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Abstract—Shared information is a measure of mutual depen-
dence among m � 2 jointly distributed discrete random variables.
For a Markov chain on a tree with a given joint distribution,
we give a new proof of an explicit characterization of shared
information. When the joint distribution is not known, we exploit
the special form of this characterization to provide a multiarmed
bandit algorithm for estimating shared information, and analyze
its error performance.

Index Terms—Shared information, Markov chain on a tree,
correlated bandits.

I. INTRODUCTION

Let X1, . . . , Xm, m � 2 be random variables (rvs) with
finite alphabets X1, . . . ,Xm, respectively, and joint probabil-
ity mass function (pmf) PX1···Xm . The shared information
SI(X1, . . . , Xm) of the rvs X1, . . . , Xm is a measure of
mutual dependence among them, and for m = 2, SI(X1, X2)

particularizes to mutual information I(X1 ^ X2). Consider
m terminals, with Terminal i having privileged access to
independent and identically distributed (i.i.d.) repetitions of
Xi, i = 1, . . . ,m. Shared information SI(X1, . . . , Xm) has
the operational meaning of being the largest rate of shared
common randomness that the m terminals can generate in
a decentralized manner upon cooperating among themselves
by means of interactive, publicly broadcast and noise-free
communication1. Shared information measures the maximum
rate of common randomness that is (nearly) independent of
the open communication used to generate it.

The (Kullback-Leibler) divergence-based expression for
SI(X1, . . . , Xm) was discovered in [15, Example 4], where it
was derived as an upper bound for a single-letter formula
for the “secret key capacity of a source model” with m

terminals, a concept defined by the operational meaning above.
The upper bound was shown to be tight for m = 2 and 3.
Subsequently, in a significant advance [6], [11], [8], tightness
of the upper bound was established for arbitrary m, thereby
imbuing SI(X1, . . . , Xm) with the operational significance of
being the mentioned maximum rate of shared secret common
randomness. The potential for shared information to serve as
a natural measure of mutual dependence of m � 2 rvs, in the
manner of mutual information for m = 2 rvs, was suggested
in [24]; see also [25].

A comprehensive study of shared information [9], where
it is termed “multivariate mutual information,” examines the
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1Our preferred nomenclature of shared information is justified by its
operational meaning.

role of secret key capacity as a measure of mutual dependence
among multiple rvs and derives important properties including
structural features of an underlying optimization along with
connections to the theory of submodular functions.

In addition to constituting secret key capacity for a
multiterminal source model ([15], [6], [11]), shared information
also affords operational meaning for: maximal packing of edge-
disjoint spanning trees in a multigraph ([27], [26]; see also
[7], [14], [9] for variant models); optimum querying exponent
for resolving common randomness [31]; strong converse for
multiterminal secret key capacity [31], [32]; and also undirected
network coding [8], data clustering [10], among others.

As argued in [9], shared information also possesses several
attributes of measures of dependence among m � 2 rvs
proposed earlier, including Watanabe’s total correlation [33] and
Han’s dual total correlation [19] (both mentioned in Section II).
For m = 2 rvs, measures of common information due to
Gács-Körner [17], Wyner [34] and Tyagi [30] have operational
meanings; extensions to m > 2 rvs merit further study (see,
however, [22]).

For a given joint pmf PX1···Xm of the rvs X1, . . . , Xm, an
explicit characterization of SI(X1, . . . , Xm) can be challenging
(see Definition 1 below); exact formulas are available for
special cases (cf. e.g., [15], [27], [9]). An efficient algorithm
for calculating SI(X1, . . . , Xm) is given in [9].

Our focus in this paper is on a Markov chain on a tree
(MCT) [18]. Tree-structured probabilistic graphical models are
appealing owing to desirable statistical properties that enable,
for instance, efficient algorithms for exact inference [21], [29];
decoding [23], [21]; sampling [16]; and structure learning
[12]. We take the tree structure of our model to be known;
algorithms exist already for learning tree structure from data
samples [12], [13]. We exploit the special form of PX1···Xm in
the setting of an MCT to obtain a simple characterization for
shared information. When the joint pmf PX1···Xm is not known
but the tree structure is, the said characterization facilitates an
estimation of shared information.

In the setting of an MCT [18], our contributions are two-
fold. First, we derive an explicit characterization of shared
information for an MCT with a given joint pmf PX1···Xm

by means of a direct approach that exploits tree structure and
Markovity of the pmf. A characterization of shared information
had been sketched already in [15]; our new proof does not seek
recourse to a secret key interpretation of shared information,
unlike in [15]. Also our proof differs in a material way from
that in prior work [10] with a similar objective. Second, when
PX1···Xm is not known, with the mentioned characterization
serving as a linchpin, we provide an approach for estimating
shared information for an MCT. Formulated as a correlated
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bandits problem [4], this approach seeks to identify the best
arm-pair across which mutual information is minimal. Using a
uniform sampling of arms, redolent of sampling mechanisms
in [3], we provide an upper bound for the probability of
estimation error and associated sample complexity. Our uniform
sampling algorithm is similar to that in [2], [4]; however, our
modified analysis takes into account estimator bias, a feature
that is not common in known bandit algorithms. Also, this
approach can accommodate more refined bandit algorithms as
also alternatives to the probability of error criterion such as
regret [5].

Section II contains the preliminaries. An explicit character-
ization of shared information for an MCT with a given
PX1···Xm is provided in Section III. Section IV describes our
approach for estimating shared information when PX1···Xm is
not known.

II. PRELIMINARIES

Let X1, . . . , Xm, m � 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively, and joint pmf PX1···Xm . For A ✓
M = {1, . . . ,m}, we write XA = (Xi, i 2 A). Let
⇡ = (⇡1, . . . ,⇡k) denote a k-partition of M, 2  k  m.
All logarithms and exponentiations are with respect to the base
2, except when indicated otherwise.

Definition 1 (Shared information). The shared information of
X1, . . . , Xm is defined as

SI(XM)

= min
2km

min
⇡=(⇡u,u=1,··· ,k)

1

k � 1
D(PXM k

kY

u=1

PX⇡u
).

Given a partition ⇡ of M with 2  |⇡|  m atoms, it will
be convenient to denote

I(⇡) = 1

|⇡|� 1
D(PXM k

|⇡|Y

u=1

PX⇡u
)

so that SI(XM) = min2|⇡|m I(⇡).

Example 1. For M = {1, 2}, we have

SI(X1, X2) = mutual information I(X1 ^X2)

and for M = {1, 2, 3}, it is checked readily that
SI(X1, X2, X3) is the minimum of I(X1 ^ X2, X3), I(X2 ^
X1, X3), I(X3 ^X1, X2) and

1

2
[H(X1) + H(X2) + H(X3)�H(X1, X2, X3)] .

Shared information possesses several properties befitting a
measure of mutual dependence among multiple rvs. Clearly
SI(XM) � 0, and equality holds iff PXM = PXAPXAc for
some A ( M; the latter follows from [15, Theorem 5] and
[6], [11], [8]. When X1, . . . , Xm are bijections of each other,
i.e., H(Xi |Xj) = 0, 1  i 6= j  m, then SI(XM) = H(X1),
as expected [9].

Next, the secret key capacity interpretation of SI(XM)

[15], [6], [11], [8], [25] implies that upon grouping the rvs

X1, . . . , Xm into teams represented by the atoms of any k-
partition ⇡ = (⇡1, . . . ,⇡k) of M, 2  k  m, the resulting
shared information of the teamed rvs can be only larger, i.e.,

SI(X⇡1 , . . . , X⇡k) � SI(X1, . . . , Xm). (1)

Suppose that ⇡⇤ = (⇡
⇤
1 , . . . ,⇡

⇤
l ), l � 2, attains SI(XM) > 0

(not necessarily uniquely) in Definition 1, i.e,

SI(XM) =
1

l � 1
D(PXM k

lY

u=1

PX⇡⇤
u
). (2)

A simple but useful observation based on Definition 1, (1)
and (2) is that upon agglomerating the rvs in each atom of
an optimum partition ⇡

⇤
= (⇡

⇤
1 , . . . ,⇡

⇤
l ), the resulting shared

information of the teams, SI(X⇡⇤
1
, . . . , X⇡⇤

l
), equals the shared

information SI(XM) of the (unteamed) rvs X1, . . . , Xm, and
cannot be increased in the manner of (1) by further coalitions
formed out of X⇡⇤

1
, . . . , X⇡⇤

l
. This property has benefited

information-clustering applications (cf. e.g., [9], [10]).
Shared information satisfies the data processing inequality

[9]. For XM = (X1, . . . , Xm), consider X 0M = (X
0
1, . . . , X

0
m)

where for a fixed 1  j  m, X 0i = Xi for i 2M\{j} and X
0
j

is obtained as the output of a stochastic matrix W : Xj ! Xj

with input Xj . Then, SI(X 0M)  SI(XM).
It is worth comparing SI(XM) with two well-known

measures of correlation among X1, . . . , Xm, m � 2, of a
similar vein. Watanabe’s total correlation [33] is defined by

C(XM) = D(PXM k
mY

i=1

PXi) =

m�1X

i=1

I(Xi+1 ^X1, . . . , Xi)

and Han’s dual total correlation [19] by

D(XM) =

mX

i=1

H(XM\{i})� (m� 1)H(XM).

These measures satisfy

SI(XM)  1

m� 1
C(XM), SI(XM)  D(XM).

When M = {1, 2},

SI(X1, X2) = C(X1, X2) = D(X1, X2) = I(X1 ^X2).

Our focus is on shared information for a Markov chain on
a tree.

Definition 2 (Markov Chain on a Tree). Let G = (M, E) be a
tree with vertex set M = {1, . . . ,m}, m � 2, i.e., a connected
graph containing no circuits. For (i, j) in the edge set E , let
B(i j) denote the set of all vertices connected with j by a
path containing the edge (i, j). The rvs X1, . . . , Xm form a
Markov chain on a tree (MCT) G if for every (i, j) 2 E , the
conditional pmf of Xj given XB(i j) = {Xl : l 2 B(i j)}
depends only on Xi. Specifically, Xj is conditionally indepen-
dent of XB(i j)\{i} when conditioned on Xi. Thus, PXM is
such that for each (i, j) 2 E ,

PXj | B(i j) = PXj |Xi
. (3)
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When G is a chain, an MCT reduces to a standard Markov
chain.

As will be seen below, estimation of SI(XM) for an MCT
will entail estimating I(Xi ^ Xj), (i, j) 2 E . We close this
section with pertinent tools that will be used to this end.

Let (Xt, Yt)
n
t=1 be n � 1 i.i.d. repetitions of rvs (X,Y )

with (unknown) pmf PXY of assumed full support on X ⇥ Y ,
where X and Y are finite sets. For (x,y) in Xn ⇥ Yn, let
P

(n)
xy represent their joint type on X ⇥ Y . An estimate of

I(X ^ Y ) = IPXY (X ^ Y ) on the basis of (x,y) in Xn ⇥Yn

is provided by the empirical mutual information or the ‘plug-in’
estimator

Î
(n)

(x ^ y) = H(P
(n)
x ) + H(P

(n)
y )�H(P

(n)
xy ) (4)

where P
(n)
x and P

(n)
x are the (marginal) types of x and y,

respectively [1].

Lemma 1 (Bias of empirical mutual information estimator).
The bias

Bias(̂I
(n)

(X ^Y)) , EPXY

h
Î
(n)

(X ^Y)

i
� I(X ^ Y )

satisfies

� log

✓
1 +

|X |� 1

n

◆✓
1 +

|Y|� 1

n

◆

 Bias(̂I
(n)

(X ^Y))  log

✓
1 +

|X | |Y|� 1

n

◆
.

Proof. The proof follows immediately from [28, Proposition
1].

A concentration bound for the estimator Î
(n)

above using
techniques from [1], is given by2

Lemma 2. For ✏ > 0 and every n � 1,

PXY

⇣���̂I
(n)

(X ^Y)� EPXY

h
Î
(n)

(X ^Y)

i��� � ✏

⌘

 2 exp

✓
� n✏

2

18 log
2
n

◆
.

Proof. The empirical mutual information Î
(n)

: Xn ⇥ Yn !
R+ [ {0} satisfies the bounded differences property, namely

max
(x,y)2Xn⇥Yn

(x0
i,y

0
i)2X⇥Y

��̂I
(n)

(x ^ y)�

Î
(n)

((x
i�1
1 , x

0
i, x

n
i+1) ^ (y

i�1
1 , y

0
i, y

n
i+1))

��  6 log n

n

for 1  i  n, where for l < k, xk
l = (xl, xl+1, . . . , xk). The

previous bound is obtained upon noting that the left-side is
bounded above by six terms via the triangle inequality, the
first of which is����P

(n)
xy (xi, yi) logP

(n)
xy (xi, yi)�

✓
P

(n)
xy (xi, yi)�

1

n

◆
log

✓
P

(n)
xy (xi, yi)�

1

n

◆ ����.

2In Lemma 2 and Theorem 4, exponentiation is with respect to e.

Each of these terms is  log n/n, using the inequality [1]
����
j + 1

n
log

j + 1

n
� j

n
log

j

n

���� 
log n

n
, 0  j < n.

The claim of the lemma then follows by a standard application
of McDiarmid’s Bounded Differences Inequality [5, Lemma
A.7].

III. SHARED INFORMATION FOR A MARKOV CHAIN ON A
TREE

Our first main result is a new proof of an explicit character-
ization of SI(XM) for an MCT. While the upper bound for
SI(XM) is akin to that involving secret key capacity in [15],
the proof of the lower bound uses an altogether new approach
based on the structure of a “good” partition ⇡ in Definition 1.

Theorem 3. Let G = (M, E) be an MCT with pmf PXM in
(3). Then

SI(XM) = min
(i,j)2E

I(Xi ^Xj). (5)

Proof. As shown in [15],

SI(XM)  min
(i,j)2E

I(Xi ^Xj) (6)

and is seen as follows. For each (i, j) 2 E , consider a partition
of M with k = 2 atoms, viz. ⇡ = ⇡((i, j)) = (⇡1,⇡2) where
⇡1 = B(i j), ⇡2 = B(j  i). Then,

I(X⇡1 ^X⇡2) = I(XB(i j) ^XB(j i)) = I(Xi ^Xj) (7)

by the Markov property (3). Hence,

SI(XM)  I(X⇡1 ^X⇡2) = I(Xi ^Xj), (i, j) 2 E

leading to (6).
Next, we show that

SI(XM) � min
(i,j)2E

I(Xi ^Xj). (8)

This is done in two steps. First, we show that for any k-
partition ⇡ of M, k � 2, with (individually) connected
atoms, I(⇡) � min(i,j)2E I(Xi ^Xj). Second, an argument is
sketched to show that for any k-partition ⇡ = (⇡1, . . . ,⇡k)

containing disconnected atoms, there exists a k
0-partition

⇡
0
= (⇡

0
, . . . ,⇡

0
k0), possibly with k

0 6= k, and with fewer
disconnected atoms such that I(⇡0)  I(⇡).

Step 1: Let ⇡ = (⇡1, . . . ,⇡k), k � 2, be a k-partition
such that each atom ⇡i is a connected set. Each such atom is
connected directly to another atom by exactly one edge in E
(owing to the absence of circuits in G). Let E 0 ✓ E denote the
collection of such edges. It follows that the atoms ⇡1, . . . ,⇡k,
taken as vertices, together with the edges in E 0, constitute a
tree. Furthermore, it follows from Definition 2 that if X⇡u and
X⇡v are connected by the edge (u, v) 2 E 0,

I(X⇡u ^X⇡v ) = I(Xu ^Xv), (u, v) 2 E 0. (9)
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Now, let ⇡1, . . . ,⇡k be an enumeration of the atoms, obtained
from a breadth-first search run on the agglomerated MCT with
⇡1 as the root vertex. Then,

I(⇡) = 1

k � 1
D(PXM k

kY

u=1

PX⇡u
)

=
1

k � 1

kX

u=2

I(X⇡u ^X⇡1 , . . . , X⇡u�1)

=
1

k � 1

kX

u=2

I(X⇡u ^Xparent(⇡u))

� min
(u,v)2E0

I(Xu ^Xv) � min
(i,j)2E

I(Xi ^Xj),

where the last equality follows from the Markov property of
the agglomerated MCT and the first inequality is by (9).

Step 2: Consider first the case k = 2. Let (̄i, j̄) be the (not
necessarily unique) minimizer in the right-side of (5). Take
any 2-partition ⇡ = (⇡1,⇡2) with possibly disconnected atoms,
where ⇡1 = [r⇢=1C⇢ and ⇡2 = [s�=1D� are unions of disjoint
components. Noting that some C⇢ and D� must be connected
by some edge (i, j) in E , we have

I(⇡) = I(X⇡1 ^X⇡2) � I(XC⇢ ^XD� ) � I(Xi ^Xj)

� I(Xī ^Xj̄)

where the lower bound is attained by the 2-partition with
connected atoms (B(̄i j̄),B(j̄  ī)) as in (7).

Next, consider a k-partition ⇡ = (⇡1, . . . ,⇡k), k � 3, and
suppose that the atom ⇡1 is not connected. Without loss of
generality, assume ⇡1 to be the (disjoint) union of connected
components A1, . . . , At, t � 2 (which, at an extreme, can be
the individual vertices constituting ⇡1). In the same vein, each
Al, l = 1, . . . , t, can be taken to be maximally connected in
⇡1, i.e., Al is connected and has the attribute that addition
to Al of a vertex in ⇡1 \ Al will render it disconnected. In
general, any connected component of ⇡1 that is not maximally
connected can be enlarged to absorb vertices outside it in ⇡1

that do not render it disconnected.
Take any Al, say Al = Al̄, and consider all its boundary

edges, namely those edges for which one vertex is in Al̄ and
the other outside it. As Al̄ is maximally connected in ⇡1, for
each boundary edge the outside vertex cannot belong to ⇡1

and so must lie in M\ ⇡1. Also, every such outside vertex
associated with Al̄ must be the root of a subtree and, like Al̄,
every Al, l 6= l̄, too, must be a subset of one such subtree
linked to Al̄ – owing to connectedness within Al̄. Furthermore,
since A1, . . . , At are connected, and only through the subtrees
rooted in M\⇡1, there must exist at least one Al such that all
Al0s, l0 6= l, are subsets of one subtree linked to Al. In other
words, denoting this Al as A, we note that A has the property
that

⇡1 \A =

[

l2{1,··· ,t}:
Al 6=A

Al

is contained entirely in a subtree rooted at an outside vertex
associated with A and lying in M \ ⇡1. Let this vertex be

j 2M\⇡1, and let ⇡u 2 ⇡ be the atom that contains j. Since
vertex j separates A from ⇡1\A, so does ⇡u. By (3), it follows
that

A��� ⇡u ��� ⇡1 \A

whereby

I(XA ^X⇡1\A)  I(X⇡u ^X⇡1\A)  I(X⇡u ^X⇡1). (10)

Next, consider the (k � 1)-partition ⇡
0 and the (k + 1)-

partition ⇡
00 of M, defined by

⇡
0
=

⇣
⇡1 [ ⇡u, {⇡v}v 6=1,v 6=u

⌘
, (11)

⇡
00
=

⇣
⇡1 \A,A,⇡u, {⇡v}v 6=1,v 6=u

⌘
. (12)

We claim that

I(⇡) � min {I(⇡0), I(⇡00)} . (13)

Referring to (11) and (12), we can infer from the claim (13)
that for a given k-partition ⇡ with a disconnected atom ⇡1 as
above, merging a disconnected atom with another atom (as in
(11)) or breaking it to create a connected atom (as in (12)),
lead to partitions ⇡

0 or ⇡00, of which at least one has I-value
not more than that of ⇡. This argument is repeated until a
partition with connected atoms is reached.

It remains to show (13). Suppose (13) were not true, i.e.,

I(⇡) < min {I(⇡0), I(⇡00)} .

Then,

I(⇡) < I(⇡0), (k � 2)I(⇡) < (k � 2)I(⇡0)
, I(X⇡u ^X⇡1) < I(⇡), (14)

and similarly,

I(⇡) < I(⇡00), kI(⇡) < kI(⇡00)
, I(⇡) < I(X⇡1\A ^XA) (15)

where the second equivalences in (14) and (15) are obtained
by straightforward manipulation. By (14) and (15),

I(X⇡u ^X⇡1) < I(X⇡1\A ^XA)

which contradicts (10). Hence, (13) is true.

IV. ESTIMATING SHARED INFORMATION FOR AN MCT
Consider the estimation of SI(XM) when the pmf of the rv

XM = (X1, . . . , Xm) is unknown to an “agent” who, however,
knows the tree G = (M, E). We assume in this section that
X1 = · · · = Xm = X , say, and further that the minimizing
edge (̄i, j̄) in the right side of (5) is unique. By Theorem 3,
SI(XM) equals the minimum mutual information across an
edge in the tree G. Treating the determination of this edge as
a correlated bandits problem of best-arm-pair identification,
we provide an algorithm to pinpoint it, and analyze its error
performance and associated sample complexity. The estimate of
shared information is taken to be the mutual information across
the best arm-pair. This estimation procedure is motivated by
the special form of SI(XM) in Theorem 3.
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In the parlance of banditry, the environment has m arms,
one arm corresponding to each vertex in G = (M, E). The
agent can pull, in any step, two arms that are connected by
an edge in E . Each action of the agent is specified by the
pair (i, j), 1  i < j  m, (i, j) 2 E , with associated reward
being the realizations (Xi = xi, Xj = xj). The agent is
allowed to pull a total of N pairs of arms, say. By means
of these actions, the agent seeks to form estimates of all
two-dimensional marginal pmfs PXiXj for (i, j) as above,
and subsequently identify (̄i, j̄) 2 E . Let XN

M denote N i.i.d.
repetitions of XM = (X1, . . . , Xm). Specifically, the agent
must produce an estimate êN = êN (X

N
M) 2 E of (̄i, j̄) 2 E

at the end of N steps so as to minimize the error probability
P (êN 6= (̄i, j̄)); and an estimate of SI as that of the mutual
information across êN .

Denote �ij = I(Xi ^Xj)� I(Xī, Xj̄), (i, j) 2 E , and

�1 = min
(i,j)2E

(i,j) 6=(̄i,j̄)

I(Xi ^Xj)� I(Xī ^Xj̄),

where the latter is the difference between the second-lowest
and lowest mutual information across edges in E . Note that
�1 > 0 by the assumed uniqueness of the minimizing edge
(̄i, j̄).

The estimation scheme below uses uniform sampling with
pairs of rvs corresponding to edges of the tree being sampled
equally often. Suppose that the agent samples a pair of arms
corresponding to an edge n � 1 times; owing to uniform
sampling, N = |E|n. Let xN

M represent a realization of XN
M.

For each (i, j) 2 E , the agent computes the empirical mutual
information estimate Î

(n)
(xi ^ xj) of I(Xi ^ Xj) (see (4)).

Note that the sampling of arm-pairs occurs over different steps.
Define êN (X

N
M) = arg(i,j)2E min Î

(n)
(xi ^ yj). We take as

our estimate of SI to be the mutual information estimate Î
(n)

across the edge êN . Our second main result is an upper bound
for the probability that êN 6= (̄i, j̄).

Theorem 4 (Probability of estimation error for uniform
sampling). For uniform sampling, the probability of error in
identifying the optimal pair of arms is

PXM

�
êN (X

N
M) 6= (̄i, j̄)

�
 4 |E| exp

✓
�(N/ |E|)�2

1

648 log
2
(N/ |E|)

◆

if

N > |E|max

(
|X |2 � 1

2�1/3 � 1
,

|X |� 1

2�1/6 � 1

)
. (16)

Proof. By Lemma 1, the bias of the estimate Î
(n)

(Xi ^Xj) is
bounded above as
��Bias(̂I

(n)
(Xi ^Xj))

��

 max

(
log

 
1 +

|X |2 � 1

n

!
, 2 log

✓
1 +

|X |� 1

n

◆)

 �1

3
 �ij

3
for (i, j) 6= (̄i, j̄) (17)

where the second inequality follows from (16).
The idea underlying the theorem uses the concentration

bound for Î
(n)

in Lemma 2 together with the bound for bias in
(17) to show that with large probability, the estimates Î

(n)
(Xi^

Xj) and Î
(n)

(Xī ^ Xj̄), (i, j) 6= (̄i, j̄), are separated so as
to enable the corresponding edges to be distinguished. To
simplify notation below, we denote Î

(n)

ij = Î
(n)

(Xi ^Xj) and
Iij = I(Xi ^Xj), (i, j) 2 E .

For each (i, j) 2 E , consider the event

Tij =
⇢
Īij̄ �

�ij

2
< Î

(n)

īj̄ < Īij̄ +
�ij

2
,

Iij �
�ij

2
< Î

(n)

ij < Iij +
�ij

2

�

that the estimates Î
(n)

īj̄ and Î
(n)

ij are both close to the respective
true values. Then, with P = PXM , we have

P
�
êN (X

N
M) 6= (̄i, j̄)

�

= P

⇣
Î
(n)

īj̄ � Î
(n)

ij for some (i, j) 6= (̄i, j̄)

⌘


X

(i,j) 6=(̄i,j̄)

P

⇣
Î
(n)

īj̄ � Î
(n)

ij

⌘


X

(i,j) 6=(̄i,j̄)

P (T c
ij).

Using the bound for bias in (17) and Lemma 2 with ✏ = �ij/6,
it follows that

P (T c
ij)  4 exp

✓
�n�2

1

648 log
2
n

◆
.

Thus,

P
�
êN (X

N
M) 6= (̄i, j̄)

�
 4 |E| exp

✓
�(N/ |E|)�2

1

648 log
2
(N/ |E|)

◆
.

V. CLOSING REMARKS

The proof of Theorem 3 implies that for any partition ⇡

with disconnected atoms, there is a partition with connected
atoms that has I-value less than or equal to that of ⇡. This
structural property is stronger than that needed for Theorem 3.

In Section IV, we have resorted to a simple uniform sampling
strategy for the sake of simplicity. As in [2] and [4], it is
expected that a successive rejects algorithm would yield a
better sample complexity for our estimator, and could be
improved further by using more refined estimators. For instance,
known estimators for entropic quantities with lower bias, e.g.,
jack-knifed estimators [28] and polynomial approximation-
based estimators [20], can be expected to yield better error
performance. By Theorem 4, since the probability of estimation
error decays as exp(�O(N/ log

2
N)). It remains open if this

dependence on N can be bettered.

ACKNOWLEDGEMENT

SB thanks Priyanka Kaswan for helpful discussions regarding
the proof of Theorem 4.

2022 IEEE International Symposium on Information Theory (ISIT)

3053Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 27,2022 at 20:02:19 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Antos and I. Kontoyiannis, “Convergence proper-
ties of functional estimates for discrete distributions,”
Random Structures & Algorithms, vol. 19, no. 3-4, 2001.

[2] J.-y. Audibert, S. Bubeck, and R. Munos, “Best arm
identification in multi-armed bandits,” in Proceedings
of the Twenty-Third Annual Conference on Learning
Theory, 2010.

[3] V. P. Boda and P. Narayan, “Universal sampling rate
distortion,” IEEE Transactions on Information Theory,
vol. 64, no. 12, Dec. 2018.

[4] V. P. Boda and L. A. Prashanth, “Correlated bandits
or: How to minimize mean-squared error online,” in
Proceedings of the 36th International Conference on
Machine Learning, vol. 97, PMLR, Jun. 2019.

[5] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning,
and Games. Cambridge University Press, 2006.

[6] C. Chan, “On tightness of mutual dependence upper-
bound for secret-key capacity of multiple terminals,”
ArXiv, vol. abs/0805.3200, 2008.

[7] C. Chan, “Linear perfect secret key agreement,” in 2011
IEEE Information Theory Workshop, 2011.

[8] C. Chan, “The hidden flow of information,” 2011
IEEE International Symposium on Information Theory
Proceedings, 2011.

[9] C. Chan, A. Al-Bashabsheh, J. B. Ebrahimi, T. Kaced,
and T. Liu, “Multivariate mutual information inspired
by secret-key agreement,” Proceedings of the IEEE,
vol. 103, no. 10, 2015.

[10] C. Chan, A. Al-Bashabsheh, Q. Zhou, T. Kaced, and
T. Liu, “Info-clustering: A mathematical theory for data
clustering,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, 2016.

[11] C. Chan and L. Zheng, “Mutual dependence for secret
key agreement,” in 2010 44th Annual Conference on
Information Sciences and Systems (CISS), 2010.

[12] C. Chow and C. Liu, “Approximating discrete probability
distributions with dependence trees,” IEEE Transactions
on Information Theory, 1968.

[13] C. Chow and T. Wagner, “Consistency of an estimate
of tree-dependent probability distributions (corresp.),”
IEEE Transactions on Information Theory, vol. 19, 1973.

[14] T. A. Courtade and T. R. Halford, “Coded cooperative
data exchange for a secret key,” IEEE Transactions on
Information Theory, vol. 62, 2016.

[15] I. Csiszár and P. Narayan, “Secrecy capacities for
multiple terminals,” IEEE Transactions on Information
Theory, vol. 50, no. 12, Dec. 2004.

[16] W. Feng, N. K. Vishnoi, and Y. Yin, “Dynamic sampling
from graphical models,” Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing,
2019.

[17] P. Gács and J. Körner, “Common information is far
less than mutual information,” Problems of Control and
Information Theory, vol. 2, Jan. 1973.

[18] H.-O. Georgii, Gibbs Measures and Phase Transitions.
De Gruyter, 2011.

[19] T. S. Han, “Nonnegative entropy measures of multivari-
ate symmetric correlations,” Information and Control,
vol. 36, no. 2, 1978.

[20] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Minimax
estimation of functionals of discrete distributions,” IEEE
Transactions on Information Theory, vol. 61, no. 5, 2015.

[21] D. Koller and N. Friedman, Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press, 2009.

[22] W. Liu, G. Xu, and B. Chen, “The common information
of n dependent random variables,” 2010 48th Annual
Allerton Conference on Communication, Control, and
Computing (Allerton), 2010.

[23] D. J. C. MacKay, Information Theory, Inference &
Learning Algorithms. USA: Cambridge University Press,
2002.

[24] P. Narayan, “Omniscience and secrecy,” Plenary Talk,
IEEE International Symposium on Information Theory,
Cambridge, MA, 2012.

[25] P. Narayan and H. Tyagi, “Multiterminal secrecy by
public discussion,” Foundations and Trends in Com-
munications and Information Theory, vol. 13, no. 2-3,
2016.

[26] S. Nitinawarat and P. Narayan, “Perfect omniscience,
perfect secrecy, and Steiner tree packing,” IEEE Trans.
Inf. Theory, vol. 56, 2010.

[27] S. Nitinawarat, C. Ye, A. Barg, P. Narayan, and A.
Reznik, “Secret key generation for a pairwise indepen-
dent network model,” IEEE Transactions on Information
Theory, vol. 56, no. 12, Dec. 2010.

[28] L. Paninski, “Estimation of entropy and mutual infor-
mation,” Neural Comput., vol. 15, no. 6, Jun. 2003.

[29] J. Pearl, “Reverend Bayes on inference engines: A
distributed hierarchical approach,” in Proceedings of
the Second AAAI Conference on Artificial Intelligence,
ser. AAAI’82, AAAI Press, 1982.

[30] H. Tyagi, “Common information and secret key capac-
ity,” IEEE Transactions on Information Theory, vol. 59,
2013.

[31] H. Tyagi and P. Narayan, “How many queries will
resolve common randomness?” IEEE Trans. Inf. Theory,
vol. 59, no. 9, 2013.

[32] H. Tyagi and S. Watanabe, “Converses for secret key
agreement and secure computing,” IEEE Transactions
on Information Theory, vol. 61, 2015.

[33] S. Watanabe, “Information theoretical analysis of mul-
tivariate correlation,” IBM Journal of Research and
Development, vol. 4, no. 1, 1960.

[34] A. Wyner, “The common information of two dependent
random variables,” IEEE Transactions on Information
Theory, vol. 21, no. 2, 1975.

2022 IEEE International Symposium on Information Theory (ISIT)

3054Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 27,2022 at 20:02:19 UTC from IEEE Xplore.  Restrictions apply. 


