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1 Abstract

Optical cloaking refers to making an object in-
visible by preventing the light scattering in some
directions as it hits the object. There is interest
in cloaking devices in radar and other applica-
tions. Developing a model to accurately cap-
ture cloaking comes with numerical challenges,
however. We must determine how light propa-
gates through a medium composed by multiple,
thin layers of materials with different electro-
magnetic properties. In this paper we consider a
multi-layered scalar transmission problem in 2D
and use boundary integral equation methods to
compute the field. The Kress product quadra-
ture rule [2] is used to approximate singular
integrals evaluated on boundaries, the Bound-
ary Regularized Integral Equation Formulation
(BRIEF) method [1] with Periodic Trapezoid
Rule (PTR) is employed to treat nearly singular
ones (off boundaries) appearing in the represen-
tation formula. Numerical results illustrate the
efficiency of this approach, which may be ap-
plied to N arbitrary smooth layers.
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2 Problem Setting

The light scattering by a plane wave uin = eik0α⃗·x⃗,
with wavenumber k0 > 0 and angle α ∈ [0, 2π]
on N concentric smooth layers (N ∈ N∗) in two
dimensions can be written as a multi-layered
scalar transmission problem: ∆uj + k2juj = 0

in L̊j := Lj\{Γj−1 ∪ Γj}, uj+1 = uj on Γj ,
∂njuj+1 =

εj+1

εj
∂njuj on Γj , where uj is the total

field solution in the jth layer Lj and nj is the
outward unit normal on the boundary Γj (see
Fig.1). Each layer is characterized by a per-
mittivity εj , and wavenumber kj . Note that the
Sommerfeld radiation condition needs to be sat-
isfied at infinity (in L0).

3 Boundary Integral Equation System

Using the representation formula [1] and the
transmission conditions, we represent the solu-

Figure 1: Sketch and notations for the problem.

tion in layers Lj , j ∈ J1, N − 1K as:

uj =−Dj−1,j [uj−1] +
εj
εj−1

Sj−1,j [∂nj−1uj−1]

+Dj,j [uj ]− Sj,j [∂njuj ] in L̊j ,
(1)

Above, Di,j , Si,j represent the double-layer po-
tential and single-layer potential, respectively,
defined on Γi for i = j − 1, j, evaluated in Lj :

Di,j [uj ](x) =

∫

Γi

∂Φj

∂ni

(x, y)uj(y)dσy, x ∈ L̊j

Si,j [∂niuj ](x) =

∫

Γi

Φj(x, y)∂niuj(y)dσy, x ∈ L̊j

with the fundamental solution to the Helmholtz
equation Φj(x, y) := i

4H
(1)
0 (kj |x − y|) with H1

0

denoting the Hankel function of first kind. We
also write u0 = uin + D00[u0] − S00[∂n0u0] and
uN = −DN−1,N [uN−1]+

εN
εN−1

SN−1,N [∂nN−1uN−1].
As long as one knows the traces and normal
traces (uj(y), ∂njuj(y)) for y ∈ Γj , then one
can evaluate the solution of the problem every-
where. To that aim, we solve the boundary in-
tegral equation (BIE) system shown below (ob-
tained by evaluating the above representations
on the boundaries and using known layer poten-
tial properties) [2].

4 Near-Boundary Evaluation with BRIEF

To treat singularities in the BIE system, we use
the Kress product quadrature rule [2]. Using
the BRIEF method with the PTR, we also treat
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the nearly singular integrals in (1) close to the
boundaries. To use BRIEF [1], we consider
auxiliary functions ψj , j ∈ J0, N − 1K:

ψj(x) = uj(x
b
i)gj(x)+∂niuj(x

b
i)fj(x), x ∈ Lj ,

with gj and fj satisfying the associated Helmholtz
equation in Lj with the boundary conditions
gj(x

b
i) = 1, ∂nigj(x

b
i) = 0, fj(xbi) = 0, ∂nifj(x

b
i) =

1, with xbi ∈ Γi, the point on the boundary clos-
est to x (x = xbi + niℓ, with ℓ ̸= 0). Using
Green’s identities, we subtract the nearly singu-
lar behaviors using ψj as follows:

uj = ψj −Dj−1,j [uj−1 − ψj−1]

+
εj
εj−1

Sj−1,j

[
∂nj−1uj−1 − ∂nj−1ψj−1

]

+Dj,j [uj − ψj ]− Sj,j
[
∂njuj − ∂njψj

]
.

As illustrated in Figures 2-3 the error (or the
field’s amplitude) is reduced at the vicinity of
the boundaries with BRIEF. The incident field
is a plane wave with angle α = π

4 and for the dis-
cretization a body-fitted grid with 100 points on
each boundary and 100 points along the radial
direction was used.

Figure 2: Absolute log error for standard solution
(left) and BRIEF solution (right) for homogenous
case, where boundaries are circles of radii 2 and 1.

5 Ongoing Work

Future goals include reducing the time needed
to generate multi-layered models, which will be
done with parallel computing; investigating rel-
evant applications with effects on the solvability

Figure 3: Standard solution (left) and BRIEF solu-
tion (right) for nonhomogeneous case, where bound-
aries are a circle of radius 1 and a star parameterized
by y(t) = (2 + 0.3cos(5t)) ⟨cos(t), sin(t)⟩, t ∈ [0, 2π].

of the BIE system. In particular, in order to ef-
ficiently simulate optical cloaking, we will con-
sider different electromagnetic properties [3] and
different (non convex) boundary shapes. One
can also create lossy cloaking devices. In that
case, one choose some kj ∈ C with ℑ(kj) > 0,
and other quadratures than Kress will be needed
to preserve accuracy. Extensions to 3D will also
be considered.
Acknowledgements. E.C. is supported by the
UCMerced Eugene Cota-Robles Fellowship. C.C.
acknowledges support from the National Science
Foundation Grant DMS-1819052.

References

[1] Q. Sun, E. Klaseboer, B. C. Khoo, and
D. Y. C. Chan, Boundary regularized in-
tegral equation formulation of Stokes flow,
Physics of Fluids 27 (2015).

[2] R. Kress, Boundary integral equations in
time-harmonic acoustic scattering, Math-
ematical and Computer Modelling 15
(1991), pp. 229–243.

[3] Z. Guan, Y. Zhang, F. Han, C. Zhu, Q.H.
Liu, Fast Exponentially Convergent Solu-
tion of Electromagnetic Scattering From
Multilayer Concentric Magnetodielectric
Cylinders by the Spectral Integral Method,
IEEE Transactions on Microwave Theory
and Techniques, 68 (2020), pp. 2183–2193.


