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ABSTRACT

Soil Moisture Active Passive (SMAP) is a NASA’s earth
observing satellite which is used for global scale soil mois-
ture measurement and differentiating frozen/thawed state. It
is employed in 1400-1427 MHz protected band which uses L-
Band radiometer for the quantification. But increasing num-
ber of wireless equipment such as air surveillance radar sig-
nals and 5G communication are making it harder to protect
the radiometer microwave sensing in this secured spectrum.
These technologies are responsible for the Radio Frequency
Interference (RFI) in SMAP’s passive observation. In this
study, a novel deep learning architecture is developed that
uses convolutional neural network (CNN) to predict RFI. Our
model uses SMAP’s level 1A raw antenna counts as well as
level 1B quality flags to dynamically label these antenna raw
measurements as RFI contaminated and RFI free footprints.
This example study shows around 94% accuracy in detecting
RFT and such result may recommend a lucrative technique in
detecting RFI.
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1. INTRODUCTION

RFT has become a matter of concern in earth observation satel-
lites. RFI can jeopardize the received signals and produce
faulty values which may prove very harmful. Soil moisture

information is critical for anticipating agricultural yield through

irrigation planning, which in turn aids in global food produc-
tion planning. Considering the harmfulness of RFI, SMAP is
one of the first satellites to deploy with a data processing unit
dedicated to RFI detection and mitigation [1, 2].

There are different types of characterization available for
the radiometer RFI. Two observed RFI types for SMAP were
pulsed RFI and continuous wave (CW) RFI [3]. RFI can be
generated from a single source or multiple sources. There are
also low and high level RFI which can be very detrimental in
final product calibration. There can be multiple approaches
that are modeled for RFI detection. For SMAP, those tech-
niques can be categorized as cross-frequency detection, po-
larization detection, pulse detection and kurtosis detection.
Among these methods, pulsed RFI are detected by pulse and
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kurtosis detection [4]. On the other hand, CW RFI are de-
tected by cross-frequency detection. All of these techniques
are combined to determine whether a footprint contains RFIL.
Moreover, these RFI detection methods heavily rely on the
handcrafted algorithms which needs developing a hypothesis
with presumed postulation.

In this paper, a deep learning (DL) approach is proposed
which will rely on end-to-end data to decide whether a foot-
print measurement is RFI contaminated or not. This provides
a new perspective where a single algorithm can be utilized to
detect RFI. DL, which is a subset of machine learning (ML),
proves its stature in different classification and regression-
based problems. Traditional RFI mitigation techniques use
statistical approaches, which need hypothesis building with
a variety of assumptions. But in the DL approach, data is
used directly in the model so that the model can learn the
most important features directly from the data and be a de-
ciding factor in terms of making decisions. DL is very flexi-
ble compared to the traditional approaches and helps to pro-
vide a generalization over a certain region. According to au-
thor’s knowledge, there has been only one study on SMAP’s
radiometer RFI detection with DL. For example in [5], au-
thors have introduced RFI detection with DL with 5014 spec-
trogram images for training and validation that used manual
inspection for labeling RFI contaminated pixels. Also, the
authors of that article used pre-trained DL architectures on
spectrogram RGB images with the help of transfer learning
to evaluate model’s performance in terms of accuracy. In this
study, a novel DL architecture is developed which examines
200,000 samples over Europe to detect RFI. This DL architec-
ture helps to tackle the limits of transfer learning [6]. Normal-
ized raw antenna moments are used, which are SMAP level
1A data products and dynamically label them with SMAP
level 1B data quality flags. These normalized antenna counts
are converted into spectrograms and fed directly into the de-
tection model without converting into the RGB images. These
help to preserve the dynamic range of inputs and extract im-
portant information related to RFI. Moreover, limited sample
sizes with real-world data tend to curb the generalization in
classification problems [7]. This study’s large sample size
helps with the generalization of the DL approach.

Remainder of the paper is organized as follows: Data de-
scription is detailed in Section 2, while methodology for RFI



detection is described in Section 3. Results and discussions
are provided on 4 and finally conclusions are drawn in Sec-
tion 5.

2. DATA DESCRIPTION

In this section, dataset acquisition and development for input
to train and test the DL model are discussed. Initial processing
stages to prepare data to feed into DL model are provided.

2.1. Data Acquisition
In this study, SMAP level 1A [8] and level 1B [9] data prod-

ucts are utilized. Level 1A data product contains antenna
counts which are divided into different sub-band level raw
moments. These are the first, second, third and fourth or-
der moments. From these moments data, with the help of
complex correlation, SMAP level 1A develops Stokes param-
eters [10]. In this study, third and fourth Stokes parameters
are used as inputs to the DL model. Level 1B data prod-
ucts contain antenna brightness temperature along with 16-bit
quality flags. These flags contain a single bit of information
that demonstrates whether a footprint is RFI contaminated or
not. Antenna count spectrograms are dynamically labeled for
training and testing in DL architecture with the help of quality
flags which are taken as the ground truth of this study. These
level 1A and level 1B data products are collected from a time
period of 31 March 2016 to 4 June 2016.

2.2. Data Preparation

For RFI detection, the antenna counts data products are fur-
ther divided into sub-band levels. For SMAP, RFI signals
are received in both sub-band and full band levels. For sub-
band, high-resolution signals are categorized in 16 segments
where each band consists of 1.5 MHz of the whole allotted
spectrum. For each of these sub-bands, there are 8 radiome-
ter science data packets. These data packets are integrated
over 1.2 ms. With help of these high-resolution data, spec-
trograms of antenna counts are developed. Each sample con-
tains an array of 16 (1.5MHz) x 8 (1.2ms) spectrogram. By
using third and fourth Stokes parameters we generated ap-
proximately 200,000 samples over the Europe region and dy-
namically label them with level 1B quality flags.

2.3. RFI Characterization
In this part, the spectrograms of the third and fourth Stokes

parameters of the antenna counts are demonstrated. These
Stokes parameters are generated from the raw antenna mo-
ments and to have homogeneity throughout the study, the max-
min normalization technique is used. This normalization helps
to utilize a single DL architecture for all types of antenna
counts [11]. Example spectrogram images are created from
third and fourth Stokes parameters can be observed in Fig. 1.
Different types of RFI cases as well as RFI free spectogram
examples are seen from the figure.

3. METHODOLOGY

Detecting RFI is a difficult task, because of the very little
knowledge about its sources. Moreover, there are high and
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Fig. 1: Spectrogram images generated from third and fourth
Stokes parameters from RFI free and RFI contaminated foot-
prints

low-level RFI which can be embedded with signals of interest.
So, in this study, a DL architecture with convolutional lay-
ers is developed for RFI detection, which will learn directly
from SMAP-generated data. A convolutional neural network
(CNN) is one of the most popular tools in image classifica-
tion and is utilized here to detect RFI as a binary classification
problem.

This study’s DL model has four convolutional layers stacked
up one after another. The input to the DL architecture are
spectrogram images, hence the image sizes are 16 x 8. The
first layer starts with 16 filters and the number of filters for the
subsequent layers are 32, 64 and 128 respectively. Each CNN
layer is followed by a Rectified Linear Unit (ReLU) activa-
tion function. After extracting features from all the CNN lay-
ers, a fully connected layer with 128 neurons is used, which
is followed by a dense layer with 2 neurons to feed into the
soft-max activation function. The soft-max layer provides a
probability of whether a footprint is RFI contaminated or not.

In an DL-based classification, it is important to implement
a cross-validation approach to evaluate the performance of a
model in a diverse scenario. This technique is indispensable
to see the generalization capability of the model. It is a com-
mon scenario in ML that the model performs well in training
but fails largely when it is tested on unseen data. The final
model is designed to make sure that the DL model does not
underfit or overfit the training data. To evaluate the model,
a train-test split technique is utilized where 80% of the data
is randomly kept for training and 20% data for testing. The
model is trained with 60 epochs and 128 batch sizes. Receiv-
ing operating characteristics (ROC) and confusion matrix are
generated to evaluate the detection model with two different
datasets such as third and fourth Stokes parameters. Python



and tensorflow keras API is used to build the detection frame-
work. From the confusion matrix, performance metrics such
as accuracy, precision, recall and f1-score are generated that

are given as
Accuracy = 75— ;C er IT?ZJ\DI TFN M
Precision = Tprﬂ_ippp (2)
Recall = TP}—;—*PFN (3)
Pl 2 % Precision * Recall @)

Precision + Recall

where T'P = True Positive, T'N = True Negative, F'P = False
Positive and F'N = False Negative. Accuracy aids in under-
standing the model’s overall performance. However, high ac-
curacy does not always reflect the performance of each class
("RFI" and "no RFI" in our case), and metrics like precision
and recall can help explain performance in terms of false-
positive and false-negative detection, which is crucial in RFI

detection.

Table 1: Confusion Matrix of RFI Prediction

Antenna Counts Confusion Matrix (%)
Domain
- RFI 90.25 9.75
Third Stokes True Class NoRFI T 2.5 9735
RFI 89.7 10.3
Fourth Stokes | True Class No RFI 3 g7
RFI | No RFI
Prediction Class

Table 2: Evaluation Metrics (%) of RFI Detection Over Eu-

rope

Ant%gglgigunts Accuracy | Precision | Recall | F1-Score
Third Stokes 93.88 90.25 97.30 93.64
Fourth Stokes 93.7 89.7 96.76 93.10

4. RESULTS AND DISCUSSION
In this section, the results of RFI detection with the proposed
DL architecture by the train-test split technique are shown.
From Table 1, the confusion matrix of the prediction results
over the test data can be seen. For third Stokes parameters,
the model correctly predicts RFI contaminated pixels 90.25%
of the time. Meanwhile, for no RFI cases, DL predicts cor-
rectly on 97.5% of the cases. For the fourth Stokes parameter,
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Fig. 2: ROC of RFI prediction with third Stokes parameter -
class O denotes cases with No RFI and class 1 denotes cases

with RFI

RFI detection percentage is 89.7% and the No RFI detection
percentage is 97%. Table 2 shows the accuracy, precision,
recall and f1 scores of each input. For the third Stokes param-
eter, accuracy and precision are 93.8% and 90.25% respec-
tively along with a significantly high recall. This depicts the
model can anticipate RFI cases which are actually RFI with
a relatively low false alarm rate. Moreover, fourth Stokes pa-
rameter’s accuracy and precision are 93.7% and 89.7% with
a high recall performance. These performance metrics with
two different datasets help to portray the superiority of DL
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architecture in detecting RFIL.

Fig. 2 illustrates the ROC of RFI detection for the third
Stokes parameter. The area under the curve (AUC) in this case
is 0.9729 for both of the classes. A higher AUC proves the
effectiveness of the detection algorithm under diverse scenar-
ios. ROC shows how the proposed model performs in terms
of probability of detection (PD) with respect to the probability
of false alarm (PFA) and this study’s model provides a high
PD while satisfying a low PFA. From Fig. 3, the ROC for the
fourth Stokes parameters can be seen. AUC for this predic-
tion is 0.9701. Moreover, traditional approaches for SMAP
RFI discussed in [12], show the highest AUC of 0.85 with
sub-band kurtosis algorithm. DL model shows enhanced RFI
detection performance compared with the traditional statisti-
cal approaches.

5. CONCLUSION

In this paper, a novel DL architecture is developed utilizing
CNN to detect radiometer RFI in SMAP data. RFI has be-
come a matter of concern with the increasing number of active
wireless technologies. We utilized SMAP’s level 1A and level
1B data products and build a DL based detection model. The
model uses approximately 200,000 spectrogram images as its
input. We evaluated the performance of the model using data
over the Europe region. Performance metrics are provided
in terms of accuracy, precision, recall and fl scores using
a train-test validation technique. Moreover, receiver operat-
ing characteristic curves are depicted to provide a perspective
in terms of probability of detection and probability of false
alarm. This study’s model demonstrates approximately 94%
accuracy using the third and fourth Stokes parameters.

For future work, we plan to develop RFI detection schemes
based on DL architectures taking advantage of varying levels
of SMAP data jointly. In addition, we plan to extend pro-
vided results to develop a DL based RFI detector to predict
the global scale RFI footprints.
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