ordering persists today (Aaronson, Hartley, and Mazumder 2017). Racial
hierarchies, in concert with other hierarchies of difference, are necessary preconditions for the reification
of differentiated, uneven space as part of the expansion of capital.

The stark topography produced through racial capitalism is not exclusive to social outcomes. The
landmark study by the United Church of Christ (1987) showed the unmistakable relationship between
toxic waste and Black and Hispanic populations in the US. A growing body of research shows that socio-

economic segregation is connected to, and sometimes drives, socio-ecological heterogeneity which
produces racialized spaces that are functionally different in socio-ecological terms (Schell et al. 2020).
For example, Seamster and Purifoy (2020) found that neighboring white and Black towns had
significantly different versions of waste and toxins because the white towns relocated all of their waste
and toxins across the border to Black towns. They found that white spaces were cleaner because of regular
waste removal and the displacement of dirty energy production to neighboring black spaces. This type
of environmental racism combined with a reduction in infrastructure and investment from municipalities
that could destabilize majority Black, Indigenous, and other people of color (BIPOC) spaces is
commonplace in the US.

Similarly, Ueland and Warf (2006) demonstrated that altitudinal discrimination resulted in an
altitudinal segregation of BIPOC neighborhoods at lower elevations, leading to greater exposure and
impact to environmental hazards like flooding. Socio-ecological segregation was naturalized and
inscribed on the topography of cities, constituting environmental injustice. Ueland and Warf call for
social geographers to engage with the physical landscape, arguing that cities are landscapes “[in] which
social structures and processes are entwined with local biophysical conditions in complex, contingent,
and sometimes contradictory manners” (2006, 51). Leong et al. (2018) document the “luxury effect,”
describing how affluent neighborhoods worldwide have higher levels of biodiversity. Older
neighborhoods and arid cities have greater divergence in biodiversity due to the luxury effect. Important
to this study is the ways in which socioeconomic affluence results in greater plant diversity, canopy,
vegetative cover, public and private land maintenance, and stewardship while simultaneously resulting
in lower environmental hazards and burdens.

Citizen science projects, especially those whose data are based on the collection of geographic
observations, produce data with a racial-based bias in situations where the identity of the participant may
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be very closely related to their location. In these geographic citizen science projects, how participants
operate in space and what places they have access to, are just as critical as the nature they observe. For
example, Blake et al. (2020) found that white participants represented almost 90% of their Illinois-based
river monitoring project despite accounting for only 60% of the state population. This skew in
representation also undermined the project goals: the streams monitored by the volunteers
overrepresented streams that had the lowest environmental justice concerns. Callaghan et al. (2019)
suggests the statistical information problems of spatial, temporal, and spatio-temporal bias that may
occur in working with majority white communities. Both Callaghan et al. (2019) and Blake et al. (2020)
stress the importance in working with communities of color in citizen science projects, especially in
passive projects, to find greater spatial resolution, yet neither discuss the implications of racialized or
class-based geographies of people and the data. Millar et al. (2019) found that participants in aquatic
monitoring projects selected sites for recreational value and deemed it the “cottage effect” for the high
number of samples clustering around summer homes. A major constraint for citizen science scholars is
the difficulty in getting participants, let alone communities of color and low-income participants. Active,
co-created projects may help alleviate some of these issues but are difficult to scale.

The issue of poor recruitment of people of color, and the related issue of lack of observations in
majority-BIPOC places for large-scale citizen science projects depending on VGI, may mask and/or
worsen existing spatial environmental disparities. The notable exceptions are small-scale citizen science
projects which seek to counteract local environmental hazards in BIPOC communities. Both examples
above show that if scientists were to address ecological or environmental concerns based on these large-
scale projects, the scientific knowledge might be representative of wealthy and white places, white the
phenomenon being measured might also be connected to race and class, as water is generally considered
an amenity. That is, the spaces that are measured might already be biased toward those that can

financially afford to be near water. Further, streams and aquatic monitoring are not everywhere because
water is not everywhere.

Data and Methods

To examine the extent to which issues in the geography of citizen science observations might
take on a spatial pattern that is connected to race and class, we examined the locations of rain gauges
from a popular contributory citizen science project, the Community Collaborative Rain, Hail and Snow
Network (CoCoRaHS). CoCoRaHS presents an ideal test for racial bias because, unlike stream or other
aquatic monitoring, rain happens everywhere and CoCoRaHS has participants—and importantly,
subsequent rain gauges—across the US. CoCoRaHS is a national project designed to enroll volunteers
in a system for the standardized collection of precipitation data daily. Volunteers must purchase a
standardized rain gauge, place it on their property according to specific parameters, record the quantity
of captured precipitation daily, and report those amounts online, producing VGI. The resulting data on
rainfall are both fine scale and over large spatial extents and used for a variety of purposes, including
prediction of localized flooding. CoCoRaHS began in the aftermath of a major flash flood in Colorado,
where meteorologists were not able to predict the degree of flood risk based on RADAR because
precipitation is highly localized. The catastrophic storm highlighted the need for high densities of rain
gauges providing data on the ground to complement RADAR.

Meteorologists across the country use CoCoRaHS data, which now includes more than 64,700
rain gauges, along with other data sources to create fine-scale weather forecasts. The finer detail data is
essential to understanding, analyzing, and responding to complex weather events (Moon et al. 2009;
Wesley et al. 2013; Poulos et al. 2014). Further, communities that have had flooding events have reached
out to CoCoRaHS to try to increase their preparedness in future storms. Even though CoCoRaHS has
expanded from Colorado to around the country, there are clear demographic patterns of the participants.
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In 2009, CoCoRaHs initiated a survey to understand volunteer behavior and concerns and found that
most participants were Caucasians of middle-to-retirement-age with advanced degrees (Reges 2016).

We used population data from the American Community Survey 2015-2019 (U.S. Census Bureau
2020) and the location of participant’s rain gauges collected by the CoCoRaHS for 2017 (CoCoRaHS
2017). We sought to understand the distribution and potential impacts of uneven and unequal
environments. We then spatially joined the count of rain gauges to 2010 Census Tract geographies. We
used tract-level data from the American Community Survey on median household income and
race/ethnicity to compute the percent of people of color (non-white) for individual tracts. When
summarizing multiple tracts, we computed the average of median household income across tracts.

To provide summary statistics, we categorized Census Tracts in three ways. First, we categorized
tracts into two categories: those with a rain gauge and those without a rain gauge. Second, to address the
distinct spatial patterns of urban and rural segregation, we used the 2019 Census delineation of the 392
metro areas (Core Based Statistical Areas) as a simplistic measure to delineate “Sub/Urban” tracts (inside
of metro areas) and “Rural” tracts (outside a metro). Most persons tabulated in the Census live in a metro
area, representing approximately 279 million of the total US population of approximately 325 million
people. Finally, we categorized tracts based on the median of share of Black, Indigenous, and other
people of color (BIPOC) of populated tracts. Thus, those tracts over 30.4% BIPOC were designated as
“More BIPOC” and inversely, those with less than 30.4% BIPOC (or over 69.6% non-Hispanic, White
alone) were designated as “More White.” The labels do not indicate whether a tract had a majority of
people who identify as non-Hispanic white alone or a majority of people who identify as BIPOC. We
chose to use the National tract median to account for skewing

We tested for a statistical relationship between the number of rain gauges in a Census Tract and
the race/ethnicity and income of a tract’s inhabitants. To do this, we fit a hurdle model, a best practice
when the response variable exhibits overdispersion and excess zeros (Zuur et al. 2009). In our data, the
count of rain gauges exhibits overdispersion and excess zeros; there are 72,410 Census Tracts, 27,218 of
which had at least one rain gauge from a total of 62,539 rain gauges. Tract rain gauge counts range from
0 to 85, with a median of 0 and a mean of 0.86. The hurdle model presents findings in two-parts. The
first part treats the data as zeros and non-zeros and uses a binomial model to predict the probability of a
non-zero value. The second part of the model uses a truncated negative binomial model to predict the
count in tracts containing rain gauges.

The model includes continuous variables of a tract’s percent of non-Hispanic white and median
household income as covariates in both parts of the model. Note that percent non-Hispanic white is the
inverse of percent of a Census Tract that reports as BIPOC, with values ranging from O to 1. Because
hurdle models can be sensitive to the size of the dependent variables if they are on different scales
(UCLA: Statistical Consulting Group 2021), we linearly scaled median household income to be
1/100,000th of its original value. These scalings do not impact model coefficients or model significance
(Zuur et al. 2009). We fit separate models for urban and rural Census Tracts to accommodate the
differences in segregation patterns in these two geographies. We ran all models in R using the pscl
package (Zeileis, Kleiber, and Jackman 2008; Jackman 2020).

Results and Discussion: The Spatial Gap is a Racial Gap

We found that the presence and number of rain gauges in a Census Tract is correlated with income
and the race/ethnicity of a tract’s residents, but the relative importance of these factors varies in
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Count of Tracts by Metro and BIPOC

More BIPOC (than More White (than

National Tract Median) National Tract Median) Total
$ Avg MHHI # Tracts $ Avg MHHI # Tracts $ Avg MHHI # Tracts
Rural 42,004 2,923 52,470 8,977 49,916 11,900
No gauge 39,211 1,396 49,996 3,285 46,815 4,681
21 gauge 44 511 1,527 53,893 5,692 51,910 7,219
Sub/Urban 61,969 33,282 80,782 27,228 70,459 60,510
No gauge 60,082 25,914 80,971 14,597 67,635 40,511
21 gauge 68,555 7,368 80,564 12,631 76,143 19,999
Total 60,360 36,205 73,755 36,205 67,077 72,410

Table 1. The distribution of volunteer sites for monitoring precipitation in the CoCoRaHS project
varies with race, which results in reduced capacity for fine-scale forecasting in urban and suburban
areas where people of color live.

Sub/Urban vs. Rural locations. Generally, as the percentage of white residents and median household
income increase, so does the probability that a Census Tract contains at least one CoCoRaHs rain gauge.
Below, we first detail three important findings from summary statistics, then discuss the illustrative maps
of Baltimore, Maryland and Portland, Oregon in Figure 1 and Figure 2, respectively. Finally, the results
from our hurdle model are presented in Table 2.

Rural tracts with at least one rain gauge had an approximately $5,000 higher median household
income than those with no gauges. This pattern held for both More BIPOC and More White tracts.
However, for Rural tracts, median household income in More White tracts was roughly $10,000 higher
than in More BIPOC tracts, regardless of whether there was a rain gauge. Among Rural tracts, More
BIPOC tracts with no gauge had the lowest median household income ($39,211) and More White tracts

with at least one gauge had the highest median household income ($53,893).

For More White Sub/Urban tracts, the median household income did not differ between tracts with or
without a rain gauge. However, for More BIPOC tracts, the tracts with a rain gauge had a median
household income approximately $8,000 higher than tracts with no rain gauge. Among Sub/Urban tracts,
more BIPOC tracts with no gauge had the lowest median household income ($60,082), which was
approximately $20,000 less than More White tracts regardless of the presence of a rain gauge.

Lastly, tracts with higher incomes were more likely to have a gauge except for Sub/Urban More
White tracts where their income was the highest across any group. In these exceedingly high- income

areas, the presence of a rain gauge did not seem to be related to median household income—a result in
stark contrast to the relationships between tracts in other groups across race/ethnicity, and Sub/Urban or
rural.

Maps of Baltimore and Portland illustrate the key Sub/Urban findings. Baltimore is a majority Black city
in the center of the Baltimore-Columbia-Towson, MD metro area that is just over half non-Hispanic
white. In Figure 2, large swatches of residents in majority BIPOC tracts have no rain gauges, while there
is fairly even coverage of white neighborhoods. North and west of the city is an area that has adjacent
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tracts that are majority BIPOC and contain no rain gauges. Portland is a majority non-Hispanic white
city in the even whiter Portland-Vancouver-Hillsboro, OR-W A metro area. The inner eastside of the city
is much whiter than the outer east neighborhoods and the inner suburbs to the west of the city. Not only
is there more participation in CoCoRaHS but the outer east neighborhoods do not have the same coverage

of rain gauges as their whiter counterparts. Interestingly, the inner suburbs to the west of the city —with

higher numbers of wealthier non-Hispanic Asian residents —show rain gauge distribution comparable to
the rest of the region. The entire Portland region is much whiter than Baltimore city and surrounding
areas. Even so, the five tracts in Figure 2 that are 60-80% BIPOC do not contain rain gauges.

I o-20%BIPOC | | 40-60% BiIPOC [l 80 - 100% BIPOC ~ ®  Tract w/ Rain Gauge

[ ] 20-40% BIPOC [ ] 60-80% BIPOC [ ] No Residents (] Baitimore City Boundary

=

8w

Figure 1. Baltimore city and surrounding area showing the geography of race/ethnicity and the locations
of tracts that contain at least one rain gauge. Large portions of Baltimore that are majority BIPOC have
little or no nearby rain gauge.
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Figure 2. Portland city and surrounding areas. There are only 5 tracts in this view that are over 60%
BIPOC, none of which have a rain gauge. Rain gauges are primarily located in areas that are over 80%
white, except for the affluent Western suburbs near a large Intel engineering office and fabrication plant.

Finally, results from our hurdle regression model confirm the significant statistical relationship in the
patterns we described above. The probability that a Census Tract has at least one rain gauge increases as
both the percentage of white residents and the median household income increases for Sub/Urban and
Rural tracts (zero hurdle model coefficients in Table 2). In tracts with gauges, percent white and income
have different impacts on the number of rain gauges in Sub/Urban tracts than they do in Rural tracts. In
Sub/Urban tracts with rain gauges, the percentage of white residents is a significant predictor of rain
gauge count, but income is not. In Rural tracts with rain gauges, income and percent white are significant
predictors of rain gauge count. The effect size for percent white is negligible and is inversely related,
unlike the Sub/Urban model indicated a complex relationship (count model coefficients in Table 2).
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Hurdle Model Results
Dependent variable: Count of Rain Gauges in a

Census Tract
(1) (2)

Sub/Urban Tracts Rural Tracts

Count model coefficients

(truncated negative binomial with log link)

Tract Percent White (non-Hispanic) 1.6217(0.070) -0.2277 (0.130)
Tract Median Household Income (Scaled) 0.083 (0.051) 2.072™ (0.205)
Constant -12.219 (17.012) -10.249 (23.962)
Log(theta) -11.899 -11.097

Zero hurdle model coefficients

(binomial with logit link)

Tract Percent White (non-Hispanic) 2.587" (0.037) 0.4787 (0.090)
Tract Median Household Income (Scaled) 0.063" (0.027) 2.2577 (0.150)
Constant -2.353™ (0.029) -1.047" (0.083)
Observations 60,173 11,859
Log Likelihood 61,702 -20,993
Note: p<0.1; "p<0.05; "p<0.01

Table 2. Results from our tract-level hurdle model that tests the relationship between the count of rain
gauges and the independent continuous predictors of percent non-Hispanic white and the scaled Median
Household Income. Census data is from the ACS 2019 5-year data (U.S. Census Bureau 2020) which
aligns with the 2017 CoCoRaHS dataset (CoCoRaHS 2017). The bottom part of the model treats the data
as zeros and non-zeros and uses a binomial model to model the probability of a non-zero value—or the
probability of a rain gauge given the predictors. The top part of the model uses a truncated negative
binomial model to model the non-zero observations—the strength of the relationship in predicting the
count of rain gauges in tracts with rain gauges.

Conclusion: Bringing It Back to Critical GIS

This paper connects to an emergent theme in Critical GIS of mapping absences, presences, and
relationships (Mahmoudi and Shelton this issue). We deployed Critical GIS methods to explore the deep
social and ecological connections between rain gauges and knowledge production. Through our Census
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Tract-level hurdle model (Table 2), we demonstrate that the presence of a rain gauge is significantly
higher in tracts that are whiter and more affluent. For tracts with rain gauges, higher shares of white
residents significantly predict larger numbers of rain gauges in Sub/Urban tracts and higher median
income predicts larger numbers of rain gauges in Rural tracts. The uneven distribution of volunteer
generated CoCoRaHS data demonstrates a larger problem for citizen science projects: large-scale citizen
science data used to develop environmental models will not serve all places because data, and
participation, is more frequently absent in tracts with higher shares of BIPOC residents. Understanding
the geography of missing data, in this case intimately tied to race and class, is important in citizen science
projects like CoCoRaHS because of the highly localized nature of precipitation and racial inequities
connected to storm-water infrastructure. This data is vital for researchers, city planners, policy makers,
and other stakeholders that need fine detail data to forecast threats or identify and address long-standing
issues. Missing rain gauge data occur often in poorer, non-white places in concert with historical and on-
going racism and segregation. The uneven geography of rain gauges and their intertwined social and
ecological relationships could yield an uneven knowledge that further exacerbate the negative
consequences of climate change for communities of color and low-income communities that are already
at higher risk of climate disaster. We hope that this provides a blueprint for other interrogations of the
geography data.

Earlier, we noted from the literature that the uneven geography produced through racial

capitalism is not exclusive to social outcomes—that these outcomes are connected to, and sometimes
drive, functionally different socio-ecological terrains. Citizen science, as a term, encompasses a wide
variety of projects whose purpose is to produce new scientific knowledge both for scientists and for the
general public (Cooper et al. 2021). Our results show how ecologically-oriented geographic citizen

science projects might be subject to bias by producing knowledge about, or for, white affluent places—
to the detriment of communities of color and low-income communities that may be most susceptible to
climate change and micro-climate events.

These findings compel a more purposeful engagement with people of color, communities of
color, and low-income communities. There are clear barriers that may prevent or reduce involvement
from such participants and places. For CoCoRaHS, there is a financial hurdle to purchase the rain gauges.
Most importantly, the project design does not intentionally include underrepresented groups, and is
instead geared toward participants that are already interested in weather monitoring rather than people
most at risk from flooding and/or climate change. The knowledge generated from citizen science projects
is used to make regulatory decisions, create climate change plans, and make biodiversity assessments.
By not engaging diverse participants, low-income communities, and communities of color in large-scale
monitoring efforts, citizen science projects run the risk of perpetuating social and environmental
inequality through racialized and class-based knowledge creation.

Coinciding with other citizen science-focused scholarship that highlight the importance of project
design and communities of color (Callaghan et al. 2019; Blake, Rhanor, and Pajic 2020), we
demonstrated how citizen science projects may produce a spatial data gap that is a racial data gap. We
caution against attempting to simply increase citizen-as-a-sensor types of token participation that
passively produce VGI. We highlight an emergent paradox in which decreasing the racial data gap might
in fact continue to unfairly burden participants and communities of color due to the time and participation
costs related to the volunteering nature of projects. To address these issues, we point to passive projects
that incorporate equity in all stages of design and to the lessons learned from co-created projects. For
example, the work of Montanari et al (2021) may offer a path forward, as geography is integral to project
design. While often locally focused, we also see potential for active engagement projects that are co-
created and for their capacity to find new and creative ways to scale up, perhaps creating coalitions of
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co-created projects. Ultimately, citizen science projects must improve their spatial coverage to produce
more just ecological knowledge.
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