WAVES 2022, Palaiseau, France

Boundary Integral Equation Methods for Optical Cloaking Models

Camille Carvalho?!, Elsie A. Cortes®*, Chrysoula Tsogka?

1Univ Lyon, INSA Lyon, UJM, UCBL, ECL, CNRS UMR 5208, ICJ, F-69621, France
2Department of Applied Mathematics, UC Merced, Merced, United States of America

*Email: ecortes7@ucmerced.edu

1 Abstract

Optical cloaking refers to making an object in-
visible by preventing the light scattering in some
directions as it hits the object. There is interest
in cloaking devices in radar and other applica-
tions. Developing a model to accurately cap-
ture cloaking comes with numerical challenges,
however. We must determine how light propa-
gates through a medium composed by multiple,
thin layers of materials with different electro-
magnetic properties. In this paper we consider a
multi-layered scalar transmission problem in 2D
and use boundary integral equation methods to
compute the field. The Kress product quadra-
ture rule [2| is used to approximate singular
integrals evaluated on boundaries, the Bound-
ary Regularized Integral Equation Formulation
(BRIEF) method [1] with Periodic Trapezoid
Rule (PTR) is employed to treat nearly singular
ones (off boundaries) appearing in the represen-
tation formula. Numerical results illustrate the
efficiency of this approach, which may be ap-
plied to N arbitrary smooth layers.
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2 Problem Setting

The light scattering by a plane wave ¢! = e?ko&
with wavenumber ko > 0 and angle a € [0, 27]
on N concentric smooth layers (N € N*) in two
dimensions can be written as a multi-layered
scalar transmission problem: Au; + kauj =0
in L; := Lj\{l“j_l U Fj}, ujy1 = uj on Iy,
On;ujy1 = %anjuj on I';, where u; is the total
field solution in the jth layer L; and n; is the
outward unit normal on the boundary I'; (see
Fig.1). Each layer is characterized by a per-
mittivity €;, and wavenumber k;. Note that the
Sommerfeld radiation condition needs to be sat-
isfied at infinity (in Lo).

3 Boundary Integral Equation System

Using the representation formula [1] and the
transmission conditions, we represent the solu-
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Figure 1: Sketch and notations for the problem.
tion in layers Lj, j € [1, N — 1] as:

uj == Dj14[uj]+ %Sj—l,j [On;_uj—1]
+ Djjluj] = 5jj[0n;us]  in Ly,
(1)
Above, D; ;, S; j represent the double-layer po-
tential and single-layer potential, respectively,
defined on I'; for i = j — 1, j, evaluated in L;:
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Sislowusl(@) = [ @@ 0)0nu0)doy. o < L,
with the fundamental solution to the Helmholtz
equation ®;(z,y) = %Hél)(kj]m —y|) with H}
denoting the Hankel function of first kind. We
also write ug = u™™ + Doo[uo] — So0[Onyuo] and
uny = —Dn-1,n[un—1]+ 2SN, N [Ony_ un—1]-
As long as one knows the traces and normal
traces (u;(y),On;u;(y)) for y € T'j, then one
can evaluate the solution of the problem every-
where. To that aim, we solve the boundary in-
tegral equation (BIE) system shown below (ob-
tained by evaluating the above representations
on the boundaries and using known layer poten-

tial properties) |[2].

4 Near-Boundary Evaluation with BRIEF

To treat singularities in the BIE system, we use
the Kress product quadrature rule [2]. Using
the BRIEF method with the PTR, we also treat
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the nearly singular integrals in (1) close to the
boundaries. To use BRIEF [1], we consider
auxiliary functions ¢;, j € [0, N — 1]:

() = uj(2})g;(x) + On,us(2f) fi(x), x € Ly,

with g; and f; satisfying the associated Helmholtz

equation in L; with the boundary conditions

g;j(22) =1, 0,9 (%) =0, f;(2b) =0, By, f;(a?) =

1, with xf € I';, the point on the boundary clos-
est to @ (v = a2 + nyf, with £ # 0). Using
Green’s identities, we subtract the nearly singu-
lar behaviors using 1; as follows:

uj = — Dj1j[uj—1 = j-]
2
+ o Si-1 [Ony o1 = Ony 19
.

+ Djj[uj — 5] — Sjij [On;u — On;1b5] -

As illustrated in Figures 2-3 the error (or the
field’s amplitude) is reduced at the vicinity of
the boundaries with BRIEF. The incident field
is a plane wave with angle o = 7 and for the dis-
cretization a body-fitted grid with 100 points on
each boundary and 100 points along the radial
direction was used.
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Figure 2: Absolute log error for standard solution
(left) and BRIEF solution (right) for homogenous
case, where boundaries are circles of radii 2 and 1.

5 Ongoing Work

Future goals include reducing the time needed
to generate multi-layered models, which will be
done with parallel computing; investigating rel-
evant applications with effects on the solvability

s N( N
£ — Do 500 0 0 0 Uug ui®
5 + Doy —5Sm _Dn Sip 0 8?10.“0 0
. :
Dj-1j  —55S-1i 51— Dij _Sis 0 s uj
0 0 st Dije1 =S50 —Djtj Sisnge O, _
Dy-zn-1 —Z=Sn-a N Dy-1,nv-1 SN-1,N-1 UN-1 :
0 0 0 0 L+ Dy —2=SN-1N Ony_1UN-1 0
(. AN J

PTR Solution without BRIEF method

PTR Solution with BRIEF method

Figure 3: Standard solution (left) and BRIEF solu-
tion (right) for nonhomogeneous case, where bound-
aries are a circle of radius 1 and a star parameterized
by y(t) = (2 + 0.3cos(5t)) (cos(t), sin(¢)), ¢t € [0, 27].

of the BIE system. In particular, in order to ef-
ficiently simulate optical cloaking, we will con-
sider different electromagnetic properties [3] and
different (non convex) boundary shapes. One
can also create lossy cloaking devices. In that
case, one choose some k; € C with J(k;) > 0,
and other quadratures than Kress will be needed
to preserve accuracy. Extensions to 3D will also
be considered.
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